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ABSTRACT

Communication in multi-agent reinforcement learning has been drawing attention
recently for its significant role in cooperation. However, multi-agent systems
may suffer from limitations on communication resource and thus need efficient
communication techniques in real-world scenarios. According to the Shannon-
Hartley theorem, messages to be transmitted reliably in worse channels requires
lower entropy. Therefore, we aim to reduce message entropy in multi-agent
communication. A fundamental challenge in this is that the gradients of entropy are
either 0 or ∞, disabling gradient-based methods. To handle it, we propose a pseudo
gradient descent scheme, which reduces entropy by adjusting the distributions of
messages wisely. We conduct experiments on six environment settings and two base
communication frameworks and find that our scheme can reduce communication
entropy by up to 90% with nearly no loss of performance.

1 INTRODUCTION

Over these years, multi-agent reinforcement learning (MARL) has been attracting increasing attention
for its broad applications in cooperative tasks, such as robots navigation (Han et al., 2020), traffic
lights control (Calvo & Dusparic, 2018) and large-scale fleet management (Lin et al., 2018). To
promote the cooperation of agents, a few researchers have designed communication protocols among
agents and got good results (Ahilan & Dayan, 2020; Chu et al., 2019; Kim et al., 2020).

However, many multi-agent communication frameworks use cooperation scores as the only metric
and do not take communication efficiency into account, making them impractical in scenarios where
communication resources are limited. (Rangwala & Williams, 2020; Serra-Gómez et al., 2020;
Sun et al., 2020). Some others try to design efficient multi-agent communication protocols, whose
work can be divided into two categories. The first is decreasing communication times (Ma et al.,
2021; Kim et al., 2018; Vijay et al., 2021), including wisely choosing communication timing and
partners. The second is reducing communication entropy. The motivation is that messages with lower
entropy can be reliably transmitted over worse communication channels according to the Shannon-
Hartley Theorem (Shannon, 1948). Most learning-based multi-agent communication frameworks
use continuous variables to communicate, and hence works in this area aim to minimize differential
entropy1 (Wang et al., 2019; 2020; Zhang et al., 2020).

Nevertheless, these methods have two defects. Firstly, some of them rely on specially designed
architectures to minimize communication entropy (Zhang et al., 2020), impairing their generalizability.
Secondly, differential entropy is hard to estimate without prior information, and some methods simply
treat the message distributions as single Gaussian, which may be far from reality. We also notice that
reducing differential entropy is less significant than reducing discrete entropy of quantized messages.
This is because continuous variables must be quantized to discrete variables before being transmitted
in a modern communication system (Shannon, 1948), making discrete entropy much more important
than differential entropy when considering efficient communication.

In this paper, we propose a scheme, Discrete Entropy Minimization (abbreviated as DisEM), that
can be applied to common MARL communication frameworks and reduce the discrete entropy

1Entropy of discrete variables and continuous variables is defined differently in Shannon (1948). Following
Cover (1999), we use discrete entropy to denote the entropy of discrete variables and differential entropy to
denote the entropy of continuous variables for ease of reading.
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of quantized messages of them with little performance decline. The core problem of doing so is
that quantization truncates gradients, making all gradient-based training algorithms infeasible. To
overcome this challenge, we put forward a novel pseudo gradient descent method that reduces discrete
entropy by adjusting the distributions of messages according to well-designed pseudo gradients. We
also theoretically prove its effectiveness. An intuitive description of how our DisEM changes the
message distribution is that it makes message variables move from less popular quantization intervals
to adjacent more popular ones. As a result, DisEM does not change the message distribution too
much and hence manages to reduce entropy with little performance degradation. To empirically
illuminate DisEM’s effectiveness, we conduct experiments in three communication-critical multi-
agent tasks with six settings in total. Meanwhile, we apply our scheme to two base multi-agent
communication frameworks, IC3NET (Singh et al., 2018) and TARMAC (Das et al., 2019), to
manifest its generalizability. Experiments show that DisEM can reduce up to 90% entropy without
performance degradation in some settings. To sum up, our contributions are listed as follows:

• We propose a light-weighted yet effective scheme DisEM that can be incorporated into
common learning-based multi-agent communication frameworks and reduce the message
entropy of them with nearly no loss of performance.

• We overcome the problem that discrete entropy of quantized messages cannot be reduced
with gradient-based methods. Specifically, we propose a novel pseudo gradient descent
method and theoretically prove its ability to reduce entropy.

• We conduct adequate experiments to confirm DisEM’s preponderance over previous methods.
Besides, we execute several investigative experiments to further illuminate the features of
our scheme, including communication simulations demonstrating how low entropy benefits
multi-agent communication in noisy scenarios.

