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Abstract

Reinforcement learning (RL) has achieved significant success across a wide range
of domains, however, most existing methods are formulated in discrete time. In
this work, we introduce a novel RL method for continuous-time control, where
stochastic differential equations govern state-action dynamics. Departing from
traditional value function-based approaches, our key contribution is the characteri-
zation of continuous-time Q-functions via a martingale condition and the linking of
diffusion policy scores to the action gradient of a learned continuous Q-function by
the dynamic programming principle. This insight motivates Continuous Q-Score
Matching (CQSM), a score-based policy improvement algorithm. Notably, our
method addresses a long-standing challenge in continuous-time RL: preserving the
action-evaluation capability of Q-functions without relying on time discretization.
We further provide theoretical closed-form solutions for linear-quadratic (LQ) con-
trol problems within our framework. Numerical results in simulated environments
demonstrate the effectiveness of our proposed method and compare it to popular
baselines.

1 Introduction

RL has achieved substantial success across a wide range of domains over the past decade [44]. Most
existing approaches adopt a discrete-time formulation, typically modeled as a Markov Decision
Process (MDP) [36l [16], where agents interact with the environment at fixed time intervals. However,
many real-world systems—such as autonomous driving in dynamic traffic conditions [47], robotic
manipulation [34]], and high-frequency algorithmic trading [27]—exhibit continuous, fine-grained dy-
namics that are inadequately captured by discrete-time models. These applications naturally motivate
the need for continuous-time reinforcement learning (CT-RL) frameworks that more faithfully repre-
sent the temporal structure of decision-making. Recent works on CT-RL have explored stochastic
modeling using stochastic differential equations (SDEs) [[L1} 21]], entropy-regularized exploration
techniques [15]], and model-free learning methods for diffusion generative models fine-tuning [58 [17]]
and financial applications [[19} 4]].

Despite these advances, value-based methods like Q-learning [56]—a cornerstone of discrete-time
RL—remain challenging to adapt to the continuous-time setting. Traditional Q-learning algorithms
(e.g., SARSA [44], DQN [32]]) rely on estimating state-action value functions via temporal-difference
(TD) learning and have demonstrated strong performance in discrete action spaces. There is a
line of work on discretizing continuous action spaces to apply Q-learning in high-dimensional
continuous control settings [49, 40, |20]. Discretizing continuous actions is a common approach to
extend Q-learning, but it often struggles with scalability in high-dimensional spaces and relies on

* Corresponding authors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



discrete-time assumptions. However, extending Q-learning to continuous action spaces introduces
major challenges. Early work [[13]] proposed neural network-based formulations for continuous
Q-learning, but later studies [8] reported severe performance drops in high-dimensional settings due
to the curse of dimensionality. Moreover, when Q-learning is directly extended to continuous time,
the Q-function tends to collapse into an action-independent value function [46], losing its ability
to distinguish between actions—a critical property for decision-making. In [25]], they show that
the discrete Q-learning algorithm is noisier and slower in convergence speed compared with their
proposed continuous PG and little q learning algorithms.

To bridge this gap, recent work has explored Q-function-based frameworks that preserve action
dependence in continuous time. For example, [10] replaced the Q-function with a generalized
Hamiltonian, while [25] proposed little g-learning, a time-discretization-free method based on
first-order Q-function approximations, which achieved faster convergence than discrete-time soft
Q-learning (SARSA). Score-matching-based methods [35] have also emerged as promising tools for
learning diffusion policies, though they still rely on time discretization. Other approaches, such as
[26], incorporate the action as a state variable by constraining the action process to be absolutely
continuous with bounded growth. However, these methods are limited to deterministic dynamics
and require upfront discretization of the continuous-time problem. These constraints underscore a
key open challenge: how to design a principled and scalable Q-learning framework for stochastic,
continuous-time environments that maintains the action characteristics of the Q-function. We address
this by introducing a novel Q-function formulation and a corresponding algorithm, Continuous
Q-Score Matching (CQSM), which operates directly in continuous time and supports stochastic
dynamics.

Major contributions. This work makes the following key contributions:

(1) Continuous-Time Q-Function Characterization. We derive a Bellman equation (also known as
the Feynman-Kac formula) for continuous-time Q-functions. This bridges discrete Q-learning with
continuous control theory. We rigorously characterize Q-functions for a given score function using a
martingale condition defined over an enlarged filtration that incorporates both state and action noise.
Based on this foundation, we propose new algorithms for direct Q-function learning, analogous to
policy evaluation and policy gradient methods in [23} [24]].

(2) Score Improvement Theorem and CQSM Algorithm. We establish a score improvement
theorem by the dynamic programming principle that enables principled policy updates in continuous
time. By coupling the Q-function with the score function of a diffusion policy, we develop a model-
free, actor-critic-style algorithm: Continuous Q-Score Matching (CQSM). This algorithm facilitates
efficient policy improvement using only the denoising score function.

(3) Analytical Validation via LQ Control. We resolve the LQ problem under measurable scores,
demonstrating the theoretical soundness of our framework. LQ problems are fundamental in control
theory, as they serve as tractable approximations to more complex nonlinear systems, with practical
relevance in areas such as algorithmic trading [2] and resource management [12]. Using analytical
solutions, we compare CQSM to policy gradient and little g-learning methods, which are the action-
independent value-based RL models, highlighting both its theoretical guarantees and numerical
advantages.

In Section 2] we review related work relevant to our method. Section [3]introduces the continuous-
time reinforcement learning formulation using stochastic differential equations and presents key
preliminary results. In Section[d we develop the Q-learning theory in continuous time, establishing
martingale characterizations. We further extend the analysis to the infinite-horizon setting and prove
the score improvement theorem. Section [5] presents numerical evaluations on LQ control tasks,
comparing CQSM with policy gradient and little g-learning methods. Finally, Section [6] concludes
with a summary and discussion of future directions.

2 Related Works

In this section, we review existing work across four areas related to our method: stochastic optimal
control, continuous reinforcement learning, diffusion Q-learning, and behavior cloning.

Stochastic Optimal Control. Our approach builds on classical stochastic optimal control theory
[S7], particularly through the development of the Hamilton—Jacobi-Bellman (HJB) equation for



continuous-time Q-functions. While traditional stochastic control frameworks often assume full
knowledge of the system dynamics [3]], we instead assume a model for the dynamics of state-action
pairs. This shift motivates new theoretical developments that underpin our Q-learning framework.

