
Towards Efficient World Models

Eloi Alonso * 1 Vincent Micheli * 1 François Fleuret 1

Abstract
Scaling up deep Reinforcement Learning (RL)
agents beyond traditional benchmarks, without
abundant computational resources, presents a sig-
nificant challenge. Following recent develop-
ments in generative modelling, model-based RL
positions itself as a strong contender to bring au-
tonomous agents to new heights. In fact, the re-
cently introduced IRIS agent provides evidence
that advances in sequence modelling can be lever-
aged to build powerful world models. In the
present work, we propose ∆-IRIS, a new agent
with a world model architecture that is amenable
to scaling up to visually complex environments
with longer time horizons. In the Crafter bench-
mark, ∆-IRIS solves 16 out of 22 tasks after
10M frames of training, matching the current best
method, DreamerV3.

1. Introduction
Deep Reinforcement Learning (DRL) methods have recently
delivered impressive results (Ye et al., 2021; Hafner et al.,
2023) in traditional benchmarks (Bellemare et al., 2013b),
all while running on consumer-grade hardware. In light of
the evermore complex domains tackled by the latest genera-
tions of generative models (OpenAI, 2023; Rombach et al.,
2022), the prospect of training agents in more ambitious
environments (Kanervisto et al., 2022) may hold significant
appeal. However, that leap forward poses a serious chal-
lenge: DRL architectures have been comparatively smaller
and less sample-efficient than their (self-)supervised coun-
terparts. In contrast, more intricate environments necessitate
models with greater representational power and have higher
data requirements.

Model-based RL (MBRL) (Sutton & Barto, 2018) is hy-
pothesized to be the key for scaling up DRL agents (Le-
Cun, 2022). Indeed, world models (Ha & Schmidhuber,
2018) offer a diverse range of capabilities: lookahead search
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(Schrittwieser et al., 2020; Ye et al., 2021), learning in imagi-
nation (Kaiser et al., 2020; Hafner et al., 2023; Micheli et al.,
2023), representation learning (D’Oro et al., 2023), and un-
certainty estimation (Pathak et al., 2017; Sekar et al., 2020).
In essence, MBRL shifts the focus from the RL problem to
a generative modelling problem, where the development of
an accurate world model significantly simplifies policy train-
ing. In particular, policies learnt in the imagination of world
models are freed from sample efficiency constraints, a com-
mon limitation of RL agents that is magnified in complex
environments with slow rollouts.

Recently, the IRIS agent (Micheli et al., 2023) delivered
strong results in the Atari 100k benchmark (Bellemare et al.,
2013b; Kaiser et al., 2020). IRIS introduced a world model
composed of a discrete autoencoder and an autoregressive
Transformer, casting dynamics learning as a sequence mod-
elling problem where the Transformer composes over time
a vocabulary of image tokens built by the autoencoder. Cru-
cially, this approach opens up avenues for future methods
to capitalize on advances in generative modelling (OpenAI,
2023; Villegas et al., 2022). However, in its current form,
scaling IRIS to more complex environments is computation-
ally prohibitive. Indeed, such an endeavor would require
a large number of tokens to encode visually challenging
frames. Besides, sophisticated dynamics may require to
store numerous timesteps in memory to reason about the
past, ultimately making the imagination procedure exces-
sively slow. Hence, under these constraints, maintaining a
favorable imagined-to-collected data ratio would be infeasi-
ble.

In the present work, we introduce ∆-IRIS, an improved ver-
sion of the IRIS agent capable of scaling to visually complex
environments with longer time horizons. ∆-IRIS encodes
new frames by attending to the ongoing trajectory, effec-
tively describing deltas between timesteps. This new ap-
proach drastically reduces the number of tokens to encode
frames, since they are not encoded independently as in IRIS.
In the Crafter benchmark (Hafner, 2022), ∆-IRIS unlocks
16 out of 22 objectives at the 10M frames mark, match-
ing the performance of the current best agent, DreamerV3
(Hafner et al., 2023).
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2. Method
We consider a Partially Observable Markov Decision Pro-
cess (POMDP) (Sutton & Barto, 2018). The environ-
ment dynamics is captured by the conditional distribution
p(xt+1, rt, dt | x≤t, a≤t), where xt ∈ X = R3×h×w is an
image observation, at ∈ A = {1, . . . , A} a discrete action,
rt ∈ R a scalar reward, and dt ∈ {0, 1} indicates episode

termination. The reinforcement learning objective is to find
a policy π : X → A that maximizes the expected sum of
rewards Eπ[

∑
t≥0 γ

trt], with discount factor γ ∈ (0, 1).