2 RELATED WORK

Communication in MARL has been a hot area of research since 2016. Foerster et al. (2016) suggest
that generating differentiable messages and letting gradients flow between agents are beneficial
for multi-agent cooperation, laying the foundation for learning-based multi-agent communication
frameworks. Sukhbaatar et al. (2016) put forward COMMNET, where agents broadcast their hidden
states to others for collaboration. Singh et al. (2018) propose IC3NET based on COMMNET with
two advancements: (1) agents are trained with individualized rewards; (2) agents adopt a gating
mechanism to learn when to communicate. Inspired by Transformer (Vaswani et al., 2017), Das
et al. (2019) put forward TARMAC, an attention-based method. More techniques have been used to
enhance communication performance in the past year or two, such as hierarchical communication
(Sheng et al., 2020), relabelling history messages (Ahilan & Dayan, 2020), and intention sharing
(Kim et al., 2020). Nevertheless, these frameworks have no concern for communication overhead,
making them less practical in real-world applications.

In terms of efficient communication, most researchers choose to wisely select when to communicate
and whom to communicate with. Work in this area can be divided into three categories. (1) The
multi-agent system adopts a scheduler to decide who can communicate at each step (Kim et al., 2018;
Wang et al., 2020). (2) Agents use a learnable gating mechanism to control communication (Jiang
& Lu, 2018; Vijay et al., 2021). (3) Agents schedule communication according to predefined rules
(Ding et al., 2020; Ma et al., 2021; Zhang et al., 2019).

Some other studies focus on minimizing communication entropy. Zhang et al. (2020) succeed in
reducing the variance of sending messages without degrading performance. However, the scheme
relies on specially designed communication and decision architectures and cannot be applied to
other communication frameworks. Wang et al. (2019) force message generators of agents to output
Gaussian variables with fixed variance. In this way, the differential entropy of messages can be
decreased by minimizing the mutual information between the output values and input features of
the message generators. Wang et al. (2020) extend this scheme by introducing the concept of
information bottleneck (Tishby et al., 2000). Although this kind of scheme can be applied to some
base communication frameworks, it has three defects. Firstly, it requires the message generators to
output Gaussian variables, which may lower performance. Secondly, it only guarantees to reduce
the upper bound of mutual information instead of differential entropy. Thirdly, it models the output
messages as single Gaussian distributions with predefined variances, which may be far from reality.
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In our experiments, we refer to this kind of scheme as Differential Entropy Minimization (DifEM)
and compare it with our scheme.

3 PRELIMINARIES

3.1 DISCRETE ENTROPY AND DIFFERENTIAL ENTROPY

Discrete entropy (Shannon, 1948) is a measure of uncertainty of a discrete random variable. Let X
be a discrete random variable with alphabet X and a probability mass function p(x), the discrete
entropy H(X) of X is defined by

H(X) = −
∑
x∈X

p(x) log p(x) (1)

In comparison, the uncertainty of a discrete random variable is measured by differential entropy
(Shannon, 1948). Suppose a continuous random variable Y has a probability density function f(y)
with support set S, then its differential entropy h(Y ) is calculated as

h(Y ) = −
∫
S

f(y) log f(y)dy (2)

There are two important differences between them. Firstly, discrete entropy is usually easier to
accurately estimate than differential entropy. The reason is that given enough samples, the probability
mass function of a discrete variable can be easily estimated. In contrast, the probability density
function of a continuous variable is hard to estimate without knowing the prior distribution. Sec-
ondly, since modern communication systems utilize discrete symbols to carry information (Shannon,
1948), discrete entropy is much more critical than differential entropy when considering efficient
communication. Therefore, we choose to minimize discrete entropy of quantized messages.

3.2 THE IMPORTANCE OF LOW ENTROPY

The Shannon-Hartley theorem (Shannon, 1948) reveals the maximum rate at which information can
be transmitted over a communication channel:
Theorem 3.1. (The Shannon-Hartley theorem) Given a noisy channel with channel capacity C and
information rate R, if R < C, then there exists a coding technique that allows the probability of
error at the receiver to be made arbitrarily small. Otherwise, an arbitrarily small probability of error
is not achievable. The channel capacity C is calculated as follows:

C = Blog(1 + SNR) (3)

where B is the bandwidth and SNR is the signal-to-noise ratio.

The information rate R of a source is calculated by R = rH , where H is the averaged entropy of
sending messages and r is the rate at which the messages are generated. It can be concluded from
the theorem that a multi-agent communication protocol with lower entropy is more reliable when
the communication resources are limited. We run several communication simulations in Sec.5.3 to
illustrate this point.

3.3 MULTI-AGENT REINFORCEMENT LEARNING WITH COMMUNICATION

We consider a partially observable n-agent Markov game (Littman, 1994) with communication among
agents. This process can be described with a tuple ⟨S,A,R, T,O,Ω,MS , n, γ⟩, where S denotes
the state space of the environment, A denotes the set of available actions, R is the reward function
R : S ×A → R, T is the transition function T : S ×A → S, O is the observation space of agents,
Ω is the observation function for agents: Ω : S → O, MS denotes the message space, n represents
the number of agents, and γ is the discount factor. In a basic MARL framework with communication,
an agent i needs a policy πi and a message generator gi to finish tasks. At timestep t, agent i firstly
obtains observation oit from the environment and receives messages m⃗recv,i

t−1 from others:

m⃗recv,i
t−1 = {m⃗1

t−1, ..., m⃗
i−1
t−1, m⃗

i+1
t−1, ..., m⃗

n
t−1}
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Secondly, it makes decisions ait = πi(oit, m⃗
recv,i
t−1 ) and broadcasts message m⃗i

t = gi(oit, m⃗
recv,i
t−1 ) to

others. Finally, it gets rewards rit from the environment.