Continuous Reinforcement Learning. The formulation of CT-RL in stochastic settings—where
state evolution follows a stochastic differential equation (SDE)—dates back to [33| (7], though early
work lacked data-driven learning mechanisms. Recent advances have introduced more practical
formulations. For instance, [52] proposed an exploratory control framework for continuous RL,
while [153]], [23]], and [24] extended this line of work to mean-variance objectives, policy evaluation,
and policy gradients, respectively. [25]] further introduced the notion of a little g-value, leading to a
continuous analogue of Q-learning. Additional developments include mean-field RL with continuous
dynamics [28]], jump-diffusion extensions [14]], and infinite-horizon variants of TRPO and PPO [59].
Building on these foundations, we advance the study of continuous-time Q-learning under diffusion
policies.

Diffusion Q-Learning. Diffusion Q-learning [55] integrates diffusion models with Q-learning
by using Q-values as training objectives and backpropagates through the diffusion model. More
recently, [5] proposed a model-free online RL method based on diffusion policies. [35] further
established a connection between diffusion-based policies and the Q-function by relating the policy
score to the action gradient of the Q-function. Building on this line of work, [54] employed entropy
estimation to balance exploration and exploitation in diffusion policies, improving the performance
of the policy. In parallel, [30]] generalized diffusion model training by reweighting the conventional
denoising score matching loss, leading to two efficient algorithms for training diffusion policies
in online RL without requiring samples from optimal policies. However, their approach relies
on time discretization and requires injecting noise into the final action of the diffusion chain. In
contrast, our work preserves the full action-evaluation capability of the Q-function in continuous time,
without relying on any discretization in either time or action space. Our method is grounded in a
martingale-based formulation of the HIB equation, which provides a principled theoretical foundation
for continuous-time Q-learning.

Behavior Cloning. Behavior cloning focuses on imitating expert trajectories without access to
reward signals. Diffusion models are particularly well-suited for this task due to their generative
flexibility and natural alignment with score-matching objectives. Recent works [22,[3"7]] have applied
diffusion models to behavior cloning by framing policy learning as a distribution-matching problem
over expert data. These approaches inspired our incorporation of score-matching terms into the
objective. However, our framework goes beyond imitation, enabling policy improvement through
Q-function learning in continuous time.

3 Formulation and Preliminaries

In this section, we introduce the continuous-time RL formulation using stochastic differential equa-
tions and present key preliminary results.

Notation. We introduce the non-standard notation used throughout the main text and appendix. For
a vector x, denote by ||z||2 the Euclidean norm of z. For a function f on an Euclidean space, V f
(resp. V2 f) denotes the gradient (resp. the Hessian) of f. The Kullback—Leibler (KL) divergence

of two positive density functions f, g is defined as D1 (f||g) := [, log J;EZ; f(a) da. Define an
operator £ : C%2(R™ x R) N C(R™ x R%) — C(R) [57] associated with the diffusion process as:

1 1
Lo(x,a) = Vep(z,a) bx + Vap(z,a) ¥ + 3t (ox0xVip(z,a)) + St (0404 Vip(z,q)).

In both the main text and the proofs, we refer frequently to the score of the action distribution, denoted
by W. This vector field defines the temporal evolution of actions and serves as a proxy for the true
score V, log 7(a|z) where 7 refers to the action distribution.

Continuous RL. Let d, n be positive integers, 7' > 0. We denote the state as X; € R™ and the
action as a; € R? with ¢ € [0, T]. We consider the following stochastic, continuous-time setting for



state and action dynamics:
dXt = bx<t, Xt, at) dt + Ux(t, Xt, Clt) dBiX, dat = ‘I’(t, Xt, at) dt —|— O'a(t, Xt, at) dB?7 (1)

where ¥ : [0,7] x R" x R? — R? corresponds to the score of our policy, which serves as the
primary optimization variable in this setting, bx, b, : [0, 7] x R™ x R? — R™ corresponds to the
continuous state and action dynamics, and o x, o, are functions from [0, 7] x R™ x R to positive
semidefinite matrices in R"*" and R?*< respectively. The processes are driven by two independent
Brownian motions: BX = {BX, s > 0} and B* = {B%,s > 0}. All processes are defined on a
filtered probability space (Q, F,IP; {Fs }s>0) where {F;} >0 is the natural filtration generated by a
standard n-dimensional Brownian motion BX and a standard d-dimensional Brownian motion B®.
The (continuous-time) Q-function under any given W is defined as

Q(t,z,a; V) = EF Xi=z,0, =a

)

2
where EF is the expectation with respect to both Brownian motions B;¥ and B¢, r : [0, T] x R™ x
R? — Rand h : R x R? — R are running and lump-sum reward function, respectively, and A > 0
is the regularization coefficient governing the cost of large score magnitudes. The goal is to find an
optimal score function ¥* € II where II denotes the set of admissible diffusion scores, such that the
optimal Q-function

T
1
/ {r(s, X, a5) — §A||\Il(s, X, a5)||§] ds + h( X7, ar)
t

Q(t,z,a) = sup Q(t, z,a; V). 3)
well

We now give a precise definition of the admissible score set II.

Definition 1. A score VU is called admissible if
(i) O := {U(t, Xy, at) : t > 0} is adapted;

(ii) EF [fOT H\I/(S,X&as)ﬂgds} < .

Details regarding the well-posedness of the control problem (T)-(3) are provided in Appendix

The score matching term 3 A||¥(X, as) |3 in the objective can be interpreted from the following two
perspectives:

Quadratic Execution Costs. Let a; denote the investor’s portfolio position. The score matching
term captures the quadratic costs of execution trades of size ¥ d¢, where A quantifies the level of
transaction costs. This is consistent with execution cost models in portfolio optimization [[1];
Policy Regularization via KL Divergence. Suppose the diffusion coefficient o, is deterministic
and U(t, X;, a¢) = ba(t, Xt, ar) + u(t, X¢, ar)o,(t) where u represents a control. Under this setup,
the score-matching cost admits an interpretation as a KL divergence between trajectory distributions.
Specifically, let 7°%¢(az |z, a) denote the distribution over terminal actions when u = 0 and let
7 (ar|zt, ar) denote the distribution under control «. By the Section 3 in [6]]), we have

T
1
DKL(WU(GTP&a)||7Tbase(aT|x’a)) = EF l/ §||U(S,Xs,as)||§d8
t

Xt:x,at:a] . (4)

Setting A = ||o,(#)]|?, the original score-matching term aligns exactly with this KL regularization.
The corresponding objective can then be interpreted as:

&)

T
Q(t,,a) = sup E [/ r(Xs, as) ds + h(Xp, ar)
u€ell t

Xt:m,at:al

base (

— ADgr(m"(ar|z, a)||7* (ar|z, a)).

Thus, the KL term encourages the optimal policy to remain close to the base dynamics, introducing a
form of regularized policy improvement.

4 Continuous Q-Score Matching Algorithm

In this section, we develop a continuous-time Q-learning framework using a martingale characteriza-
tion and the HJB equation. This offers an alternative approach to policy improvement.



