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Fig. 1. Consider the two aligned sequences of spoken language phrases and gestures. The phrases, "entire bottom row" and "expand
and decay" are semantically different. Hence, their respective language embeddings are far apart in the latent space. However, they
are accompanied by the same gesture. Thus, we guide the embeddings to be closer in the gesture-aware embedding space, which is
used for the downstream task of gesture generation.

Crossmodal grounding is a key challenge for the task of generating relevant and well-timed gestures from just spoken language as
an input. Often, the same gesture can be accompanied by semantically different spoken language phrases which makes crossmodal
grounding especially challenging. For example, a deictic gesture of spanning a region could co-occur with semantically different
phrases "entire bottom row" (referring to a physical point) and "molecules expand and decay" (referring to a scientific phenomena). In
this paper, we introduce a self-supervised approach to learn such many-to-one grounding relationships between spoken language
and gestures. As part of this approach, we propose a new contrastive loss function, Crossmodal Cluster NCE , that guides the model
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to learn spoken language representations which are consistent with the similarities in the gesture space. By doing so, we impose a
greater level of grounding between spoken language and gestures in the model. We demonstrate the effectiveness of our approach on
a publicly available dataset through quantitative and qualitative studies. Our proposed methodology significantly outperforms prior
approaches for grounding gestures to language. Link to code: https://github.com/dondongwon/CC_NCE_GENEA.

CCS Concepts: • Computing methodologies → Learning latent representations; Neural networks; Natural language pro-
cessing.

Additional Key Words and Phrases: Gesture generation; virtual agents; socially intelligent systems; co-speech gestures; multi-modal

interaction; contrastive learning; crossmodal translation; deep learning

1 INTRODUCTION

Nonverbal behaviours such as body posture, hand gestures and head nods play a crucial role in human communication
[42]. Pointing at different objects, moving hands up-down in emphasis, and describing the outline of a shape are some of
the many gestures that co-occur with the verbal and vocal content of communication. The language content, including
spoken words (verbal cues) are co-generated with gestures to express meaning [21, 31]. When creating new robots
or embodied virtual assistants designed to communicate with humans, it is important to generate gestures that are
relevant with language and speech [5, 22, 34].

Imagine a person gesturing erratically, waving their arms in a way that is unrelated to what they are saying. Even in
human-to-human conversation, this interaction would be considered unnatural. Similarly, a robot generating irrelevant
gestures is a huge concern, as the wrong accompaniment of gestures could make humans uncomfortable interacting
with the robot. Some previous works have focused on the coverage and diversity of the gestures [1, 44]. In this work,
we primarily focus on the precision of the generated gestures. Hence, we need to enforce greater levels of grounding,
so that the generated gestures are more relevant with the language. In a sense, we want the robot to be more cautious
of generating erratic gestures. A way to tackle this challenge is via restricting the mapping of semantically different
language to a smaller subset of high quality gestures.

Consider a person saying ’Someone gave me a gift yesterday’ and ’My heart is beating is so fast’. The deictic gesture
of pointing at themselves is likely to co-occur with the spoken word ’me’ as well as ’my heart’. Notice how the spoken
words and meanings are very different, however, the accompanying gestures are quite similar. This sheds light on the
existence of many-to-one relationship between spoken language and gestures [12, 35] and modelling this relationship is
a key technical challenge. Specifically, solely relying on a reconstruction loss to learn crossmodal grounding can imply
that the grounding relationships are one-to-one. However, at times, the true relationship between spoken language and
gestures may be many-to-one.

Specifically, given two semantically different language sequences, their latent language representations must be close
together if their accompanying gestures are similar. In order to address this problem, the key challenge is to guide the
language latent to be aware of similarities and dissimilarities in the gesture space. We introduce the Crossmodal Cluster
Noise Contrastive Estimation (CC-NCE) objective to learn a gesture-aware embedding space, where the similarities
and disimilarities of samples in the gesture space are preserved. Our loss guides the model to learn a gesture-aware
embedding space, where spoken language representations are consistent with the intra-cluster similarities and inter-
cluster dissimilarities in the gesture space. In order to do so, we construct clusters in the output space of gestures with a
new self-supervised mechanism. This provides positive and negative samples for many-to-one grounding, which is a
key challenge as it requires additional knowledge of the output gesture modality. Also, the construction of unsupervised
Manuscript submitted to ACM
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Fig. 2. The heatmaps on the left demonstrate intracluster similarity and intracluster dissimilarity of gestures clustered by our
algorithm in a self-supervised manner. On the right, the t-SNE plot of our gesture-aware langauge embeddings, 𝑍 , demonstrate that
our proposed Crossmodal Cluster Noise Contrastive Estimation brings together spoken language embeddings for similar gestures.

clusters can be computationally heavy for large datasets and requires the number of clusters which comes at a cost of
an additional hyperparameter. To combat these technical challenges, we propose an online approach for constructing
these clusters where the number of clusters are dynamically chosen while learning the crossmodal translation model.