In our paper, we focus on learning-based multi-agent communication frameworks where gi is learned
using gradient-based methods and generates continuous messages. In this case, we can use θi to
denote the parameters of its policy and message generator, and the training goal is to maximize the
objective function J(θi):

J(θi) = Eπi,gi

[ ∞∑
t=0

γtrit

]
(4)

In our experiments, the action space is discrete and we choose policy gradient methods to optimize
J(θi):

∇θiJ(θi) = E[πi(o,m, a)A(o,m, a)∇θi logπ
i(o,m, a)] (5)

where πi(o,m, a) represents the possibility of choosing action a given (o,m) and A(o,m, a) is the
advantage function.

4 METHODS

4.1 QUANTIZE MESSAGES DURING TESTING

Communication frameworks in MARL usually use continuous messages so that message generators
can be trained using gradient-based methods. In our paper, we still use continuous messages during
training, but quantize them during testing. We do this for three reasons: (1) Proper quantization
does not hinder the exchange of information between agents: the performance of agents remains
the same when we quantize the messages during testing. (2) Quantization is necessary in modern
communication systems. (3) Compared with differential entropy, discrete entropy is easier to
accurately estimate and more important in communication.

Specifically, we set the output range of agents’ message generators to [−1, 1] and use a uniform
quantization function fQ(x) with quantization interval length ∆:

fQ(x) = k∆− 1, ∀x ∈ [(k − 0.5)∆− 1, (k + 0.5)∆− 1), k ∈ {0, 1, ...,K} (6)

where K = 2/∆ and K + 1 is the number of quantization intervals.

4.2 ENTROPY OF QUANTIZED MESSAGES

To formulate how entropy of quantized messages is calculated, we define hk(·) below:

hk(x) =

{
1, x ∈ [(k − 0.5)∆− 1, (k + 0.5)∆− 1)

0, x /∈ [(k − 0.5)∆− 1, (k + 0.5)∆− 1)
(7)

Without loss of generality, we firstly focus on the setting where the message length is 1, which means
one piece of message is a number instead of a vector. Given a message set M = {m1,m2, ...,mN},
the entropy of quantized messages is calculated below:

H(M) = −
K∑

k=0

ϵ+
∑N

i=1 hk(mi)

N
log

ϵ+
∑N

i=1 hk(mi)

N
(8)

where ϵ is a small number to avoid log 0 in calculation. If the message length is more than 1, the
entropy can be calculated by summing up the entropy of each digit.

4.3 REDUCE ENTROPY WITHOUT REDUCING PERFORMANCE

We intend to reduce the message entropy of gradient-based multi-agent communication frameworks
without harming performance. In specific, for agent i, firstly we use the baseline framework to train
θi until πi, gi are well-trained. Suppose J(θi) = Jp at this time. Secondly, we try to optimize this
constrained objective:

min
θi

H(Mi) s.t. J(θi) > Jp (9)
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where H(Mi) represents the message entropy of agent i. With the introduction of a Lagrange
multiplier α, we get an unconstrained optimization objective:

max
θi

J ′(θi) = J(θi)− αH(Mi) (10)

Then the gradient of θi with respect to this new objective becomes:
∇θiJ

′(θi) = ∇θiJ(θi)− α∇θiH(Mi) (11)

Note that the gradient of hk(·) is either 0 or ∞, consequently, ∇θiH(Mi) is either 0 or ∞. This
disables gradient-based training methods and thus makes H(Mi) hard to be reduced. We propose a
pseudo gradient descent method to handle this problem.

4.4 REDUCE ENTROPY WITH PSEUDO GRADIENT DESCENT

H(M) can be treated as a multivariate function with N variables H(m1,m2, ...,mN ), and in this
part we focus on how to reduce H(M) by adjusting mi. To start with, we present the core function of
gradient descent methods: given a continuously differentiable function f(x1, x2, ..., xn) and η → 0,

x′
i = xi − η∇xi

f

f(x1, ..., x
′
i, ..., fn) ≤ f(x1, ..., xi, ..., fn)

(12)

Since ∇miH(M) =
∑

k ∇hk
H(M)∇mihk = 0 or ∞, we cannot use gradient descent to minimize

H(M). Therefore, we try to design a pseudo gradient ∇p
mi

H(M) to achieve a similar effect to
Eqa. 12.

Our core idea is to replace ∇mi
hk with sk(mi):

sk(x) =


1, x ∈ ((k − 1)∆− 1, k∆− 1)

−1, x ∈ (k∆− 1, (k + 1)∆− 1)

0, x = k∆− 1

(13)

and the expression for pseudo gradient ∇p
mi

H(M) is :

∇p
mi

H(M) =
∑
k

∇hk
H(M)sk(mi) (14)

Next, we show that pseudo gradient descent has a similar property to gradient descent. Given
H(M) = H(m1, ...,mi, ...,mn) and η → 0,

m′
i = mi − η∇p

mi
H(M)

H(m1, ...,m
′
i, ...,mN ) ≤ H(m1, ...,mi, ...,mn)

(15)

Proof see Appendix A.

