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Abstract001

Single-agent LLMs hit hard limits—finite con-002
text, role overload, brittle domain transfer.003
Conventional multi-agent fixes soften those004
edges yet expose fresh pains: ill-posed de-005
compositions, fuzzy contracts, and verifica-006
tion overhead that blunts the gains. We there-007
fore present Know-The-Ropes (KtR), a frame-008
work that converts domain priors into an al-009
gorithmic blueprint hierarchy: tasks are recur-010
sively split into typed, controller-mediated sub-011
tasks, each solved zero-shot or with the light-012
est viable boost (chain-of-thought, micro-tune,013
self-check). Grounded in the No-Free-Lunch014
theorem, KtR trades the chase for a uni-015
versal prompt for disciplined decomposition.016
On a Knapsack benchmark (3–8 items) three017
GPT-4o-mini agents raise accuracy from 3%018
zero-shot to 95% on size-5 instances after019
patching a single bottleneck agent. On the020
tougher Task-Assignment suite (6–15 jobs) a021
six-agent o3-mini blueprint hits 100% up to022
size 10 and ≥84% on sizes 13–15, versus023
≤11% zero-shot. Algorithm-aware decompo-024
sition plus targeted augmentation thus turns025
modest models into reliable collaborators—no026
ever-larger monoliths required.027

1 Introduction028

Individual large language model (LLM) agents typ-029

ically excel in the specific domain they are opti-030

mized for (Thirunavukarasu et al., 2023; Kasneci031

et al., 2023; Wu et al., 2023b), yet they struggle032

to achieve universal versatile (Zhang et al., 2024;033

Xu et al., 2024). A natural antidote is division of034

labor—splitting tasks into specialized agents that035

negotiate a joint answer—and early frameworks036

like Mixture-of-Agents indeed show that a well-037

orchestrated team can outperform its best member038

(Wang et al., 2024; Guo et al., 2024; Bo et al.,039

2024).040

Yet large-scale audits have cooled that optimism.041

Firstly, each problem needs a well-designed prompt042

with significant manual effort. Even though some 043

multi-agent frameworks seems to achieve satisfy- 044

ing results, when evaluation leakage and prompt 045

over-fitting are removed, the headline boosts of 046

naïve agent swarms slip to single-digit percent- 047

ages—and can even turn negative once a task needs 048

more than two or three coordination rounds (Pan 049

et al., 2025; Zhu et al., 2025). Post-mortems trace 050

the shortfall to a recurring pattern: ill-posed de- 051

compositions propagate ambiguity, loose role def- 052

initions create blind spots or duplication, verifica- 053

tion layers either invoke brittle chain-of-thought 054

heuristics or blow up the token budget, and every 055

extra message compounds latency and cost almost 056

quadratically with the number of rounds (Ye, 2025; 057

Shu et al., 2024). In short, simply throwing more 058

“brains” at a problem does not guarantee progress; 059

sustainable gains demand disciplined, principled 060

systems engineering—the very gap our work aims 061

to close. 062

Know-The-Ropes (KtR) converts domain pri- 063

ors into an algorithmic hierarchy: recursively split 064

a task until each leaf fits the base LLM’s zero- 065

shot reach or the lightest augmentation (chain-of- 066

thought (Wei et al., 2022), small fine-tune, self- 067

check loops, etc). Typed I/O contracts, enforced 068

by a lightweight controller, isolate agents and pre- 069

vent cross-talk, context bloat, or silent overwrites. 070

Multi-agent system(MAS) construction thus resem- 071

bles classic pipeline tuning—pinpoint the bottle- 072

neck, refine the split, and attach the cheapest fix 073

that works. 074

Theory justifies the approach. The No-Free- 075

Lunch theorem (Wolpert and Macready, 1997; 076

Wolpert, 2021) dictates that no single agent or 077

orchestration rule prevails across all problem dis- 078

tributions—there is no silver bullet. Robustness 079

must therefore flow from exploiting domain struc- 080

ture, not from ever-larger prompt templates. KtR 081

meets this mandate by re-using classical algorithms 082

whose behavior is already well understood and op- 083
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timized.084