Our proposed CC-NCE Loss places an emphasis in learning the many-to-one grounding between language and gesture.
This serves as a method to prevent erratic co-speech gestures, which could interfere with natural human-computer
interaction. Therefore, we focus on the precision of the generated gesture sequences. We conduct our experiments on
the publicly available PATS dataset [2]. We find that CC-NCE provides additional incentive for the model to generate
a smaller subset of higher quality gestures closer to the ground truth, with better performance on accuracy metrics.
However, we also perceive the effects of precision-coverage trade off, where the emphasis in precision and grounding
comes at a cost of a decrease in the coverage metrics.

2 RELATEDWORKS

Language in Gesture Generation. A rule-based approach was proposed in an earlier study by Cassell et al. [6],
where the behavior expression animation toolkit (BEAT) was developed to schedule behaviors, such as hand gestures,
head nods and gaze. This approach was extended to utilize linguistic information from input text for selecting rules.
[24, 27, 28, 30, 43].

Rule based approaches were replaced by deep conditional neural fields [8, 9] and Hidden Markov Models for
prosody-driven head motion generation [38] and body motion generation [25, 26]. These use a dictionary of predefined
animations, limiting the diversity of generated gestures. Soon, neural network based models were introduced, using
unimodal inputs, specifically speech, to generate a sequence of gestures [18], head motions [37] and body motions
[2, 3, 13, 14, 40]. On the other hand, Yoon et al. [45] uses only a text input for gesture generation. More recently,
multimodal models utilizing both speech and language were developed. Kucherenko et al. [23] combines the two
representations via early fusion. In order to account for the bi-modal relationship between language and audio in the
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input modalities, Ahuja et al. [1] utilizes a crossmodal attention mechanism to account for correlations between speech
and language. It is important to note that prior approaches [1, 2, 14, 23, 44] rely solely on reconstruction losses (L1
distance between generated pose and ground truth) to learn the grounding between gestures and language. In this
paper, we argue that the inclusion of an additional contrastive grounding loss is valuable to the model, specifically to
learn the many-to-one mapping between spoken language and gestures.

Contrastive Learning. Contrastive learning has gained traction recently due to its success in self-supervised learning.
Oord et al. [32] intially proposed the Contrastive Predictive Coding method to learn informative representations in a
self-supervised manner via Noise Contrastive Estimation (NCE). NCE primarily relies on learning an parametrized
encoder to estimate the true distribution (positives) against random noise (negatives). He et al. [19] proposed MoCo,
which stores a long queue of samples, to insert as negatives to contrast with augmented anchor samples. Chen et al.
[7] proposed SimCLR, which utilized large batch sizes, and eliminating the need for large stored dictionaries. Park
et al. [33] offered a methodology called Patch-wise contrastive Loss, which maximizes the mutual information between
corresponding input and output patches. More recently, a vein integrating clustering mechanisms with contrastive
learning has been proposed, where unsupervised clusters are built in a unimodal space and noise contrastive estimation
is applied [4, 20, 29, 39]. Finally, pertinent to our crossmodal task, Udandarao et al. [41] projects each modality into
a joint embedding space where both modalities are present. Then, they used supervised labels to retain intra-class
and interclass relationships for clusters in the joint space. Furthermore, their methods are designed for downstream
discriminative tasks, whereas our task is generative. A key distinction is that our work utilizes self-supervision to
construct clusters, specifically in the output modality. We utilize the clusters in the output modality such that the same
nature in is preserved in the representations of the input modality.

3 GESTURE GENERATION PROBLEM

Our primary task is to learn a generative model which translates language (BERT [11] tokens) and speech (log-mel
spectrograms) modalities to relevant co-speech gestures. To that end, we learn a joint embedding space where sentences
X𝑤 and speech signals X𝑎 are mapped to latent embeddings Z ∈ Z using an encoder 𝐺𝑒 . These latent embeddings are
further mapped to the space of human upper-body poses represented in temporal skeletal keypoints, (i.e Ŷ𝑝 ) using a
decoder 𝐺𝑑 to optimize for the downstream task of gesture generation.

Formally, we are given a sentence of 𝐾 language tokens X𝑤 =
[
𝑥𝑤1 , 𝑥

𝑤
2 , . . . 𝑥

𝑤
𝐾

]
and a sequence of co-occuring speech

features, X𝑎 =
[
𝑥𝑎1 , 𝑥

𝑎
2 , . . . 𝑥

𝑎
𝑇

]
. We want to predict a sequence of T gesture poses Y𝑝 =

[
𝑦
𝑝

1 , 𝑦
𝑝

2 , . . . 𝑦
𝑝

𝑇
− 1

]
with X𝑎 and

X𝑤 as input. Here 𝑦𝑝𝑡 ∈ R 𝐽 ×2 are the xy-coordinates for 𝑡𝑡ℎ frame for 𝐽 joints of the body skeleton. 𝑥𝑤𝑡 ∈ RK is the 𝑡𝑡ℎ

word embedding with dimension 𝐾 and 𝑥𝑎𝑡 ∈ RM is the 𝑡𝑡ℎ speech frame with dimension𝑀 .
Thus, we have,

