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Abstract

Over the past few years, the abilities of large001
language models (LLMs) have received exten-002
sive attention, which have performed excep-003
tionally well in complicated scenarios such as004
logical reasoning and symbolic inference. A005
significant factor contributing to this progress is006
the benefit of in-context learning and few-shot007
prompting. However, the reasons behind the008
success of such models using contextual rea-009
soning have not been fully explored. Do LLMs010
have understand logical rules to draw infer-011
ences, or do they “guess” the answers by learn-012
ing a type of probabilistic mapping through013
context? This paper investigates the reasoning014
capabilities of LLMs on two logical reasoning015
datasets by using counterfactual methods to re-016
place context text and modify logical concepts.017
Based on our analysis, it is found that LLMs018
do not truly understand logical rules; rather,019
in-context learning has simply enhanced the020
likelihood of these models arriving at the cor-021
rect answers. If one alters certain words in the022
context text or changes the concepts of logi-023
cal terms, the outputs of LLMs can be signif-024
icantly disrupted, leading to counter-intuitive025
responses. This work provides critical insights026
into the limitations of LLMs, underscoring the027
need for more robust mechanisms to ensure028
reliable logical reasoning in LLMs.029

1 Introduction030

Logical reasoning is a core component of human031

cognition that is essential for comprehending, in-032

teracting with, and influencing our environment.033

In contrast to artificial intelligence systems that034

typically depend on vast datasets and substantial035

training to build skills, humans excel at employ-036

ing logical reasoning to deduce, troubleshoot, and037

assimilate new knowledge from limited data or ab-038

stract principles. Moreover, humans demonstrate039

an exceptional capacity to derive novel insights040

from a minimal number of instances or from theo-041

retical frameworks, a capability that stands in sharp042

contrast to the extensive, supervised datasets ne- 043

cessitated by deep learning algorithms. Over the 044

past two years, advancements in large language 045

models (LLMs) have led to extraordinary achieve- 046

ments (Brown et al., 2020a; Ouyang et al., 2022a; 047

Bommasani et al., 2021; Lu et al., 2021). These 048

models have not only excelled in open-ended tasks 049

such as generating creative dialogues, but have also 050

performed exceptionally well in complex problems 051

that necessitate logical reasoning, common sense, 052

and mathematical skills (Ouyang et al., 2022a; Wei 053

et al., 2022a; Wang et al., 2022), thanks in part 054

to innovations such as in-context learning (Brown 055

et al., 2020a; Min et al., 2022; Mishra et al., 2022a; 056

Chen et al., 2022; Mishra et al., 2022b) and Chain- 057

of-Thought (COT) prompting (Wei et al., 2022b). 058

In the literature, COT (Wei et al., 2022b) is de- 059

signed to improve the performance in mathemat- 060

ical problem solving by using intermediate steps 061

as prompts, thereby incrementally guiding LLMs 062

through the necessary reasoning process. Logical- 063

COT (Liu et al., 2023) extends this strategy of in- 064

termediate prompting to logical reasoning tasks. 065

While these prompting-based methods have en- 066

hanced the performance of LLMs on tasks that 067

require logical reasoning, there is still a gap in 068

our understanding of whether these models have 069

genuinely grasped the underlying logical rules, or 070

whether they simply become more effective at con- 071

verging to the correct answers. 072

Therefore, the question remains: do the observed 073

proficiencies of LLMs stem from true understand- 074

ing, or do they merely remember the results based 075

on large-scale parameters, extensive pre-training 076

on large corpora, and a plethora of contextual 077

examples that allow for a broader retention of 078

knowledge? To delve into the topic, we establish 079

a comprehensive evaluation framework based on 080

in-context learning. We first define the texts, the 081

logical reasoning chain, and reasoning keywords in 082

in-context examples. We test whether larger mod- 083
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els exhibit different behaviors on texts that have084