Our empirical preview includes the following:085

• Knapsack Problem (proof of concept with a086

lightweight base model). On 3–8-item instances087

GPT-4o-mini scores only 60 % → 0 % zero-shot,088

and a blunt task-level fine-tune barely helps. Apply-089

ing KtR yields a three-agent blueprint; fine-tuning090

just the “trimmer” on 1 200 examples lifts accuracy091

to 95 %–70 %, showing that KtR can turn a com-092

pact, low-capacity model into a high-performing093

multi-agent system.094

• Task-Assignment Problem (proof of scal-095

ability with a stronger base model). With o3-096

mini, a six-agent KtR blueprint tackles sizes 6–15.097

Splitting one bottleneck agent into two finer leaves098

drives those leaves to 100 % and 97 % accuracy and099

raises overall system accuracy to ≥ 84 % across all100

sizes—demonstrating that KtR’s gains grow with101

base-model capacity and that the knapsack results102

are not an isolated success.103

Our contributions lie in two aspects.104

• KtR framework. By formalizing blueprint105

hierarchies, we apply NFL-grounded algorithmic106

design that bypasses documented MAS pitfalls,107

streamlines the assembly pipeline, and relieves per-108

formance bottlenecks.109

• Empirical validation. Across two canoni-110

cal optimization problems, KtR transforms mod-111

est base models into systems that match—or ex-112

ceed—their fine-tuned counterparts while using113

orders-of-magnitude less specialized data.114

2 Related Work115

Multi-Agent Systems (MAS) have been widely116

employed to enhance the capabilities of LLMs to117

tackle complex tasks (Qiu et al., 2024; Yan et al.,118

2024; Ma et al., 2024; Lin et al., 2024; Hua et al.,119

2023; Yu et al., 2024). This is because MAS typi-120

cally distribute tasks across agents that collaborate121

to achieve a common goal, thereby improving both122

efficiency and adaptability. Recent frameworks123

like CAMEL (Li et al., 2023) enable role-based124

cooperative dialogues by assigning agents distinct125

personas, while AutoGen (Wu et al., 2023a) and126

MetaGPT (Hong et al., 2023) orchestrate multi-127

role agent teams through structured conversation128

loops and predefined workflows. In math opti-129

mization, OR-LLM-Agent can translate natural-130

language problem descriptions into formal Gurobi131

models—achieving an 85% correct-solution rate132

on real-world benchmarks (Zhang and Luo, 2025).133

Despite this excitement, studies show that sim- 134

ply scaling up to LLM-based MAS often yields 135

only marginal gains over single-agent baselines 136

(Pan et al., 2025). LLM agents still struggle with 137

context management and consistency, meaning that 138

elaborate multi-agent prompts can fail to realize the 139

intended collaboration (Bo et al., 2024). A recent 140

systematic audit of popular MAS frameworks has 141

identified 14 distinct failure modes (Cemri et al., 142

2025), which can be grouped into three categories, 143

including flawed design (e.g., ambiguous role defi- 144

nition), inter-agent misalignment (e.g., communica- 145

tion failures), and quality control (e.g., no reliable 146

check mechanism). 147

To address these challenges, researchers have 148

proposed multiple strategies to make LLM-based 149

MAS more reliable (Zhu et al., 2025; Tran et al., 150

2025). A key strategy is improving the agent in- 151

teraction structure (Zhu et al., 2025). For example, 152

the AgentDropout framework proposes a dynamic 153

agent-pruning strategy, which seeks to discard less 154

critical actors during training (Wang et al., 2025). 155

Another effective strategy is incorporating feed- 156

back and verification loops (Hong et al., 2023). A 157

recent study shows that frameworks with strong 158

role specialization and iterative feedback mecha- 159

nisms tend to outperform those without these fea- 160

tures (Anonymous, 2025). In addition, systematic 161

evaluations suggest that the communication topol- 162

ogy matters: a well-designed protocol between 163

agents can significantly improve collective perfor- 164

mance on complex tasks (Zhu et al., 2025). 165

While existing multi-agent frameworks and 166

strategies have demonstrated notable progress (Li 167

et al., 2025; Hong et al., 2023; Zhu et al., 2025), 168

they still face challenges in dynamic role real- 169

location and efficient inter-agent communication. 170

These limitations become especially pronounced 171

when addressing complex tasks, such as NP-hard 172

optimization problems. To bridge this gap, our 173

work proposes a heuristic strategy that embeds 174

domain-specific rules and algorithms directly into 175

agent coordination. This approach enables on-the- 176

fly role adaptation and task decomposition, particu- 177

larly in math optimization contexts where conven- 178

tional MAS frameworks often struggle. 179

3 Methodology 180

3.1 Framework Design—Know the Ropes 181

We propose the heuristic framework “Know the 182

Ropes.” This framework offers a structured 183
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methodology for designing specialized MAS lever-184

aging LLMs. This heuristic focuses on translating185

known, effective procedures or algorithms into a186

coherent multi-agent architecture. As presented in187

Figure 1, the core idea is to decompose a com-188

plex overall task into its fundamental computa-189

tional stages. Each stage is then mapped to a well-190

formulated sub-task, designed to be tractable for an191

individual agent. These specialized agents are sub-192

sequently orchestrated to mirror the data/control193

flow of the original procedure, which can effec-194

tively embed problem-solving logic into the multi-195

agent system. The following definitions formalize196

the components of this framework.197

Definition 3.1. A well-formulated task is a tuple198

T = (I,O,R), consisting of the following:199

• Input domain I: an unambiguous description200

of all admissible inputs201

• Output co-domain O an unambiguous descrip-202

tion of all admissible outputs203

• Requirement relation R ⊂ I × O: a relation204

such that for each input x ∈ I it defines explicitly205

the subset R(x) ⊂ O as the set of outputs that are206

considered correct.207

Definition 3.2. A workflow blueprint B = (T ,P)208

consisting of the following.209

• A finite set of well-formulated tasks T =210

{T1, · · · , Tn}.211

• An orchestration protocol P that specifies:212

− The control-flow graph that determines213

when each Ti is invoked.214

− The data-dependency edges that map out-215

puts of some tasks to inputs of others.216

− Any global invariants, error-handling rules,217

or communication channels required to realize the218

end-to-end objective of B.219

Definition 3.3. Given a workflow blueprint B =220

(T ,P), a decomposition selects a task T ∈ T221

and replace it with a sub-blueprint BT = (TT ,PT )222

such that the following hold.223

• Each task T ′ ∈ TT is strictly simpler than T .224

• The composite protocol P ′, obtained by em-225

bedding PT in place of T inside P , preserves all226

external interface of T .227

The result of the decomposition is a new228

blueprint S ′ = (T ′,P ′), where T ′ = (T \{T}) ∪229

TT . We record this process as230

B D
; B′231

Definition 3.4. Let M be a set of LLM models. A232

well-formulated task T is said to be M-tractable if233

a model inside M satisfies the requirement relation 234

RT with high, empirically verified accuracy, af- 235

ter optional augmentations (e.g., chain-of-thought 236

prompting, tool calls, self-reflection loops, or fine- 237

tuning). 238

Definition 3.5. Given a set of LLM models M 239

and a blueprint B, an M-tractable hierarchy is a 240

sequence of decompositions 241

B D1
; B1

D2
; · · · Dn

; Bn 242

such that each task in the terminal blueprint Bn is 243

M-tractable in the sense of Definition 3.4. 244

Definition 3.6. Given a set of LLM models M and 245

an M-tractable blueprint B = (T ,P), a system 246

instantiation is to instantiate B into a MAS in the 247

following way. 248

• We create one agent Ai per tractable task Ti ∈ 249

T , bundling any necessary augmentations with the 250

agent. 251

• We implement the orchestration protocol P as 252

message-passing or function calls among agents, 253

preserving data-dependencies and control flow. 254

Algorithm 1 Know-The-Ropes (KtR) Pseudo-code
1: procedure KNOWTHEROPES(T,M)
2: B ← CREATEBLUEPRINT({T}, trivial_protocol)
3: while ∃ U ∈ B.tasks & ¬MTRACTABLE(U,M) do
4: U∗ ← CHOOSETASKTODECOMPOSE(U)
5: Bsub ← DESIGNSUBBLUEPRINT(U∗)
6: B ← EMBEDSUBBLUEPRINT(B,U∗, Bsub)
7: end while
8: MAS← INSTANTIATESYSTEM()
9: for all V ∈ B.tasks do

10: aug← SELECTAUGMENTATIONS(V,M)
11: agent← CREATEAGENT(V,M, aug)
12: MAS.AddAgent(agent)
13: end for
14: IMPLEMENTPROTOCOL(MAS, B.protocol)
15: return MAS
16: end procedure

Our method. For a given (well-formulated) task 255

T and a given set of LLM models M that will be 256

used to solve the task, we perform the following. 257

(See Algorithm 1 and Figure 1) 258

• Define the initial blueprint B = (T ,P), where 259

T = {T} and P is trivial. 260

• Guided by domain heuristics, prior knowledge, 261

and experiments on specific tasks, we construct an 262

M-tractable hierarchy 263

B D1
; B1

D2
; · · · Dn

; Bn 264

• Materialize the terminal blueprint Bn as a 265

MAS MAS(Bn,M) that targets the initial task 266

T . 267
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Input Domain 𝑰 Requirement 𝑹 ⊂ 𝑰 × 𝑶 Output Co-Domain 𝑶

Decomposition

Workflow Blueprint

𝓑 = (𝓣,𝓟)

Task 𝑻𝟏: Match Color

Task 𝓣, Trivial𝓟

Instantiation

MAS Design

𝓟1 

Task 𝑻𝟐: Match Shape Output

𝓑1 = (
𝓣𝟏 = 𝑻𝟏, 𝑻𝟐 ,
𝓟1)

Input 𝑰 Output 𝑶

Color Agent Shape Agent

𝓟1 

Figure 1: Illustration of the Know-The-Ropes (KtR) strategy: heuristic, prior-guided decomposition of a complex
task into sub-tasks, each instantiated as a coordinated LLM agent within a multi-agent architecture.