4.1 Dynamic Programming and HJB Equation for Q-Function

By the dynamic programming principle, the Q-function satisfies the following HIB equation:

sup {ﬁQ(t,x, a) + @(tm, a)+r(t,z,a) — 1)\H\I/(Lx, a)%} = 0. (6)
well 8t 2

Note that the terms V,Q - bx (t,x,a), VoQ - by (t, z,a), %tr (JXJ;VﬁQ) , %tr (JQU(LTV?LQ) and
7(t,z,a) are all independent of W. Hence, the supremum in (6) is attained at U*(¢,z,a) =
A 1V,Q(t, z,a). Substituting this back into the HIB equation gives the following nonlinear partial
differential equation characterizing the optimal Q-function:

0 1
O (1 0,0) - r(t,2,0) + V2Q 2, 0)T bx(t,,0) + A V@03

1 1
+ 5t (ox (b e, a)ox (t.2,0) VEQ(t ,0)) + 5t (u(t, 2, @)ou(t,2,0) T V2Q(t 3. a)) =0,

QT z,a) = h(z,a).

(N
We now focus on the optimal Q-function associated with the optimal score W*. To avoid unduly
technicalities, we assume throughout this paper that the Q-function Q € C*%2([0,T) x R™ x R%) N
C([0,T) x R™ x RY) satisfies the polynomial growth condition in the joint state-action variable
z = (z,a). The following theorem establishes the key martingale characterization underpinning
policy evaluation for diffusion-based policies.
Theorem 1. If Q(-,-,-; V) is the Q-function associated with the score U if and only if it satisfies
terminal condition Q(T,x,a; V) = h(x,a), and for all (z,a) € R™ x RY, the following process

M, = Q(s, X5, as; V) +/ {r(wXu,au) — ;Anxp(u,xmau)ng} du 8)
t

is a ({Fs}s>0, P)-martingale on [t, T). Conversely, if there is a continuous Q-function Q such that
forall (z,a) € R™ x RY, M, is a martingale, where

. . s 1

My = Q(s, X5, a5; V) +/ [r(u,Xu,au) — 2A|\11(u,Xu,au)||§] du, ©)
t
and Q(T, z,a; V) = h(z,a), then Q=Qon [0, T] x R"™ x R?. Furthermore, the martingale property
of M € L%([0,T))is equivalent to the following orthogonality condition:
T

1

EP/ gt {dQ(LXt,at;\I/)—|—7"(t,Xt,at) dt — 2)\||\Il(t,Xt7at)||§dt} = 07 (10)
0

for any test process ¢ € L%([0,T); Q(-, X., a.; ¥)).

Proof can be found in Appendix[B.1] In summary, the martingality of the process defined in Equation
under a given score W is both necessary and sufficient for @) to be the corresponding action value
function.

4.2 Score Evaluation of the Q-Function

We now discuss how the HIB equation can be used to design a Q-learning algorithm for estimating
Q(z, a; ¥) using sample trajectories. A number of algorithms can be developed based on two types
of objectives: to minimize the martingale loss function or to satisfy the martingale orthogonality
conditions. Following [23]], we leverage the martingale orthogonality condition, which states that for
any 7' > 0 and a suitable test process &,

T 1
EP/ §t{dQ(t,Xt,at;\I!)+ r(t, X¢,a¢) — 2)\\If(t,Xt,at)||§] dt} = 0. (11)
0

To approximate the Q-function, we consider a parameterized family Q?(-, -, -; ¥) where § € © C RE¢
(in principle, we need at least Ly equations as our martingale orthogonality conditions in order to fully



determine 6.) and choose the special test function & = 68—%6(15, Xt, at; U). Stochastic approximation
[38]] leads to the online update:

oQ’ 1

é% (t, X¢,a;0) (dQ(u X0 %) + |r(t, Xp,ar) = SA|W(E X, at)||§} dt) (12)
where «y is a learning rate. This recovers the mean-squared TD error (MSTDE) method for policy
evaluation in the discrete RL [43]. We must, however, stress that testing against this specific function
is theoretically not sufficient to guarantee the martingale condition. Additional discussions are
provided in Appendix

0+ 0+ ay

4.3 Policy Optimization via Matching the Score to the Q-function

Now we extend the analysis to the infinite-horizon setting. The dynamics of the state and action
processes are given by:

dX; = bx (Xs,a0) dt + ox (Xy, a¢) dB  day = U(Xy,a¢) dt + 04(X;,a)dBE,  (13)

and the following discounted Q-function under any given U:

+o00 1
Q) =B [ [0 () - S 0l 0
t

Xt:xaat:a/] ) (14)

where 5 > 0 is a discount factor that measures the time-depreciation of the objective value (or the
impatience level of the agent) and the optimal Q-function Q(z, a) = supgep Q(z,a; ¥).

Note that in this case, the Q-function does not depend on time ex ghcnly As a result, there is no
terminal condition, but instead we have a growth condition EF[e (Xt,a:;0)] — 0ast — oo.
Again, using the dynamic programming principle, we have

sup {EQ(x,a) ~ BQ(a,a) + r(w.a) ;qf(x,a)n%} 0. (15)

well

We now introduce an alternative method for updating policies based on Q-function estimates that
avoids the use of policy gradients. The following result serves as a score improvement theorem,
analogous to the classic policy improvement theorem in reinforcement learning.

Theorem 2. Let U be any given score function and let the associated Q-function Q(-,; V) €
C?2(R" x RY) N COR™ x RY). Suppose further that the score function W' defined by W' =
A"V, Q(x, a; W) for some X > 0 is admissible. Then Q(z,a; V') > Q(x, a; V), (z,a) € R" x RY

Proof can be found in Appendix [B.2]

[35] similarly constructed a score function W', but their approach only determines the direction
of the policy update, without specifying the magnitude of the update vector. This result implies
that iteratively updating the score function by aligning it with the action gradient of the Q-function
leads to monotonic improvement in the Q-values. In other words, setting ¥ <+ A\~'V,Q(z,a)
guarantees an improvement in the resulting Q-function globally. Figure[T|shows a visual description
of Theorem [2| and the implied policy update direction via CQSM. Building on this theoretical
foundation, we now describe how to implement a sample-based update using a parameterized score
function ¥V with the parameter v € RZv. To match the direction of V,Q(z, a), we define the update
as: v € argmin (|0 (z,a) — A"'V,Q(x, a)||. This yields the CQSM as shown in Algorithm|[l]

Policy sampling. Consider the dynamics of for a fixed state and setting o, (z,a) = V21,.
Given certain conditions, under appropriate regularity conditions, the stationary distribution of the
action a; as t — oo for any fixed z € R”, denoted 7 (a|a): 7(a|z) ~ ex@(@2) Thatis, the stationary
action distribution corresponds to a Boltzmann distribution over actions: 7(a|x) = %ﬁQ(zva), where

Z = fRd ex@(s:9) dq. This gives rise to a soft optimal policy, where the action distribution is shaped
by the Q-values, rather than relying on the soft Hamiltonian or auxiliary q-functions used in the soft
actor-critic literature (e.g., [24} 23])). However, for general o, (x, a), the stationary distribution 7(a|x)
may not have a closed-form expression [48]]. More details about action sampling can be found in
Appendix E.
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Figure 1: The left image shows a randomly initialized score function ¥°, and the right shows the
updated score W1 after one step. If a discrepancy exists between the score W (green vector) and the
action gradient V,Q(z, a) (blue vector), then aligning ¥ with V@ yields a strict improvement in
Q-value at (x, a).

