
Continuous Q-Score Matching: Diffusion Guided
Reinforcement Learning for Continuous-Time Control

Chengxiu Hua1, Jiawen Gu1*, Yushun Tang1,2*

1Southern University of Science and Technology, 2Huawei Technologies Co., Ltd.
12331005@mail.sustech.edu.cn, jwgu.hku@outlook.com, tangys2022@mail.sustech.edu.cn

Abstract

Reinforcement learning (RL) has achieved significant success across a wide range
of domains, however, most existing methods are formulated in discrete time. In
this work, we introduce a novel RL method for continuous-time control, where
stochastic differential equations govern state-action dynamics. Departing from
traditional value function-based approaches, our key contribution is the characteri-
zation of continuous-time Q-functions via a martingale condition and the linking of
diffusion policy scores to the action gradient of a learned continuous Q-function by
the dynamic programming principle. This insight motivates Continuous Q-Score
Matching (CQSM), a score-based policy improvement algorithm. Notably, our
method addresses a long-standing challenge in continuous-time RL: preserving the
action-evaluation capability of Q-functions without relying on time discretization.
We further provide theoretical closed-form solutions for linear-quadratic (LQ) con-
trol problems within our framework. Numerical results in simulated environments
demonstrate the effectiveness of our proposed method and compare it to popular
baselines.

1 Introduction

RL has achieved substantial success across a wide range of domains over the past decade [44]. Most
existing approaches adopt a discrete-time formulation, typically modeled as a Markov Decision
Process (MDP) [36, 16], where agents interact with the environment at fixed time intervals. However,
many real-world systems—such as autonomous driving in dynamic traffic conditions [47], robotic
manipulation [34], and high-frequency algorithmic trading [27]—exhibit continuous, fine-grained dy-
namics that are inadequately captured by discrete-time models. These applications naturally motivate
the need for continuous-time reinforcement learning (CT-RL) frameworks that more faithfully repre-
sent the temporal structure of decision-making. Recent works on CT-RL have explored stochastic
modeling using stochastic differential equations (SDEs) [11, 21], entropy-regularized exploration
techniques [15], and model-free learning methods for diffusion generative models fine-tuning [58, 17]
and financial applications [19, 4].

Despite these advances, value-based methods like Q-learning [56]—a cornerstone of discrete-time
RL—remain challenging to adapt to the continuous-time setting. Traditional Q-learning algorithms
(e.g., SARSA [44], DQN [32]) rely on estimating state-action value functions via temporal-difference
(TD) learning and have demonstrated strong performance in discrete action spaces. There is a
line of work on discretizing continuous action spaces to apply Q-learning in high-dimensional
continuous control settings [49, 40, 20]. Discretizing continuous actions is a common approach to
extend Q-learning, but it often struggles with scalability in high-dimensional spaces and relies on

* Corresponding authors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

discrete-time assumptions. However, extending Q-learning to continuous action spaces introduces
major challenges. Early work [13] proposed neural network-based formulations for continuous
Q-learning, but later studies [8] reported severe performance drops in high-dimensional settings due
to the curse of dimensionality. Moreover, when Q-learning is directly extended to continuous time,
the Q-function tends to collapse into an action-independent value function [46], losing its ability
to distinguish between actions—a critical property for decision-making. In [25], they show that
the discrete Q-learning algorithm is noisier and slower in convergence speed compared with their
proposed continuous PG and little q learning algorithms.

To bridge this gap, recent work has explored Q-function-based frameworks that preserve action
dependence in continuous time. For example, [10] replaced the Q-function with a generalized
Hamiltonian, while [25] proposed little q-learning, a time-discretization-free method based on
first-order Q-function approximations, which achieved faster convergence than discrete-time soft
Q-learning (SARSA). Score-matching-based methods [35] have also emerged as promising tools for
learning diffusion policies, though they still rely on time discretization. Other approaches, such as
[26], incorporate the action as a state variable by constraining the action process to be absolutely
continuous with bounded growth. However, these methods are limited to deterministic dynamics
and require upfront discretization of the continuous-time problem. These constraints underscore a
key open challenge: how to design a principled and scalable Q-learning framework for stochastic,
continuous-time environments that maintains the action characteristics of the Q-function. We address
this by introducing a novel Q-function formulation and a corresponding algorithm, Continuous
Q-Score Matching (CQSM), which operates directly in continuous time and supports stochastic
dynamics.

Major contributions. This work makes the following key contributions:
(1) Continuous-Time Q-Function Characterization. We derive a Bellman equation (also known as
the Feynman-Kac formula) for continuous-time Q-functions. This bridges discrete Q-learning with
continuous control theory. We rigorously characterize Q-functions for a given score function using a
martingale condition defined over an enlarged filtration that incorporates both state and action noise.
Based on this foundation, we propose new algorithms for direct Q-function learning, analogous to
policy evaluation and policy gradient methods in [23, 24].
(2) Score Improvement Theorem and CQSM Algorithm. We establish a score improvement
theorem by the dynamic programming principle that enables principled policy updates in continuous
time. By coupling the Q-function with the score function of a diffusion policy, we develop a model-
free, actor-critic-style algorithm: Continuous Q-Score Matching (CQSM). This algorithm facilitates
efficient policy improvement using only the denoising score function.
(3) Analytical Validation via LQ Control. We resolve the LQ problem under measurable scores,
demonstrating the theoretical soundness of our framework. LQ problems are fundamental in control
theory, as they serve as tractable approximations to more complex nonlinear systems, with practical
relevance in areas such as algorithmic trading [2] and resource management [12]. Using analytical
solutions, we compare CQSM to policy gradient and little q-learning methods, which are the action-
independent value-based RL models, highlighting both its theoretical guarantees and numerical
advantages.

In Section 2, we review related work relevant to our method. Section 3 introduces the continuous-
time reinforcement learning formulation using stochastic differential equations and presents key
preliminary results. In Section 4, we develop the Q-learning theory in continuous time, establishing
martingale characterizations. We further extend the analysis to the infinite-horizon setting and prove
the score improvement theorem. Section 5 presents numerical evaluations on LQ control tasks,
comparing CQSM with policy gradient and little q-learning methods. Finally, Section 6 concludes
with a summary and discussion of future directions.

2 Related Works

In this section, we review existing work across four areas related to our method: stochastic optimal
control, continuous reinforcement learning, diffusion Q-learning, and behavior cloning.

Stochastic Optimal Control. Our approach builds on classical stochastic optimal control theory
[57], particularly through the development of the Hamilton–Jacobi–Bellman (HJB) equation for

2

continuous-time Q-functions. While traditional stochastic control frameworks often assume full
knowledge of the system dynamics [3], we instead assume a model for the dynamics of state-action
pairs. This shift motivates new theoretical developments that underpin our Q-learning framework.

Continuous Reinforcement Learning. The formulation of CT-RL in stochastic settings—where
state evolution follows a stochastic differential equation (SDE)—dates back to [33, 7], though early
work lacked data-driven learning mechanisms. Recent advances have introduced more practical
formulations. For instance, [52] proposed an exploratory control framework for continuous RL,
while [53], [23], and [24] extended this line of work to mean-variance objectives, policy evaluation,
and policy gradients, respectively. [25] further introduced the notion of a little q-value, leading to a
continuous analogue of Q-learning. Additional developments include mean-field RL with continuous
dynamics [28], jump-diffusion extensions [14], and infinite-horizon variants of TRPO and PPO [59].
Building on these foundations, we advance the study of continuous-time Q-learning under diffusion
policies.

Diffusion Q-Learning. Diffusion Q-learning [55] integrates diffusion models with Q-learning
by using Q-values as training objectives and backpropagates through the diffusion model. More
recently, [5] proposed a model-free online RL method based on diffusion policies. [35] further
established a connection between diffusion-based policies and the Q-function by relating the policy
score to the action gradient of the Q-function. Building on this line of work, [54] employed entropy
estimation to balance exploration and exploitation in diffusion policies, improving the performance
of the policy. In parallel, [30] generalized diffusion model training by reweighting the conventional
denoising score matching loss, leading to two efficient algorithms for training diffusion policies
in online RL without requiring samples from optimal policies. However, their approach relies
on time discretization and requires injecting noise into the final action of the diffusion chain. In
contrast, our work preserves the full action-evaluation capability of the Q-function in continuous time,
without relying on any discretization in either time or action space. Our method is grounded in a
martingale-based formulation of the HJB equation, which provides a principled theoretical foundation
for continuous-time Q-learning.

Behavior Cloning. Behavior cloning focuses on imitating expert trajectories without access to
reward signals. Diffusion models are particularly well-suited for this task due to their generative
flexibility and natural alignment with score-matching objectives. Recent works [22, 37] have applied
diffusion models to behavior cloning by framing policy learning as a distribution-matching problem
over expert data. These approaches inspired our incorporation of score-matching terms into the
objective. However, our framework goes beyond imitation, enabling policy improvement through
Q-function learning in continuous time.

3 Formulation and Preliminaries

In this section, we introduce the continuous-time RL formulation using stochastic differential equa-
tions and present key preliminary results.