This three-step procedure—atomic blueprint,268

tractable hierarchy construction, and system in-269

stantiation—provides a principled pathway from270

an arbitrarily complex task to a deployable multi-271

agent solution whose correctness hinges on model272

capabilities that have been explicitly validated. To273

demonstrate the practical application and efficacy274

of the “Know the Ropes” framework in creating275

such specialized MAS, we present two case studies.276

In each case, a well-understood algorithmic solu-277

tion to a complex problem is decomposed into an278

M-tractable hierarchy and instantiated as a MAS.279

4 Experiment Design280

4.1 Proof-of-Concept: 0/1 Knapsack Problem281

(KSP)282

To furnish a clear proof-of-concept for KtR, we283

start with the classical NP-hard Knapsack Problem284

(KSP)—a staple in resource allocation, logistics,285

and investment planning. By deliberately using the286

lightweight, general-purpose GPT-4o-mini as every287

agent’s backbone, we establish a modest baseline288

that lets us highlight how KtR’s multi-agent chore-289

ography amplifies a small model’s capability well290

beyond its solo limits.291

Below we only present a mathematical formula-292

tion of the problem, while a more detailed expla-293

nation of the problem as well as the algorithmic294

solution can be found in Appendix B.295

4.1.1 Problem Formulation296

For a Knapsack problem of size N, its input in-297

volves a weight vector w⃗ = (w1, · · · , wN ), a value298

vector v⃗ = (v1, · · · , vN ), and a capacity W . To 299

formulate the goal, we introduce the state vector 300

x⃗ = (x1, · · · , xN ) ∈ {0, 1}N , i.e., all its entries 301

take value in {0, 1}. Then the objective of the prob- 302

lem is to find the following value 303

Z = max
x⃗∈{0,1}N
x⃗·w⃗≤W

x⃗ · v⃗. 304

4.1.2 KtR Multi-Agent Design 305

Following KtR heuristic, the iterative dynamic pro- 306

gramming solution for the KSP as in Appendix 307

B.2 is decomposed into tasks for three specialized 308

agents, as presented below. Prompts designed each 309

individual agent are attached in Appendix D. 310

System Controller: Controller initialize a set of 311

feasible states S0 = {(0, 0)} and controls a look 312

on k from 1 to N . For each k, it sends Sk−1 and 313

(wk, vk) to Worker Agent, and then send the result 314

plus W to the Trimmer Agent. The Controller then 315

take the union of the output of Trimmer Agent and 316

Sk−1 to obtain Sk. Once all items are processed, 317

the Controller invokes the Reporter Agent for final 318

result. 319

Worker Agent: This agent is responsible for the 320

iterative state expansion by the following formula: 321

Sadd = {(w+wk, v+ vk) for all (w, v) ∈ Sk−1}. 322

Trimmer Agent: This agent performs the trim- 323

ming task according to the following formula: 324

Strimmed = {(w, v) ∈ Sadd | w ≤ W}. 325
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Reporter Agent: This agent executes the solu-326

tion report. It find the element with maximal value327

within the final state set SN .328

4.2 Proof of scalability—Task Assignment329

Problem (TAP)330

Building on the previous section—where KtR al-331

ready stretched the capabilities of the compact GPT-332

4o-mini on the Knapsack baseline—we now test333

KtR’s scalability. We upgrade the backbone to334

the larger o3-mini and tackle the more demanding335

Task-Assignment Problem (TAP), demonstrating336

that the framework’s performance rises in lockstep337

with the underlying model’s capacity.338

Again, below we only present a mathematical339

formulation and details are referred to Appendix B.340

4.2.1 Problem Formulation341

For a Task assignment problem of size N, its input342

involves an N × N cost matrix C = (Cij)N×N .343

We use SN to denote the set of permutations of n344

elements, or equivalently, the set of bijections from345

the set {1, 2, · · · , N} to itself. The objective of the346

problem is to find the following value:347

Z = max
σ∈SN

(
N∑
i=1

Ciσ(i)

)
.348

4.2.2 KtR Multi-Agent Design349

Algorithm from Appendix B.4 now maps to a MAS350

under our KtR methodology. As explained in Sec-351

tion 5.2.2, based on test results of the agentic tasks352

and heuristic argument, we further decompose the353

tasks from the original system design to further354

improve the performance. The final system design355

contains six agents described below. Let N be356

the size of the problem and C be the original cost357

matrix.358

Row Reducer: This agent reduces rows of the359

matrix C to obtain C ′.360

Column Reducer: This agent further reduces361

the columns of C ′ to obtain C ′′.362

Matcher: This agent finds a maximal collection363

of zeroes in the reduced matrix C ′′, such that no364

two zeroes share same row or column. Let L be the365

number of zeroes in the maximal collection.366

Painter: When L < N , with input from Mather,367

Painter is prompted for find a minimal collection368

of rows and columns covering all zeroes.369

Normalizer: Receiving input from Painter, Nor-370

malizer creates more zeroes outside of the selected371

rows and columns to obtain an updated matrix C ′′′.372

Reporter: When L = N , Report sums up values 373

of entries of the original cost matrix C correspond- 374

ing to the maximal collection of zeroes found by 375

Matcher, and report this sum as the final solution 376

to the problem. 377

The System Controller arranges task for Row 378

Reducer and Column Reducer linearly, then con- 379

trols a loop: Matcher first find a set of zeroes and 380

the Controller checks if the number of zeroes L 381

equals the problem size N , the size of the problem. 382

If so, the loop is broken and the positions of zeroes 383

is sent to the Reporter for final output. Otherwise, 384

Painters are called in to find a minimal collections 385

of lines to cover the zeroes and Normalizer follows 386

to create more zeroes. Then the Controller iterates 387

the loop and send the updated matrix to Matcher. 388

5 Experiment Result 389

Our experimental protocol unfolds in two stages. 390

First, we run a uniform benchmark across a suite 391

of baseline models—including several GPT and 392

Llama variants—to fix a reference point for each 393

task. The second stage then splits by objective: For 394

KSP we deliver a proof of concept, while for TAP 395

we provide a proof of scalability. For ground truth, 396

we use python code to randomly generate prob- 397

lems, and then use the Google OR-Tools (Perron 398

and Furnon, 2022) as in Appendix C to generate 399

solutions to compare with. 400

5.1 Experiment Result for KSP 401

5.1.1 Baseline LLM Performance 402

Figure 2 shows the baseline LLM performance 403

across multiple difficulty levels. The accuracy 404

across difficulty levels (from 3 to 8 items) in the 405

KSP scenario reveals substantial performance vari- 406

ation among the tested LLMs. Among those, the 407

GPT-o3-mini, as a reasoning model, consistently 408

demonstrates superior accuracy. Model GPT-4.1 409

outperforming its smaller counterparts, namely 410

GPT-4.1-mini and its primer GPT-4o-mini. Other 411

LLMs, including Claude-haiku, Llama, and Qwen 412

series also show performance degradation, with 413

higher variability particularly evident at greater dif- 414

ficulty levels. Meanwhile, the performance of final 415

KtR multi-agent system is also drawn in Figure 416

2. The comparison shows that KtR substantially 417

boosts performance, validating its effectiveness. 418

5.1.2 Multi-Agent Performance 419

Based on Figure 2, GPT-4o-mini exhibits a pro- 420

nounced performance decline beginning at in- 421
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Figure 2: KSP baseline performance from single LLMs
as well as the KtR mulit-agent system.