In the vein of IRIS (Micheli et al., 2023), our world model is
composed of a discrete autoencoder and an autoregressive
dynamics model. The reinforcement learning agent follows
the one proposed in IRIS.
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Figure 1. Discrete autoencoder of IRIS (left) and ∆-IRIS (right). IRIS encodes and decodes frames independently, meaning that the
discrete tokens have to carry all the information to reconstruct each frame. Instead, ∆-IRIS’s encoder and decoder are conditioned on past
frames and actions, meaning that zi just has to code for what changed with respect to past frames and that cannot be inferred from actions.
This approach enables to drastically reduce the number of tokens to encode a frame in ∆-IRIS , which is critical to scale up imagination.

2.1. Discrete autoencoder

The discrete autoencoder (E,D) learns to represent high-
dimensional images as a small number of discrete tokens
from a vocabulary Z = {1, . . . , N}. Compared to IRIS, the
autoencoder is conditioned on the ongoing trajectory, allow-
ing to drastically reduce the number of tokens K needed to
represent a frame.

For any set Y , we denote Sn(Y) =
⋃n

i=1 Yi the set of tuples
of elements from Y of maximum length n, and S(Y) =
S∞(Y).

Given past images and actions (x0, a0, . . . , xt−1, at−1), the
encoder E : S(X ×A)× X → ZK converts an image xt

into zt = (z1t , . . . , z
K
t ), a sequence of K discrete tokens,

that we call transition tokens from now on. The encoder
is parameterized by a stack of Transformer encoder layers
with causal self-attention (Radford et al., 2019). Frames are

sliced in non-overlapping patches (Dosovitskiy et al., 2021),
and actions are embedded with a learnt lookup table. We
interleave average pooling layers (Dai et al., 2020) to reduce
the size of the sequence down to the number of desired
transition tokens. This has the effect of decoupling the
number of patches used to represent a frame and the number
of tokens to encode it. We use vector quantization (Van
Den Oord et al., 2017; Esser et al., 2021) with factorized
and normalized codes (Yu et al., 2021) to discretize the
encoder’s continuous outputs.

While it should be possible to reconstruct an image, given
a starting image, actions and transition tokens, we found
it much more effective to incorporate previous frames in
the input sequence of the decoder. Indeed, one would oth-
erwise have to integrate over the transition tokens to re-
construct the current image, which is way harder. Hence,
the decoder D : S(X × A × ZK) → X reconstructs an
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image x̂t from past frames, actions and transition tokens
(x0, a0, z1, . . . , xt−1, at−1, zt). The decoder is parameter-
ized by a stack of Transformer encoder layers, where actions
and transition tokens are embedded with learnt lookup ta-
bles, and frames are encoded as single continuous vectors
with a convolutional neural network (CNN, LeCun et al.,
1989). Reconstructed images are obtained by reassembling
Transformer’s outputs as patches. Again, to have more
patches than transition tokens, we interleave upsampling
layers between some Transformer layers, where transition
tokens are duplicated and receive different positional em-
beddings.

The discrete autoencoder is trained on previously collected
trajectories, with a weighted combination of L1, L2 and
max-pixel (Anand et al., 2022) reconstruction losses, and a
commitment loss (Van Den Oord et al., 2017). The code-
book is updated with an exponential moving average (Razavi
et al., 2019), and we revive unused codewords (Dhariwal
et al., 2020; Zeghidour et al., 2021).

2.2. Dynamics model

The dynamics model G predicts next transition tokens, re-
wards, and episode ends. It is parameterized by a stack
of Transformer encoder layers with causal self-attention.
Similarly to the decoder D described above, we found it
essential to incorporate frames in its input sequence.

Transition tokens are autoregressively predicted by the dy-
namics model. Given past frames, actions, and transition to-
kens (x0, a0, z

1
1 , . . . , z

K
1 , . . . , xt−1, at−1, z

1
t , . . . , z

k
t ), with

k ∈ {0, . . . ,K − 1}, the dynamics model outputs a cate-
gorical distribution on Z for the next transition token zk+1

t .
Target transition tokens are obtained with the discrete au-
toencoder from trajectories collected by the agent in the
real environment. We follow DreamerV3 in using discrete
regression with two-hot targets and symlog scaling for re-
wards prediction (Bellemare et al., 2017; Imani & White,
2018).

3. Experiments
Recent advances have started to show the limitations of
well established benchmarks. For instance, in Atari 100k
(Bellemare et al., 2013a; Kaiser et al., 2020), agents (Ye
et al., 2021; Micheli et al., 2023; D’Oro et al., 2023; Hafner
et al., 2023) now outperform humans with as little as two
hours of training data available. Therefore, in the effort
to build the next generation of agents capable of solving
the most difficult and compute-hungry environments (Kan-
ervisto et al., 2022), the following question arises: what
benchmarks offer fast iteration cycles while reflecting some
important mechanics found in advanced environments?

3.1. Benchmark and baselines

Crafter (Hafner, 2022) is a procedurally generated environ-
ment, inspired by the video game Minecraft, with visual
inputs, a discrete action space and non-deterministic dynam-
ics. By incorporating mechanics from survival games and
a technology tree, this benchmark evaluates a wide range
of agent abilities such as generalization, exploration, and
credit assignment.