Z = 𝐺𝑒 (X𝑎,X𝑤 ;𝜃 ) (1)

Ŷ𝑝 = 𝐺𝑑 (Z;𝜓 ) (2)

Parameters of this encoder-decoder model, 𝜃 ,𝜓 , are optimised with true poses Y𝑝 as a training signal, which can be
written as a reconstruction loss, 𝐿𝑟𝑒𝑐 (𝜃 ) where we use the following L1 distance based on prior works [1, 2, 14, 23, 44, 45],
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Fig. 3. Our proposed approach of self-supervised clustering in the output space of gestures, then utilizing the constructed clusters to
sample negative and positives for the Crossmodal Cluster NCE loss to learn a gesture-aware language embedding space.

L𝑟𝑒𝑐 (𝜃,𝜓 ) = EY𝑝 ,X𝑎,X𝑤 ∥Y𝑝 −𝐺𝑑 (𝐺𝑒 (X𝑎,X𝑤))) | |1 . (3)

Often, as in GAN-based models [1, 14], adversarial losses [15] are included to alleviate the challenge of overly smooth
generation and regression to the mean caused by reconstruction loss [14]. This adversarial loss is written as:

L𝑎𝑑𝑣 (𝜃,𝜓, 𝜂) = EY𝑝 log𝐷𝜂 (Y𝑝 )
+EX𝑎,X𝑤 log

(
1 − 𝐷𝜂 (𝐺𝑑 (𝐺𝑒 (X𝑎,X𝑤)

)
)

(4)

The model is jointly trained to optimize the overall loss function L,

max
𝜂

min
𝜃,𝜓

L𝑟𝑒𝑐 (𝜃,𝜓 ) + 𝜆L𝑎𝑑𝑣 (𝜃,𝜓, 𝜂) (5)

The above formulation is similar to previous works in gesture generation [1, 23, 45].

4 METHOD

Our key contribution in this paper is to explicitly model the many-to-one mapping between spoken language and
gestures in the latent space. This approach involves a two-step process, as shown in Figure 3. Our novel loss function
𝐿𝑐𝑐−𝑛𝑐𝑒 guides the aligned language representations to be close to each other if their corresponding ground truth
gestures are in the same cluster, and far apart if their corresponding ground gestures gestures are not in the same
cluster. Thereby, creating a gesture-aware embedding space. We also propose a clustering algorithm to find similar
gestures in a self-supervised, online manner. The algorithm first constructs batch-wise clusters, which compares itself
with the global clusters and then decides whether the batch-level cluster should be merged or form its own cluster.

Finally, the optimization of the combined objective function describes the full model,

max
𝜂

min
𝜃,𝜓

L𝑟𝑒𝑐 (𝜃,𝜓 ) + L𝑎𝑑𝑣 (𝜃,𝜓, 𝜂) + L𝑐𝑐−𝑛𝑐𝑒 (𝜃,𝜓 ) (6)
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4.1 Crossmodal Cluster NCE

Given the same gesture, many different spoken phrases could accompany it, as shown in Figure 1. Therefore, even
semantically different language embeddings corresponding to similar gesture sequences should be mapped closer
together in the latent space. In order to do so, we propose the Crossmodal Cluster Noise Contrastive Estimation Loss,
inspired by the InfoNCE Loss [16, 17, 32] to learn the gesture-aware embedding space.

4.1.1 Gesture-aware Embedding Space. The InfoNCE Loss [16, 17, 32] first samples an anchor sequence. Its augmen-
tations are considered as positive samples, whereas the remaining elements within the batch (or a stored queue) are
considered as negative samples [7, 19]. We want to guide the language latent space to be close together for similar gesture
sequences and far apart from other dissimilar ones. Hence, sampling a positive or negative sample from the dataset
requires additional knowledge of the output gesture modality. To tackle this challenge, we construct unsupervised
clusters in the output gesture modality, which is described in the next section.

With these constructed clusters in the gesture-domain, we want to coerce the corresponding language embeddings to
mimic the inter-cluster and intra-cluster relationships in the gesture space. We are given an anchor with ground truth
gesture sequences and the corresponding language embeddings, [𝑦, 𝑧] respectively. We are also given global clusters
of gesture sequences and their corresponding language embeddings. At this step, we want to find the cluster which
contains gesture sequences that are most similar to the anchor gesture sequence. Mathematically, given a set of clusters
𝐶 , we find the most similar gesture sequence and the aligned language embeddings: 𝑦+𝑐 , 𝑧+𝑐 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑆𝑖𝑚(𝑦𝑐 , 𝑦)), ∀
[𝑦𝑐 , 𝑧𝑐 ] ∈ 𝐶). Given the anchor, 𝑧, we use the corresponding language embeddings of the most gesture-wise similar
cluster as the positive samples 𝑧+𝑐 . The language embedding sequences in other clusters will be considered as negative
samples 𝑧−𝑐 =

[
𝐶\𝑧+𝑐

]
. With this assignment, we utilize properly assigned samples, in our Crossmodal Cluster NCE .