stances of 4 items, underscoring its limited scal-422

ability to more complex scenarios; thus, we select423

it as the baseline model for our KtR framework424

design. Figure 3 further illustrates the resulting425

multi-agent system along with the experimental426

outcomes derived from our proposed strategy.427

Single LLM performance. We establish two428

baseline performances for GPT-4o-mini acting as429

a single agent to solve the KSP. First, the zero-430

shot GPT-4o-mini is directly prompted with KSP431

instances. As Figure 3B s shows, its accuracy de-432

creases from 60% for 3 items to 0% (8 items). Sec-433

ond, we evaluate a fine-tuned GPT-4o-mini (stan-434

dalone). Figure 3C indicates that fine-tuning offers435

some improvement over the zero-shot, but still as436

low as 3% for 8-item KSP.437

Standard MAS performance. Following our438

KtR heuristic, we map the algorithm for KSP into439

a MAS design, illustrated in Figure 3F. Initially,440

each agent is driven by the standard, non-fine-tuned441

GPT-4o-mini. The performance of this standard442

MAS is presented in Figure 3F. Its performance443

descreases from 18% for 3 items to 4% for 8 items.444

This initial result implies that without augmenting445

the agents’ abilities, the MAS does not effectively446

handle the task.447

We profile each agent in isolation (Figure 3E)448

and uncover a single choke point: Trimmer. Its449

accuracy collapses as the feasible-state set Sk (cf.450

Section B.2) grows—54 % for 1–8 states, 24 % for451

9–16, 7 % for 17–24, and just 5 % for 25–32. Be-452

cause the algorithm loops once per state, even small453

per-iteration errors compound, and this cascading454

inaccuracy ultimately sinks the entire run.455

Augmented MAS performance. To eliminate456

the bottleneck, we fine-tune the Trimmer’s GPT-457

4o-mini backbone (Figure 3G, highlighted as ’Aug-458

mented Trimmer’). Accuracy leapt to 95 % for 1–8459

feasible states, 89 % for 9–16, 81 % for 17–24, and460

67 % for 25–32 (Figure 3H). Adding a lightweight 461

self-check—prompting the model to audit its own 462

answer—preserved or marginally improved these 463

gains. Replacing the bottleneck with the fine-tuned 464

Trimmer lifts end-to-end KSP accuracy to near- 465

saturation across sizes (Figure 3I): 95 % for 3-item 466

instances, 90 % for 4, 95 % for 5, 85 % for 6, 76 467

% for 7, and 70 % for 8. A single targeted upgrade 468

thus turns KtR into a consistently high-performing 469

solver as the problem scales. 470

5.2 Experiment result on TAP 471

5.2.1 Baseline LLM Performance 472

Figure 4 illustrates the baseline performance of 473

multiple LLMs on the TAP task across multiple 474

difficulty levels (from 3 to 8 tasks). The results 475

reveal marked differences in model capabilities. 476

The only reasoning model, GPT-4o-mini, consis- 477

tently outperforms all others, exhibiting strong ac- 478

curacy at lower difficulty levels, though its perfor- 479

mance declines as task complexity increases. In 480

contrast, GPT-4.1 demonstrates moderate but stable 481

accuracy across all difficulty levels, surpassing its 482

mini-sized counterparts. Other models, including 483

Claude-3.5-Haiku, Qwen2.5, and Llma-3 variants, 484

show intermediate performance with variability. 485

We observe that single-agent models (e.g., GPT- 486

3-mini, GPT-4-mini, GPT-4.1) drop to 30-50% ac- 487

curacy at TAP levels 7-8, while KtR MAS main- 488

tains steady performance near 100%, even surpass- 489

ing reasoning models, demonstrating its excep- 490

tional robustness and generalization capabilities. 491

5.2.2 Multi-Agent Performance 492

Based on Figure 4, GPT-o3-mini consistently out- 493

performs other LLMs across all evaluated tasks, 494

making it our choice for subsequent experiments. 495

Our goal is to assess the scalability of our pro- 496

posed strategy and investigate how its performance 497

evolves as task difficulty increases. Figure 5 il- 498

lustrates the MAS design and corresponding ex- 499

perimental outcomes obtained using our heuristic- 500

based approach. 501

Single LLM performance. Again, we evaluate 502

the baseline performance of using o3-mini as a sin- 503

gle agent. The o3-mini model achieves a relatively 504

high performance (83%) but decays quickly as in 505

Figure 5B: 37% on problems of size 9, 21% on 506

problems of size 12 and finally is reduced to 3% 507

for problems of size 15. 508

Agent performance and further decomposi- 509

tion. Guided by the Hungarian algorithm (Kuhn, 510
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Figure 3: KSP evaluation of the KtR stategy. B: Zero-shot accuracy of the baseline model. C: Zero-shot accuracy
after a light, task-specific fine-tune of the same model. D & G: Blueprints of the MAS without (D) and with (G)
augmentations. E: Per-agent accuracies before augmentation, revealing the system’s bottleneck. H: Boost delivered
by two targeted augmentations—task-level fine-tuning and self-check prompting—applied to the bottleneck agent.
F & I: Corresponding test accuracies for the two blueprints.

Figure 4: TAP baseline performance from single LLMs
as well as the KtR mulit-agent system.