Notation. We introduce the non-standard notation used throughout the main text and appendix. For
a vector x, denote by ∥x∥2 the Euclidean norm of x. For a function f on an Euclidean space, ∇f
(resp. ∇2f) denotes the gradient (resp. the Hessian) of f . The Kullback–Leibler (KL) divergence
of two positive density functions f, g is defined as DKL(f ||g) :=

∫
A
log f(a)

g(a)f(a) da. Define an
operator L : C2,2(Rn × Rd) ∩ C(Rn × Rd)→ C(R) [57] associated with the diffusion process as:

Lφ(x, a) := ∇xφ(x, a)⊤bX +∇aφ(x, a)⊤Ψ+
1

2
tr
(
σXσ⊤

X∇2
xφ(x, a)

)
+

1

2
tr
(
σaσ

⊤
a ∇2

aφ(x, a)
)
.

In both the main text and the proofs, we refer frequently to the score of the action distribution, denoted
by Ψ. This vector field defines the temporal evolution of actions and serves as a proxy for the true
score ∇a log π(a|x) where π refers to the action distribution.

Continuous RL. Let d, n be positive integers, T > 0. We denote the state as Xt ∈ Rn and the
action as at ∈ Rd with t ∈ [0, T]. We consider the following stochastic, continuous-time setting for

3

state and action dynamics:

dXt = bX(t,Xt, at) dt+ σX(t,Xt, at) dB
X
t ,dat = Ψ(t,Xt, at) dt+ σa(t,Xt, at) dB

a
t , (1)

where Ψ : [0, T] × Rn × Rd → Rd corresponds to the score of our policy, which serves as the
primary optimization variable in this setting, bX , ba : [0, T] × Rn × Rd → Rn corresponds to the
continuous state and action dynamics, and σX , σa are functions from [0, T]× Rn × Rd to positive
semidefinite matrices in Rn×n and Rd×d respectively. The processes are driven by two independent
Brownian motions: BX = {BX

s , s ≥ 0} and Ba = {Ba
s , s ≥ 0}. All processes are defined on a

filtered probability space (Ω,F ,P; {Fs}s≥0) where {Fs}s≥0 is the natural filtration generated by a
standard n-dimensional Brownian motion BX and a standard d-dimensional Brownian motion Ba.
The (continuous-time) Q-function under any given Ψ is defined as

Q(t, x, a; Ψ) = EP

[∫ T

t

[
r(s,Xs, as)−

1

2
λ∥Ψ(s,Xs, as)∥22

]
ds+ h(XT , aT)

∣∣∣∣Xt = x, at = a

]
,

(2)
where EP is the expectation with respect to both Brownian motions BX

t and Ba
t , r : [0, T]× Rn ×

Rd → R and h : Rn × Rd → R are running and lump-sum reward function, respectively, and λ > 0
is the regularization coefficient governing the cost of large score magnitudes. The goal is to find an
optimal score function Ψ∗ ∈ Π where Π denotes the set of admissible diffusion scores, such that the
optimal Q-function

Q(t, x, a) = sup
Ψ∈Π

Q(t, x, a; Ψ). (3)

We now give a precise definition of the admissible score set Π.
Definition 1. A score Ψ is called admissible if
(i) Ψ := {Ψ(t,Xt, at) : t ≥ 0} is adapted;

(ii) EP
[∫ T

0
∥Ψ(s,Xs, as)∥22 ds

]
<∞.

Details regarding the well-posedness of the control problem (1)-(3) are provided in Appendix A.

The score matching term 1
2λ∥Ψ(Xs, as)∥22 in the objective can be interpreted from the following two

perspectives:
Quadratic Execution Costs. Let at denote the investor’s portfolio position. The score matching
term captures the quadratic costs of execution trades of size Ψdt, where λ quantifies the level of
transaction costs. This is consistent with execution cost models in portfolio optimization [1];
Policy Regularization via KL Divergence. Suppose the diffusion coefficient σa is deterministic
and Ψ(t,Xt, at) = ba(t,Xt, at) + u(t,Xt, at)σa(t) where u represents a control. Under this setup,
the score-matching cost admits an interpretation as a KL divergence between trajectory distributions.
Specifically, let πbase(aT |x, a) denote the distribution over terminal actions when u = 0 and let
πu(aT |xt, at) denote the distribution under control u. By the Section 3 in [6]), we have

DKL(π
u(aT |x, a)||πbase(aT |x, a)) = EP

[∫ T

t

1

2
∥u(s,Xs, as)∥22 ds

∣∣∣∣Xt = x, at = a

]
. (4)

Setting λ = ∥σa(t)∥2, the original score-matching term aligns exactly with this KL regularization.
The corresponding objective can then be interpreted as:

Q(t, x, a) = sup
u∈Π

EP

[∫ T

t

r(Xs, as) ds+ h(XT , aT)

∣∣∣∣Xt = x, at = a

]
− λDKL(π

u(aT |x, a)||πbase(aT |x, a)).

(5)

Thus, the KL term encourages the optimal policy to remain close to the base dynamics, introducing a
form of regularized policy improvement.

4 Continuous Q-Score Matching Algorithm

In this section, we develop a continuous-time Q-learning framework using a martingale characteriza-
tion and the HJB equation. This offers an alternative approach to policy improvement.

4

4.1 Dynamic Programming and HJB Equation for Q-Function

By the dynamic programming principle, the Q-function satisfies the following HJB equation:

sup
Ψ∈Π

{
LQ(t, x, a) +

∂Q

∂t
(t, x, a) + r(t, x, a)− 1

2
λ∥Ψ(t, x, a)∥22

}
= 0. (6)

Note that the terms ∇xQ · bX(t, x, a),∇aQ · ba(t, x, a), 1
2 tr
(
σXσ⊤

X∇2
xQ
)
, 1
2 tr
(
σaσ

⊤
a ∇2

aQ
)

and
r(t, x, a) are all independent of Ψ. Hence, the supremum in (6) is attained at Ψ∗(t, x, a) =
λ−1∇aQ(t, x, a). Substituting this back into the HJB equation gives the following nonlinear partial
differential equation characterizing the optimal Q-function:

∂Q

∂t
(t, x, a) + r(t, x, a) +∇xQ(t, x, a)⊤ · bX(t, x, a) +

1

2
λ−1∥∇aQ(t, x, a)∥22

+
1

2
tr
(
σX(t, x, a)σX(t, x, a)⊤∇2

xQ(t, x, a)
)
+

1

2
tr
(
σa(t, x, a)σa(t, x, a)

⊤∇2
aQ(t, x, a)

)
= 0,

Q(T, x, a) = h(x, a).
(7)

We now focus on the optimal Q-function associated with the optimal score Ψ∗. To avoid unduly
technicalities, we assume throughout this paper that the Q-function Q ∈ C1,2,2([0, T)×Rn ×Rd)∩
C([0, T) × Rn × Rd) satisfies the polynomial growth condition in the joint state-action variable
z = (x, a). The following theorem establishes the key martingale characterization underpinning
policy evaluation for diffusion-based policies.
Theorem 1. If Q(·, ·, ·; Ψ) is the Q-function associated with the score Ψ if and only if it satisfies
terminal condition Q(T, x, a; Ψ) = h(x, a), and for all (x, a) ∈ Rn × Rd, the following process

Ms = Q(s,Xs, as; Ψ) +

∫ s

t

[
r(u,Xu, au)−

1

2
λ∥Ψ(u,Xu, au)∥22

]
du (8)

is a ({Fs}s≥0,P)-martingale on [t, T]. Conversely, if there is a continuous Q-function Q̃ such that
for all (x, a) ∈ Rn × Rd, M̃s is a martingale, where

M̃s = Q̃(s,Xs, as; Ψ) +

∫ s

t

[
r(u,Xu, au)−

1

2
λ∥Ψ(u,Xu, au)∥22

]
du, (9)

and Q̃(T, x, a; Ψ) = h(x, a), then Q̃ = Q on [0, T]×Rn×Rd. Furthermore, the martingale property
of M ∈ L2

F ([0, T])is equivalent to the following orthogonality condition:

EP
∫ T

0

ξt

[
dQ(t,Xt, at; Ψ) + r(t,Xt, at) dt−

1

2
λ∥Ψ(t,Xt, at)∥22 dt

]
= 0, (10)

for any test process ξ ∈ L2
F ([0, T];Q(·, X., a.; Ψ)).

Proof can be found in Appendix B.1. In summary, the martingality of the process defined in Equation
(8) under a given score Ψ is both necessary and sufficient for Q to be the corresponding action value
function.

4.2 Score Evaluation of the Q-Function

We now discuss how the HJB equation can be used to design a Q-learning algorithm for estimating
Q(x, a; Ψ) using sample trajectories. A number of algorithms can be developed based on two types
of objectives: to minimize the martingale loss function or to satisfy the martingale orthogonality
conditions. Following [23], we leverage the martingale orthogonality condition, which states that for
any T > 0 and a suitable test process ξ,

EP
∫ T

0

ξt

{
dQ(t,Xt, at; Ψ) +

[
r(t,Xt, at)−

1

2
λ∥Ψ(t,Xt, at)∥22

]
dt

}
= 0. (11)

To approximate the Q-function, we consider a parameterized family Qθ(·, ·, ·; Ψ) where θ ∈ Θ ⊂ RLθ
(in principle, we need at least Lθ equations as our martingale orthogonality conditions in order to fully

5

determine θ.) and choose the special test function ξt =
∂Qθ

∂θ (t,Xt, at; Ψ). Stochastic approximation
[38] leads to the online update:

θ ← θ+αθ
∂Qθ

∂θ
(t,Xt, at; Ψ)

(
dQ(t,Xt, at; Ψ) +

[
r(t,Xt, at)−

1

2
λ∥Ψ(t,Xt, at)∥22

]
dt

)
(12)

where αθ is a learning rate. This recovers the mean-squared TD error (MSTDE) method for policy
evaluation in the discrete RL [43]. We must, however, stress that testing against this specific function
is theoretically not sufficient to guarantee the martingale condition. Additional discussions are
provided in Appendix D.