Here we highlight several hyperparameters: the trajectory truncation parameter (time horizon) T’
(needs to be sufficiently large); the total sample size N or the sampling interval At, with N - At =
We define the observation times as ty := k- At,k =0,..., N — 1, at which data is collected from
the simulated environment, denoted as Environmenta ;.

Algorithm 1 Continuous Q-Score Matching (CQSM)

1: Inputs: initial state x, time step At, initial learning rates ay, cv,, and learning rate schedule
function [(-) (a function of time), the action value function QY(-, -), the score function ¥ (-, ),
the test function £(z.a¢, a.a¢), the initial parameter 6y, vg, and regularization parameter \.

2: Required: Environment simulator (2, ) = Environmenta(z, a).

3: fork=0,...,N—1do

4: Sample action a via iterative denoising a® ~ N(0,I) — a°, using score ¥": a ~ 7T((E)

5: Simulate environment step: («’,r) = Environmenta:(z, a). Update state: Ty, ,, x.
6: Sample new action a’ ~ () V1a denoising with W*. Store a;,,, + a’
7: Compute test function: &, = &(Tty.k, Gto:k)
8: Compute temporal difference:
O/ 1 0 A v 2 0
0=Q% 2" a") — Q" (z,a) + r(x,a)At — §||\Il (z,a)||*At — BQ"(x, a) At
9: Compute parameter updates:

v

1
A =&, -5, Av= <)\V(LQ6($,a) — W”(:z:,a))
10: Update parameters:

0+ 0+ 1(kAt)agAl, v+ v+ I(kAL)a,Av

11: Setz + 2
12: end for

S Experiments

In this section, we present numerical evaluations on LQ control tasks. Additional experimental results
are provided in Appendix [} We compare the performance of our proposed CQSM algorithm against
continuous time policy gradient [24] and continuous time little g-learning methods [25]. Below, we
briefly review these baseline methods.

* CT-RL policy gradient: Given an admissible policy, this method first performs policy
evaluation to estimate the corresponding value function. It then computes the policy gradient



as: g(t,x;¢) = a%J (t,z;7?) (J is a value function). [24] transforms policy gradient into
policy evaluation to develop a policy gradient algorithm.

* CT-RL g-learning: The little g-function is defined as the first-order derivative of the

Q-function with respect to At. Policy improvement is achieved via 7%(alt,z) =
exp {34 (t,z,0)}

[exp{%q?(t,z,a)} da’

leading to a continuous-time g-learning theory.
Linear-Quadratic Stochastic Control. We now focus on the family of stochastic control problems
with linear state dynamics

bx(z,a) = Az 4+ Ba and ox(x,a) = Cx + Da,o,(z,a) = V2,z,a € R, (16)
where A, B,C, D € R and the quadratic reward

M N
r(x,a) = — <2x2 + Rza + EaQ + Pz + P’a) , (17)
where M > 0, N > 0, R, P, P’ € R. If D # 0, then one smooth solution to the HIB equation
1
BQ($>0’) - Qa:b(xa a’) 7Q2 2 XQacz - iagQaa - T(LL', a) = O, (18)
is given by Q(z, a) = %koxz + kix + %kQQ + ksa + ksxa + ks where
M
ko = XB- 2A ) ki — F=2A=C
k= 3 ks - 54
2
by = 90— 0/ 2 4 LV - 2m)
kg = BP+P'(B—A) . (19)

B (ﬁ—A)(ﬁ—ﬁM—%b)
—\(B—2A—C?)B+\/3?(B—2A—C2)? B2+ D?(D2AM+2A(B—2A—C?)w)
2

ky =

D 2
for — 2Mk2tk]
5 = T 2NB

For the particular solution, we can verify that ko < 0. To ensure ( is concave, a property essential for
verifying that this function indeed corresponds to the action-value function'| we impose the additional
conditions ko < 0, koks — k3 > 0. Next, we state one of the main results of this paper.

Theorem 3. Suppose the dynamics and the reward function are glven by (16) and (I7), respectively.

Then, the Q-function is given by Q(z,a) = 1k0x + kix + k2a + ksa + kyxa + ks where
ko, k1, k2, ks, ka, ks are as in (I9). F urthermore the optimal score Sfunction takes the form:

U*(2,a) = A" H(kaa + k3 + kyz). (20)

Additional details of Theorem 3| are provided in the Appendix

In our simulations, to ensure the stationarity of the controlled state process, we use the following
model parameters: A= —-1,B=C=0,D=1,M=N=P =2 R=P=1,=1,A=0.1.
We parameterize the Q-function as Q7 = %60352 +0,2+05a°+03a+0,0+05 and the corresponding
score function asU"(z,a) = —e" a + vax + vs. Using these parameterizations and the model setup,
the optimal parameter values are computed as:

0" =[—0.59047134, —0.23069812, —0.46141679, —0.35624157, —0.15119060, 0.17312350],
v* =[1.52913155, —1.5119060, —3.5624157].

Implementation Details. The learning rate is initialized as cvg = a, = 0.01 and decay according
tol(t) = m. To evaluate performance and stability, each experiment is repeated five times

with different random seeds for sample generation. The parameter vector @ is initialized as zero
and v is initialized in the range [0, 1]. The corresponding optimal values 6* and v* are then used as
baselines for comparison. The time cost for each experiment is 352 seconds on a computer with Intel
Core 15-10500 CPU and 32G Memory.

'the HIB equation has an additional quadratic solution, which, however, is convex.



Performance Results. Each experiment is repeated ten times with different random seeds. Figure
[2)illustrates the convergence behavior of the proposed CQSM algorithm for one realized trajectory
with time step At = 0.1. Both the Q-function and score function parameters gradually approach
their theoretical optima except 62, 03, v2. Note that these parameters are closely tied to V,Q. Our
method requires the estimation of both the Q-function @ and its gradient V,Q. This dual estimation
introduces additional variance and bias, potentially leading to inaccurate policy updates.