1955), our first KtR blueprint mapped each step to511

a single agent; Step 3 from Appendix B.4 relied on512

a lone Cover Seeker rather than the later “Matcher513

+ Painter” pair. This baseline already scored 98 %514

(size 6), 88 % (size 9), 78 % (size 12), and 56 %515

(size 15), validating the approach.516

We then stress-tested each agent on two bands,517

with matrix sizes 6-10 and 11-15, to pinpoint weak-518

nesses. One-shot agents were flawless: Row Re-519

ducer and Reporter reached 100 % on both bands,520

and Column Reducer hit 100 % / 92 %. Normal-521

izer held 99 % / 94 %, but Cover Seeker fell to 97522

% / 84 %. Because Zero Seeker operates inside523

the main loop, its errors accumulate, making it the524

clear bottleneck for larger TAP instances.525

We then perform a further decomposition of Step526

3 in Section B.2 in a two-step process: Step 3.1. 527

Finding a maximal collection of zero-entries, such 528

that no two share a same row or column; Step 3.2. 529

Finding a minimal collection of rows and columns 530

covering all zero-entries. 531

We believe this decomposition is helpful due to 532

the following reasons. First, by a mathematical 533

argument, the size of collections from sub-tasks 534

3.1 and 3.2 match. Second, a heuristic argument 535

indicating that knowing the maximal collection of 536

zeroes simplifies the task to find minimal collection 537

of rows and columns. Last, the original Step 5 can 538

then simply use the positions of the zeroes from 539

Step 3.1, once optimal check passes. Note, this 540

also explains why we prefer a further decomposi- 541

tion rather than fine-tuning the original agent, as a 542

further decomposition improves the system flow as 543

well. 544

Empirical pays off, as shown in Figure 5I, 545

Matcher reaches 100 % accuracy on both difficulty 546

bands, while Painter climbs to 98 % and 97 %—a 547

sharp jump from the original Cover Seeker’s 97 % 548

and 84 %. 549

Final MAS performance. Leveraging the re- 550

fined decomposition, we deploy a six-agent system 551

(Figure 5H) that solves size 6–10 instances almost 552

flawlessly: almost 100 % accuracy versus 83 – 27 553

% for o3-mini zero-shot. It sustains high perfor- 554
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Agent
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Figure 5: TAP evaluation of the KtR strategy. B: Zero-shot accuracy of the baseline model. D: Initial blueprint
derived from the Hungarian algorithm; its end-to-end accuracy is shown in C. F: Per-agent accuracies within this
blueprint, prompting the finer decomposition outlined in E. I: Side-by-side comparison of per-agent accuracies
before and after decomposition. G: Final, decomposed blueprint, whose overall accuracy appears in H.

mance on size-11–15 tasks (95 %, 97 %, 90 %, 93555

%, 84 %); even the dip at size 15 far exceeds the 3556

% zero-shot baseline, highlighting the substantial557

capacity gain of our multi-agent architecture.558

6 Discussion559

Across two case studies, we show that disciplined560

decomposition combined with diagnosis-driven561

augmentation can raise low-capacity language562

models into dependable problem-solvers—and the563

gains grow further as the underlying model im-564

proves.565

Proof-of-Concept on KSP. Baseline GPT-4o-566

mini accuracy collapsed as instance size increased,567

and a naïve three-agent blueprint offered little re-568

lief. Agent-level profiling singled out Trimmer569

as the lone bottleneck. Fine-tuning that agent570

alone—1 200 step-by-step examples, no changes571

elsewhere—lifted end-to-end accuracy from ≤ 18572

% to ≥ 70 % across sizes 3–8, peaking at 95 % on573

size 3. These results validate KtR’s “identify →574

isolate → augment” cycle: a targeted upgrade can575

rescue a small general-purpose model when both576

single-agent and untargeted multi-agent baselines577

fail.578

Proof-of-Scalability on TAP. Repeating the pro-579

cedure with the stronger o3-mini model, we began580

with a five-agent design. Direct testing pinpointed 581

a composite planning task that capped overall per- 582

formance. KtR prescribes recursive refinement: we 583

split that task into two simpler, typed sub-tasks, 584

each amenable to the base model. Accuracy on the 585

difficult sizes (11-15) rose from as low as 11 % 586

single-agent to ≥ 84 % multi-agent, while sizes 6- 587

10 reached 100 %. Thus, as model capacity scales, 588

KtR continues to amplify it rather than saturate. 589

Beyond these demonstrations, we would like to 590

also outline several research threads that would 591

deepen the approach in the future: 592

• Model Portfolio Allocation. Many leaves sit 593

well below the flagship model’s frontier; mixing 594

lighter or domain-tuned LLMs would slash cost 595

while keeping accuracy, letting the controller pick 596

“just-enough” capacity per task. 597

• Complexity–Capacity Estimation. Replace 598

rule-of-thumb splits with a principled score that (i) 599

quantifies task difficulty and (ii) predicts an LLM’s 600

post-augmentation capacity, enabling data-driven 601

decompositions. 602

• End-to-End Automation. With the above 603

metrics, the ultimate goal is to design a system that 604

automates the whole KtR methodology: decompos- 605

ing the tasks, evaluate capacities, and assemble the 606

multi-agent system for solution. 607
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7 Limitations608

Despite demonstrating sizable performance gains,609

our study has several limitations that should guide610

future work.611

Narrow task scope. We evaluate KtR on two612

canonical optimization problems (Knapsack and613

Task-Assignment). While chosen to illustrate614

proof-of-concept and proof-of-scalability, these615

tasks have well-structured objective functions616

and small action spaces; generalizing to open-617

domain reasoning or multi-modal settings remains618

untested.619

Synthetic data & idealized inputs. All problem620

instances are randomly generated and fully speci-621

fied. Real-world inputs (noisy, partially observed,622

or adversarial) could degrade both decomposition623

quality and agent reliability.624

Cost and latency trade-offs. Although the per-625

agent inference cost is trending downward, we do626

not quantify absolute wall-clock latency, energy627

consumption, or controller overhead for large agent628

swarms.629

Bottleneck identification heuristic. We locate630

bottleneck subtasks via held-out accuracy screens;631

this assumes the availability of inexpensive ground-632

truth labels. Automated bottleneck detection with-633

out labels is an open problem.634

8 Ethical considerations635

Amplifying decision-making power by scaling636

agent crowds may exacerbate existing biases637

present in the base models; we have not run a638

bias or fairness audit. Addressing these limita-639

tions—particularly expanding to less structured640

domains and benchmarking real-world resource641

usage—will be essential to establish the broader642

utility and safety of the KtR framework.643

A Appendix: Weighted No Free Lunch644

Theorem645

In this section, we present a weighted version of the646

No-Free-Lunch theorem. As the motivation, cur-647

rent approaches to MAS design can often result in648

overly general solutions that may exhibit subopti-649

mal performance on specific and complex tasks.650

This sub-optimality arises partially from a lack651

of domain-specific inductive bias. To formalize652

this, we present a weighted variant of the No Free653

Lunch (NFL) theorem. The following demonstra-654

tion, leveraging a weighted variant of the No Free655

Lunch theorem, quantitatively illustrates how in- 656

ductive bias tailored to the target domain enhances 657

performance. 658

That is, we present a formal proof showing 659

that, under a non-uniform prior concentrated on a 660

problem-specific subset of functions, a specialized 661

learning algorithm achieves strictly lower expected 662

risk than a general-purpose algorithm. 663

Note the No-Free-Lunch theorem has been 664

known to research community for more than two 665

decades. Here what we present is a modification of 666

the standard statement to better fit for our discus- 667

sion on the MAS. As we don’t find in literature the 668

precise version of the NFL theorem as we stated be- 669

low, we also present a proof for self-containedness. 670

We do not claim any originality of the theorem and 671

the proof. 672

Theorem A.1 (Weighted NFL). Let X be a finite 673

input domain, Y a finite label set, and F = Y X 674

the set of all functions f : X → Y . Consider 675

• a general algorithm A0 with constant ex- 676

pected loss ε0 on every f ∈ F , 677

• a specialized algorithm A′ satisfying 678

L(hA′ , f) ≤

{
ε1, f ∈ F ′,

ε2, f /∈ F ′,
679

where ε1 < ε0 < ε2, and 680

• a prior P with P (f ∈ F ′) = p and P (f /∈ 681

F ′) = 1− p. 682

If 683

p >
ε0 − ε2
ε1 − ε2

, 684

then the expected risk of A′ is strictly lower than 685

that of A0, i.e. 686

R(A′) < R(A0). 687

Proof. By definition, 688

R(A0) = Ef∼P [L(hA0 , f)] = ε0 689

and 690

R(A′) = Ef∼P [L(hA′ , f)] = p ε1 + (1− p) ε2. 691

Hence 692

R(A′) < R(A0) ⇐⇒p ε1 + (1− p) ε2 < ε0

⇐⇒p(ε1 − ε2) > ε0 − ε2,
693

which rearranges to 694

p >
ε0 − ε2
ε1 − ε2

. 695

This completes the proof. 696

697
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B Appendix: KSP and TAP description698