𝐿𝑐𝑐−𝑛𝑐𝑒 = −E𝑧
[
log

exp(𝐹 (𝑧)𝑇 𝐹 (𝑧+𝑐 ))
exp(𝐹 (𝑧)𝑇 𝐹 (𝑧+𝑐 )) + exp(𝐹 (𝑧)𝑇 𝐹 (𝑧−𝑐 ))

]
(7)

The Crossmodal Cluster NCE as shown in Equation 7 guides the language embedding space to learn the similarities in
the output domain and projects them into a gesture-aware embedding space. The numerator encourages the semantically
different language representations to be closer since they belong in the same gesture cluster. Given an anchor sequence
𝑧, and gesture-wise similar positive language embeddings 𝑧+𝑐 and their dissimilar negatives 𝑧−𝑐 , we feed these language
embeddings into an encoder, which we denote as 𝐹 (.) to learn the relationships in the gesture space.

4.1.2 Gesture-Based Clustering. We want to embed the knowledge of the many-to-one relationship between spoken
language and gestures as shown in Figure 1. To do so, we need to find clusters of similar gestures to provide positive and
negative samples for many-to-one grounding. Since we are not provided with annotations of similar gesture clusters,
we must do this in a self-supervised way.

The construction of unsupervised clusters can be computationally heavy for large datasets and requires the number
of clusters which comes at a cost of an additional hyperparameter. To combat these technical challenges, we propose an
online approach for constructing these clusters where the number of clusters are dynamically chosen while learning
the crossmodal translation model.

We iterate through the data and find the mean 𝜇 and standard deviation �̂� of the pairwise dot-product similarity
(referred to as 𝑆𝑖𝑚) of two arbitrary sequences of gestures. This metric is updated using a moving average continuously.
These metrics are added and used as a threshold to find whether two sequences are similar or not. For example, a
sequence 𝑥 is deemed similar to 𝑦, if 𝑆𝑖𝑚(𝑥,𝑦) ≥ 𝜇 + �̂� .
Manuscript submitted to ACM
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In practice, constructing and utilizing gesture-based clusters in an online manner is a two step process, (1) Batch
Clustering and (2) Global Clustering, which is discussed below.

(1) Batch Clustering: The construction of the batch-wise cluster is important, as we can only compute the gradi-
ents with respect to the batch-wise embeddings and it would be infeasible to work with the global clusters due to
computational limitations. We construct these clusters to utilize as anchor sequences 𝑧.

We describe the algorithm that is used to find the batch-level gesture clusters. In the first step, we calculate similarity
metrics for an arbitrarily chosen anchor pose sequence, 𝑦𝑏𝑎 , with the other pose sequences in the batch, 𝑦𝑏 [∼ 𝐿], where
"∼ 𝐿" are indices of sequences in the batch which has not been assigned to a cluster yet. The anchor sequence and
sequences in the batch, which yield a similarity score greater than the threshold (𝑆𝑖𝑚(𝑦𝑏𝑎 , 𝑦𝑏 [∼ 𝐿]) ≥ 𝜇 + �̂�), are
assigned to a batch-wise cluster. Within the batch-level clustering, we want to discover clusters that are very different
from each other. By assigning the next anchor sequence to the sequence with the lowest similarity score, the algorithm is
able to find clusters that are very different from each other. An important advantage of this method is that it reduces the
number of computations that needs to be computed. With this new anchor, the previously mentioned steps are applied
recursively until all the sequences are assigned and we get a batch-wise dictionary of clusters, 𝐵𝑎𝑡𝑐ℎ𝐷 . Throughout this
process, the latent embeddings corresponding to these gesture-wise clusters are saved together. We refer the readers to
Algorithm 1 in the appendix for more details.

(2) Global Clustering: After we obtain this batch-level dictionary of clusters, 𝐵𝑎𝑡𝑐ℎ𝐷 , we update the global dictionary
of clusters 𝐺𝑙𝑜𝑏𝑎𝑙𝐷 . For each of the batch clusters, we sample a sequence, 𝑦𝑏𝑠𝑎𝑚𝑝 , from the batch cluster 𝑦𝑏 . Then, a
sequence is sampled from each of the clusters in the global clusters 𝑦𝑔 , we denote this as 𝑦𝑔𝑠𝑎𝑚𝑝 . We check whether
𝑦𝑏𝑠𝑎𝑚𝑝 sequence belongs in an existing cluster in 𝐺𝑙𝑜𝑏𝑎𝑙𝐷 with the same thresholding logic: 𝑆𝑖𝑚(𝑦𝑏𝑠𝑎𝑚𝑝 , 𝑦

𝑔
𝑠𝑎𝑚𝑝 ) ≥ 𝜇 +

�̂� . If there exists a pair in that exceeds the threshold, we merge the batch cluster to the global cluster with the highest
similarity value. Otherwise, we assign the batch cluster as a new global cluster in 𝐺𝑙𝑜𝑏𝑎𝑙𝐷 . Similarly to the batch
clustering method, we save the corresponding latent embeddings in the global dictionary as well. We refer the readers
Algorithm 2 for detailed description.