4.3 Policy Optimization via Matching the Score to the Q-function

Now we extend the analysis to the infinite-horizon setting. The dynamics of the state and action
processes are given by:

dXt = bX(Xt, at) dt+ σX(Xt, at) dB
X
t ,dat = Ψ(Xt, at) dt+ σa(Xt, at) dB

a
t , (13)

and the following discounted Q-function under any given Ψ:

Q(x, a; Ψ) = EP
[∫ +∞

t

e−β(s−t)
[
r(Xs, as)−

1

2
λ∥Ψ(Xs, as)∥22

]
ds

∣∣∣∣Xt = x, at = a

]
, (14)

where β > 0 is a discount factor that measures the time-depreciation of the objective value (or the
impatience level of the agent) and the optimal Q-function Q(x, a) = supΨ∈Π Q(x, a; Ψ).

Note that in this case, the Q-function does not depend on time explicitly. As a result, there is no
terminal condition, but instead we have a growth condition EP[e−βtQ(Xt, at; Ψ)] → 0 as t → ∞.
Again, using the dynamic programming principle, we have

sup
Ψ∈Π

{
LQ(x, a)− βQ(x, a) + r(x, a)− λ

2
∥Ψ(x, a)∥22

}
= 0. (15)

We now introduce an alternative method for updating policies based on Q-function estimates that
avoids the use of policy gradients. The following result serves as a score improvement theorem,
analogous to the classic policy improvement theorem in reinforcement learning.
Theorem 2. Let Ψ be any given score function and let the associated Q-function Q(·, ·; Ψ) ∈
C2,2(Rn × Rd) ∩ C0(Rn × Rd). Suppose further that the score function Ψ1 defined by Ψ1 =
λ−1∇aQ(x, a; Ψ) for some λ > 0 is admissible. Then Q(x, a; Ψ1) ≥ Q(x, a; Ψ), (x, a) ∈ Rn×Rd.

Proof can be found in Appendix B.2.

[35] similarly constructed a score function Ψ1, but their approach only determines the direction
of the policy update, without specifying the magnitude of the update vector. This result implies
that iteratively updating the score function by aligning it with the action gradient of the Q-function
leads to monotonic improvement in the Q-values. In other words, setting Ψ ← λ−1∇aQ(x, a)
guarantees an improvement in the resulting Q-function globally. Figure 1 shows a visual description
of Theorem 2 and the implied policy update direction via CQSM. Building on this theoretical
foundation, we now describe how to implement a sample-based update using a parameterized score
function Ψv with the parameter v ∈ RLv . To match the direction of∇aQ(x, a), we define the update
as: v ∈ argmin 1

2∥Ψ
v(x, a)− λ−1∇aQ(x, a)∥2. This yields the CQSM as shown in Algorithm 1.

Policy sampling. Consider the dynamics of (13) for a fixed state and setting σa(x, a) =
√
2Id.

Given certain conditions, under appropriate regularity conditions, the stationary distribution of the
action at as t→∞ for any fixed x ∈ Rn, denoted π(a|x): π(a|x) ∼ e

1
λQ(x,a). That is, the stationary

action distribution corresponds to a Boltzmann distribution over actions: π(a|x) = 1
Z e

1
λQ(x,a), where

Z =
∫
Rd e

1
λQ(s,a) da. This gives rise to a soft optimal policy, where the action distribution is shaped

by the Q-values, rather than relying on the soft Hamiltonian or auxiliary q-functions used in the soft
actor-critic literature (e.g., [24, 25]). However, for general σa(x, a), the stationary distribution π(a|x)
may not have a closed-form expression [48]. More details about action sampling can be found in
Appendix E.

6

Q
Qa
0

ta

Optimal Q
Qa
1

ta

Optimal

Figure 1: The left image shows a randomly initialized score function Ψ0, and the right shows the
updated score Ψ1 after one step. If a discrepancy exists between the score Ψ (green vector) and the
action gradient ∇aQ(x, a) (blue vector), then aligning Ψ with∇aQ yields a strict improvement in
Q-value at (x, a).

Here we highlight several hyperparameters: the trajectory truncation parameter (time horizon) T
(needs to be sufficiently large); the total sample size N or the sampling interval ∆t, with N ·∆t = T .
We define the observation times as tk := k ·∆t, k = 0, . . . , N − 1, at which data is collected from
the simulated environment, denoted as Environment∆t.

Algorithm 1 Continuous Q-Score Matching (CQSM)
1: Inputs: initial state x0, time step ∆t, initial learning rates αθ, αv and learning rate schedule

function l(·) (a function of time), the action value function Qθ(·, ·), the score function Ψv(·, ·),
the test function ξ(x·∧t, a·∧t), the initial parameter θ0, v0, and regularization parameter λ.

2: Required: Environment simulator (x′, r) = Environment∆t(x, a).
3: for k = 0, . . . , N − 1 do
4: Sample action a via iterative denoising: aT ∼ N (0, I)→ a0, using score Ψv: a ∼ π(x)
5: Simulate environment step: (x′, r) = Environment∆t(x, a). Update state: xtk+1

← x′.
6: Sample new action a′ ∼ π(x′) via denoising with Ψv . Store atk+1

← a′

7: Compute test function: ξtk = ξ(xt0:k, at0:k)
8: Compute temporal difference:

δ = Qθ(x′, a′)−Qθ(x, a) + r(x, a)∆t− λ

2
∥Ψv(x, a)∥2∆t− βQθ(x, a)∆t

9: Compute parameter updates:

∆θ = ξtk · δ, ∆v =

(
1

λ
∇aQθ(x, a)−Ψv(x, a)

)
∂Ψv

∂v
(x, a)

10: Update parameters:

θ ← θ + l(k∆t)αθ∆θ, v ← v + l(k∆t)αv∆v

11: Set x← x′

12: end for

5 Experiments

In this section, we present numerical evaluations on LQ control tasks. Additional experimental results
are provided in Appendix F. We compare the performance of our proposed CQSM algorithm against
continuous time policy gradient [24] and continuous time little q-learning methods [25]. Below, we
briefly review these baseline methods.

• CT-RL policy gradient: Given an admissible policy, this method first performs policy
evaluation to estimate the corresponding value function. It then computes the policy gradient

7

as: g(t, x;ϕ) = ∂
∂ϕJ(t, x;π

ϕ) (J is a value function). [24] transforms policy gradient into
policy evaluation to develop a policy gradient algorithm.

• CT-RL q-learning: The little q-function is defined as the first-order derivative of the
Q-function with respect to ∆t. Policy improvement is achieved via πϕ(a|t, x) =

exp { 1
λ q

ϕ(t,x,a)}∫
exp { 1

λ q
ϕ(t,x,a)} da

, leading to a continuous-time q-learning theory.

Linear-Quadratic Stochastic Control. We now focus on the family of stochastic control problems
with linear state dynamics

bX(x, a) = Ax+Ba and σX(x, a) = Cx+Da, σa(x, a) =
√
2, x, a ∈ R, (16)

where A,B,C,D ∈ R and the quadratic reward

r(x, a) = −
(
M

2
x2 +Rxa+

N

2
a2 + Px+ P ′a

)
, (17)

where M ≥ 0, N > 0, R, P, P ′ ∈ R. If D ̸= 0, then one smooth solution to the HJB equation

βQ(x, a)−Qxb(x, a)−
1

2λ
Q2
a −

1

2
σ2
XQxx −

1

2
σ2
aQaa − r(x, a) = 0, (18)

is given by Q(x, a) = 1
2k0x

2 + k1x+ 1
2k2a

2 + k3a+ k4xa+ k5 where

k0 = 1
λ(β−2A−C2)k

2
4 − M

β−2A−C2

k1 = 1
λ(β−A)k3k4 −

P
β−A

k2 = β
2λ− λ

√
β2

4 + 1
λ (N − 2ϖ)

k3 = − BP+P ′(β−A)

(β−A)(β− B
λ(β−A)

k4− 1
λk2)

k4 =
−λ(β−2A−C2)B±

√
λ2(β−2A−C2)2B2+D2(D2λM+2λ(β−2A−C2)ϖ)

D2

k5 =
2λk2+k

2
3

2λβ

. (19)

For the particular solution, we can verify that k2 < 0. To ensure Q is concave, a property essential for
verifying that this function indeed corresponds to the action-value function1, we impose the additional
conditions k0 < 0, k0k2 − k24 > 0. Next, we state one of the main results of this paper.
Theorem 3. Suppose the dynamics and the reward function are given by (16) and (17), respectively.
Then, the Q-function is given by Q(x, a) = 1

2k0x
2 + k1x + 1

2k2a
2 + k3a + k4xa + k5 where

k0, k1, k2, k3, k4, k5 are as in (19). Furthermore, the optimal score function takes the form:

Ψ∗(x, a) = λ−1(k2a+ k3 + k4x). (20)

Additional details of Theorem 3 are provided in the Appendix C.