We visualize how pseudo gradient descent method adjusts mi in Fig. 1(a) and how our scheme
and previous schemes (those that aim to minimize differential entropy) change the distribution of
messages in Fig. 1(b). In brief, our scheme reduces entropy by moving numbers from less popular
quantization intervals to adjacent more popular ones and does not change the messages too much; As
a comparison, traditional schemes simply make the distribution more like a low variance Gaussian
distribution regardless of what the original distribution is.

4.5 IMPLEMENTATION DETAILS

MARL frameworks with communication commonly use gradient-based methods to update the
parameters of neural networks. To make our scheme compatible with common implementations in
deep learning platforms (e.g. PyTorch), we can use the nograd(·) operation, which means treating
the gradient of this part as 0 during derivation. And we can find uk s.t. ∇mi

uk = sk(mi). From the
perspective of writing codes, the expression for H(M) is:

H(M) = −
K∑

k=0

ϵ+
∑N

i=1 h
′
k(mi)

N
log

ϵ+
∑N

i=1 h
′
k(mi)

N

h′
k(mi) = nograd(hk(mi)− uk(mi)) + uk(mi)

(16)
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H(M)

mi  

(a)

raw distribution

DifEM

DisEM(ours)

popular quantization 

intervels

(b)

Figure 1: (a) How our pseudo gradient descent method reduces H(M) by adjusting mi. The x-
coordinate of a red dot represents a possible value for mi, and the y-coordinate of it represents
corresponding value for H(M). Red arrows indicate directions of pseudo gradient descent. Pseudo
gradient descent makes mi moves to a direction that might reduce H(M). (b) How our scheme
(Discrete Entropy Minimization, abbreviated as DisEM) and traditional scheme (Differential Entropy
Minimization, abbreviated as DifEM) change the distributions of messages. DisEM reduces entropy
by moving numbers from less popular quantization intervals to adjacent more popular ones, while
DifEM simply make the distribution more like a low variance Gaussian distribution.

Following policy gradient methods, the parameters θi of agent i can be trained according to the
following expression:

∇θiJ
′(θi) = ∇θiJ(θi)− α∇p

θi
H(Mi) (17)

Besides, we first train the agents without the entropy regularizer (i.e. set α = 0) to make them
optimize their policies and message generators. After TN epochs, we add the regularizer (i.e. set
α = αp) and continue to train them for another Tmax − TN epochs. TN , αp and Tmax are predefined
hyperparameters, whose values are present in Appendix B. Additionally, we set ∆ = 0.25 for the
quantization function.

5 EXPERIMENTS

A B

C

A

C

B

Agent searching

Treasure only 
visible to agent C

Vision

Predator moving down

Fixed prey

Car leaving

One route

Car entering

Figure 2: Visualizations of Treasure Hunt, Predator Prey, and Traffic Junction.

5.1 TESTED ALGORITHMS

To test the effectiveness of our scheme, the tested algorithms are based on two multi-agent com-
munication frameworks: IC3NET (Singh et al., 2018) and TARMAC (Das et al., 2019), which are
elaborated in Appendix D.1 and Appendix D.2. In particular, we test four variants of each frame-
work as described below. (1) Original: This is the original version of the framework without any
modifications, which manifests baseline performance and entropy. (2) ZeroComm: This variant
disables communication by compulsively setting all messages to zero and manifests performance
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without communication. (3) DifEM: (Wang et al., 2020) A previous method that minimizes the
differential entropy with a mutual information regularizer. (4) DisEM: This is our proposed scheme
which reduces entropy by adding a pseudo entropy regularizer to the original loss function.

5.2 ENVIRONMENTS AND RESULTS

We consider three environments, each with two settings, for demonstration purposes: Treasure Hunt
(TH), Predator Prey (PP), and Traffic Junction (TJ)(Singh et al., 2018), which are visualized in
Fig. 2. We also try some popular MARL environments, for example, SMAC (Samvelyan et al.,
2019) and MPE (Lowe et al., 2017). However, we find that communication is not crucial in these
tasks and several MARL frameworks have achieved high scores without communication in them.
In comparison, these three environments we choose are all communication-critical, where reducing
communication entropy is meaningful.

Table 1: Results for experiments in Treasure Hunt tasks

Setting A Setting B
timesteps↓ entropy↓ timesteps↓ entropy↓

IC3NET-Original 11.7±0.2 139±4 15.6±0.2 127±2
IC3NET-ZeroComm 0.3±0.1 0 0.1±0.0 0
IC3NET-DifEM 10.9±0.2 70±3 17.1±3.3 39±13
IC3NET-DisEM(ours) 11.0±0.1 15±1 15.9±0.7 30±1

TARMAC-Original 11.8±0.1 70±1 39.0±0.3 72±2
TARMAC-ZeroComm 0.3±0.1 0 0.1±0.0 0
TARMAC-DifEM 10.0±0.3 29±1 23.7±3.0 25±3
TARMAC-DisEM(ours) 10.8±0.1 9±1 37.2±0.2 15±1