undergone modifications or deletions of these com-085

ponents. Furthermore, we add concepts related086

to logical definitions and test whether the models087

understand the relationships between these logical088

terms by replacing the logical concepts.089

Through extensive analysis, the main important090

findings are summarized as follows:091

• The Chain of Thought (COT) in-context ex-092

amples markedly improve the performance093

of large-scale models on logical reasoning094

tasks. Across a range of models with 7 to095

200 billion parameters, these examples signif-096

icantly enhance the clarity, normativity, and097

accuracy of the generated responses.098

• Large models demonstrate resilience to dis-099

tracting elements within in-context exam-100

ples, such as extraneous text, reasoning101

chains, and patterns. When various seg-102

ments of the in-context example content are103

replaced with text from within or outside the104

domain, large models (70B and 200B param-105

eters) maintain their output accuracy. In con-106

trast, smaller models (7B and 13B parameters)107

suffer notable declines in performance when108

standard in-context examples are not used.109

• Large models do not genuinely compre-110

hend logical principles; rather, they rely111

on probabilistic associations between in-112

put examples and outputs. Efforts to alter113

the definitions of logical symbols and direct114

the models to revise their outputs accordingly115

were met with a minimal rate of successful116

adaptation across all model sizes. Attempts117

to enhance the rate of successful adjustments118

using either prompt or in-context guidance119

yielded limited improvement.120

2 Related Work121

2.1 Large Language Models122

Prior to the emergence of the Large Language123

Model (LLM) trend, Pre-trained Language Models124

(PLMs) were already in the spotlight for their profi-125

ciency in acquiring contextual representations (Qiu126

et al., 2020; Min et al., 2021). With the escalating127

size of PLM parameters, there has been a notable128

enhancement in their performance across a range of129

NLP tasks, with decoder-only models showing par-130

ticularly impressive gains. Among these, the 175B-131

parameter ChatGPT stands out, exhibiting the ca- 132

pacity to craft responses that closely mimic human 133

conversation, leveraging GPT-3’s foundational ar- 134

chitecture (Brown et al., 2020b). Subsequent to the 135

introduction of ChatGPT, the designation "Large 136

Language Model (LLM)" has become common- 137

place when describing PLMs of considerable scale 138

and exceptional generative capabilities. Follow- 139

ing ChatGPT’s launch, the field has seen the ad- 140

vent of numerous LLMs. A selection of prominent 141

open-source LLMs comprises LLaMA (Touvron 142

et al., 2023a), LLaMA 2 (Touvron et al., 2023b), 143

BLOOM (Scao et al., 2022), BLOOMZ (Muen- 144

nighoff et al., 2023), Galactica (Taylor et al., 2022), 145

GLM (Zeng et al., 2023), Pythia (Biderman et al., 146

2023), among others. In terms of training method- 147

ology, the tripartite framework of "pre-training, 148

supervised fine-tuning (SFT), and Reinforcement 149

Learning from Human Feedback (RLHF)" as pro- 150

posed by (Ouyang et al., 2022b) has gained wide 151

recognition and adoption within the community. 152

2.2 Counterfactual Prompt 153

A number of recent works have investigated gen- 154

erating counterfactual text in specific language 155

domains (e.g., court view (Wu et al., 2020), di- 156

alogue generation (Zhu et al., 2020), Natural Lan- 157

guage Inference (Kaushik et al., 2019; Gokhale 158

et al., 2021), named entity recognition (Zeng et al., 159

2020)). Counterfactual explanations offer a path- 160

way to gain deeper insight into the workings of 161

models. This approach may provide more advan- 162

tageous interpretations for state-of-the-art Large 163

Language Models (LLMs). 164

2.3 Logical Reasoning 165

Logical reasoning constitutes a fundamental facet 166

of human cognition and is an essential feature 167

for artificial intelligence systems. To endow 168

AI with this capability, researchers have investi- 169

gated a multitude of strategies, such as rule-based 170

and symbolic systems (MacCartney and Manning, 171

2007), the refinement of expansive language mod- 172

els (Wang et al., 2018), and the integration of neu- 173

ral and symbolic methodologies (Li and Srikumar, 174

2019). Since the introduction of Large Language 175

Models (LLMs) and the development of chain-of- 176

thought prompting (Wei et al., 2022b), there has 177

been a marked enhancement in the logical reason- 178

ing capabilities of these models, as evidenced by 179

improved performance metrics across a range of 180

logic tasks. To our knowledge, we are the first to 181
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Logical
Reasoning

Entailment Bank

Input
Based on the statements that:
photosynthesis is a kind of chemical process.
…
carbohydrates are made of sugars.
Which of the following conclusions can be inferred?
0. plant photosynthesis reduces the amount of carbon 
dioxide in the air.
1. carbon dioxide is used in photosynthesis.
…

Reasoning Chain
[BECAUSE] photosynthesis means green plants convert 
from carbon … [AND] carbohydrates are made of 
sugars [INFER] int1: photosynthesis means plants 
convert carbon … 
[BECAUSE] int1 [AND] photosynthesis is a kind of 
chemical process [INFER] int2: photosynthesis is a kind 
of process that …

Answer
2

Language
To Logic

Folio

Input
If people perform in school talent shows often, 
then they attend and are very engaged with school 
events.
Which of the following logic notation can be 
translated from the upon text?
A. ∀x (TalentShows(x) ∨ Inactive(x))
B. ∀x (AcademicCareer(x) → Students(x))
C. ∀x (TalentShows(x) → Engaged(x))
D. ∀x (Chaperone(x) → ¬Students(x))

Answer
C

Text Reasoning Chain Pattern

Reading
Comprehension

MRC

Input
A professional baseball team manager, in order to have 
the funds to sign a new second-baseman, discreetly 
arranged to trade one of the most popular outfielders 
on the team for …
Question: The reasoning in the argument is vulnerable 
to the criticism that the argument does which one of the 
following?
A. The argument bases its conclusion on what the best 
decision is for the …
B. The argument rejects a well-established …
C. The argument ignores the opinions of expert 
reporters in the …
D. The argument bases its conclusion on facts …

Reasoning Chain
The passage argues that the reporters' criticism of the 
manager's decision was accurate because the 
outfielder was retraded for twice the value. However, 
this change in the outfielder's value could be …

Answer
D

Figure 1: Tasks and datasets used in our experiment: Text: in blue color; Reasoning Chain: in orange color;
Pattern: in purple color.

employ counterfactual methods to examine the ex-182

tent to which these expansive models comprehend183

logical rules and definitions.184

3 Method185

This study aims to investigate which parts of the186

in-context examples make a major contribution to187

the reasoning process of Language Models and188

whether LLMs understand the reasoning process189

demonstrated within the examples. To achieve190

this, we have systematically divided the text within191

examples into three components: text, reasoning192

chain, and pattern. Additionally, we have included193

definitions of logical symbols as supplementary194

text. Text: A sequence of tokens that describe the195

question to be answered (e.g.,) and the text that196

contains the given information. Reasoning Chain:197

The thought process regarding the answer to the198

question, which includes the reasoning pathway199

pertinent to the current question. Pattern: Key200

symbols, answers, and other special texts within201

the in-context examples. Definition: Natural lan-202

guage text providing definitions of logical symbols.203

The operations on the aforementioned parts204

mainly involve two actions: replacement and modi-205

fication.206

Replacement: Replacement for the Text, Reason-207

ing Chain and Pattern. This operation involves208

replacing the current content with content from an-209

other example within the same domain (in-domain) 210

or with unrelated text (out-of-domain). Through re- 211

place operation, we can observe which parts of the 212

data are more important for establishing the logical 213

reasoning of the large model. Furthermore, we can 214

explore the model’s robustness to disturbances and 215

its ability to understand patterns. 216

Modification: To test the large model’s understand- 217

ing of logical rules, modifications are made to the 218

definitions of logical concepts. For example, we 219

modify the definitions of AND and OR. We follow 220

the input examples with a statement that reassigns 221

the original meaning of AND to OR, and vice versa. 222

Given that the input examples utilize the standard 223

interpretations of AND and OR, altering their def- 224

initions should result in an inversion of the corre- 225

sponding relational statements in the output. If the 226

model predominantly learns through probabilistic 227

associations between tokens, the probability of cor- 228

rectly interchanging AND and OR in its output is 229

expected to be low. However, if the model gen- 230

uinely comprehends the logical symbols and their 231

governing rules, it should accurately replace AND 232

with OR, and OR with AND in the output, reflecting 233

this new understanding.1 234

1For specific examples, please refer to Table 1.
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Origin After Operation