In our simulations, to ensure the stationarity of the controlled state process, we use the following
model parameters: A = −1, B = C = 0, D = 1,M = N = P ′ = 2, R = P = 1, β = 1, λ = 0.1.
We parameterize the Q-function as Qθ = 1

2θ0x
2+θ1x+θ2a

2+θ3a+θ4xa+θ5 and the corresponding
score function asΨv(x, a) = −ev1a+ v2x+ v3. Using these parameterizations and the model setup,
the optimal parameter values are computed as:

θ∗ =[−0.59047134,−0.23069812,−0.46141679,−0.35624157,−0.15119060, 0.17312350],
v∗ =[1.52913155,−1.5119060,−3.5624157].

Implementation Details. The learning rate is initialized as αθ = αv = 0.01 and decay according
to l(t) = 1

max{1,
√
log t} . To evaluate performance and stability, each experiment is repeated five times

with different random seeds for sample generation. The parameter vector θ is initialized as zero
and v is initialized in the range [0, 1]. The corresponding optimal values θ∗ and v∗ are then used as
baselines for comparison. The time cost for each experiment is 352 seconds on a computer with Intel
Core i5-10500 CPU and 32G Memory.

1the HJB equation has an additional quadratic solution, which, however, is convex.

8

Performance Results. Each experiment is repeated ten times with different random seeds. Figure
2 illustrates the convergence behavior of the proposed CQSM algorithm for one realized trajectory
with time step ∆t = 0.1. Both the Q-function and score function parameters gradually approach
their theoretical optima except θ2, θ3, v2. Note that these parameters are closely tied to ∇aQ. Our
method requires the estimation of both the Q-function Q and its gradient∇aQ. This dual estimation
introduces additional variance and bias, potentially leading to inaccurate policy updates.

Furthermore, we compare the performance of our CQSM algorithm against two benchmark methods in
terms of the running average reward obtained during the learning process. The other two algorithms
are the PG-based algorithm proposed in ([24], Algorithm 3) and the little q-learning algorithm
presented in ([25], Algorithm 4). Figure 3 presents the running average rewards and standard
deviations for all three methods under three step sizes, ∆t = 0.01, 0.1, 1. Our proposed CQSM
consistently outperforms the baselines in the early stages of training, achieving higher rewards more
quickly than both PG and little q-learning. After a sufficient amount of time, all methods eventually
stabilize to similar average reward levels.

0 20000 40000 60000 80000 100000
Time

0.6

0.4

0.2

0.0
0 Path

True Value 0

1 Path
True Value 1

2 Path
True Value 2

(a) The path of learned θ0, θ1, θ2

0 20000 40000 60000 80000 100000
Time

0.3

0.2

0.1

0.0

0.1

0.2 3 Path
True Value 3

4 Path
True Value 4

5 Path
True Value 5

(b) The path of learned θ3, θ4, θ5

0 20000 40000 60000 80000 100000
Time

3

2

1

0

1

v0 Path
True Value v0
v1 Path
True Value v1
v2 Path
True Value v2

(c) The path of learned v0, v1, v2

Figure 2: Paths of learned parameters of the CQSM reinforcement learning algorithm described in
Algorithm 1. A single state trajectory of length T = 105 is generated. The dashed lines indicate
the optimal parameter values. The shaded regions represent the standard deviation of the learned
parameters across these runs, with the width of each shaded area equal to twice the corresponding
standard deviation.

0 20000 40000 60000 80000 100000
Time

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Av
er

ag
e

R
ew

ar
d

CQSM
Policy Gradient
q-learning

(a) ∆t = 0.01

0 20000 40000 60000 80000 100000
Time

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Av
er

ag
e

R
ew

ar
d

CQSM
Policy Gradient
q-learning

(b) ∆t = 0.1

0 20000 40000 60000 80000 100000
Time

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Av
er

ag
e

R
ew

ar
d

CQSM
Policy Gradient
q-learning

(c) ∆t = 1

Figure 3: Running average rewards of three RL algorithms. A single state trajectory of length
T = 105 is generated and discretized using three different step sizes: ∆t = 0.01 in panel (a),
∆t = 0.1 in panel (b), ∆t = 1 in panel (c). For each setting, we apply three online algorithms: Policy
Gradient described in Algorithm 3 in [24], q-Learning described in Algorithm 4 in [25] and CQSM
described in Algorithm 1. We plot the mean running average reward over time and the shaded areas
represent the standard deviation across the runs.

6 Conclusion

In this paper, we introduce a Q-function framework for continuous-time stochastic optimal control
problems with diffusion policies. By using the dynamic programming principle, we derive the
associated HJB equation for the Q-function. Building on this and utilizing the martingale orthogonality
condition, we develop the CQSM algorithm. We further demonstrate the effectiveness of CQSM

9

in an LQ setting, showing promising results compared to existing continuous-time reinforcement
learning algorithms.

Several interesting directions remain for future work. For the finite-horizon case, extending the
approach to handle an important portfolio selection with a mean-variance objective poses a challenging
problem due to inherent time inconsistency. Another promising direction is the optimization of
the diffusion term σa, which could lead to improved exploration and performance. Furthermore,
a theoretical convergence rate analysis of CQSM could offer deeper insights and guide further
enhancements to the algorithm.

Acknowledgements

We gratefully acknowledge financial support from the Key Project of National Natural Sci-
ence Foundation of China 72432005, Guangdong Basic and Applied Basic Research Foundation
2023A1515030197.

References
[1] Alain Bensoussan, Guiyuan Ma, Chi Chung Siu, and Sheung Chi Phillip Yam. Dynamic

mean-variance problem with frictions. Finance and Stochastics, 26(2):267–300, 2022.

[2] Alvaro Cartea, Sebastian Jaimungal, and Jason Ricci. Algorithmic trading, stochastic control,
and mutually exciting processes. SIAM review, 60(3):673–703, 2018.

[3] Shuping Chen, Xunjing Li, and Xunyu Zhou. Stochastic linear quadratic regulators with
indefinite control weight costs. SIAM Journal on Control and Optimization, 36(5):1685–1702,
1998.

[4] Min Dai, Yuchao Dong, and Yanwei Jia. Learning equilibrium mean-variance strategy. Mathe-
matical Finance, 33(4):1166–1212, 2023.

[5] Shutong Ding, Ke Hu, Zhenhao Zhang, Kan Ren, Weinan Zhang, Jingyi Yu, Jingya Wang, and
Ye Shi. Diffusion-based reinforcement learning via q-weighted variational policy optimization.
arXiv preprint arXiv:2405.16173, 2024.

[6] Carles Domingo-Enrich, Michal Drozdzal, Brian Karrer, and Ricky TQ Chen. Adjoint matching:
Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control.
arXiv preprint arXiv:2409.08861, 2024.

[7] Kenji Doya. Reinforcement learning in continuous time and space. Neural computation,
12(1):219–245, 2000.

[8] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In International conference on machine learning,
pages 1329–1338. PMLR, 2016.

[9] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error
in actor-critic methods. In International conference on machine learning, pages 1587–1596.
PMLR, 2018.

[10] Xuefeng Gao, Zuoquan Xu, and Xunyu Zhou. State-dependent temperature control for langevin
diffusions. SIAM Journal on Control and Optimization, 60(3):1250–1268, 2022.

[11] Xuefeng Gao, Jiale Zha, and Xunyu Zhou. Reward-directed score-based diffusion models via
q-learning. arXiv preprint arXiv:2409.04832, 2024.

[12] P Jameson Graber. Linear quadratic mean field type control and mean field games with common
noise, with application to production of an exhaustible resource. Applied Mathematics &
Optimization, 74:459–486, 2016.

[13] Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep q-learning
with model-based acceleration. In International conference on machine learning, pages 2829–
2838. PMLR, 2016.

10

[14] Xin Guo, Anran Hu, and Yufei Zhang. Reinforcement learning for linear-convex models with
jumps via stability analysis of feedback controls. SIAM Journal on Control and Optimization,
61(2):755–787, 2023.

[15] Xin Guo, Renyuan Xu, and Thaleia Zariphopoulou. Entropy regularization for mean field games
with learning. Mathematics of Operations research, 47(4):3239–3260, 2022.

[16] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pages 1861–1870. Pmlr, 2018.

[17] Yinbin Han, Meisam Razaviyayn, and Renyuan Xu. Stochastic control for fine-tuning diffusion
models: Optimality, regularity, and convergence. In Forty-second International Conference on
Machine Learning, 2024.

[18] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 6840–6851. Curran Associates, Inc., 2020.

[19] Yilie Huang, Yanwei Jia, and Xunyu Zhou. Achieving mean–variance efficiency by continuous-
time reinforcement learning. In Proceedings of the Third ACM International Conference on AI
in Finance, pages 377–385, 2022.