Furthermore, we compare the performance of our CQSM algorithm against two benchmark methods in
terms of the running average reward obtained during the learning process. The other two algorithms
are the PG-based algorithm proposed in ([24], Algorithm 3) and the little g-learning algorithm
presented in ([25]], Algorithm 4). Figure [3] presents the running average rewards and standard
deviations for all three methods under three step sizes, At = 0.01,0.1, 1. Our proposed CQSM
consistently outperforms the baselines in the early stages of training, achieving higher rewards more
quickly than both PG and little g-learning. After a sufficient amount of time, all methods eventually
stabilize to similar average reward levels.
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Figure 2: Paths of learned parameters of the CQSM reinforcement learning algorithm described in
Algorithm A single state trajectory of length T = 10° is generated. The dashed lines indicate
the optimal parameter values. The shaded regions represent the standard deviation of the learned
parameters across these runs, with the width of each shaded area equal to twice the corresponding
standard deviation.
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Figure 3: Running average rewards of three RL algorithms. A single state trajectory of length
T = 10° is generated and discretized using three different step sizes: At = 0.01 in panel (a),
At = 0.1 in panel (b), At = 1 in panel (c). For each setting, we apply three online algorithms: Policy
Gradient described in Algorithm 3 in [24], g-Learning described in Algorithm 4 in [25] and CQSM
described in Algorithm[I] We plot the mean running average reward over time and the shaded areas
represent the standard deviation across the runs.

6 Conclusion

In this paper, we introduce a Q-function framework for continuous-time stochastic optimal control
problems with diffusion policies. By using the dynamic programming principle, we derive the
associated HIB equation for the Q-function. Building on this and utilizing the martingale orthogonality
condition, we develop the CQSM algorithm. We further demonstrate the effectiveness of CQSM



in an LQ setting, showing promising results compared to existing continuous-time reinforcement
learning algorithms.

Several interesting directions remain for future work. For the finite-horizon case, extending the
approach to handle an important portfolio selection with a mean-variance objective poses a challenging
problem due to inherent time inconsistency. Another promising direction is the optimization of
the diffusion term o,, which could lead to improved exploration and performance. Furthermore,
a theoretical convergence rate analysis of CQSM could offer deeper insights and guide further
enhancements to the algorithm.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: It is contained in the abstract and introduction.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: It is showed in section[4.2} This test function is theoretically not sufficient to
guarantee the martingale condition. Be careful when choosing test function, or choose other
methods.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

14



Answer: [Yes]

Justification: Assumptions are in the section 3] 4} [5]and Proofs are provided in the Supple-
mentary Materials.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: All the needed information is in the section
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: For data, please see the section [5] The code will be released upon paper
acceptance.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Experimental details are shown in the section 5]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Experiments were repeated 5 times, and the mean and variance of parameters
and reward were plotted in section [5}

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Compute resources are shown in the section[3}

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We follow the Code of Ethics.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: This work is a foundational research.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Both baseline codes for comparison are publicly available under the open-
source licenses.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The details of the code will be released upon paper acceptance.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Diffusion RL: Problem Formulation and Well-Posedness

Listed below are the standard assumptions to ensure the well-posedness of the stochastic control
problem in (I)-(3).

Assumption 1. The following conditions for the dynamics and reward functions hold true:
(1)bx,0x,04,7,h,Vor,Vah are all continuous functions in their respective arguments;

(2) bx,0x,0, are globally Lipschitz continuous in (x,a), i.e., for p € {b,ox}, there exists a
constant C > 0 such that

lo(t,z,a) — ot 2, )2 < C(llx — 2|2 + |la — d'||2),Vt € [0,T], z,2" € R",a,a’ € RY;

(3) bx,ox are linear growth continuous in (x,a), i.e., for p € {b,ox}, there exists a constant
C > 0 such that

le(t,z,a)ll2 < Cllz]l2 + llall2), vt € [0,T],2 € R", a € RY;

(4) o is bounded for any (x, a), i.e., there exist constants C' > 0 such that ||o,(t, z,a)||2 < C,Vt €
[0,7T],z € R",a € RY.

(5) r,h,Var,Vh have polynomial growth in (x,a), ie., for o € {r,h,Vor,V,h} there exist
constants C' > 0 such that

lo(t, z,a)] < C(+ ||zl + ||lall2), ¥t € [0,T],z € R",a € R%.
Lemma 1. Suppose {a; : t > 0} follows
dat :btdt—f—UtdB?,tZO,

with Cy := esssup, , |0y < oo. Iffot |bs|>ds < oo forallt > 0,a € R then there exists a
constant C' > 0, which is independent of T and ay, such that

EF [ sup aﬂ} < C (14 |aol?) VT > 0. (21)
o<t<T

Proof. By the elementary inequality
(a+b+c)? < (3max{a,b,c})? < 3% + 3%% + 3%¢%a,b, ¢ > 0,

t
/asdB;’
0
t 2
/O’sng
0
t
/O‘Sng
0
T t
Pl +3 [ bl ds + 50, (Eﬂ” U |as|2dsD
0 0

T
<3%|ap|?® + 32/ |bs|? ds + 32CLC2T
0

we have
2

EP [ sup |at|2] <EP

t
(|a0| + sup |bs|ds + sup
0<t<T 0 0

<t<T 0<t<T

)

T
<B” | (Jaol+ [ [bulds + sup
0 0<t<T

2

sup

T
<32|ao? +32/ b2 ds + 32EF
0 0<t<T

<C (1+ |aol?),

where the second to last inequality is due to the Burkholder—Davis—Gundy inequality. This proves
an. O
Lemma 2. Let Assumption[I| hold, the solution of state SDE ({I) satisfies the condition
E° { sup |Xt|2] < C(1+]xol) (22)
0<t<T

for some constant C > 0.
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Proof. Based on the proved growth condition on bx,ox, Cauchy—Schwarz inequality, and
Burkholder-Davis-Gundy inequalities, we obtain

EP[ sup Xt|2}

0<t<T
t 2 t 2
<CUE” [[aof? + sup | [ (s Xea)ds| + sup | [ ox(s,Xea.) dBY ]
o<t<T |Jo 0<t<T |Jo
T
<C,EF |930|2+Cz/ (SUP |Xr|2+as|2> ds
0 0<7<s

T
<C3(1+ |zol*) + C4/ sup EF [|X,|?] ds.
0

0<7<s
Applying Gronwall’s inequality, we obtain the desired result. O

Theorem 4. Let Assumption|l| hold, then there exists a constant C1 > 0 such that the Q-function
satisfies

Q(t, z,a)| < CL(1 + [|lz]l2 + [lall2),
forallt € [0,T)],x € R",a € RY. Finally, the Q-function is finite.