Treasure Hunt In this task, N agents work together to hunt treasures in the field. Each agent obtains
the coordinates of its treasure, which is invisible to others. Note that an agent cannot collect its treasure
by itself. Instead, it should help others hunt it by broadcasting the coordinates. The field size is 1× 1,
and an agent can move in eight directions at speed v. One episode ends if all treasures are found or
the timestep reaches the upper limit tmax. Therefore, smaller timesteps indicate better performance.
In setting A (TH-A), N = 3, v = 0.15 and tmax = 20. In setting B (TH-B), N = 6, v = 0.09
and tmax = 60. We present the experiment results in Table 1. Our scheme successfully reduces
75% ∼ 89% entropy without lowering performance. It even improves performance slightly in some
settings: TARMAC-DisEM achieves lower timesteps than TARMAC-Original both in TH-A and
TH-B. The reason is that reducing entropy removes redundant information, making it easier for agents
to extract useful information from messages.

Table 2: Results for experiments in Predator Prey tasks

Setting A Setting B
timesteps↓ entropy↓ timesteps↓ entropy↓

IC3NET-Original 9.9±0.1 94±2 23.5±0.7 122±6
IC3NET-ZeroComm 2.6±0.3 0 6.9±0.4 0
IC3NET-DifEM 5.6±1.3 20±7 22.5±0.3 67±3
IC3NET-DisEM(ours) 9.3±0.2 9±1 23.7±0.3 27±2

TARMAC-Original 10.0±0.1 60±2 24.0±0.8 58±3
TARMAC-ZeroComm 2.5±0.1 0 6.4±0.3 0
TARMAC-DifEM 8.7±0.2 13±1 23.2±0.3 25±2
TARMAC-DisEM(ours) 9.6±0.1 6±1 24.6±0.3 14±1

Predator Prey (Singh et al., 2018) In this task, N agents with limited vision are required to reach
a fixed prey in a grid world of size D × D. One episode ends if all agents reach the prey or the
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timestep reaches the upper limit tmax. Therefore, smaller timesteps indicate better performance. In
setting A (PP-A), N = 3, D = 5, tmax = 20 and the vision is set to 0. In setting B (PP-B), N = 5,
D = 10, tmax = 40 and the vision is set to 1. Due to the severely limited perception, agents must
communicate with others to finish tasks earlier. For example, the first agent to reach the prey can
guide others by broadcasting its coordinates. The experiment results in Table 2 confirm that our
scheme reduces 75% ∼ 90% entropy with little or no performance degradation.

Table 3: Results for experiments in Traffic Junction tasks

Setting A Setting B
success rates↑ entropy↓ success rates↑ entropy↓

IC3NET-Original 0.866±0.063 141±5 0.946±0.008 75±15
IC3NET-ZeroComm 0.291±0.010 0 0.739±0.018 0
IC3NET-DifEM 0.655±0.050 96±13 0.730±0.012 77±16
IC3NET-DisEM(ours) 0.846±0.055 83±5 0.925±0.007 38±15

TARMAC-Original 0.774±0.092 27±2 0.946±0.009 44±1
TARMAC-ZeroComm 0.279±0.012 0 0.723±0.011 0
TARMAC-DifEM 0.712±0.021 27±7 0.904±0.043 22±5
TARMAC-DisEM(ours) 0.738±0.106 27±2 0.952±0.008 14±3

Traffic Junction (Sukhbaatar et al., 2016) In this task, cars enter a junction from all entry points with
a probability parr. The maximum number of cars present is set to N . Each car is assigned a fixed
route, and they have two options at each step: move along the route or stay. Cars are required to
finish routes quickly without collisions. If no collision happens after tmax, this episode is counted
as a success, or else a failure. It is worth noticing that a car only observes its location without
knowing whether there is any car in front of it. Therefore, agents must communicate to learn the
locations of other cars, thereby avoiding collisions. In setting A (TJ-A), N = 5, parr = 0.3 and
tmax = 20. In setting B (TJ-B), N = 10, parr = 0.05 and tmax = 40. Results are shown in
Table 3. We notice that both DifEM and DisEM do not reduce entropy as much as in the previous
two environments. TARMAC-DifEM and TARMAC-DisEM even fail to reduce entropy in TJ-A
compared with TARMAC-Original. It is because the message distribution in this setting is hard to
optimize.

We conclude two facts from the experiments above. (1) ZeroComm misbehaves in almost all settings,
which reflects the importance of communication in these experiments. (2) DifEM indeed reduces
communication entropy at the cost of degrading performance more or less, while our scheme DisEM
reduces entropy more with little or no performance degradation.

5.3 INVESTIGATIVE EXPERIMENTS

This subsection aims to answer the following questions that may aid in illuminating the features of
our scheme.