[20] David Ireland and Giovanni Montana. Revalued: Regularised ensemble value-decomposition for
factorisable markov decision processes. In The Twelfth International Conference on Learning
Representations, 2024.

[21] Haque Ishfaq, Guangyuan Wang, Sami Nur Islam, and Doina Precup. Langevin soft
actor-critic: Efficient exploration through uncertainty-driven critic learning. arXiv preprint
arXiv:2501.17827, 2025.

[22] Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion
for flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

[23] Yanwei Jia and Xunyu Zhou. Policy evaluation and temporal-difference learning in continuous
time and space: A martingale approach. Journal of Machine Learning Research, 23(154):1–55,
2022.

[24] Yanwei Jia and Xunyu Zhou. Policy gradient and actor-critic learning in continuous time and
space: Theory and algorithms. Journal of Machine Learning Research, 23(275):1–50, 2022.

[25] Yanwei Jia and Xunyu Zhou. q-learning in continuous time. Journal of Machine Learning
Research, 24(161):1–61, 2023.

[26] Jeongho Kim, Jaeuk Shin, and Insoon Yang. Hamilton-jacobi deep q-learning for deterministic
continuous-time systems with lipschitz continuous controls. Journal of Machine Learning
Research, 22(206):1–34, 2021.

[27] Pankaj Kumar. Deep reinforcement learning for high-frequency market making. In Asian
Conference on Machine Learning, pages 531–546. PMLR, 2023.

[28] James-Michael Leahy, Bekzhan Kerimkulov, David Siska, and Lukasz Szpruch. Convergence
of policy gradient for entropy regularized mdps with neural network approximation in the
mean-field regime. In International Conference on Machine Learning, pages 12222–12252.
PMLR, 2022.

[29] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

[30] Haitong Ma, Tianyi Chen, Kai Wang, Na Li, and Bo Dai. Efficient online reinforcement learning
for diffusion policy. In Forty-second International Conference on Machine Learning, 2025.

11

[31] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-
ment learning. In International conference on machine learning, pages 1928–1937. PmLR,
2016.

[32] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[33] Rémi Munos and Paul Bourgine. Reinforcement learning for continuous stochastic control
problems. Advances in neural information processing systems, 10, 1997.

[34] Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu,
Sergio Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, et al. Imitating
human behaviour with diffusion models. arXiv preprint arXiv:2301.10677, 2023.

[35] Michael Psenka, Alejandro Escontrela, Pieter Abbeel, and Yi Ma. Learning a diffusion model
policy from rewards via q-score matching. In International Conference on Machine Learning,
pages 41163–41182. PMLR, 2024.

[36] Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014.

[37] Moritz Reuss, Maximilian Li, Xiaogang Jia, and Rudolf Lioutikov. Goal-conditioned imitation
learning using score-based diffusion policies. arXiv preprint arXiv:2304.02532, 2023.

[38] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of
mathematical statistics, pages 400–407, 1951.

[39] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[40] Tim Seyde, Peter Werner, Wilko Schwarting, Igor Gilitschenski, Martin Riedmiller, Daniela
Rus, and Markus Wulfmeier. Solving continuous control via q-learning. In The Eleventh
International Conference on Learning Representations, 2023.

[41] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International conference on machine learning,
pages 387–395. Pmlr, 2014.

[42] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations, 2021.

[43] Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning,
3:9–44, 1988.

[44] Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1.
MIT press Cambridge, 1998.

[45] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Advances in Neural
Information Processing Systems, volume 12. MIT Press, 1999.

[46] Corentin Tallec, Léonard Blier, and Yann Ollivier. Making deep q-learning methods robust
to time discretization. In International Conference on Machine Learning, pages 6096–6104.
PMLR, 2019.

[47] Akshaj Tammewar, Nikita Chaudhari, Bunny Saini, Divya Venkatesh, Ganpathiraju Dharahas,
Deepali Vora, Shruti Patil, Ketan Kotecha, and Sultan Alfarhood. Improving the performance of
autonomous driving through deep reinforcement learning. Sustainability, 15(18):13799, 2023.

[48] Wenpin Tang, Yuming Paul Zhang, and Xunyu Zhou. Exploratory hjb equations and their
convergence. SIAM Journal on Control and Optimization, 60(6):3191–3216, 2022.

12

[49] Arash Tavakoli, Mehdi Fatemi, and Petar Kormushev. Learning to represent action values as a
hypergraph on the action vertices. In International Conference on Learning Representations,
2021.

[50] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ international conference on intelligent robots and systems, pages
5026–5033. IEEE, 2012.

[51] Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel,
Tom Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks
for continuous control. Software Impacts, 6:100022, 2020.

[52] Haoran Wang, Thaleia Zariphopoulou, and Xunyu Zhou. Reinforcement learning in continuous
time and space: A stochastic control approach. Journal of Machine Learning Research,
21(198):1–34, 2020.

[53] Haoran Wang and Xunyu Zhou. Continuous-time mean–variance portfolio selection: A rein-
forcement learning framework. Mathematical Finance, 30(4):1273–1308, 2020.

[54] Yinuo Wang, Likun Wang, Yuxuan Jiang, Wenjun Zou, Tong Liu, Xujie Song, Wenxuan Wang,
Liming Xiao, Jiang Wu, Jingliang Duan, et al. Diffusion actor-critic with entropy regulator.
Advances in Neural Information Processing Systems, 37:54183–54204, 2024.

[55] Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive
policy class for offline reinforcement learning. In The Eleventh International Conference on
Learning Representations, 2023.

[56] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. Ph. D. thesis,
Cambridge University, 1989.

[57] Jiongmin Yong and Xunyu Zhou. Stochastic controls: Hamiltonian systems and HJB equations,
volume 43. Springer Science & Business Media, 1999.

[58] Hanyang Zhao, Haoxian Chen, Ji Zhang, David Yao, and Wenpin Tang. Score as action: Fine-
tuning diffusion generative models by continuous-time reinforcement learning. In ICLR 2025
Workshop on Deep Generative Model in Machine Learning: Theory, Principle and Efficacy,
2025.

[59] Hanyang Zhao, Wenpin Tang, and David Yao. Policy optimization for continuous reinforcement
learning. Advances in Neural Information Processing Systems, 36:13637–13663, 2023.

13

A Diffusion RL: Problem Formulation and Well-Posedness

Listed below are the standard assumptions to ensure the well-posedness of the stochastic control
problem in (1)-(3).
Assumption 1. The following conditions for the state dynamics and reward functions hold true:
(1) bX , σX , σa, r, h,∇ar,∇ah are all continuous functions in their respective arguments;
(2) bX , σX , σa are globally Lipschitz continuous in (x, a), i.e., for φ ∈ {b, σX}, there exists a
constant C > 0 such that

∥φ(t, x, a)− φ(t, x′, a′)∥2 ≤ C(∥x− x′∥2 + ∥a− a′∥2),∀t ∈ [0, T], x, x′ ∈ Rn, a, a′ ∈ Rd;

(3) bX , σX are linear growth continuous in (x, a), i.e., for φ ∈ {b, σX}, there exists a constant
C > 0 such that

∥φ(t, x, a)∥2 ≤ C(∥x∥2 + ∥a∥2),∀t ∈ [0, T], x ∈ Rn, a ∈ Rd;

(4) σa is bounded for any (x, a), i.e., there exist constants C > 0 such that ∥σa(t, x, a)∥2 ≤ C,∀t ∈
[0, T], x ∈ Rn, a ∈ Rd.
(5) r, h,∇ar,∇ah have polynomial growth in (x, a), i.e., for φ ∈ {r, h,∇ar,∇ah} there exist
constants C > 0 such that

|φ(t, x, a)| ≤ C(1 + ∥x∥2 + ∥a∥2),∀t ∈ [0, T], x ∈ Rn, a ∈ Rd.

Lemma 1. Suppose {at : t ≥ 0} follows

dat = bt dt+ σt dB
a
t , t ≥ 0,

with Cσ := ess supt,ω |σt| < ∞. If
∫ t
0
|bs|2 ds < ∞ for all t ≥ 0, a ∈ Rd, then there exists a

constant C > 0, which is independent of T and a0, such that

EP
[

sup
0≤t≤T

|at|2
]
≤ C

(
1 + |a0|2

)
,∀T ≥ 0. (21)

Proof. By the elementary inequality

(a+ b+ c)2 ≤ (3max{a, b, c})2 ≤ 32a2 + 32b2 + 32c2, a, b, c ≥ 0,

we have

EP
[

sup
0≤t≤T

|at|2
]
≤EP

[(
|a0|+ sup

0≤t≤T

∫ t

0

|bs|ds+ sup
0≤t≤T

∣∣∣∣ ∫ t

0

σs dB
a
s

∣∣∣∣)2
]

≤EP

(|a0|+ ∫ T

0

|bs|ds+ sup
0≤t≤T

∣∣∣∣ ∫ t

0

σs dB
a
s

∣∣∣∣
)2


≤32|a0|2 + 32
∫ T

0

|bs|2 ds+ 32EP

[
sup

0≤t≤T

∣∣∣∣ ∫ t

0

σs dB
a
s

∣∣∣∣2
]

≤32|a0|2 + 32
∫ T

0

|bs|2 ds+ 32C2

(
EP
[∫ t

0

|σs|2 ds
])

≤32|a0|2 + 32
∫ T

0

|bs|2 ds+ 32C2C
2
σT

≤C
(
1 + |a0|2

)
,

where the second to last inequality is due to the Burkholder–Davis–Gundy inequality. This proves
(21).