In this appendix, we provide details about the KSP699

and TAP, including their problem description and700

algorithm based on which we design our MAS.701

B.1 KSP Problem Formulation702

The usual input of KSP involves a set of N items,703

whose items are characterized by pairs (wi, vi) of704

weights wi and values vi, as well as a capacity705

value W . The goal of KSP is to find a subset of706

items such that the total weight does not exceed707

the given capacity while the total value is max-708

imized. Mathematically, we record information709

of items by two vectors, both of dimension N : a710

weight vector w⃗ = (w1, · · · , wN ) and a value vec-711

tor v⃗ = (v1, · · · , vN ). We also introduce the set of712

state-vectors {0, 1}N , whose elements are vectors713

x⃗ = (x1, · · · , xN ) where entries xi takes values714

between 0 and 1, indicating whether an item is715

chosen in a subset or not:716

xi =

{
1 item i is chosen
0 item i is excluded

717

Thus state vectors controls which items is in the718

chosen subset, and the inner product of x⃗ with w⃗719

and v⃗ then compute the total weight and total value720

for the given subset, respectively.721

Given a weight vectors w⃗, a value vector v⃗, and722

the capacity constraint W , the objective of the723

Knapsack problem then can be formulated as find-724

ing the following (optimal) value:725

Z = max
x⃗∈{0,1}N
x⃗·w⃗≤W

x⃗ · v⃗. (1)726

Here the maximal value is taken over all state727

vectors (or equivalently, all subsets of items) satis-728

fying the constraint that the total weight x⃗ · w⃗ not729

exceeding the capacity W .730

This version of the problem, where each item can731

either be fully included or not at all, is commonly732

known as the 0/1 KSP.733

B.2 KSP Problem Solution734

A classic approach to the Knapsack Problem iter-735

atively enumerates all feasible states—a dynamic-736

programming strategy first introduced by Bell-737

man (Bellman, 1957). A feasible state can be de-738

fined by a pair (current_weight, current_value)739

representing the accumulated weight and value740

of a set of items selected so far, such that741

current_weight ≤ W . We can describe the al- 742

gorithm in the form of mathematical induction. We 743

start with the initial set of feasible states S0 = 744

{(0, 0)}, representing an empty set of chosen items. 745

We then add items in to form a set Sk from Sk−1 746

inductively, with capacity being aware: for each k, 747

assuming that Sk−1 has been constructed, then we 748

add the pair (wk, vk) to all items in Sk−1 to form a 749

new set Sadd: 750

Sadd = {(w+wk, v+ vk) for all (w, v) ∈ Sk−1}. 751

Then, we trim the set according to the capacity: 752

Strimmed = {(w, v) ∈ Sadd | w ≤ W}. 753

Note this also removes all repetitive states in the set. 754

Finally we take the union of the two intermediate 755

sets to create Sk: 756

Sk = Sk−1 ∪ Strimmed. 757

The inductive step terminate when we have run 758

through all items and obtaining the final set SN , 759

we pick the element in SN with maximal value, as 760

the solution to the KSP. Explicitly, 761

Z = max
(w,v)∈SN

v 762

B.3 TAP Problem Formulation 763

TAP seeks to optimally assign a set of N resources 764

(agents or workers) to N tasks, where each poten- 765

tial assignment incurs a specific cost. With the 766

constraint that each resource can only be assigned 767

to one unique task, the objective of TAP is to find 768

an assignment covering all tasks that minimizes 769

the total cost. The resource-task specific cost is 770

recorded in an N ×N matrix C, where the entry 771

Cij represents the cost associated with assigning 772

resource i to task j, for i, j ∈ {1, 2, . . . , N}. 773

To formally define the problem, we introduce a 774

set Sn which can be described in either one of the 775

following three equivalent ways: 776

• The group of automorphisms of the set N = 777

{1, 2, · · · , N}. 778

• The set (or group) of bijections from the set N 779

to itself. 780

• The set of all permutations involving N ele- 781

ments. 782

Note elements in SN convey the idea that each 783

resource is assigned to a unique task. 784
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Now, given the N ×N cost matrix C, the objec-785

tive of the TAP is to find the following (optimized)786

value787

Z = max
σ∈SN

(
N∑
i=1

Ciσ(i)