Text Based on the statements that: [A set of conditions]
Which of the following conclusions can be inferred?
[A set of conditions]

Based on the statements that: [A set of conditions
from other samples] / [A paragragh from Wikipedia]
Which of the following conclusions can be inferred?
[A set of conditions from other samples] / [A set of
sentences from Wikipedia]

Chain [BECAUSE] [statement1] [AND] [statement2] [IN-
FER] [Inference1]

[BECAUSE] [Statement1 from other samples] / [A
sentence from Wikipedia] [AND] [statement2 from
other samples] / [A sentence from Wikipedia] [IN-
FER] [Inference1 from other samples] / [A sentence
from Wikipedia]

Pattern [BECAUSE] [statement1] [AND] [statement2] [IN-
FER] [Inference1]

[A word from BECAUSE, AND, OR, INFER] / [A
random word] [statement1] [A word from BECAUSE,
AND, OR, INFER] / [A random word] [statement2]
[A word from BECAUSE, AND, OR, INFER] / [A
random word] [Inference1]

Definition The definition of logical AND is as follows: [The
definition of AND from Wikipedia]. The definition
of logical OR is as follows: [The definition of OR
from Wikipedia]. Based on the definitions, answer the
following question.

The concepts of logical AND and logical OR have
now been swapped. The definition of logical AND is
as follows: [The definition of OR from Wikipedia].
The definition of logical OR is as follows: [The defi-
nition of AND from Wikipedia]. Based on the revised
definitions, answer the following question.

Table 1: The comparison between raw data and data after replacement or modification operation from Entailment
Bank. In-domain replace are printed in blue, and out-of-domain replace are printed in red.

4 Experiment235

In this section, we conduct extensive experiments236

to explore LLMs’ ability for logic understanding.237

4.1 Models238

In exploring LLMs’ ability to understand rules,239

we have employed two model series from the240

Open LLM Leaderboard2, each with varying scales241

of parameter sizes, to conduct our experiments.242

LLaMA2 (Touvron et al., 2023c), open-sourced243

and developed by Meta, represents a suite of pre-244

trained and fine-tuned LLMs. These models vary245

in complexity, featuring sizes from 7B to 70B pa-246

rameters. Additionally, we employed models from247

the Qwen series 3, which range in size from 7B248

to 200B parameters. These models have under-249

gone stable pre-training on up to 3 trillion tokens250

of multilingual data, encompassing a broad spec-251

trum of domains and languages with an emphasis252

on Chinese and English. Among these, the 200B-253

parameter model is essentially the largest in terms254

of the number of parameters available to us.4255

2https://huggingface.co/spaces/HuggingFaceH4/
open_llm_leaderboard

3Qwen models from 7B to 72B are downloaded from
https://github.com/QwenLM/Qwen. The outputs of the
200B model are obtained via API calls.

4We do not train the models; instead, we test these mod-
els on their in-context learning capabilities and abilities to
understand logical rules through specific inputs.

4.2 Datasets 256

As our experiments require intermediate reasoning 257

steps, we utilized the dataset released by Liu et al., 258

2023, known as LogicalCOT.5 The specific tasks 259

include the following three types: 260

Folio (Language to Logic): This process involves 261

translating natural language into a more formal 262

logical notation, a fundamental task that requires 263

comprehending and interpreting logical statements 264

articulated in natural language and transforming 265

them into a formalized logical framework. 266

Entailment Bank (Inference Chains): This in- 267

structional approach advances logical reasoning 268

by requiring the model to ascertain the probabil- 269

ity of a potential inference from a given set of 270

premises. Subsequently, the model must delineate 271

the sequence of logical deductions leading to the 272

conclusion. Such an approach fosters deeper logi- 273

cal analysis and the capability to formulate cogent 274

arguments. The examples provided for practice are 275

formulated either in a symbolic language or artic- 276

ulated in natural language for greater accessibility 277

and comprehension. 278

MRC: Machine Reading Comprehension (MRC) 279

serves as the primary task for evaluating the reason- 280

ing capabilities of LLMs, wherein a model is pro- 281

vided with a passage and a corresponding question 282

5https://huggingface.co/datasets/csitfun/
LogiCoT
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Figure 2: The impact of different replacement parts on
Entailment Bank for Qwen series models’ performance.

and is tasked with identifying the correct answer.283

This domain encompasses tasks that necessitate284

a deep comprehension of the provided text, often285

requiring the model to recognize, extract, or de-286

duce information from the text. Models may be287

tasked with resolving scenarios depicted in the text,288

identifying fallacies within an argument, or deter-289

mining information that could bolster or undermine290

a presented argument.291

Data Source for Replacement: We utilize other292

samples as the in-domain data. For out-of-domain293

data, we use the English Wikipedia (2020/03/01)294
6 as the out-of-domain data source. We randomly295

selected a paragraph from one of the 2.6 billion296

documents to replace the content of the text and297

reasoning chain.298

4.3 Influence of In-Context Examples299

In Table 2, we observe a positive correlation be-300

tween the number of in-context examples and the301

accuracy of the model’s predictions. The improve-302

ment brought about by using in-context examples303

is quite evident, which is consistent with Mishra304

et al., 2022a; Chen et al., 2022; Mishra et al., 2022b.305

However, in our results, using 8 examples does not306

yield a significant enhancement over using 4 exam-307

ples. Furthermore, this relationship is amplified as308

model size scales (from 7B to 200B parameters),309

suggesting that larger models benefit dispropor-310

tionately from an increased number of examples.311

Additionally, in-context examples contribute to the312

standardization of the output format, thereby facili-313

tating the generation of outputs that are consistent314

with the expected structure.315

6https://dumps.wikimedia.org/enwiki/
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Figure 3: The impact of different replacement parts
on Entailment Bank for LLaMA series models’ perfor-
mance.