How does low entropy benefit multi-agent communication? To better demonstrate the importance
of low entropy communication, we build a basic digital communication system (John Proakis, 2007)
and test the performance of TARMAC-Original and TARMAC-DisEM in Predator Prey environments.
The overall design of the communication system is shown in Fig. 3(a), where the purpose of
source coding is compressing information, and the purpose of channel coding is to achieve reliable
communication over a noisy channel by adding redundancy to the codes. Besides, a binary symmetric
channel (BSC) with crossover probability p is a basic channel (Shannon, 1948) with binary input and
binary output. The input x and output y of BSC satisfy p(y = x) = 1− p and p(y ̸= x) = p. Results
demonstrated in Fig. 3 confirm that TARMAC-DisEM works better in bad channel conditions than
TARMAC-Original with the help of proper source coding and channel coding. See Appendix C for
additional details. Note that these are just simple demonstration experiments, and we have not fully
optimized our encoding algorithms.
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Figure 3: (a) The overall design of the communication system, where BSC is short for Binary
Symmetric Channel. (b) Performance of TARMAC-Original and TARMAC-DisEM in Predator Prey
A with different channel conditions, where larger crossover probability indicates worse channels. (c)
Performance of TARMAC-Original and TARMAC-DisEM in Predator Prey B with different channel
conditions.
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Figure 4: Performance of IC3NET-Original and IC3NET-
DisEM in Predator Prey environments. The number near a
data point represents its message length, and the color of a
data point indicates whether it is an IC3NET-Original model
or an IC3NET-DisEM model.

What if we reduce the length of
messages? Reducing layer size is
an efficient and common way to
compress information, as is used in
autoencoders (Kramer, 1991). We
test IC3NET-Original and IC3NET-
DisEM with different message lengths
in Predator Prey environments and ex-
hibit results in Fig.4. Each point repre-
sents a model’s performance with its
x-coordinate representing entropy and
y-coordinate representing timesteps.
Therefore, points located in the bot-
tom left signify good performance and
low entropy. In PP-A, DisEM sig-
nificantly reduces communication en-
tropy with slight performance degradation. In PP-B, DisEM reduces communication entropy mas-
sively while maintaining baseline performance. In conclusion, even though reducing the message
lengths of IC3NET-Original can reduce entropy, combining it with our scheme is better.

6 CONCLUSIONS

In this paper, we propose a simple yet effective scheme, DisEM, to reduce communication entropy for
common learning-based multi-agent communication frameworks. Firstly, we point out the necessity
of quantization in multi-agent communication and suggest minimizing the entropy of quantized
messages. Secondly, to counter the problem that entropy cannot be optimized with gradient descent,
we design pseudo gradient descent that reduces entropy by moving message variables from less
popular quantization intervals to adjacent more popular ones. Thirdly, we prove the effectiveness
of pseudo gradient descent theoretically. Fourthly, we conduct plenty of experiments to test our
scheme. Concretely speaking, we test 8 variants of 2 base multi-agent communication frameworks,
IC3NET (Singh et al., 2018) and TARMAC (Das et al., 2019), in six environment settings. The results
confirm the superiority of our scheme over the existing ones. Fifthly, we conduct some investigative
experiments to further manifest our ideas: (1) we run several communication simulations illuminating
the importance of low entropy multi-agent communication; (2) we find out that combining our
framework with reducing message lengths leads to higher efficiency. We hope our work can provide
a foundation for more advanced research in efficient communication.
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A PROOF EQA. 15

We set Nk = ϵ+
∑N

i=1 hk(mi) for brevity. Note that Nk represents the number of message variables
that fall into the quantization interval [(k−0.5)∆−1, (k+0.5)∆−1). To prove Eqa. 15, we present
three lemmas:
Lemma A.1. If mi ∈ (u∆− 1, (u+ 1)∆− 1), then

∇p
mi

H(M) > 0, if Nu > Nu+1

∇p
mi

H(M) < 0, if Nu < Nu+1

∇p
mi

H(M) = 0, if Nu = Nu+1

(18)
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Remark This lemma shows that the for two adjacent quantization intervals, pseudo gradient descent
method will make message variables move from the less popular one to the more popular one.

Proof.

∇p
mi

H(M) =

K∑
k=0

∇hk
H(M)sk(mi)

= − 1

N

K∑
k=0

(1 + log
Nk

N
)sk(mi)

(19)

Note that ∀mi ∈ (u∆ − 1, (u + 1)∆ − 1), su(mi) = −1, su+1(mi) = 1 and sk(mi) = 0 ∀k ∈
{0, 1, ...,K} \ {u, u+ 1}. Therefore, we get

∇p
mi

H(M) = − 1

N
log

Nu+1

Nu
(20)

Then we can lead to the equations in Lemma A.1

Lemma A.2. If Nu > Nu+1 and mi ∈ (u∆ − 1, (u + 1)∆ − 1) is updated to m′
i with m′

i =
mi − η∇p

mi
H(M), η → 0 , this update leads to only two possible results:

(1) N ′
k = Nk, ∀k ∈ {0, 1, ...,K}

(2) N ′
u = Nu + 1, N ′

u+1 = Nu+1 − 1 and N ′
k = Nk, ∀k ∈ {0, 1, ...,K} \ {u, u+ 1}

If Nu < Nu+1, similarly, this update leads to only two possible results:

(1) N ′
k = Nk, ∀k ∈ {0, 1, ...,K}

(2) N ′
u = Nu − 1, N ′

u+1 = Nu+1 + 1 and N ′
k = Nk, ∀k ∈ {0, 1, ...,K} \ {u, u+ 1}

Proof. We firstly focus on the first case (i.e. Nu > Nu+1). Since ∇p
mi

H(M) > 0,

m′
i = mi − η∇p

mi
H(M) ∈ (mi − ηmax(∇p

mi
H(M)), mi) (21)

where

max(∇p
mi

H(M)) =
1

N
log

Ns + ϵ

ϵ
(22)

Since η → 0, ηmax(∇p
mi

H(M)) < 0.5∆. Note that mi ∈ (u∆ − 1, (u + 1)∆ − 1), so m′
i ∈

((u− 0.5)∆− 1, (u+ 1)∆− 1). Consequently, there are only two possibilities for the values of mi

and m′
i:

(1) If mi ∈ ((u + 0.5)∆ − 1, (u + 1)∆ − 1) and m′
i ∈ ((u − 0.5)∆ − 1, (u + 0.5)∆ − 1), then

N ′
u = Nu + 1, N ′

u+1 = Nu+1 − 1 and N ′
k = Nk, ∀k ∈ {0, 1, ...,K} \ {u, u+ 1}

(2) Otherwise, N ′
k = Nk, ∀k ∈ {0, 1, ...,K}

The proof is similar in second case (i.e. Nu < Nu+1)

Using H(M) to denote H(m1, ...,mi, ...,mN ) and H(M ′) to denote (m1, ...,m
′
i, ...,mN ), we

propose our third lemma:

Lemma A.3. H(M ′) < H(M) if Nu > Nu+1, N ′
u = Nu + 1, N ′

u+1 = Nu+1 − 1 and N ′
k =

Nk, ∀k ∈ {0, 1, ...,K} \ {u, u+ 1}.

H(M ′) < H(M) if Nu < Nu+1, N ′
u = Nu − 1, N ′

u+1 = Nu+1 + 1 and N ′
k = Nk, ∀k ∈

{0, 1, ...,K} \ {u, u+ 1}.

Proof. We firstly focus on the first case (i.e. Nu > Nu+1).

H(M ′)−H(M) =
Nu

N
log

Nu

N
+
Nu+1

N
log

Nu+1

N
−Nu + 1

N
log

Nu + 1

N
−Nu+1 − 1

N
log

Nu+1 − 1

N
(23)
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For brevity, we set x1 = Nu

N , x2 = Nu+1

N , δ = 1
N and f(x) = x log x. Then we get:

H(M ′)−H(M) = f(x2)− f(x2 − δ)− (f(x1 + δ)− f(x1)) (24)

According to the mean value theorem, there exists x1m ∈ (x1, x1 + δ) and x2m ∈ (x2 − δ, x2) such
that f(x2) − f(x2 − δ) = δf ′(x2m) and f(x1 + δ) − f(x1) = δf ′(x1m). Since f ′′(x) > 0 and
x2m < x2 < x1 < x1m, H(M ′)−H(M) < 0. The proof is similar in the second case.

From Lemma A.2 and Lemma A.3 we conclude that, if H(M ′) ̸= H(M), H(M ′) < H(M).
Therefore, we obtain H(M ′) ≤ H(M).

B TRAINING DETAILS

We set the hidden layer size to 128 units in TARMAC and IC3NET. We use ReLU as the activation
function in our fully-connected layers. We use REINFORCE to train our models, and the batch size
is 6000. We perform ten weight updates in one epoch. The message size of IC3NET is 128. For
TARMAC, the sizes of query vector, signature vector, and value vector are 16, 16, and 32. A message
in TARMAC is composed of a query vector and a value vector therefore its length is 48. We train
Original and ZeroComm models for Tmax epochs. For DifEM and DisEM models, we train them
without the regularizer for TN epochs, then replace messages m with m̂, add the regularizer and train
for another Tmax −TN epochs. The total training epochs for all models under one specific setting are
the same, Tmax, for ease of comparison. The weight of entropy regularizer for DisEM is αp. Specific
training details for each environment are present in Table 4.

Table 4: Specific training details for each environment

Treasure Hunt Predator Prey Traffic Junction
optimizer Adam Adam RMSProp

learning rate 0.0003 0.0003 0.001
Tmax 200 200 1250
TN 100 150 1000
αp 0.2 0.05 0.05

C COMMUNICATION SIMULATIONS DETAILS

In this section, we build a basic digital communication system and test the performance of TARMAC-
Original and TARMAC-DisEM in Predator Prey environment. The overall design of our communica-
tion system is demonstrated in Figure 6, and we introduce each module below.

0 0

1 1

p

p

1-p

1-p

Figure 5: Binary symmetric channel.

Sender
Source 

Encoder

Channel 

Encoder

Channel

(BSC)

Receiver
Source 

Decoder

Channel 

Decoder

[0,-0.25,0.5,-0.75,...]

[0,-0.25,0.5,-0.75,...]

[01001...]

[01001...]

[10100101...]

[10110101...]

Figure 6: The overall design of the communication system.