)
.788

Note when we treat σ ∈ SN as a (bijective) map789

from N = {1, 2, · · · , N} to itself, the notation790

Ciσ(i) represents the entry on the i-th row and σ(i)-791

th column of the cost matrix C.792

B.4 TAP Problem Solution793

The typical solution for TAP is using the Hun-794

garian algorithm (Kuhn, 1955), which provides a795

polynomial-time method to find the objective value796

Z. We summarize the algorithm as follows.797

Step 1. Row Reduction. For each row, we find798

the minimal element in the row and subtract it from799

all entries in the row, creating at least one zero on800

each row. Mathematically, starting from the orig-801

inal cost matrix CN×N , we create a new reduced802

matrix C ′ such that for i, j ∈ {1, 2, · · · , N}, we803

have804

C ′
ij = Cij − min

1≤k≤N
Cik805

Step 2. Column Reduction. Similarly, we fur-806

ther reduce C ′ to C ′′ as follows: For each column,807

we find the minimal element in the column and sub-808

tract it from all entries in the column, guaranteeing809

at least one zero on each column. Mathematically,810

take811

C ′′
ij = C ′

ij − min
1≤k≤N

Ckj812

Step 3. Find covering lines. We then find a813

smallest collection of rows and columns to cover814

all zeroes. Here smallest is the sense of the number815

of elements in the collection (of rows and column),816

over all possible such collections. If the size of this817

minimal collection, denoted by L, coincides with818

N , the size of the problem, then we skip Step 4 to819

enter the final stage of the algorithm.820

Step 4. Matrix Improvement. However, if821

L < N , we need an improvement for the matrix822

C ′′ before looping back to Step 3: given the min-823

imal collection of rows and columns from Step 3,824

we find the minimal value of all entries that are825

not covered, and then subtract this minimal value826

from all uncovered entries of C ′′, and then add this827

minimal value to all entries of C ′′ that are covered828

twice, i.e., by both rows and columns. Let C ′′′ be829

the resulting matrix.830

Step 5. Assignment Identification. Once the831

condition L = N is met, the final step is to identify832

the optimal assignment. This involves selecting a 833

set of N independent zeros from the current matrix 834

C ′′′, such that no two selected zeros share the same 835

row or column. Each selected zero at position (i, j) 836

corresponds to assigning agent i to task j. The total 837

cost of this optimal assignment is then calculated 838

by summing the costs from the original cost matrix 839

C corresponding to these selected zero positions. 840

A non-trivial fact guaranteed by the Hungarian 841

algorithm is that, in Step 5 the collection of zeroes 842

might not be unique, while different collections are 843

deemed to result in the same total summation of 844

corresponding entries in the original cost matrix C. 845

C Ground-truth Data Preparation 846

We utilize Google OR-Tools (Perron and Furnon, 847

2022) to generate optimal solutions—serving as 848

ground-truth datasets—for both problem scenarios. 849

OR-Tools is a widely adopted open-source soft- 850

ware suite developed by Google for solving com- 851

binatorial optimization problems. It is renowned 852

for its efficiency and reliability in addressing NP- 853

hard challenges through advanced optimization al- 854

gorithms. The suite is distributed under the permis- 855

sive Apache License 2.0, allowing unrestricted use, 856

modification, and distribution (Perron and Furnon, 857

2022). 858

For KSP, we generate random instances by as- 859

signing weights and values to items along with a 860

maximum capacity constraint. Optimal solutions 861

are then computed using OR-Tools’ dynamic pro- 862

gramming approach. For TAP, we similarly gener- 863

ate random cost matrices that represent the cost 864

of assigning workers to tasks. Optimal assign- 865

ments are obtained using the Hungarian algorithm 866

as implemented in OR-Tools, which efficiently min- 867

imizes the total assignment cost. 868

D Appendix: Prompt gallery 869

Note that all prompts we presented in the follow- 870

ing, except for the self-check prompt for Trimmer 871

Agent in KSP problem, are the system prompt for 872

agents. The user prompt will only contain the pre- 873

cise problem to be handled by the agent in the form 874

specified by the prompt. 875

D.1 KSP prompts 876

D.1.1 Prompt for zero shot 877

You are an expert in the field of Knapsack 878

Problem. 879

880
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You are given a Knapsack Problem in the json881

format, of the following form:882

{883

"id" : str,884

"items" : list of pairs of integers,885

"capacity" : int886

}887

888

Each pair in the list is a pair of integers of the889

form [weight, value], i.e., the first entry is the890

weight and the second entry is the value.891

892

Your task is to solve the Knapsack Problem and893

provide the optimal solution. That is, you894

need to find a subset of the pairs that895

maximizes the total value, subject to the896

constraint that the total weight of the subset897

is less than or equal to the capacity.898

899

Please think step by step when solving the900

problem.901

902

You need to return the optimal solution in the903

following json format:904

{905

"max_value" : int,906

}907

Please only return the json format, nothing else.908

D.1.2 Prompt for Worker Agent909

You are a key member of a multi−agent team910

collaboratively solving the Knapsack911

Problem. Your specific role is the Worker,912

responsible for performing mathematical913

computations for the team.914

915

You will receive input in the following JSON916

format:917

{"c_list": [[int, int], ...], "s_item": [int, int]}918

Each pair within ’c_list’ contains two integers.919

920

Your task is to:921

− Add ’s_item’ to each pair in ’c_list’ entry−wise.922

For instance, if a pair in ’c_list’ is ’[2, 5]’923

and ’s_item’ is ’[3, 4]’, the result should be924

’[2+3, 5+4] = [5, 9]’.925

926

To ensure accuracy:927

− Proceed systematically, applying step−by−step928

reasoning.929

− Carefully perform each addition individually930

for all pairs provided in the list. 931

932

Your response must strictly follow this JSON 933

format: 934

{"n_list": [[int, int], ...]} 935

936

Return only the specified JSON object without 937

any additional commentary or text. 938

D.1.3 Prompt for Trimmer Agent 939

You are a key member of a multi−agent team 940

collaboratively solving the Knapsack 941

Problem. Your specific role is the Trimmer, 942

responsible for trimming the list based on the 943

given capacity constraint. 944

945

You will receive input in the following JSON 946

format: 947

{"n_list": [[int, int], ...], "capacity": int} 948

949

Each pair within ’n_list’ contains two integers: 950

the first integer represents the weight, and 951

the second integer represents the value. 952

953

Your task is to: 954

− Carefully analyze each pair in the provided list. 955

− Remove all pairs whose weight (the first integer 956

) strictly exceeds the specified capacity. 957

− If identical pairs appear multiple times, retain 958

only one instance of each. 959

960

To ensure accuracy: 961

− Proceed systematically, applying step−by−step 962

reasoning. 963

− Verify each pair carefully against the capacity 964

constraint. 965

966

Your response must strictly follow this JSON 967

format: 968

{"t_list": [[int, int], ...]} 969

970

Return only the specified JSON object without 971

any additional commentary or text. 972

D.1.4 Prompt for Reporter Agent 973

You are a key member of a multi−agent team 974

collaboratively solving the Knapsack 975

Problem. Your specific role is the Reporter, 976

responsible for determining and clearly 977

reporting the final answer based on the 978

provided information. 979

12



980

You will receive input in the following JSON981

format:982

{"c_list": [[int, int], ...]}983

Each pair within ’c_list’ contains two integers:984

the first integer represents the weight, and985

the second integer represents the value.986

987

Your task is to carefully analyze this list, identify988

the pair with the maximal value (the second989

integer in each pair), and report only that990

maximal value. If the list is empty, then991

report the maximal value as 0.992

993

To ensure accuracy:994

− Proceed systematically, applying step−by−step995

reasoning.996

− Carefully examine every pair in the provided997

list.998

999

Your response must strictly follow this JSON1000

format:1001

{"max_value": int}1002

1003

Return only the JSON object as specified above,1004

without any additional commentary or text.1005

D.1.5 Self-check prompt for Trimmer Agent1006

To better fulfill your task, please conduct a1007

double check on the result you just provided.1008

If your answer is already correct, please1009

confirm by copying the last output.1010

1011

When double check, please pay attention to the1012

following typical types of mistakes:1013

1014

In particular, please check if you made any1015

typical mistakes as listed below:1016

1. If you added in a pair that is not in the original1017

n_list.1018

2. If there is still a pair in the t_list that still1019

exceeds the capacity.1020

3. If there is a pair in n_list that does not exceed1021

the capacity but is not in the t_list.1022

1023

If you found any errors, please create a corrected1024

answer.1025

1026

In either case, please follow the format1027

requirement of the output.1028

D.2 TAP prompts 1029

D.2.1 Prompt for zero shot 1030

You are an expert in solving the Assignment 1031

Problem. In the assignment problem, there 1032

are n workers and n jobs. Each worker has a 1033

cost of assigning to each job. Each worker 1034

can only be assigned to one job. Your task is 1035

to find the optimal assignment of workers to 1036

jobs that minimizes the total cost. 1037

1038

You are given the problem in the following json 1039

format: 1040

1041

{ 1042

"id" : str, 1043

"cost_matrix" : list of lists of integers 1044

} 1045

1046

The cost matrix is a square matrix of size n x n, 1047

where n is the number of workers and jobs, 1048

in the form of a nested list [[int, int, ...], [int, 1049

int, ...], ...]. The (i, j)th entry of the matrix 1050

represents the cost of assigning the ith 1051

worker to the jth job. 1052

1053

Your task is to find the optimal assignment of 1054

workers to jobs that minimizes the total cost. 1055

1056

Please think step by step when solving the 1057

problem. 1058

1059

You need to return the optimal assignment in the 1060

following json format: 1061

1062

{ 1063

"optimal_cost" : int 1064

} 1065

1066

Please only return the json format, nothing else. 1067

D.2.2 Prompt for Row Reducer Agent 1068

You are given a matrix in the following json 1069

format: 1070

1071

{ 1072

"matrix" : list of lists of integers 1073

} 1074

1075

The matrix is in the form of a nested list [[int, int, 1076

...], [int, int, ...], ...]. 1077
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1078