4.4 Influence of Texts 316

In-Domain: We observe that smaller-scale models 317

(7B/13B) exhibit a pronounced decline in accuracy 318

when the context provided in examples is modi- 319

fied, as delineated in Table 2. Conversely, as we 320

can see from Figure 2 and Figure 3, larger models 321

(70B/200B) demonstrate resilience to such contex- 322

tual manipulations, with negligible impacts on ac- 323

curacy. We hypothesize that the augmented capac- 324

ity of larger models equips them with enhanced re- 325

sistance to perturbations of textual input, enabling 326

them to extract and retain salient information from 327

a prescribed format while remaining focused on 328

the central question. In contrast, smaller models 329

appear to be more susceptible to textual interfer- 330

ence, predominantly assimilating linguistic details 331

from the context, which consequently precipitates 332

inaccuracies in addressing the question. 333

Out-of-Domain: When utilizing out-of-domain 334

data, the observations bear a resemblance to those 335

gleaned from in-domain data. However, a clear dis- 336

parity emerges in the robustness of smaller models 337

compared to their larger counterparts when con- 338

fronted with out-of-domain text. Smaller models 339

exhibit a marked decrease in performance. In con- 340

trast, the performance of larger models remains 341

largely stable, showing a negligible impact from 342

such perturbations. 343

Paradoxically, when examining performance on 344

in-domain text, we find that models trained with 345

out-of-domain data not only match but occasion- 346

ally surpass the outcomes attained with in-domain 347

data. This finding runs counter to conventional ex- 348

pectations. The question arises as to why models 349

yield superior results when trained on seemingly 350

irrelevant data and why this enhancement is more 351

5
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Models w/o
4 In-context Examples 8 In-context Examples

Raw Text Chain Pattern Raw Text Chain Pattern
In Out In Out Random In Out In Out Random

Entailment Bank

LLaMA2-7B-Chat 46.2 56.4 42.2 49.0 45.5 49.9 53.8 57.1 41.8 48.5 46.7 48.2 53.3
LLaMA2-13B-Chat 72.2 76.7 42.4 47.8 44.5 65.2 71.9 75.8 45.4 45.4 42.9 60.2 73.0
LLaMA2-70B-Chat 74.8 83.9 82.3 80.8 83.2 81.3 83.8 84.1 83.6 83.7 82.5 81.8 84.2
Qwen-7B-Chat 53.5 62.7 45.6 52.1 48.8 50.8 59.3 64.4 43.3 44.1 47.4 49.7 60.5
Qwen-14B-Chat 72.1 78.7 50.9 52.6 45.1 63.2 73.5 76.6 46.1 45.8 48.7 62.3 75.4
Qwen-72B-Chat 76.4 85.9 84.3 84.8 85.6 85.0 86.2 87.7 86.1 86.5 87.0 85.4 86.6
Qwen-200B-Chat 80.9 92.8 90.2 91.8 92.2 90.0 93.4 92.6 90.4 91.5 92.3 88.8 93.3

Folio

LLaMA2-7B-Chat 45.4 57.9 40.2 41.8 / / 55.0 60.2 38.7 39.9 / / 55.6
LLaMA2-13B-Chat 68.2 72.4 45.8 45.1 / / 63.7 72.5 44.1 43.4 / / 64.5
LLaMA2-70B-Chat 73.8 82.6 80.4 80.5 / / 82.7 83.0 79.4 80.9 / / 82.6
Qwen-7B-Chat 60.2 68.6 46.8 46.2 / / 68.9 69.0 48.9 49.2 / / 68.6
Qwen-14B-Chat 72.8 84.6 63.2 65.8 / / 83.4 85.1 62.4 63.8 / / 83.9
Qwen-72B-Chat 84.6 93.7 90.2 92.2 / / 94.6 92.9 90.4 91.5 / / 91.0
Qwen-200B-Chat 85.8 94.2 92.5 94.0 / / 95.1 93.9 91.3 93.8 / / 93.5

MRC

LLaMA2-7B-Chat 30.8 32.1 27.6 28.7 28.1 27.6 / 33.2 27.7 28.5 27.6 28.0 /
LLaMA2-13B-Chat 40.2 42.0 36.2 38.7 35.1 36.6 / 45.2 38.1 40.3 40.4 40.7 /
LLaMA2-70B-Chat 59.2 65.5 62.0 62.6 63.1 62.9 / 67.8 64.1 64.7 46.7 48.2 /
Qwen-7B-Chat 43.4 56.6 53.3 53.7 54.0 54.9 / 60.4 58.2 58.0 65.2 65.8 /
Qwen-14B-Chat 60.5 68.9 61.3 62.8 63.4 63.2 / 69.2 62.4 63.1 64.0 64.5 /
Qwen-72B-Chat 74.6 79.5 78.1 78.8 80.1 78.2 / 80.0 78.4 79.3 80.4 78.5 /
Qwen-200B-Chat 78.9 80.6 80.2 80.1 79.3 79.1 / 81.9 80.5 79.7 79.0 80.1 /

Table 2: Results for the LLaMA and Qwen model series on the logical datasets. (Acc. %) Here, w/o stands for
without in-context example, while Raw denotes results enhanced with regular in-context examples.