Lemma 2. Let Assumption 1 hold, the solution of state SDE (1) satisfies the condition

EP
[

sup
0≤t≤T

|Xt|2
]
≤ C

(
1 + |x0|2

)
, (22)

for some constant C > 0.

14

Proof. Based on the proved growth condition on bX , σX , Cauchy–Schwarz inequality, and
Burkholder-Davis-Gundy inequalities, we obtain

EP
[

sup
0≤t≤T

|Xt|2
]

≤C1EP

[
|x0|2 + sup

0≤t≤T

∣∣∣∣∫ t

0

bX(s,Xs, as) ds

∣∣∣∣2 + sup
0≤t≤T

∣∣∣∣∫ t

0

σX(s,Xs, as) dB
X
s

∣∣∣∣2
]

≤C1EP

[
|x0|2 + C2

∫ T

0

(
sup

0≤τ≤s
|Xτ |2 + |as|2

)
ds

]

≤C3(1 + |x0|2) + C4

∫ T

0

sup
0≤τ≤s

EP [|Xτ |2
]
ds.

Applying Gronwall’s inequality, we obtain the desired result.

Theorem 4. Let Assumption 1 hold, then there exists a constant C1 > 0 such that the Q-function
satisfies

|Q(t, x, a)| ≤ C1(1 + ∥x∥2 + ∥a∥2),
for all t ∈ [0, T], x ∈ Rn, a ∈ Rd. Finally, the Q-function is finite.

Proof. Let Ψ = C where C is a constant. It then follows from Lemma 1 and Lemma 2 that
Q(t, x, a)

≥EP

[∫ T

t

[
r(s,Xs, as)−

λ

2
∥Ψ(s,Xs, as)∥22

]
ds+ h(XT , aT)

∣∣∣∣Xt = x, at = a

]

≥E

[∫ T

t

(
−C(1 + ∥Xs∥2 + ∥as∥2)−

λ

2
C2

)
ds

∣∣∣∣Xt = x, at = a

]
≥− C ′(1 + ∥x∥2 + ∥a∥2)

for some constant C ′ independent of x, a. On the other hand, for any Ψ ∈ Π, we have

Q(t, x, a) =EP

[∫ T

t

[
r(Xs, a

p
s)−

λ

2
∥Ψ(Xs, a

p
s)∥22

]
ds+ h(XT , aT)

∣∣∣∣Xt = x, at = a

]

≤EP

[∫ T

t

[C(1 + ∥Xs∥2 + ∥as∥2)] ds
∣∣∣∣Xt = x, at = a

]
≤C ′′(1 + ∥x∥2 + ∥a∥2)

for some constant C ′′ independent of x, a. The final result is evident. The proof is complete.

We have indeed established in the above that

EP

[∫ T

t

|r(s,Xs, as)|ds

]
<∞. (23)

B Proofs of Martingale Characterization and Score Improvement Theorem

B.1 Proof of Theorem 1

To show Ms = Q(s,Xs, as; Ψ) +
∫ s
t

[
r(u,Xu, au)− 1

2λ∥Ψ(u,Xu, au)∥22
]
du is a martingale, ob-

serve that

Ms =EP

[∫ T

s

[
r(u,Xu, au)−

1

2
λ∥Ψ(u,Xu, au)∥22

]
ds+ h(XT , aT)

∣∣∣∣Xs, as

]

+

∫ s

t

[
r(u,Xu, au)−

1

2
λ∥Ψ(u,Xu, au)∥22

]
du

=EP [MT |Fs] ,

(24)

15

where we have used the Markov property of the process {(Xs, as), t ≤ s ≤ T}. This establishes that
M is a martingale.

Conversely, if M̃ is a martingale, then M̃s = EP
[
M̃T |Fs

]
, which is equivalent to

Q̃(s,Xs, as; Ψ) =EP

[∫ T

s

[
r(u,Xu, au)−

1

2
λ∥Ψ(u,Xu, au)∥22

]
du+ Q̃(T,XT , aT)

∣∣∣∣Fs
]

=EP

[∫ T

s

[
r(u,Xu, au)−

1

2
λ∥Ψ(u,Xu, au)∥22

]
du+ h(XT)

∣∣∣∣Fs
]

=Q(s,Xs, as; Ψ), s ∈ [t, T].

(25)

Letting s = t, we conclude Q̃(t, x, a; Ψ) = Q(t, x, a; Ψ).

The “only if” part is evident. To prove the “if” part, assume that dMt = At dt+Ct dBt. In particular,

in our case, At = LQ(t, x, a; Ψ) + r(t,Xt, at) − 1
2λ∥Ψ(t,Xt, at)∥22 and Ct =

(
∂Q
∂Z

)⊤
G(t, Zt).

A,C ∈ L2
F ([0, T]) follows by assumption (Q ∈ C1,2,2([0, T)×Rn ×Rd) ∩C([0, T)×Rn ×Rd))

and Theorem 4. For any 0 ≤ s < s′ ≤ T , take ξt = sgn(At) if t ∈ [s, s′] and ξt = 0 otherwise.
Then

0 = EP
∫ s′

s

ξt dMt = EP
∫ s′

s

(|At|dt+ ξtCt dBt) = EP
∫ s′

s

|At|dt, (26)

where the expectation of the second term vanishes because |ξC| ≤ |C| ∈ L2
F ([0, T]) and hence

EP ∫ .
0
ξtCt dBt is a martingale. This yields At = 0 almost surely, and thus M is a martingale.

B.2 Proof of Theorem 2

Fix (x, a) ∈ Rn × Rd, applying Ito’s formula, we have

e−βsQ(Xs, as; Ψ) = e−βtQ(x, a; Ψ) +

∫ s

t

e−β(τ−t)
{
−βQ(Xτ , aτ ; Ψ) +∇xQ⊤ · bX(Xτ , aτ)

+∇aQ⊤ ·Ψ(Xτ , aτ)) +
1

2
tr
(
σXσ⊤

X∇2
xQ
)
+

1

2
tr
(
σaσ

⊤
a ∇2

aQ
)}

dτ

+

∫ s

t

e−β(τ−t)∇xQ⊤ · σX(Xτ , aτ) dB
X
τ + e−βτ∇aQ⊤ · σa(Xτ , aτ) dB

a
τ .

(27)
Define the stopping times Tn := inf{s ≥ t : ∥Xs∥2 ≥ n, ∥as∥2 ≥ n}, for n ≥ 1. Then we have

EP
[
e−β(s∧Tn)Q(Xs∧Tn , as∧Tn ; Ψ)

∣∣∣∣Xt = x, at = a

]
= e−βtQ(x, a; Ψ)

+ EP

[∫ s∧Tn

t

e−β(τ−t)
{
−βQ(Xτ , aτ ; Ψ) +∇xQΨ,⊤ · bX(Xτ , aτ) +∇aQ⊤ ·Ψ(Xτ , aτ)

+
1

2
tr
(
σXσ⊤

X∇2
xQ
)
+

1

2
tr
(
σaσ

⊤
a ∇2

aQ
)}

dτ

∣∣∣∣Xt = x, at = a

]
.

(28)
On the other hand, by standard arguments and the assumption that Q(·, ·; Ψ) is smooth, we have

βQ(x, a; Ψ)−
{
∇xQ⊤ · bX(x, a) +∇aQ⊤ ·Ψ(x, a)

+
1

2
tr
(
σXσ⊤

X∇2
xQ
)
+

1

2
tr
(
σaσ

⊤
a ∇2

aQ
)
+ r(x, a)− 1

2
λ∥Ψ∥22

}
= 0,

(29)

for any (x, a) ∈ Rn × Rd. It follows that

βQ(x, a; Ψ)− sup
Ψ̃

{
∇xQΨ,⊤ · bX(x, a) +∇aQ⊤ · Ψ̃(x, a)

+
1

2
tr
(
σXσ⊤

X∇2
xQ
)
+

1

2
tr
(
σaσ

⊤
a ∇2

aQ
)
+ r(x, a)− 1

2
λ∥Ψ̃∥22

}
≤ 0.

(30)

16

Notice that the minimizer of the Hamiltonian in (30) is given by Ψ1 = λ−1∇aQ(x, a; Ψ) for some
λ > 0. It then follows that Equation (28) implies

EP
[
e−β(s∧Tn)Q(Xs∧Tn , as∧Tn ; Ψ)

∣∣∣∣Xt = x, at = a

]
≥e−βtQ(x, a; Ψ)− EP

[∫ s∧Tn

t

e−β(τ−t)
(
r(xτ , aτ)−

λ

2
∥Ψ1∥22

)
dτ

∣∣∣∣Xt = x, at = a

]
.

(31)

Sending n→∞, we deduce that

EP [e−βsQ(Xs, as; Ψ)
∣∣Xt = x, at = a

]
≥e−βtQ(x, a; Ψ)− EP

[∫ s

t

e−β(τ−t)
(
r(xτ , aτ)−

λ

2
∥Ψ1∥22

)
dτ

∣∣∣∣Xt = x, at = a

]
.