To tie this all back to our CC-NCE in Equation 7, we have [𝑦𝑏
𝑐𝑏
, 𝑧𝑏
𝑐𝑏
] ∈ 𝐵𝑎𝑡𝑐ℎ𝐷 and [𝑦𝑔𝑐𝑔, 𝑧

𝑔
𝑐𝑔] ∈ 𝐺𝑙𝑜𝑏𝑎𝑙𝐷 , where 𝑐𝑏

indicates cluster index for the batch and 𝑐𝑔 for the global dictionary. Given the i-th batch-level cluster, [𝑦𝑏
𝑖
, 𝑧𝑏
𝑖
], we

treat the language embeddings, 𝑧𝑏
𝑖
, as the anchor sequences, because we want the language embeddings to learn the

relationships present in the gesture space. Then, we find the most gesture-wise similar cluster in the global dictionary
𝑦+
𝑖
, 𝑧+
𝑖
= 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑆𝑖𝑚(𝑦𝑔𝑐𝑔, 𝑦𝑏𝑖 )), ∀ [𝑦𝑔𝑐𝑔, 𝑧

𝑔
𝑐𝑔] ∈ 𝐺𝑙𝑜𝑏𝑎𝑙𝐷 ). We use the corresponding language embeddings of the most

similar global cluster as the positive samples 𝑧+
𝑖
. The language embedding sequences in other clusters in the global

dictionary will be considered as negative samples 𝑧−
𝑖

=
[
𝐺𝑙𝑜𝑏𝑎𝑙𝐷\𝑧+𝑖

]
. With this assignment, we utilize properly

assigned samples in our Crossmodal Cluster NCE in Equation 7.

5 EXPERIMENTAL SETUP

5.1 Dataset

We use the PATS dataset [1, 2, 14] as the benchmark to measure performance. It consists of aligned body poses, audio,
and transcripts for 25 speakers. We choose five speakers (maher, bee, lec_cosmic, oliver and colbert) with a wide
range of linguistic content and contrasting gesture styles for our experiments.
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Fig. 4. Generated keypoints superimposed on ground truth images for easy comparison. The usage of contrastive learning produces
gestures closer to the ground truth (𝐿𝑀𝑜𝐶𝑜 , 𝐿𝑝𝑎𝑡𝑐ℎ𝑤𝑖𝑠𝑒 ,𝑂𝑢𝑟𝑠)

.

5.2 Baselines

We utilize the Multimodal Multi-Scale Transformer based GAN-architecture [1] as a primary building block of our
proposed model. To the best of our knowledge, there have been no previous approaches that explicitly learn gesture-
guided semantic spaces with contrastive loss functions. We compare our model with other self-supervised approaches,
𝐿𝑀𝑜𝐶𝑜 and 𝐿𝑝𝑎𝑡𝑐ℎ𝑤𝑖𝑠𝑒 , by replacing the loss function 𝐿𝑐𝑐−𝑛𝑐𝑒 in Equation 6.
𝐿𝑐𝑐−𝑛𝑐𝑒 replaced by 𝐿𝑀𝑜𝐶𝑜 : The contrastive learning proposed in MoCo [19] builds a large queue of data samples. The
queue is referenced to find positive samples, if the encoded views are from the same image. Otherwise, the remaining
elements are considered to be negative. This model is similar to our proposed 𝐿𝑐𝑐−𝑛𝑐𝑒 , without the utilization of
clustering in the gesture space to assign positive and negative labels and relying on data augmentation and noise
sampling for this assignment.
𝐿𝑐𝑐−𝑛𝑐𝑒 replaced by 𝐿𝑝𝑎𝑡𝑐ℎ𝑤𝑖𝑠𝑒 : Another contrastive learning approach: patch-wise contrastive learning [33] uses a
specific contrastive loss, which maximizes the mutual information between the corresponding input and output patches.
The mechanism aligns corresponding input-output patches at specific regions, which allows it discretize inputs into
patches and use them as positives and negatives.
Without 𝐿𝑐𝑐−𝑛𝑐𝑒 : We also compare our proposed model without the 𝐿𝑐𝑐−𝑛𝑐𝑒 loss function which boils down to the
backbone model [1].