pronounced in smaller models. We hypothesize352

that the enhanced performance can be attributed to353

the greater divergence of out-of-domain data from354

the original data distribution. Such divergence may355

enable the model to distinguish irrelevant text with356

heightened clarity, thereby sharpening its focus on357

content pertinent to the task at hand.358

4.5 Influence of Reasoning Chain359

In-Domain: Upon replacing the reasoning chains360

in our experiment, we observed phenomena analo-361

gous to those documented during text substitution.362

Notably, smaller models demonstrated a dispropor-363

tionately substantial decline in accuracy, with a364

large reduction for 7B and 13B models as opposed365

to a slight decrease for 70B and 200B LLM.7 Re-366

gardless of the model size, the decrease in accuracy367

of reasoning outcomes, engendered by the substitu-368

tion of reasoning chains, proved less pronounced369

than that occasioned by text replacement. This dis-370

parity can be attributed to the text’s integral role in371

defining the problem and potential solutions, which372

facilitates the model’s ability to forge connections373

7For details, see Table 2.

between the input and the expected output, thereby 374

mitigating the influence of alterations in the reason- 375

ing chain. 376

Out-of-Domain: Upon substituting out-of-domain 377

data for the reasoning chain, we observed an unex- 378

pected phenomenon. It can be seen from Figure 2 379

and Figure 3 that 7B and 13B models exhibited 380

only a modest reduction in reasoning performance 381

when utilizing out-of-domain data in Entailment 382

Bank, as opposed to a more substantial decline 383

with in-domain data. Conversely, 70B and 200B 384

models demonstrated a more pronounced decrease 385

in performance with out-of-domain data compared 386

to in-domain data. This divergence in behavior be- 387

tween smaller and larger models warrants further 388

investigation. We hypothesize that the stark con- 389

trast in data distributions between out-of-domain 390

and original datasets prompts smaller models to 391

disregard the textual content within the reasoning 392

chains. Consequently, these models form a direct 393

association between the input text and the corre- 394

sponding output answer, largely ignoring interme- 395

diate reasoning steps. In contrast, larger models, 396

equipped with more robust comprehension capa- 397
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Figure 4: Results of different scales of LLaMA and Qwen models over Entailment Bank when using different
settings. Each target example has 4 in-context samples as the demonstration.

bilities, are significantly affected by the content of398

the reasoning chains. This heightened sensitivity399

to the reasoning process results in more substantial400

disruptions in their output when confronted with401

out-of-domain data.402

4.6 Influence of Pattern403

Our investigation extends to the model’s sensitiv-404

ity to substitutions of specific patterns within the405

text. We conducted experiments where lexical406

items such as [AND], [OR], and [BECAUSE] were407

interchanged (e.g., [AND] ↔ [OR], [OR] ↔ [BE-408

CAUSE]). Notably, substituting [AND] for [OR]409

resulted in the model producing outputs where the410

corresponding terms were interchanged. However,411

it can be seen from Table 2 that despite maintaining412

the logical relationships among these conditions,413

such alterations did not significantly impact the414

model’s output accuracy. Additionally, introducing415

non-sequitur substitutions (e.g., [AND] ↔ [AP-416

PLE/BANANA]) did not meaningfully reduce the417

accuracy of the model’s outputs.418

These findings suggest that the model primarily419

recognizes the necessity for a syntactic linkage420

between adjoining sentences, as signified by the421

presence of markers enclosed within brackets [],422

rather than comprehending the nuanced semantic423

influence exerted by logical connectives such as 424

[AND] or [OR]. The implication is that the model 425

may be relying on surface-level cues to maintain 426

coherence rather than deeply processing the logical 427

relationships underpinning the text’s structure. 428

4.7 Test for Logical Understanding Ability 429

To evaluate the model’s grasp of logical reason- 430

ing, we implemented a methodology that intro- 431

duces prompts subsequent to the examples. This 432

approach serves to ascertain the model’s compre- 433

hension of logical constructs. 434

Modify Symbols and Logical Predicates: It has 435

been observed that altering symbols and logical 436

predicates within a given context does not compro- 437

mise the performance of large language models in 438

terms of generating output. However, these outputs 439

are logically inconsistent at a relational level. For 440

instance, conclusions predicated on the use of an 441

[AND] logical connector do not retain their validity 442

when the [OR] connector is substituted. 443

Modification of Logical Predicates: Our ap- 444

proach utilizes the definitions of logical predicates 445

and symbols as delineated by Wikipedia. We in- 446

troduce a prompt subsequent to an in-context ex- 447

ample.8. This is done to evaluate the model’s com- 448

8For deatails, see Table 1
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prehension of logical terminology—[AND], [OR],449