(32)

Noting Lemma 1, Lemma 2 and Q is polynomial growth, we have

lim inf
s→∞

EP [e−βsQ(Xs, as; Ψ)
∣∣Xt = x, at = a

]
≤ lim sup

s→∞
EP [e−βsQ(Xs, as; Ψ)

∣∣Xt = x, at = a
]
= 0

(33)

and applying the dominated convergence theorem yield

Q(x, a; Ψ) ≤ EP
[∫ ∞

t

e−βτ
(
r(xτ , aτ)−

λ

2
∥Ψ1∥22

)
dτ

∣∣∣∣Xt = x, at = a

]
= Q(x, a; Ψ1). (34)

C Derivation of Linear-Quadratic Stochastic Control

The following derivation corresponds to Section 5 of the main text.
Assumption 2. The discounted rate satisfies β > 2A+ C2.

This assumption ensures a sufficiently large discount rate, which guarantees that
lim infT→∞ e−βTEP [Q(XT , aT ; Ψ)] = 0 for any score Ψ, thereby ensuring the correspond-
ing expected reward remains finite.

By HJB equation

βQ(x, a)−Qxb(x, a)−
1

2λ
Q2
a −

1

2
σ2
XQxx −

1

2
σ2
aQaa − r(x, a) = 0, (35)

we have

x2 :
β

2
k0 −Ak0 −

1

2λ
k24 −

1

2
C2k0 +M/2 = 0,

x : βk1 −Ak1 −
k3k4
λ

+ P = 0,

a2 :
β

2
k2 − k4B −

1

2λ
k22 −

1

2
k0D

2 +N/2 = 0,

a : βk3 −Bk1 −
k2k3
λ

+ P ′ = 0,

xa : βk4 − k0B − k4A−
1

λ
k2k4 − k0CD +R = 0,

Cons : βk5 − k2 −
1

2λ
k23 = 0.

By x2 term:

k0 =
1

λ(β − 2A− C2)
k24 −

M

β − 2A− C2
(36)

and substitute k0 to a2 term, we obtain
β

2
k2 − k4B −

1

2λ
k22 −

1

2
D2

(
1

λ(β − 2A− C2)
k24 −

M

β − 2A− C2

)
+N/2 = 0, (37)

β

2
k2 −

1

2λ
k22 +N/2 = k4B +

1

2
D2

(
1

λ(β − 2A− C2)
k24 −

M

β − 2A− C2

)
:= ϖ. (38)

17

First, we consider D ̸= 0. Hence, we have

k2 =
β

2
λ− λ

√
β2

4
+

1

λ
(N − 2ϖ), (39)

k4 =
−λ(β − 2A− C2)B ±

√
λ2(β − 2A− C2)2B2 +D2(D2λM + 2λ(β − 2A− C2)ϖ)

D2
.

(40)

By xa term, we can determine the value of ϖ and ϖ satisfies the following bounds

β2

4
+

1

λ
(N − 2ϖ) ≥ 0, (41)

λ2(β − 2A− C2)2B2 +D2(D2λM + 2λ(β − 2A− C2)ϖ) ≥ 0. (42)

If D = 0, then

k2 =
βλ

2
− λ

√
β2

4
− 2

λ

(
N

2
− k4B

)
, (43)

and k4 satisfies the following equation:

− B

λ(β − 2A)
k24 +

(
β

2
−A+

√
β2

4
− 2

λ

(
N

2
− k4B

))
k4 +

MB

β − 2A
+R = 0. (44)

Furthermore, by x term and a term, we have

k1 =
1

λ(β −A)
k3k4 −

P

β −A
, (45)

k3 =− BP + P ′(β −A)

(β −A)
(
β − B

λ(β−A)k4 −
1
λk2

) . (46)

Finally, we have

k5 =
2λk2 + k23

2λβ
. (47)

Therefore, the optimal score function takes the form:

Ψ∗(x, a) = λ−1∇aQ(x, a) = λ−1(k2a+ k3 + k4x). (48)

D Continuous Actor-Critic Q-Learning Algorithms

Score Evaluation of the Q-Function. We provide a complete description of how the HJB equation
is used to construct the continuous-time Q-learning algorithm. For estimating Q(x, a; Ψ), a number
of algorithms can be developed based on two types of objectives: to minimize the martingale loss
function or to satisfy the martingale orthogonality conditions. We summarize these methods in the
Q-learning context below.
(1) Minimize the martingale loss function:

1

2
EP

∫ T

0

[
h(XT , aT)−Qθ(t,Xt, at) +

∫ T

t

(
r(s,Xs, as)−

λ

2
∥Ψv(s,Xs, as)∥2

)
ds

]2
dt

 .

(49)
This method is intrinsically offline because the loss function involves the whole horizon [0, T]. We
can apply stochastic gradient decent to update

θ ← θ + αθ

∫ T

0

∂Qθ

∂θ
(t,Xt, at)Gt:T dt,

v ← v + αv

∫ T

0

∫ T

t

λΨv(s,Xs, as)
∂Ψv

∂v
(s,Xs, as) dsGt:T dt,

(50)

18

where Gt:T = h(XT , aT)−Qθ(t,Xt, at)+
∫ T
t

(
r(s,Xs, as)− λ

2 ∥Ψ
v(s,Xs, as)∥2

)
ds. We present

Algorithm 2 based on this updating rule. Note that this algorithm is analogous to the classical gradient
Monte Carlo method or TD(1) for MDPs [44] because full sample trajectories are used to compute
gradients.

(2) We leverage the martingale orthogonality condition, which states that for any T > 0 and a suitable
test process ξ,

EP
∫ T

0

ξt

{
dQθ(t,Xt, at; Ψ) +

[
r(t,Xt, at)−

1

2
λ∥Ψv(t,Xt, at)∥22

]
dt

}
= 0. (51)

We use stochastic approximation to update θ either offline by

θ ← θ + αθ

∫ T

0

ξt

{
dQθ(t,Xt, at; Ψ) +

[
r(t,Xt, at)−

1

2
λ∥Ψv(t,Xt, at)∥22

]
dt

}
, (52)

or online by

θ ← θ + αθξt

{
dQθ(t,Xt, at; Ψ) +

[
r(t,Xt, at)−

1

2
λ∥Ψv(t,Xt, at)∥22

]
dt

}
. (53)

Typical choices of test functions are ξt =
∂Qθ

∂θ or ξt =
∫ t
0
ρs−t ∂Q

θ

∂θ ds, 0 < ρ ≤ 1 which lead to
Q-learning algorithms based on stochastic approximation. However, relying solely on this specific
choice does not, in general, guarantee satisfaction of the full martingale condition. Moreover, the
convergence of the resulting stochastic approximation algorithm is not assured without additional
assumptions. As discussed in [23], the selection of test functions must be carefully tailored to the
structure of the Q-function, highlighting the need for more robust and theoretically grounded choices
in continuous-time settings.

(3) Choose the same type of test functions ξt as above but now minimize the GMM objective
functions:

EP

[∫ T

0

ξt

[
dJθ(t,Xπψ

t) + r(t,Xπψ

t , aπ
ψ

t)dt− qψ(t,Xπψ

t , aπ
ψ

t)dt− βJθ(t,Xπψ

t)dt
]⊤]

AθEP

[∫ T

0

ξt

[
dJθ(t,Xπψ

t) + r(t,Xπψ

t , aπ
ψ

t)dt− qψ(t,Xπψ

t , aπ
ψ

t)dt− βJθ(t,Xπψ

t)dt
]]

,

(54)
where Aθ ∈ SLθ . Typical choices of these matrices are Aθ = ILθ or Aθ = (EP[

∫ T
0
ξtξ

⊤
t dt])

−1.
Again, we refer the reader to [23] for discussions on these choices and the connection with the
classical GTD algorithms and GMM method.

Score Gradient. We aim to compute the score gradient g(x, a; v) := ∂
∂vQ(x, a; Ψv) ∈ RLv at the

current state-action pair (x, a). Based on the HJB of the Q-function, we take the derivative in v on
both sides to get

Lg(x, a; v)− βg(x, a; v) + (∇aQ(x, a; Ψv)− λΨv(x, a))
∂Ψv

∂v
(x, a) = 0. (55)

Thus, a Feynman-Kac formula represents g as

g(x, a; v) = EP
[∫ ∞

t

e−βs(∇aQ(Xs, as; Ψ
v)− λΨv(Xs, as))

∂Ψv

∂v
(Xs, as) ds

∣∣∣∣Xt = x, at = a

]
.