Your task is to reduce the matrix by subtracting1079

the minimum value of each row from all the1080

elements in that row.1081

1082

Please think step by step when solving the1083

problem:1084

Step 0: Work on one row at a time.1085

Step 1: Find the minimum value of the row.1086

Step 2: Subtract the minimum value of the row1087

from all the elements in that row.1088

Step 3: Return the reduced matrix in the1089

following json format:1090

1091

{"reduced_matrix" : list of lists of integers}1092

1093

Please only return the json format, nothing else.1094

D.2.3 Prompt for Column Reducer Agent1095

You are given a matrix in the following json1096

format:1097

1098

{1099

"matrix" : list of lists of integers1100

}1101

1102

The matrix is in the form of a nested list [[int, int,1103

...], [int, int, ...], ...].1104

1105

Your task is to reduce the matrix by subtracting1106

the minimum value of each column from all1107

the elements in that column.1108

1109

Please think step by step when solving the1110

problem:1111

Step 0: Work on one column at a time.1112

Step 1: Find the minimum value of the column.1113

Step 2: Subtract the minimum value of the1114

column from all the elements in that column.1115

Step 3: Return the reduced matrix in the1116

following json format:1117

1118

{"reduced_matrix" : list of lists of integers}1119

1120

Please only return the json format, nothing else.1121

D.2.4 Prompt for Cover Seeker Agent1122

You are given a problem in the following json1123

format:1124

1125

{1126

"matrix" : list of lists of integers 1127

} 1128

1129

The matrix is in the form of a nested list [[int, int, 1130

...], [int, int, ...], ...]. 1131

1132

Your task is to find a smallest collection of rows 1133

and columns of the matrix, such that any 1134

zeroes in the matrix is contained in a chosen 1135

row or column. Small means the sum of the 1136

sizes of the row and column collections is 1137

the smallest possible. 1138

1139

Please think step by step when solving the 1140

problem, and return your response in the 1141

following json format: 1142

1143

{"collum_collection" : [int, int, ...], " 1144

row_collection" : [int, int, ...]} 1145

1146

The integers in the collum_collection and 1147

row_collection are the indices of the rows 1148

and columns that you choose. 1149

1150

Please only return the json format, nothing else. 1151

D.2.5 Prompt for Matcher Agent 1152

You are given a matrix in the following json 1153

format: 1154

1155

{ 1156

"matrix" : list of lists of integers 1157

} 1158

1159

The matrix is in the form of a nested list [[int, int, 1160

...], [int, int, ...], ...]. 1161

1162

Your task is to find the largest collection of zeroes 1163

in the matrix, such that no two zeroes are in 1164

the same row or column. 1165

1166

Please think step by step when solving the 1167

problem, and return your response in the 1168

following json format: 1169

1170

{"largest_collection" : [[int, int], [int, int], ...]} 1171

1172

The list of pairs of integers is in the form of [[ 1173

row_index, column_index], [row_index, 1174

column_index], ...]. 1175

1176
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Please only return the json format, nothing else.1177

D.2.6 Prompt for Painter Agent1178

You are given a problem in the following json1179

format:1180

1181

{1182

"matrix" : list of lists of integers1183

"collection" : list of lists of integers1184

}1185

1186

The matrix is in the form of a nested list [[int, int,1187

...], [int, int, ...], ...].1188

1189

The collection is in the form of a nested list [[int,1190

int], [int, int], ...].1191

1192

Your task is to find a smallest collection of rows1193

and columns of the matrix, such that any1194

zeroes in the matrix is contained in a chosen1195

row or column. Small means the sum of the1196

sizes of the row and column collections is1197

the smallest possible.1198

1199

To assist you, you are provided with a collection1200

of zeroes in the input json format. The1201

collection contains the positions of a1202

maximal collection of zeroes in the matrix,1203

such that no two zeroes are in the same row1204

or column.1205

1206

Please use this collection of zeroes to find the1207

rows and columns as desired. More precisely,1208

you should first choose one row or column1209

for each zero in the collection, such that the1210

chosen rows and columns cover as much of1211

the zeroes in the matrix as possible. Then1212

add in more rows or columns if needed.1213

1214

Please think step by step when solving the1215

problem, and return your response in the1216

following json format:1217

1218

{"collum_collection" : [int, int, ...], "1219

row_collection" : [int, int, ...]}1220

1221

The integers in the collum_collection and1222

row_collection are the indices of the rows1223

and columns that you choose.1224

1225

Please only return the json format, nothing else.1226

D.2.7 Prompt for Normalizer Agent 1227

You are given a problem in the following json 1228

format: 1229

1230

{ 1231

"matrix" : list of lists of integers 1232

"collumn_collection" : list of integers 1233

"row_collection" : list of integers 1234

} 1235

1236

The matrix is in the form of a nested list [[int, int, 1237

...], [int, int, ...], ...]. 1238

The collumn_collection and row_collection are 1239

the indices of some selected rows and 1240

columns that covers all the zeroes in the 1241

matrix. 1242

1243

Your task is the following: 1244

1. Find the minimal value in the matrix that is not 1245

covered by the selected rows and columns. 1246

2. If this value is 0, return the original matrix. 1247

3. If this value is not 0, subtract this value from 1248

all uncovered entries in the matrix. 1249

4. For the entries that covered by both a selected 1250

row and a selected column, add this value to 1251

the entries. 1252

5. For the entries that are covered by a selected 1253

row or column, but not both, do nothing. 1254

6. Please return the updated matrix in the 1255

following json format: 1256

1257

{"normalized_matrix" : list of lists of integers} 1258

1259

Please only return the json format, nothing else. 1260

D.2.8 Prompt for Reporter Agent 1261

You are given a problem in the following json 1262

format: 1263

1264

{ 1265

"matrix" : list of lists of integers 1266

"collection" : list of lists of integers 1267

} 1268

1269

The matrix is in the form of a nested list [[int, int, 1270

...], [int, int, ...], ...]. 1271

The collection contains a set of entries of the 1272

matrix in the form of [[row_index, 1273

column_index], [row_index, column_index], 1274

...]. 1275

1276
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Your task is the following:1277

1. Sum up the values of all the entries in the1278

collection.1279

2. Return the total value in the following json1280

format:1281

1282

{"total_value" : int}1283

1284

Please only return the json format, nothing else.1285
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