and others. The expectation is that the model will450

generate text where conjunctions previously de-451

noted by [AND] ([OR]) are now conveyed through452

[OR] ([AND]), with a higher rate of modification453

indicating a better result. Examination of the data454

reveals that smaller models (7B/13B) demonstrate455

a negligible modification rate below 1%, while the456

modification rate for larger models is below 5%.457

This suggests that, although the smaller models458

seem to address logic-related queries adequately,459

their grasp of logical semantics in particular sce-460

narios is limited. Similarly, the performance of461

the larger models (70B/200B) is suboptimal. They462

exhibit a rudimentary understanding of these logi-463

cal predicates—presumably acquired during their464

pre-training phase—but fall short of achieving sat-465

isfactory performance.466

It is worth noting that in such scenarios, larger467

models may produce outputs that reveal underlying468

confusions or rationales. Here is an example output469

by Qwen-200B-Chat: I apologize, but there seems470

to be a misunderstanding. The provided examples471

don’t adhere to the new definitions of logical AND472

and OR. However, based on the modified meanings473

of logical OR (where both conditions must be true474

for the conclusion to hold), we can infer that ...475

4.8 Enhancing Logical Comprehension476

Ability for LLM477

The question arises whether it is possible to aug-478

ment the logical reasoning capabilities of large-479

scale models without resorting to further training.480

To address this, we have explored two distinct ap-481

proaches:482

Prompt-based Guidance: Expanding upon the483

modified definitions, this study incorporated a484

supplementary instructional prompt directing the485

model to interchange the logical operators [OR]486

with [AND], and [AND] with [OR], while ensuring487

grammatical correctness and logical consistency.488

Subsequent to the application of this prompt, a dis-489

cernible enhancement in the model’s performance490

in executing operator swaps was observed; how-491

ever, the improvements did not fulfill our expecta-492

tions.493

Example-based Guidance: The capacity for com-494

prehension enhancement through mere prompt-495

based instruction in models is constrained. To496

address this, we endeavored to enrich the in-497

structional framework by supplementing guiding498

prompts with illustrative modifications. For exam- 499

ple, we provided a practice scenario as follows: 500

"Original Statement: ’[BECAUSE] [Statement1] 501

[AND] [Statement2] [INFER] [Inference1].’ Your 502

Modification: ’[BECAUSE] [Statement1] [OR] 503

[Statement2] [INFER] [Inference1].’ Now, it is 504

your turn to modify." Subsequent to the implemen- 505

tation of both guiding prompts and contextualized 506

example-based instruction, there was an observ- 507

able augmentation in the modification rate by the 508

large-scale model to over 40 50%. This increment 509

indicates a substantial dependency of the model on 510

contextually provided examples. The recurrence of 511

certain logical operator predicate patterns in prece- 512

dent examples suggests that mere reliance on def- 513

initions or prompts is inadequate for mitigating 514

these patterns. Instead, incorporating examples that 515

mirror the anticipated format of modifications is 516

imperative for realizing a significant improvement. 517

Thus, the exploration of methods to enhance the 518

model’s logical reasoning capabilities independent 519

of context-based examples constitutes an avenue 520

for future research. 521

5 Conclusion 522

In this study, we investigate the capacity of LLMs, 523

with parameters varying from 7B to 200B, to com- 524

prehend logical rules. The observed performance 525

disparity between smaller and larger models indi- 526

cates that size alone does not guarantee a profound 527

understanding of logical constructs. While larger 528

models may show traces of semantic learning, their 529

outputs often lack logical validity when faced with 530

swapped logical predicates. Our findings suggest 531

that while LLMs may improve their logical reason- 532

ing performance through in-context learning and 533

methodologies such as COT, these enhancements 534

do not equate to a genuine understanding of logical 535

operations and definitions, nor do they necessarily 536

confer the capability for logical reasoning. 537

Limitations 538

Despite employing prompts and in-context ex- 539

amples that ostensibly improve the model’s ca- 540

pacity for logical reasoning, the enhancement re- 541

mains marginal. To date, a method that markedly 542

augments the model’s comprehension through in- 543

context learning has not been identified. The pre- 544

vailing pre-training mechanism focuses on next- 545

token prediction by estimating the subsequent word 546

based on a probability distribution and may not be 547
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ideally suited for logical tasks. These tasks often548

necessitate the processing of longer-span depen-549

dencies and the integration of global information550

for effective reasoning. Consequently, we believe551

that devising an alternative pre-training strategy tai-552

lored to these requirements presents a promising553

avenue for future research.554

References555

Stella Biderman, Hailey Schoelkopf, Quentin Gregory556
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-557
lahan, Mohammad Aflah Khan, Shivanshu Purohit,558
USVSN Sai Prashanth, Edward Raff, Aviya Skowron,559
Lintang Sutawika, and Oskar van der Wal. 2023.560
Pythia: A suite for analyzing large language mod-561
els across training and scaling. In ICML, volume 202562
of Proceedings of Machine Learning Research, pages563
2397–2430. PMLR.564

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli,565
Russ B. Altman, Simran Arora, Sydney von Arx,566
Michael S. Bernstein, Jeannette Bohg, Antoine567
Bosselut, Emma Brunskill, Erik Brynjolfsson, Shya-568
mal Buch, Dallas Card, Rodrigo Castellon, Ni-569
ladri S. Chatterji, Annie S. Chen, Kathleen Creel,570
Jared Quincy Davis, Dorottya Demszky, Chris Don-571
ahue, Moussa Doumbouya, Esin Durmus, Stefano572
Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-573
Fei, Chelsea Finn, Trevor Gale, Lauren Gillespie,574
Karan Goel, Noah D. Goodman, Shelby Grossman,575
Neel Guha, Tatsunori Hashimoto, Peter Henderson,576
John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu,577
Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky,578
Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keel-579
ing, Fereshte Khani, Omar Khattab, Pang Wei Koh,580
Mark S. Krass, Ranjay Krishna, Rohith Kuditipudi,581
and et al. 2021. On the opportunities and risks of582
foundation models. CoRR, abs/2108.07258.583

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie584
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind585
Neelakantan, Pranav Shyam, Girish Sastry, Amanda586
Askell, Sandhini Agarwal, Ariel Herbert-Voss,587
Gretchen Krueger, Tom Henighan, Rewon Child,588
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,589
Clemens Winter, Christopher Hesse, Mark Chen, Eric590
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,591
Jack Clark, Christopher Berner, Sam McCandlish,592
Alec Radford, Ilya Sutskever, and Dario Amodei.593
2020a. Language models are few-shot learners. In594
Advances in Neural Information Processing Systems595
33: Annual Conference on Neural Information Pro-596
cessing Systems 2020, NeurIPS 2020, December 6-597
12, 2020, virtual.598

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie599
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind600
Neelakantan, Pranav Shyam, Girish Sastry, Amanda601
Askell, Sandhini Agarwal, Ariel Herbert-Voss,602
Gretchen Krueger, Tom Henighan, Rewon Child,603
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,604

Clemens Winter, Christopher Hesse, Mark Chen, Eric 605
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, 606
Jack Clark, Christopher Berner, Sam McCandlish, 607
Alec Radford, Ilya Sutskever, and Dario Amodei. 608
2020b. Language models are few-shot learners. In 609
NeurIPS. 610