(56)
To treat the online case, assume that v∗ is the optimal point of Q(x, a; Ψv) for any (x, a) and that the
first-order condition holds (e.g., when v∗ is an interior point). Then g(x, a; v∗) = 0. It follows that

0 = EP
[∫ ∞

t

ηs(∇aQ(Xs, as; Ψ
v)− λΨv(Xs, as))

∂Ψv

∂v
(Xs, as) ds

∣∣∣∣Xt = x, at = a

]
, (57)

for any η ∈ L2
F ([0, T];Q(·, X., a.; Ψ)). If we take ηs = e−βs, then the right hand side (57) coincides

with g(x, a; v∗). More importantly, besides the flexibility of choosing different sets of test functions,

19

(57) provides a way to derive a system of equations based on only past observations and, hence,
enables online learning. For example, by taking ηs = 0 on [T,∞], (57) involves sample trajectories
up to time T . Thus, learning the optimal policy either offline or online boils down to solving a system
of equations (with suitably chosen test functions) via stochastic approximation to find v∗. Online
learning of (57) is the same as the update rule: v ∈ argmin 1

2∥Ψ
v(x, a)− λ−1∇aQ(x, a)∥2.

Here we present Offline Continuous Q-Score Matching (CQSM) Martingale Loss Algorithm 2 in the
infinite-horizon setting .

Algorithm 2 Offline Continuous Q-Score Matching (CQSM) Martingale Loss Algorithm
1: Inputs: Initial state x0, a0, horizon T , time step ∆t, number of episodes N , number of mesh

grids K, initial learning rates αθ, αv and a learning rate schedule function l(·), functional forms
of parameterized action value function Qθ(·, ·) and score function Ψv(·, ·) and regularization
parameter λ.

2: Initialize θ, v.
3: for episode j = 1 to N do
4: Initialize k = 0. Observe initial state x0 and store xtk ← x0.
5: Choose action by iteratively denoising aT ∼ N (0, 1)→ a0 using Ψv : atk ∼ πv(xtk);
6: Step environment {rtk , xtk+1

} = env(atk).
7: Obtain one observation {atk , rtk , xtk}k=0,··· ,K−1.
8: For every k = 0 to K − 1, compute

Gtk:T = −e−βtkQθ(xtk , atk) +

K−1∑
i=k

e−βti [r(xti , ati)−
λ

2
∥Ψv(xti , ati)∥2]∆t. (58)

9: Update θ and v by

θ ← θ + l(j)αθ

K−1∑
k=0

∂Qθ

∂θ
(xtk , atk)Gtk:T∆t. (59)

v ← v + l(j)αv

K−1∑
k=0

[
K−1∑
i=k

λΨv(xti , ati)
∂Ψv

∂v
(xti , ati)∆t

]
Gtk:T∆t. (60)

10: end for

E Scored Based Diffusion Models

Consider the forward SDE with state space Yt ∈ Rd is defined as

dYt = f(t, Yt) dt+ g(t) dBa
t , Y0 ∼ πdata(·), (61)

where f : R+ × Rd → Rd and g : R+ → R+. Denote π(t, ·) as the probability density of Yt.

Set time horizon T > 0 to be fixed, and run the SDE (61) until time T to get YT ∼ π(T, ·). The time
reversal Y rev

t := YT−t for 0 ≤ t ≤ T satisfies an SDE, under some mild conditions on f and g:

dY rev
t =

(
−f(T − t, Y rev) +

1 + η2

2
g2(T − t)∇y log π(T − t, Y rev)

)
dt+ ηg(T − t) dBa

t ,

(62)
where∇y log π(t, y) is known as the stein score function and η ∈ [0, 1] is a constant. In addition, a
special but important case by taking η = 0 in the (62), this results to a flow ODE [42]:

dY rev
t =

(
−f(T − t, Y rev) +

1

2
g2(T − t)∇y log π(T − t, Y rev)

)
dt, (63)

which can enable faster sampling and likelihood computation thanks to the deterministic generation.

Since the score function ∇y log π(t, y) is unknown, diffusion models learn a function approximation
sθ(t, y), parameterized by θ (usually a neural network), to the true score by minimizing the MSE or

20

the Fisher divergence (between the learned distribution and true distribution), evaluated by samples
generated through the forward process (61):

θ∗ = argmax
θ

Et∼Uni(0,T)

{
λ(t)Ey0∼πdataEyt∼π(t,·|y0)

[
∥sθ(t, yt)−∇yt log π(t, yt|y0)∥22

]}
(64)

where λ : [0, T] → R>0 is a chosen positive weighting function. When choosing the weighting
functions as λ(t) = g2(t), this score matching objective is equivalent to maximizing an evidence
lower bound (ELBO) of the log-likelihood.

For action sampling, we view the action process as the reverse process. First we set σa(t,X, at) =
σ2
t I to untrained time dependent constants. Experimentally, we set βt = σ2

t and αt = 1− βt, ᾱt =∏t
s=1 αs. When applied to score matching with denoising diffusion probabilistic modeling (DDPM)

[18], samples can be generated by starting from aT ∼ N (0, I) and following the reverse Markov
chain as below

at−1 =
1
√
αt

(
at +

1− αt√
1− ᾱt

Ψ(at, xt)

)
+ σtZ,Z ∼ N (0, I). (65)

F Additional Experiments

F.1 Deterministic Case of LQ Control Tasks

We set C = D = 0 to eliminate stochasticity. Figure F.1 shows the running average reward of CQSM,
PG and little q-learning. We observe that the resulting performance is comparable to the stochastic
case.

0 20000 40000 60000 80000 100000
Time

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Av
er

ag
e

R
ew

ar
d

CQSM
Policy Gradient
q-learning

(a) ∆t = 0.1

0 20000 40000 60000 80000 100000
Time

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Av
er

ag
e

R
ew

ar
d

CQSM
Policy Gradient
q-learning

(b) ∆t = 1

Figure F.1: Running average rewards of three RL algorithms. A single state trajectory of length
T = 105 is generated and discretized using two different step sizes: ∆t = 0.1 in panel (a), ∆t = 1
in panel (b).

F.2 Continuous Control Benchmark Tasks

We evaluate CQSM on continuous control benchmarks from the DeepMind Control Suite. DeepMind
Control Suite [51] is a set of control tasks implemented in MuJoCo [50]. We choose TD3 [9], SAC
[16], and Diffusion-QL [55] as three baselines for comparison. Below, we first provide a brief review
of prior methods.

Policy gradient methods seek to directly optimize the policy by computing gradients of the expected
reward with respect to the policy parameters [45]. Deterministic policy gradient algorithms for MDPs
(with discrete time and continuous action space) are developed in [41] (DPG) and later extended to
incorporate deep neural networks in [29] (DDPG). Recent studies have focused on stochastic policies
with entropy regularization, also known as the softmax method; see for example, [31] (A3C); [39]
(PPO).

21

• TD3: [9] proposed Twin Delayed Deep Deterministic Policy Gradient (TD3), which miti-
gates overestimation bias in DDPG by using clipped double Q-learning and delayed policy
updates. This yields more stable and accurate policy learning in continuous control tasks.

• SAC: The Soft Actor-Critic algorithm [16] optimizes a stochastic policy that maximizes
both expected reward and policy entropy. The policy follows π(a|x) ∼ e

1
λQ(x,a) and is

reparameterized using a neural transformation of samples from a fixed distribution.
• Diffusion-QL: [55] integrates diffusion models with Q-learning by adding a term that

maximizes action-values to the diffusion model’s training loss. The final policy-learning
objective is a linear combination of policy regularization and policy improvement.

We evaluate CQSM against the baselines (TD3, SAC, and Diffusion-QL) on a range of MuJoCo
continuous control tasks, from high-dimensional domains (Cheetah Run, Walker Walk, Walker Run,
Humanoid Walk) to simpler environments (Cartpole Balance, Cartpole Swingup). Each experiment
is repeated with 10 random seeds, and we report the average episode return across runs (removing
extremely poor results).

As shown in panels (a)-(d) of Figure F.2, CQSM matches or outperforms the TD3, SAC, and Diffusion-
QL baselines, particularly in the early stages of training where it achieves higher rewards. This early
performance gain highlights a key distinction between our approach and conventional actor-critic
methods. Algorithms like SAC and TD3 may frequently sample actions with low Q-values in the
initial stage because they do not utilize the action derivative Qa, while Diffusion-QL can sometimes
get stuck at suboptimal solutions. In contrast, our approach benefits from a more immediate policy
adjustment via the learned score function, enabling the policy to better approximate the true optimal
policy in the early stages. As a result, our method can achieve higher rewards in the early steps. In
simpler tasks, shown in panels (e)-(f) of Figure F.2, CQSM achieves performance comparable to the
baselines, demonstrating both its stability and general applicability across task complexities.

22

(a) Cheetah Run (b) Walker Walk

(c) Walker Run (d) Humanoid Walk

(e) Cartpole Balance (f) Cartpole Swingup

Figure F.2: Experimental Results Across A Suite of Six Continuous Control Tasks.

23

	Introduction
	Related Works
	Formulation and Preliminaries
	Continuous Q-Score Matching Algorithm
	Dynamic Programming and HJB Equation for Q-Function
	Score Evaluation of the Q-Function
	Policy Optimization via Matching the Score to the Q-function

	Experiments
	Conclusion
	Diffusion RL: Problem Formulation and Well-Posedness
	Proofs of Martingale Characterization and Score Improvement Theorem
	Proof of Theorem 1
	Proof of Theorem 2

	Derivation of Linear-Quadratic Stochastic Control
	Continuous Actor-Critic Q-Learning Algorithms
	Scored Based Diffusion Models
	Additional Experiments
	Deterministic Case of LQ Control Tasks
	Continuous Control Benchmark Tasks