Two generations of Dreamer agents (Hafner et al., 2021;
2023) were evaluated on Crafter. DreamerV2 learns in the
imagination of a world model combining a convolutional
autoencoder with a recurrent state-space model (RSSM)
(Hafner et al., 2019). The key modifications that enabled
DreamerV2 to improve over the original Dreamer agent
(Hafner et al., 2020) were categorical latents and KL bal-
ancing between prior and posterior estimates. DreamerV3
builds upon DreamerV2 with many additions such as symlog
scaling of rewards and values, combining free bits (Kingma
et al., 2016) with KL balancing, return scaling for fixed
entropy regularization, and architectural novelties for model
scaling.

IRIS is not featured as a baseline for computational reasons.
Indeed, we observed in preliminary experiments that, in
Crafter, IRIS requires 64 tokens to encode frames without
losing too much information. In comparison, ∆-IRIS only
requires 4 transition tokens per frame. Based on the training
time for ∆-IRIS, we estimate that IRIS would take roughly
112 days of training to match the performance of ∆-IRIS.

3.2. Results

Table 1 displays returns at 10M frames, world model sizes,
imagined-to-collected data ratios, and wall-clock times. ∆-
IRIS was evaluated by computing an average over 256
episodes collected at the end of training. We ran our experi-
ments with Nvidia A100 40GB GPUs.

After 10M frames of training, ∆-IRIS unlocks on average
16 objectives from the Crafter environment, matching the
performance of the current best agent, DreamerV3. In ad-
dition, its world model and training ratio are smaller than
DreamerV3’s.

Table 1. Return at 10M frames, world model size, imagined-to-
collected data ratio, and wall-clock time for ∆-IRIS and Dream-
erV3. Numbers for DreamerV3 are inferred from Figure 6a, Ap-
pendix A, and Appendix B in Hafner et al., 2023. With smaller
world models and data ratios, ∆-IRIS matches the performance of
DreamerV3.

Game Return WM size Data ratio Wall-clock time

∆-IRIS 15.4 110M 24 7 days
DreamerV3 ∼15.2 200M 64 ∼2 days
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4. Conclusion
We introduced ∆-IRIS , a new model-based agent relying
on a discrete autoencoder and a dynamics model to simulate
its environment. The key improvement over IRIS is to allow
the discrete autoencoder to attend to the ongoing trajectory,
effectively describing deltas between timesteps. We demon-
strate experimentally on Crafter that ∆-IRIS matches the
performance of DreamerV3, the current best agent on this
benchmark.
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Ozair, S., Weber, T., and Hamrick, J. B. Procedural gener-
alization by planning with self-supervised world models.
In International Conference on Learning Representations,
2022.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013a.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013b.

Bellemare, M. G., Dabney, W., and Munos, R. A distribu-
tional perspective on reinforcement learning. In Inter-
national conference on machine learning, pp. 449–458.
PMLR, 2017.

Dai, Z., Lai, G., Yang, Y., and Le, Q. Funnel-transformer:
Filtering out sequential redundancy for efficient language
processing. Advances in neural information processing
systems, 33:4271–4282, 2020.

Dhariwal, P., Jun, H., Payne, C., Kim, J. W., Radford, A.,
and Sutskever, I. Jukebox: A generative model for music.
arXiv preprint arXiv:2005.00341, 2020.

D’Oro, P., Schwarzer, M., Nikishin, E., Bacon, P.-L., Belle-
mare, M. G., and Courville, A. Sample-efficient rein-
forcement learning by breaking the replay ratio barrier.
In The Eleventh International Conference on Learning
Representations, 2023.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16

words: Transformers for image recognition at scale. In
International Conference on Learning Representations,
2021.

Esser, P., Rombach, R., and Ommer, B. Taming transformers
for high-resolution image synthesis. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 12873–12883, 2021.

Ha, D. and Schmidhuber, J. Recurrent world models facil-
itate policy evolution. Advances in neural information
processing systems, 31, 2018.

Hafner, D. Benchmarking the spectrum of agent capabilities.
In International Conference on Learning Representations,
2022.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D.,
Lee, H., and Davidson, J. Learning latent dynamics for
planning from pixels. In International conference on
machine learning, pp. 2555–2565. PMLR, 2019.

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. Dream
to control: Learning behaviors by latent imagination. In
International Conference on Learning Representations,
2020.

Hafner, D., Lillicrap, T. P., Norouzi, M., and Ba, J. Mas-
tering atari with discrete world models. In International
Conference on Learning Representations, 2021.

Hafner, D., Pasukonis, J., Ba, J., and Lillicrap, T. Mastering
diverse domains through world models. arXiv preprint
arXiv:2301.04104, 2023.

Imani, E. and White, M. Improving regression performance
with distributional losses. In International conference on
machine learning, pp. 2157–2166. PMLR, 2018.

Kaiser, Ł., Babaeizadeh, M., Miłos, P., Osiński, B., Camp-
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