5.3 Experimental Methodology

In order to measure the precision and grounding of the generations, specifically relevance and timing of the gestures,
we report the L1 distance between generated and ground-truth gestures. To measure the distribution in the gesture
domain, we utilize the Fréchet Inception Distance (FID), which has been used in comparing gesture distributions [1, 44],
which measures the distance between the distributions of the output generated poses and the ground truth. These
results are included in the Appendix Table 2,

5.4 Implementation Details

The baselines were all trained with their respective hyperparameters. We remove the AISLE adapative reweighting
mechanism in [1] for our backbone model as it feeds in various samples repeatedly into the model. Because our model
constructs clusters in an online manner, the resampling method causes the clusters to be constructed with repeated
Manuscript submitted to ACM
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Model L1 ↓
Speaker: maher bee lec_cosmic oliver colbert Mean

Ours 0.881 ± 0.02 0.918 ± 0.017 0.737 ± 0.032 0.777 ± 0.02 0.096 ± 0.007 0.682 ± 0.007

Without 𝐿𝑐𝑐−𝑛𝑐𝑒 [1] 0.992 ± 0.024 0.955 ± 0.036 0.765 ± 0.046 0.775 ± 0.025 0.092 ± 0.004 0.716 ± 0.006

𝐿𝑐𝑐−𝑛𝑐𝑒 replaced by 𝐿𝑀𝑜𝐶𝑜 [19] 0.983 ± 0.028 0.94 ± 0.058 0.763 ± 0.042 0.781 ± 0.021 0.091 ± 0.002 0.771 ± 0.086

𝐿𝑐𝑐−𝑛𝑐𝑒 replaced by 𝐿𝑝𝑎𝑡𝑐ℎ𝑤𝑖𝑠𝑒 [33] 0.951 ± 0.033 0.937 ± 0.019 0.731 ± 0.019 0.874 ± 0.124 0.096 ± 0.003 0.769 ± 0.085

Table 1. Ablation of various contrastive loss mechanisms for 5 speakers in PATS in the task of generation of gestures in terms of
precision (L1). Ours utilizes the proposed 𝐿𝑐𝑐−𝑛𝑐𝑒 loss, whereas Without 𝐿𝑐𝑐−𝑛𝑐𝑒 utilizes no contrastive learning at all, as proposed in
[1]. 𝐿𝑐𝑐−𝑛𝑐𝑒 is replaced by two other contrastive learning mechanisms 𝐿𝑀𝑜𝐶𝑜 [19] and 𝐿𝑝𝑎𝑡𝑐ℎ𝑤𝑖𝑠𝑒 [33] for comparison.

samples, which can be problematic. Furthermore, in order to initialize the global mean and standard deviation of
similarity scores for two pairwise sequences 𝜇, �̂� for online self-supervised clustering, we iterate through the data for
two epochs to find the mean 𝜇 and standard deviation �̂� of the pairwise dot product similarity (referred to as 𝑆𝑖𝑚) of
two arbitrary sequences of poses. During this time, the contrastive loss is not applied. Finally, the encoder in 4.1 which
learns our gesture-aware embedding space is based on a U-Net structure [36].

6 RESULTS AND DISCUSSION

We substantiate our results by testing on five sampled speakers from the PATS dataset, displayed in Table 1. We give
detailed metrics for each speaker for the precision metric L1 and the mean.
Impact on Precision: Our proposed model with the inclusion of CC-NCE produces better L1 scores than other
baselines (Table 1). We see a significant decrease in L1 scores. This implies that our CC-NCE model produces better
well-timed and relevant gestures compared to other baselines. Specifically, we see that other contrastive learning
approaches, 𝐿𝑀𝑜𝐶𝑜 and 𝐿𝑝𝑎𝑡𝑐ℎ𝑤𝑖𝑠𝑒 have worse L1 scores than that of the bedrock model without any contrastive
learning (Without 𝐿𝑐𝑐−𝑛𝑐𝑒 ). This additionally shows that our proposed method of constructing clusters in the output
domain and coercing the model to learn a pose-aware embedding space is beneficial.
Impact on Coverage: Although our results show improvements in precision, there are important limitations to
consider. The qualitative figures shed insight to the trade-off between coverage and precision. We refer the readers to
Table 2. We see our model having worse FID scores, which represents the coverage of the generated distribution. The
no contrastive learning [1] method, which uses an adaptive importance sampling approach for better performance in
coverage, produces the best results. We are providing additional incentive for the model to generate a limited subset of
gestures, as we are mapping a large language space to a smaller subspace of gestures. Therefore, a decrease in the FID
scores is explained by the trade-off between coverage and precision.
Impact of 𝐿𝑐𝑐−𝑛𝑐𝑒 :We demonstrate the effectiveness of our Crossmodal Cluster NCE Loss and display the resulting
pose-aware embedding space in Figure 2. Firstly, the heatmap plots demonstrate that the self-supervised clustered pose
sequences are indeed similar. Each row of the heatmap displays an overlay of three individual 64-frame sequences in a
specific cluster (indices 6, 7, 9). The red color indicates movements in the right arm and the blue color represents that of
the left arm. For cluster 7, the gesture is dominated by a raised right arm and an up and down motion of the left arm.
For cluster 9, the speaker is at their rest pose, with slight up and down movements of the right arm. Finally, for cluster
6, we can see that the left arm is mainly static, with movements on the right arm. Visually, we can see that clusters
6 and 9 are quite similar, with movements mainly dominated by the right arm, whereas cluster 7 is quite different.
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Model FID ↓
Speaker: maher bee lec_cosmic oliver colbert Mean