Proof. Let ¥ = C where C is a constant. It then follows from Lemma|T]and Lemma 2] that

Q(t7 x? a)

T
w7 l [ o) = 31006 Xes 0 ] s+ A ar)
t

Xy =2, a4 :a]

>E Xi=x,a; = a

g A
/t (_C(l + | Xsll2 + lasll2) — 2C2> ds

>—C'(1+||zfl2 + llall2)
for some constant C’ independent of z, a. On the other hand, for any ¥ € II, we have

Q(t,z,a) =EF

T
[ [ = G100 a1 ds + e an) X = 2.0 = ]
t

T
<E” | [ 00+ Xl + ) ds
t

X =x, a4 :a]

<C"(1+|lzll2 + llall2)
for some constant C”" independent of x, a. The final result is evident. The proof is complete. O

We have indeed established in the above that

T
EF l/ Ir(s, X5, as)| ds} < 00. (23)
¢

B Proofs of Martingale Characterization and Score Improvement Theorem

B.1 Proof of Theorem[ll
To show M, = Q(s, X, as; V) + [7 [r(u, Xy, au) — M| (u, Xy, ay)||3] du is a martingale, ob-

serve that
M, =EF X, as]

T 1
/ [r(u, X ay) — 2)\\I/(u,Xu,au)||§] ds + h(Xr, ar)

: . . (24)
=+ T(quuaau) - §A||W(U3Xu7au)”2 du
t

=EF [Mr|F.],

22



where we have used the Markov property of the process {(X5, as),t < s < T'}. This establishes that
M is a martingale.
4

] (25)
Fs

Conversely, if M is a martingale, then M, . =EF [MTLFS} , which is equivalent to

T
_ 1 -
Q(s, Xs,as; ) —EP / {r(u, Xuy@y) — §A||\II(U,XU, au)|§} du+ Q(T, Xr,ar)

T
1
—[EP / {T(u, Xy, ay) — 2)\||\If(u,Xu,au)|§} du + h(X7)

=Q(s, Xs,as5;¥),s € [t,T).
Letting s = ¢, we conclude Q(t, z,a; V) = Q(t, z,a; V).
The “only if” part is evident. To prove the “if” part, assume that dM; = A, dt + C dB;. In particular,
T

in our case, A, = LQ(t,x,a; U) + r(t, X1, ar) — LA|W(t, Xy, a0) |3 and Cy = (gg) G(t, Zy).
A, C € L%([0,T)) follows by assumption (Q € C122([0,T) x R" x R¥) N C([0,T) x R™ x R%))
and Theorem[4] Forany 0 < s < s’ < T, take & = sgn(A;) if t € [s,s'] and & = 0 otherwise.
Then ) , )

0= E““/ & dM; = E“’/ (14| dt + &Cy dBy) = IE“"/ | Ay dt, (26)
where the expectation of the second term vanishes because [(C| < |C| € L2%([0,T]) and hence
EF fo & Cy dBy is a martingale. This yields A; = 0 almost surely, and thus M is a martingale.

B.2 Proof of Theorem 2]

Fix (z,a) € R™ x RY, applying Ito’s formula, we have

e P Q(Xs, a5; V) = e P1Q(z, a5 V) + / e P BQ(Xr,ar W) + V,.QT - bx(X;,ar)
t

1 1
+V.Q - U(X,,ar)) + St (oxoxV2Q) + 3t (UQJJV2Q)}dT

+/ e POV, QT - ox(Xy,a,)dBX +e7P7V,QT - 04(X;,a,) dBY.
t

27
Define the stopping times T}, := inf{s >t : || Xs||2 > n, ||as||]2 > n}, for n > 1. Then we have

BF [T, s )

Xi=xz,a; = a} = e P'Q(z,a; D)

sATy,
+EP / e A=t {_BQ(XWCLT;\II) +va:Q\II7T 'bX(XryaT) +anT : \II(XT7G’T)
t

—|—%tr (O’Xo')T(ViQ) + %tf (aanV3Q) } dr

tha:,atza]

(28)
On the other hand, by standard arguments and the assumption that Q(-, -; ¥) is smooth, we have

BQ(z,a;¥) — {VIQT cbx(z,a) + VaQT - U(z,a)

1 1 1 29
+3tr (0xoxV2Q) + St (0004 V2EQ) +1(z,a) — 2)\||\Il||§} =0, (29)
for any (x,a) € R™ x R% It follows that
BQx,a; W) —sup { V.Q" T - bx(z,0) + VaQ" - ¥(w,a)
' (30)

1 1 1.~
+otr (oxoxV2Q) + St (0004 VEQ) +1(z,a) — 2)\||\II||§} <0.
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Notice that the minimizer of the Hamiltonian in is given by W' = A7'V,Q(x, a; ¥) for some
A > 0. It then follows that Equation (28) implies

EP e_ﬂ(SAT”)Q(XsATn, AsAT,, ‘I’)‘Xt =T,a; = a}

sAT,, A (31)
>e P'Q(x,a; V) — EF / e A=) (r(xT,aT) - 2||\I/1%) dr| X =z,a: =al .
t
Sending n — oo, we deduce that
E" [e_ﬁsQ(Xsaas; lIJ)‘)(t =,a¢ = a}
—pt el 7 —pe-b Aol (32)
>e 7'Q(z,a; V) — E e r(xT,aT)—§||\II I3 | dr| X =z,as = a .
t
Noting Lemma([l] Lemma[2)and @ is polynomial growth, we have
lim inf EF [e‘ﬂsQ(Xs7as; \I!)‘Xt =z,0; = a]

<limsup E? [e_BSQ(XS7aS; \I/)‘Xt =z,a; = a] =0

§—00

and applying the dominated convergence theorem yield

0o L A
/t e P (T($T,a7)—2||\111|§>d7'

C Derivation of Linear-Quadratic Stochastic Control

Q(z,a; ¥) <EF Xi=xz,a; = a] = Q(x,a; V). (34)

The following derivation corresponds to Section 5 of the main text.
Assumption 2. The discounted rate satisfies 3 > 2A + C2.
This assumption ensures a sufficiently large discount rate, which guarantees that

lim inf7 o e PTEF [Q(X7,ar; ¥)] = 0 for any score W, thereby ensuring the correspond-
ing expected reward remains finite.