Yanda Chen, Ruiqi Zhong, Sheng Zha, George Karypis, 611
and He He. 2022. Meta-learning via language model 612
in-context tuning. In Proceedings of the 60th Annual 613
Meeting of the Association for Computational Lin- 614
guistics (Volume 1: Long Papers), ACL 2022, Dublin, 615
Ireland, May 22-27, 2022, pages 719–730. Associa- 616
tion for Computational Linguistics. 617

Tejas Gokhale, Abhishek Chaudhary, Pratyay Baner- 618
jee, Chitta Baral, and Yezhou Yang. 2021. Se- 619
mantically distributed robust optimization for 620
vision-and-language inference. arXiv preprint 621
arXiv:2110.07165. 622

Divyansh Kaushik, Eduard Hovy, and Zachary Lipton. 623
2019. Learning the difference that makes a differ- 624
ence with counterfactually-augmented data. In Inter- 625
national Conference on Learning Representations. 626

Tao Li and Vivek Srikumar. 2019. Augmenting neural 627
networks with first-order logic. In Proceedings of the 628
57th Annual Meeting of the Association for Compu- 629
tational Linguistics, pages 292–302, Florence, Italy. 630
Association for Computational Linguistics. 631

Hanmeng Liu, Zhiyang Teng, Leyang Cui, Chaoli 632
Zhang, Qiji Zhou, and Yue Zhang. 2023. Logicot: 633
Logical chain-of-thought instruction tuning. In Find- 634
ings of the Association for Computational Linguis- 635
tics: EMNLP 2023, Singapore, December 6-10, 2023, 636
pages 2908–2921. Association for Computational 637
Linguistics. 638

Kevin Lu, Aditya Grover, Pieter Abbeel, and Igor Mor- 639
datch. 2021. Pretrained transformers as universal 640
computation engines. CoRR, abs/2103.05247. 641

Bill MacCartney and Christopher D. Manning. 2007. 642
Natural logic for textual inference. In Proceedings of 643
the ACL-PASCAL Workshop on Textual Entailment 644
and Paraphrasing, pages 193–200, Prague. Associa- 645
tion for Computational Linguistics. 646

Bonan Min, Hayley Ross, Elior Sulem, Amir 647
Pouran Ben Veyseh, Thien Huu Nguyen, Oscar Sainz, 648
Eneko Agirre, Ilana Heintz, and Dan Roth. 2021. 649
Recent advances in natural language processing via 650
large pre-trained language models: A survey. CoRR, 651
abs/2111.01243. 652

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, 653
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle- 654
moyer. 2022. Rethinking the role of demonstrations: 655
What makes in-context learning work? In Proceed- 656
ings of the 2022 Conference on Empirical Methods 657
in Natural Language Processing, EMNLP 2022, Abu 658
Dhabi, United Arab Emirates, December 7-11, 2022, 659
pages 11048–11064. Association for Computational 660
Linguistics. 661

9

http://arxiv.org/abs/2108.07258
http://arxiv.org/abs/2108.07258
http://arxiv.org/abs/2108.07258
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/V1/2022.ACL-LONG.53
https://doi.org/10.18653/V1/2022.ACL-LONG.53
https://doi.org/10.18653/V1/2022.ACL-LONG.53
https://doi.org/10.18653/v1/P19-1028
https://doi.org/10.18653/v1/P19-1028
https://doi.org/10.18653/v1/P19-1028
https://aclanthology.org/2023.findings-emnlp.191
https://aclanthology.org/2023.findings-emnlp.191
https://aclanthology.org/2023.findings-emnlp.191
http://arxiv.org/abs/2103.05247
http://arxiv.org/abs/2103.05247
http://arxiv.org/abs/2103.05247
https://aclanthology.org/W07-1431
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.759
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.759
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.759


Swaroop Mishra, Daniel Khashabi, Chitta Baral, and662
Hannaneh Hajishirzi. 2022a. Cross-task generaliza-663
tion via natural language crowdsourcing instructions.664
In Proceedings of the 60th Annual Meeting of the665
Association for Computational Linguistics (Volume666
1: Long Papers), ACL 2022, Dublin, Ireland, May667
22-27, 2022, pages 3470–3487. Association for Com-668
putational Linguistics.669

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and670
Hannaneh Hajishirzi. 2022b. Cross-task generaliza-671
tion via natural language crowdsourcing instructions.672
In Proceedings of the 60th Annual Meeting of the673
Association for Computational Linguistics (Volume674
1: Long Papers), ACL 2022, Dublin, Ireland, May675
22-27, 2022, pages 3470–3487. Association for Com-676
putational Linguistics.677

Niklas Muennighoff, Thomas Wang, Lintang Sutawika,678
Adam Roberts, Stella Biderman, Teven Le Scao,679
M. Saiful Bari, Sheng Shen, Zheng Xin Yong, Hai-680
ley Schoelkopf, Xiangru Tang, Dragomir Radev, Al-681
ham Fikri Aji, Khalid Almubarak, Samuel Albanie,682
Zaid Alyafeai, Albert Webson, Edward Raff, and683
Colin Raffel. 2023. Crosslingual generalization684
through multitask finetuning. In ACL, pages 15991–685
16111. Association for Computational Linguistics.686

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,687
Carroll L. Wainwright, Pamela Mishkin, Chong688
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,689
John Schulman, Jacob Hilton, Fraser Kelton, Luke690
Miller, Maddie Simens, Amanda Askell, Peter Welin-691
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.692
2022a. Training language models to follow instruc-693
tions with human feedback. In NeurIPS.694

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,695
Carroll L. Wainwright, Pamela Mishkin, Chong696
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,697
John Schulman, Jacob Hilton, Fraser Kelton, Luke698
Miller, Maddie Simens, Amanda Askell, Peter Welin-699
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.700
2022b. Training language models to follow instruc-701
tions with human feedback. In NeurIPS.702

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao,703
Ning Dai, and Xuanjing Huang. 2020. Pre-trained704
models for natural language processing: A survey.705
CoRR, abs/2003.08271.706