Ours 48.52 ± 5.39 100.03 ± 20.74 44.43 ± 9.71 54.06 ± 9.38 5.85 ± 0.84 50.58 ± 7.15

Without 𝐿𝑐𝑐−𝑛𝑐𝑒 [1] 21.38 ± 3.89 65.67 ± 11.35 23.14 ± 11.03 46.48 ± 1.12 6.77 ± 0.05 32.69 ± 3.90

𝐿𝑐𝑐−𝑛𝑐𝑒 replaced by 𝐿𝑀𝑜𝐶𝑜 [19] 32.15 ± 20.83 74.892 ± 24.17 27.38 ± 16.71 48.78 ± 2.13 6.57 ± 0.16 39.66 ± 12.38

𝐿𝑐𝑐−𝑛𝑐𝑒 replaced by 𝐿𝑝𝑎𝑡𝑐ℎ𝑤𝑖𝑠𝑒 [33] 26.45 ± 3.74 70.23 ± 10.52 38.95 ± 4.02 49.47 ± 9.47 5.48 ± 0.85 33.30 ± 3.74

Table 2. Ablation of various contrastive loss mechanisms for 5 speakers in PATS in the task of generation of gestures in terms of
coverage (FID). Ours utilizes the proposed 𝐿𝑐𝑐−𝑛𝑐𝑒 loss, whereas Without 𝐿𝑐𝑐−𝑛𝑐𝑒 utilizes no contrastive learning at all, as proposed
in [1]. 𝐿𝑐𝑐−𝑛𝑐𝑒 is replaced by two other contrastive learning mechanisms 𝐿𝑀𝑜𝐶𝑜 [19] and 𝐿𝑝𝑎𝑡𝑐ℎ𝑤𝑖𝑠𝑒 [33] for comparison.

In the pose-aware embedding space, we also see that clusters 6 and 9 lie in closer regions in the t-SNE plot of the
language representations, in comparison to that of cluster 7. This demonstrates that the intra-cluster and inter-cluster
relationships for gesture similarity and dissimilarity is indeed preserved in the latent space as well. If the clustering
information was not effectively transferred to the latent space, we would not be able to visually see the clusters in the
t-SNE plot located in similar regions.
Qualitative Comparison: We refer the readers to Figure 4, which shows a rendering of each model’s generated
gestures superimposed on the ground truth images for easy comparison of the quality of the generations. Our generated
gestures are close to the ground truth. Specfically, the many-to-one grounding between a smaller subset of gestures and
language allows for less noisy generations, which are confined to a smaller higher quality subset of gestures, which is
due to the clustered gesture-aware embedding space. The bedrock model, denoted as "Without 𝐿𝑐𝑐−𝑛𝑐𝑒 " [1], whose
model architecture is designed around minimizing the distribution difference between the generation and the ground
truth, produces gestures that are quite diverse but nonetheless divulges from the ground truth. On the otherhand,
the contrastive learning based methods Ours, 𝐿𝑀𝑜𝐶𝑜 [19], and 𝐿𝑝𝑎𝑡𝑐ℎ𝑤𝑖𝑠𝑒 [33], seem to generate more relevant and
precision gestures, which shows higher levels of grounding.
Limitations and Future Work Certain speakers with greater diversity contain gesture sequences that are quite
different from that of the majority of the cluster. The key challenge lies in constructing self-supervised clusters in
both the temporal and spatial dimension. On the other hand, converting this into a supervised task, with annotations
collected for gesture clusters, would make CC-NCE even more effective. Secondly, although the larger joint movements
are natural, we observe that the generated gestures have finger keypoints that are abnormal for specific speakers.
This may be due to the fact that the CC-NCE is confounding the final objective function, with the reconstruction loss,
causing the output generations to be noisy, especially since finger keypoints in the data are noisy due to its versatile
movements. Finally, excessive grounding information may contribute to mode collapse, as it encourages the model to
produce similar subset of gestures. Studies need to be done to encourage grounding while preventing convergence to a
smaller subset of modes.

7 CONCLUSION

In this paper, we studied crossmodal grounding in the context of many-to-one mapping between spoken language
and gestures for the task of co-speech gesture generation. We introduced a new contrastive loss function Crossmodal
Cluster NCE loss, which guides the latent space to learn the similarities and dissimilarities in the constructed clusters in
the gesture domain. Furthermore, we offered a mechanism to cluster temporal sequences in an unsupervised and online
Manuscript submitted to ACM
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fashion. We demonstrated the effectiveness of this approach on a publicly available dataset, which indicated that our
proposed methodology outperformed prior approaches in grounding gestures to language. We also observe, in-line with
the precision-coverage trade-off, that encouraging higher precision degrades the coverage of the generated gestures.