By HIB equation

1 1 1
BQ(w,a) = Qub(w, a) = 53Qf — 5% Que = 504Qaa — 7(w,a) =0, (35)
we have
B
2 §k0—Ak0 2Ak4—702k0+M/2_0
ksk
z: Bk — Ak — 22 4 P =0,
a’ 5k27k4375k277k0D2+N/2_0
kok
a: Bks— Bk — 23 4+ P =0,
1
xa . 6k471€037k4A7ngk;;*koCD‘l’R:O,
Cons: ks —k oo
ons : 5 2 I 3 = U.
By 22 term:
1 M

pr— ,2_7
ko_)\(B—QA—C2)k4 B—24—C?

and substitute kg to a? term, we obtain

(36)

3 1, 1., 1 ) M

2 - - N/2 =

2k;2 k4B 2/\16 5 (672A—C’2)k4 T 24 _C + N/ 0, (37)
B 2 1 2 M —

2]€2 2)\k2+N/2—k4B+ D /\(B—QA—CQ)k4 5—214—02 =w. (38)
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First, we consider D =# 0. Hence, we have

52
—)\ A N 2w), (39)
-8 - 2A C2 B+ /)28 —2A — C?)2B2 + D2(D2)\M +2X\(B — 2A — C?)w)
ky = D2 )
(40)
By za term, we can determine the value of w and w satisfies the following bounds
52
>
e )\(N 2w) >0, (41)
N(B =24 —C*H?B% + D*(D*A\M +2\(B — 24 — C*)w) > 0. (42)
If D =0, then
B g2 2 (N
ka?f)\ T EszlB, (43)

and k4 satisfies the following equation:

2
B kz+<§_A+\/ﬁ_2(N_k43)>k4+ﬁMB LR=0. ()

(B —24) 4 a\2 24

Furthermore, by x term and a term, we have
1 P

= —— 4
ky NG A)k3/€4 A 45)
/ —
ks = — BP+P(§ A) 1 ‘ 46)
(B—A4A) (ﬁ - mlﬁ - xkz)
Finally, we have
2Ako + k§

ks = ————=. 47
NG 47

Therefore, the optimal score function takes the form:
U*(z,a) = \'V,Q(x,a) = A\ (kga + k3 + kax). (48)

D Continuous Actor-Critic Q-Learning Algorithms

Score Evaluation of the Q-Function. We provide a complete description of how the HIB equation
is used to construct the continuous-time Q-learning algorithm. For estimating Q(x, a; ¥), a number
of algorithms can be developed based on two types of objectives: to minimize the martingale loss
function or to satisfy the martingale orthogonality conditions. We summarize these methods in the
Q-learning context below.

(1) Minimize the martingale loss function:

2
1 T g
§EP / lh(XT; a/T) - Qg(taXh a/t) + / (T(Sa Xsa aS) - %H‘I]U(S’XS’ a3)|2> ds] dt
0 t

(49)
This method is intrinsically offline because the loss function involves the whole horizon [0, T']. We
can apply stochastic gradient decent to update

T 0
00 + g / %(t, Xt7at)Gt:T dt,
00
ov? 0
vev+aq,/ / AU (s, X, a5)—— 50 (s, Xs,as) dsGy.r dt,
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where Gy.7 = h( X7, ar)—Q%(t, Xy, as —I—ft (r(s, X5, as) — 3]0 (s, X, as)||?) ds. We present
Algorithm 2] based on this updating rule. Note that th1s algorithm i 1s analogous to the classical gradient
Monte Carlo method or TD(1) for MDPs [44]] because full sample trajectories are used to compute
gradients.

(2) We leverage the martingale orthogonality condition, which states that for any 7' > 0 and a suitable
test process &,

T 1
]EP/ & {dQe(uXt,at;\Il) + [r(uxt,at) — 2/\||\11“(t,Xt7at)§} dt} =0. (51)
0

We use stochastic approximation to update 6 either offline by

T 1o
6 <— 9 + Oég/ ft {dQe(t,Xt,at; \I]) + [r(t,Xt,at) — 2)\||\I/U(t,Xt7at)||§} dt} 5 (52)
0

or online by
1
6 0+ gt {dQe(t,Xt,at; )+ {r(t,xt,at) - QAII\IJ”(t,Xt,at)lé} dt} . (53)

Typical choices of test functions are £; = 9 or¢& = fo st OQ ds,0 < p < 1 which lead to
Q-learning algorithms based on stochastic approximation. However relymg solely on this specific
choice does not, in general, guarantee satisfaction of the full martingale condition. Moreover, the
convergence of the resulting stochastic approximation algorithm is not assured without additional
assumptions. As discussed in [23]], the selection of test functions must be carefully tailored to the
structure of the Q-function, highlighting the need for more robust and theoretically grounded choices
in continuous-time settings.

(3) Choose the same type of test functions &; as above but now minimize the GMM objective
functions:

T " " T
EF l / & [ar’ (e X7 )+ r(t, X7 )at — g (4, X7 )t — 87, X7t ]

0

T / » p
AEF / & [ar’ (e X7 )+ r(t, X7 )at — g (6, X7 )t — 87, X7 )t
0

(54
where Ay € Ste. Typical choices of these matrices are Ag = I, or Ag = (EP[IOT &gl d))t

Again, we refer the reader to [23]] for discussions on these choices and the connection with the
classical GTD algorithms and GMM method.

Score Gradient. We aim to compute the score gradient g(x, a; v) := %Q(w, a; Uv) € REv at the
current state-action pair (z, a). Based on the HIB of the Q-function, we take the derivative in v on
both sides to get

v

Lo, asv) — Byl a:v) + (Va@(z, a; U°) — AT (2, ) o (a

5, (@.0) = 0. (55)

Thus, a Feynman-Kac formula represents g as

o

7X97s
av( s, as)ds

Xy =2x,a; =a .

(56)
To treat the online case, assume that v* is the optimal point of Q(x, a; ¥¥) for any (x, a) and that the
first-order condition holds (e.g., when v* is an interior point). Then g(z, a; v*) = 0. It follows that

o(, a3 v) = EP { / P (Va0(X, a0 U7) — AT (X,, a))
t

v

> \J
0= ]EP |:/ ns(an(Xsa Qs qﬂ) - /\\IIU(XS’ as))L(Xsﬂ G’S) ds
t

ov

forany n € L%([0,T); Q(-, X., a.; ¥)). If we take 15 = e~7%, then the right hand side coincides
with g(z, a; v*). More importantly, besides the flexibility of choosing different sets of test functions,

Xi=xz,a; = a} ., (57
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provides a way to derive a system of equations based on only past observations and, hence,
enables online learning. For example, by taking 75 = 0 on [T’, oc], (57) involves sample trajectories
up to time 7. Thus, learning the optimal policy either offline or online boils down to solving a system
of equations (with suitably chosen test functions) via stochastic approximation to find v*. Online
learning of (57) is the same as the update rule: v € argmin 5 || ¥*(z,a) — A"'V,Q(, a)||.

Here we present Offline Continuous Q-Score Matching (CQSM) Martingale Loss Algorithm [2]in the
infinite-horizon setting .

Algorithm 2 Offline Continuous Q-Score Matching (CQSM) Martingale Loss Algorithm

1: Inputs: Initial state x, ag, horizon T, time step At, number of episodes /N, number of mesh
grids K, initial learning rates «y, o, and a learning rate schedule function [(-), functional forms
of parameterized action value function Q(-,-) and score function W?(-,-) and regularization
parameter .