Teven Le Scao, Angela Fan, Christopher Akiki, El-707
lie Pavlick, Suzana Ilic, Daniel Hesslow, Roman708
Castagné, Alexandra Sasha Luccioni, François Yvon,709
Matthias Gallé, Jonathan Tow, Alexander M. Rush,710
Stella Biderman, Albert Webson, Pawan Sasanka Am-711
manamanchi, Thomas Wang, Benoît Sagot, Niklas712
Muennighoff, Albert Villanova del Moral, Olatunji713
Ruwase, Rachel Bawden, Stas Bekman, Angelina714
McMillan-Major, Iz Beltagy, Huu Nguyen, Lucile715
Saulnier, Samson Tan, Pedro Ortiz Suarez, Vic-716
tor Sanh, Hugo Laurençon, Yacine Jernite, Julien717
Launay, Margaret Mitchell, Colin Raffel, Aaron718
Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri719
Aji, Amit Alfassy, Anna Rogers, Ariel Kreisberg720

Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue, 721
Christopher Klamm, Colin Leong, Daniel van Strien, 722
David Ifeoluwa Adelani, and et al. 2022. BLOOM: 723
A 176b-parameter open-access multilingual language 724
model. CoRR, abs/2211.05100. 725

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas 726
Scialom, Anthony Hartshorn, Elvis Saravia, An- 727
drew Poulton, Viktor Kerkez, and Robert Stojnic. 728
2022. Galactica: A large language model for science. 729
CoRR, abs/2211.09085. 730

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 731
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 732
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 733
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard 734
Grave, and Guillaume Lample. 2023a. Llama: Open 735
and efficient foundation language models. CoRR, 736
abs/2302.13971. 737

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 738
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 739
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 740
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton- 741
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, 742
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, 743
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An- 744
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan 745
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, 746
Isabel Kloumann, Artem Korenev, Punit Singh Koura, 747
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di- 748
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar- 749
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly- 750
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen- 751
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten, 752
Ruan Silva, Eric Michael Smith, Ranjan Subrama- 753
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay- 754
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu, 755
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, 756
Melanie Kambadur, Sharan Narang, Aurélien Ro- 757
driguez, Robert Stojnic, Sergey Edunov, and Thomas 758
Scialom. 2023b. Llama 2: Open foundation and 759
fine-tuned chat models. CoRR, abs/2307.09288. 760

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 761
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 762
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 763
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton- 764
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, 765
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, 766
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An- 767
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan 768
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, 769
Isabel Kloumann, Artem Korenev, Punit Singh Koura, 770
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di- 771
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar- 772
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly- 773
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen- 774
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten, 775
Ruan Silva, Eric Michael Smith, Ranjan Subrama- 776
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay- 777
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu, 778
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, 779
Melanie Kambadur, Sharan Narang, Aurélien Ro- 780
driguez, Robert Stojnic, Sergey Edunov, and Thomas 781

10

https://doi.org/10.18653/V1/2022.ACL-LONG.244
https://doi.org/10.18653/V1/2022.ACL-LONG.244
https://doi.org/10.18653/V1/2022.ACL-LONG.244
https://doi.org/10.18653/V1/2022.ACL-LONG.244
https://doi.org/10.18653/V1/2022.ACL-LONG.244
https://doi.org/10.18653/V1/2022.ACL-LONG.244
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html


Scialom. 2023c. Llama 2: Open foundation and fine-782
tuned chat models. CoRR, abs/2307.09288.783

Alex Wang, Amanpreet Singh, Julian Michael, Felix784
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:785
A multi-task benchmark and analysis platform for nat-786
ural language understanding. In Proceedings of the787
2018 EMNLP Workshop BlackboxNLP: Analyzing788
and Interpreting Neural Networks for NLP, pages789
353–355, Brussels, Belgium. Association for Com-790
putational Linguistics.791

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-792
isa Liu, Noah A. Smith, Daniel Khashabi, and Han-793
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-794
guage model with self generated instructions. CoRR,795
abs/2212.10560.796

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin797
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-798
drew M. Dai, and Quoc V. Le. 2022a. Finetuned799
language models are zero-shot learners. In The Tenth800
International Conference on Learning Representa-801
tions, ICLR 2022, Virtual Event, April 25-29, 2022.802
OpenReview.net.803

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten804
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,805
and Denny Zhou. 2022b. Chain-of-thought prompt-806
ing elicits reasoning in large language models. In807
NeurIPS.808

Yiquan Wu, Kun Kuang, Yating Zhang, Xiaozhong Liu,809
Changlong Sun, Jun Xiao, Yueting Zhuang, Luo Si,810
and Fei Wu. 2020. De-biased court’s view generation811
with causality. In Proceedings of the 2020 Confer-812
ence on Empirical Methods in Natural Language813
Processing (EMNLP), pages 763–780.814

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,815
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,816
Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma,817
Yufei Xue, Jidong Zhai, Wenguang Chen, Zhiyuan818
Liu, Peng Zhang, Yuxiao Dong, and Jie Tang. 2023.819
GLM-130B: an open bilingual pre-trained model. In820
ICLR. OpenReview.net.821

Xiangji Zeng, Yunliang Li, Yuchen Zhai, and Yin822
Zhang. 2020. Counterfactual generator: A weakly-823
supervised method for named entity recognition. In824
Proceedings of the 2020 Conference on Empirical825
Methods in Natural Language Processing (EMNLP),826
pages 7270–7280.827

Qingfu Zhu, Weinan Zhang, Ting Liu, and828
William Yang Wang. 2020. Counterfactual829
off-policy training for neural dialogue generation. In830
Proceedings of the 2020 Conference on Empirical831
Methods in Natural Language Processing (EMNLP),832
pages 3438–3448.833

11

https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.48550/arXiv.2212.10560
https://doi.org/10.48550/arXiv.2212.10560
https://doi.org/10.48550/arXiv.2212.10560
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html