C.1 BINARY SYMMETRIC CHANNEL

A binary symmetric channel (BSC) with crossover probability p is a basic channel (Shannon, 1948)
with binary input and binary output as shown in Figure 5. The input x and output y of BSC satisfies
p(y = x) = 1− p and p(y ̸= x) = p.
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C.2 SOURCE CODING

The goal of source coding is to represent symbols output by the source with 0 and 1 (John Proakis,
2007). This step usually contains data compression, whose purpose is to minimize the expected
length of codes. Besides, the entropy of the source indicates the limits of source coding (Shannon,
1948):
Theorem C.1. (Source Coding Theorem) The expected length L of the optimal D-ary code for a
random variable X satisfies the following inequalities:

HD(X) ≤ L < HD(X) + 1 (25)

The messages of TARMAC-Original and TARMAC-DisEM agents are vectors of length 48: m⃗ =
[m0,m1, ...,m47] where each digit mi has a certain distribution. In our implementation, we assume
that all the digits follow the same discrete distribution for convenience and apply Huffman Coding
(Huffman, 1952). We calculate the frequency of each value in the history message set and obtain a
code table shown in Table 5. The expected lengths of TARMAC-DisEM codes are shorter than those
of TARMAC-Original codes because messages of TARMAC-DisEM have lower entropy.

Table 5: Huffman Coding table, where LEN refers to the expected lengths of codes
-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 len

PP-A

Original
Probability 0.006 0.015 0.055 0.241 0.398 0.208 0.056 0.015 0.006

2.30Code 11010100 1101011 11011 10 0.000 111 1100 110100 11010101

DisEM
Probability 0.000 0.000 0.001 0.082 0.873 0.043 0.001 0.001 0.000

1.32Code 00000001 0000001 00001 01 1 001 0001 000001 00000000

PP-B

Original
Probability 0.005 0.015 0.036 0.18 0.395 0.262 0.059 0.033 0.016

2.27Code 1101010 1101011 11001 111 0.000 10 11011 11000 110100

DisEM
Probability 0.000 0.000 0.003 0.067 0.689 0.240 0.001 0.000 0.000

1.47Code 00000000 000001 0001 001 1 01 00001 0000001 00000001

C.3 CHANNEL CODING

The purpose of channel coding is to achieve reliable communication over a noisy channel by adding
redundancy to the codes (John Proakis, 2007). In our simulation, we use convolutional codes (Elias,
1955). A convolutional encoder with code rate n/k transforms the input sequences of data rate n to
encoded sequences of data rate k. Smaller n/k leads to more redundancy and therefore grants more
robustness against noises. Compared with TARMAC-Original, TARMAC-DisEM has shorter source
codes, thus leaving more space for channel coding. We use convolutional encoders of data rate 1/3
for TARMAC-DisEM, and convolutional encoders of data rate 1/2 for TARMAC-Original.

D DETAILS OF BASELINE MULTI-AGENT COMMUNICATION FRAMEWORKS

D.1 IC3NET

IC3NET is short for Individualized Controlled Continuous Communication Model, a framework
put forward by Singh et al. (2018). It is an improved version of COMMNET (Sukhbaatar et al., 2016)
with two modifications: (1) each agent is trained with individualized rewards; (2) the model can learn
when to communicate with the help of the gate mechanism. Our implementation is slightly different
from the original version and is stated below.

The j-th agent is individually controlled by a GRU , a gating network fg, a policy network π, an
observation encoder network e, a linear transformation matrix C, and a message generator fe. At
timestep t, the hidden state for the j-th agent is ht−1

j and it receives otj from the environment. Then
the decision process is described as follows:

mt
j = fg(ht−1

j ) · fe(ht−1
j )

ctj =
1

J − 1
C

∑
j′ ̸=j

mt
j′

ht
j = GRU(e(otj) + ctj , h

t−1
j )

atj = π(ht
j)
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where J is the number of alive agents in the system. In addition, all agents’ networks share the same
parameters for faster convergence and are trained with REINFORCE (Williams, 1992).

D.2 TARMAC

TARMAC is short for Targeted Multi-Agent Communication (Das et al., 2019), a framework where
agents utilize an attention mechanism to determine the weights of receiving messages. Our imple-
mentation for TARMAC is stated below.

The j-th agent is individually controlled by a GRU , a policy network π, an observation encoder
network e, a query predictor fq, and a message generator fe. At timestep t, the hidden state for
the j-th agent is ht−1

j and it receives otj from the environment. Besides, it generates a query vector
qtj = fq(ht−1

j ) ∈ Rdk to determine the weights of receiving messages, and a value vector vtj as well
as a signature ktj as messages: mt

j = [ktj , v
t
j ] = fe(ht−1

j ). Additionally, the attention weights αji is
calculated using a softmax operation, and the decision process is described as follows:

qtj = fq(ht−1
j )

mt
j = [ktj , v

t
j ] = fe(ht−1

j )

αj = softmax

[
(qtj)

T kt1√
dk

...
(qtj)

T kti√
dk

...
(qtj)

T ktN√
dk

]

ctj =

N∑
i=1

αjiv
t
i

ht
j = GRU(e(otj) + ctj , h

t−1
j )

atj = π(ht
j)

where αji is the i-th number of vector αj . All agents’ networks share the same parameters for faster
convergence and are trained based on REINFORCE (Williams, 1992).
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