2: Initialize 6, v.

3: for episode j = 1to N do

4: Initialize k = 0. Observe initial state 2o and store x;, < .

5: Choose action by iteratively denoising a” ~ N(0,1) — a® using ¥? : a;, ~ 7 (24, );
6: Step environment {r, , z, ., } = env(ay, ).
7: Obtain one observation {ay, , 7', , Tt), } k=0, K—1-
8: For every k = 0 to K — 1, compute
K—1 \
Gior = —eP%Q% (w4, ar,) + Z e Plifr(zy,, ar,) — §||\I/”(a:ti, ar,)||*]At. (58)
i=k
9: Update 6 and v by
. K-—1 aQO
0+ 0+1(j)ae —e(xtk,atk)Gtk;TAt. (59)
k=0
K—1[K-1 P
v v (o, Z /\\Ilv(xt“ati)ﬁ(xti,ati)At Gy, .7 At. (60)
k=0 Li=k

10: end for

E Scored Based Diffusion Models

Consider the forward SDE with state space Y; € R is defined as
dY—t = f(tan)dt—‘f_g(t) ng»K) Nﬂ—data('% (61)
where f : R, x R? — R%and g : R, — R,. Denote 7(t, -) as the probability density of Y;.

Set time horizon T > 0 to be fixed, and run the SDE until time 7" to get Yy ~ 7 (T, ). The time
reversal Y, := Yp_, for 0 < ¢ < T satisfies an SDE, under some mild conditions on f and g:

1472 rer
J;” G*(T — 1)V, log n(T —t, Y’e“)) dt +ng(T — t) dBY,
(62)
where V,, log 7(t, y) is known as the stein score function and 7 € [0, 1] is a constant. In addition, a
special but important case by taking 1 = 0 in the (62)), this results to a flow ODE [42]:

dY't’r'ev — (—f(T —t, Yrev) +

1
dyyew = (_ JT =t Y") + 56 (T = )V, log (T — t, Y”'@'“)) dt, (63)

which can enable faster sampling and likelihood computation thanks to the deterministic generation.

Since the score function V,, log 7(t, y) is unknown, diffusion models learn a function approximation
s¢(t,y), parameterized by 6 (usually a neural network), to the true score by minimizing the MSE or
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the Fisher divergence (between the learned distribution and true distribution), evaluated by samples
generated through the forward process (61):

0" = arg max Ettni(0,1) {NE)Eyomrmans Eysmon(t.-1y0) [150(E4t) — Vi, log m(t, yelyo)[3]} (64)

where X : [0,7] — Rsg is a chosen positive weighting function. When choosing the weighting

functions as \(t) = g2(t), this score matching objective is equivalent to maximizing an evidence
lower bound (ELBO) of the log-likelihood.

For action sampling, we view the action process as the reverse process. First we set o, (¢, X, at) =
Uf[ to untrained time dependent constants. Experimentally, we set 5; = af andoy =1 — By, a4 =
Hizl as. When applied to score matching with denoising diffusion probabilistic modeling (DDPM)

[18], samples can be generated by starting from a” ~ N(0, I) and following the reverse Markov
chain as below

t—1 1 1— Qi

a = al +
£/ Ot ( \/1_6%

\I/(at,a:t)> +0Z,Z ~ N(0,1I). (65)

F Additional Experiments

F.1 Deterministic Case of LQ Control Tasks

We set C' = D = 0 to eliminate stochasticity. Figure[F.1]shows the running average reward of CQSM,
PG and little g-learning. We observe that the resulting performance is comparable to the stochastic
case.
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= 025 = 0.251
s ]
E 0.00 E 0.00 1
o @
2025 50251
2 001
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—0.75
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(@) At =0.1 b) At=1

Figure F.1: Running average rewards of three RL algorithms. A single state trajectory of length
T = 107 is generated and discretized using two different step sizes: At = 0.1 in panel (a), At = 1
in panel (b).

F.2 Continuous Control Benchmark Tasks

We evaluate CQSM on continuous control benchmarks from the DeepMind Control Suite. DeepMind
Control Suite [51] is a set of control tasks implemented in MuJoCo [50]. We choose TD3 [9], SAC
[L6], and Diffusion-QL [55]] as three baselines for comparison. Below, we first provide a brief review
of prior methods.

Policy gradient methods seek to directly optimize the policy by computing gradients of the expected
reward with respect to the policy parameters [45]. Deterministic policy gradient algorithms for MDPs
(with discrete time and continuous action space) are developed in [41] (DPG) and later extended to
incorporate deep neural networks in [29] (DDPG). Recent studies have focused on stochastic policies
with entropy regularization, also known as the softmax method; see for example, [31] (A3C); [39]
(PPO).
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* TD3: [9]] proposed Twin Delayed Deep Deterministic Policy Gradient (TD3), which miti-
gates overestimation bias in DDPG by using clipped double Q-learning and delayed policy
updates. This yields more stable and accurate policy learning in continuous control tasks.

* SAC: The Soft Actor-Critic algorithm [16] optimizes a stochastic policy that maximizes

both expected reward and policy entropy. The policy follows 7(a|z) ~ ex@(@.a) and is
reparameterized using a neural transformation of samples from a fixed distribution.

* Diffusion-QL: [55]] integrates diffusion models with Q-learning by adding a term that
maximizes action-values to the diffusion model’s training loss. The final policy-learning
objective is a linear combination of policy regularization and policy improvement.

We evaluate CQSM against the baselines (TD3, SAC, and Diffusion-QL) on a range of MuJoCo
continuous control tasks, from high-dimensional domains (Cheetah Run, Walker Walk, Walker Run,
Humanoid Walk) to simpler environments (Cartpole Balance, Cartpole Swingup). Each experiment
is repeated with 10 random seeds, and we report the average episode return across runs (removing
extremely poor results).

As shown in panels (a)-(d) of Figure[F.2] CQSM matches or outperforms the TD3, SAC, and Diffusion-
QL baselines, particularly in the early stages of training where it achieves higher rewards. This early
performance gain highlights a key distinction between our approach and conventional actor-critic
methods. Algorithms like SAC and TD3 may frequently sample actions with low Q-values in the
initial stage because they do not utilize the action derivative Q,, while Diffusion-QL can sometimes
get stuck at suboptimal solutions. In contrast, our approach benefits from a more immediate policy
adjustment via the learned score function, enabling the policy to better approximate the true optimal
policy in the early stages. As a result, our method can achieve higher rewards in the early steps. In
simpler tasks, shown in panels (e)-(f) of Figure[F.2] CQSM achieves performance comparable to the
baselines, demonstrating both its stability and general applicability across task complexities.
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Figure F.2: Experimental Results Across A Suite of Six Continuous Control Tasks.
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