This approach shows promise in a wide variety of crossmodal tasks to enforce stronger levels of grounding in a
self-supervised manner, not specific to gesture generation. In addition, our Crossmodal Cluster NCE could be applied in a
unimodal setting for a uni-modal self-supervised representation learning. Enforcing input modality representations to be
able to distinguish similarities and dissimilarities within itself may be helpful where the input space is large. Furthermore,
pertinent to our task of gesture generation, a more fine-grained clustering could be done spatially (clustering based
on left arm/right arm movements separately) and temporally (considering differing levels of granularity). Finally, the
relevance of the clusters to the domain can be amended by a domain-specific choice of similarity metrics such as DTW
[10] for speed-invariant gestures.
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A APPENDIX

A.1 Crossmodal Cluster NCE: Algorithmic details

In Algorithms 1 and 2 we describe, in detail, Batch Clustering and Global Clustering that are key components for
estimating our proposed CC-NCE model.

Algorithm 1 Recursive Batch Clustering

– 𝑧𝑏 : is the encoded audio and language representation
– 𝑦𝑏 : corresponding ground truth pose
– 𝐿 = 𝑡𝑜𝑟𝑐ℎ.𝑧𝑒𝑟𝑜𝑒𝑠 ( |𝐵 |): vector to check if clustered
– 𝐵𝑎𝑡𝑐ℎ𝐷 = 𝑑𝑖𝑐𝑡 (): dictionary for batch-wise clusters
– 𝜇, �̂� : mean and std. dev for similarity scores
– 𝑆𝑖𝑚: Similarity Function
– 𝐶𝑏 batch-wise cluster index
𝑎 = 𝑟𝑎𝑛𝑑 ( |𝐵 |)
𝐶𝑏 = 0
while 𝐿 not all True do
𝐶𝑏 = 𝐶𝑏 + 1
𝐿[𝑎] = 𝑇𝑟𝑢𝑒
𝑦𝑏𝑎 = 𝑦𝑏 [𝑎]
for 𝑖𝑑𝑥, 𝑠𝑐𝑜𝑟𝑒 in enumerate(𝑆𝑖𝑚(𝑦𝑏𝑎 , 𝑦𝑏 [∼ 𝐿]) ) do

if 𝑠𝑐𝑜𝑟𝑒 ≥ 𝜇 + �̂� then
𝐵𝑎𝑡𝑐ℎ𝐷 [𝐶𝑏 ] append (𝑦𝑏 [𝑖𝑑𝑥], 𝑧𝑏 [𝑖𝑑𝑥])
𝐿[𝑖𝑑𝑥] = 𝑇𝑟𝑢𝑒

end if
end for
𝑑𝑖𝑠𝑠𝑖𝑚𝑠𝑒𝑞, 𝑖𝑑𝑥 = 𝑇𝑜𝑝𝐾 (𝑠𝑖𝑚, 1, 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 = 𝐹𝑎𝑙𝑠𝑒)
𝑎 = 𝑖𝑑𝑥

end while
return 𝐵𝑎𝑡𝑐ℎ𝐷
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Algorithm 2 Global Clustering
– 𝐵𝑎𝑡𝑐ℎ𝐷 : dictionary for batch-wise clusters
– 𝐺𝑙𝑜𝑏𝑎𝑙𝐷 : dictionary for global clusters
– 𝐶𝑔 : global cluster index
– 𝜇, �̂� : mean and std. dev for similarity scores
– 𝑆𝑖𝑚: Similarity Function
𝑦
𝑔
𝑠𝑎𝑚𝑝 = sample a pose sequence per cluster from 𝐺𝑙𝑜𝑏𝑎𝑙𝐷

for 𝑖, 𝑣𝑎𝑙𝑢𝑒𝑠 in 𝐵𝑎𝑡𝑐ℎ𝐷 do
𝑦𝑏
𝑖
, 𝑧𝑏
𝑖
= 𝑣𝑎𝑙𝑢𝑒𝑠 ( contains aligned poses & embeddings)

𝑦𝑏𝑠𝑎𝑚𝑝 = sample a single sequence from 𝑦𝑏
𝑐𝑙𝑢𝑠

for 𝑖𝑑𝑥, 𝑠𝑐𝑜𝑟𝑒 in enumerate(𝑆𝑖𝑚(𝑦𝑏𝑠𝑎𝑚𝑝 , 𝑦
𝑔
𝑠𝑎𝑚𝑝 )) do

if 𝑠𝑐𝑜𝑟𝑒 ≥ 𝜇 + �̂� then
𝐺𝑙𝑜𝑏𝑎𝑙𝐷 [𝑖𝑑𝑥] append (𝑦𝑏

𝑐𝑙𝑢𝑠
, 𝑧𝑏
𝑐𝑙𝑢𝑠

)
else
𝐶𝑔 = 𝐶𝑔 + 1
𝐺𝑙𝑜𝑏𝑎𝑙𝐷 [𝐶𝑔 + 1] = (𝑦𝑏

𝑐𝑙𝑢𝑠
, 𝑧𝑏
𝑐𝑙𝑢𝑠

)
end if

end for
end for
return 𝐺𝑙𝑜𝑏𝑎𝑙𝐷
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