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ABSTRACT

Temporal Action Detection (TAD) is a crucial task in video understanding, fo-
cusing on the precise identification of the onset and termination of specific ac-
tions within video sequences. Despite advancements on certain datasets, existing
methods often struggle to maintain their efficacy when applied to datasets from
disparate domain. In this study, we introduce, for the first time, the application of
source-free domain adaptation (SFDA) techniques to the field of TAD, aiming to
enhance the generalization capability of TAD models on unlabeled target datasets
without access to source data. Most popular SFDA methods predominantly follow
the Mean-Teacher (MT) framework and often falter due to the significant domain
shift. The generation of pseudo labels by a pre-trained teacher model on the source
domain can lead to a cascade of errors when these labels guide the training of a
student model, potentially causing a harmful TAD feedback loop. To address this
issue, we propose a novel dynamic switching teacher strategy that integrates both
dynamic and static teacher models. The dynamic teacher model updates its pa-
rameters by learning knowledge from the student model. Concurrently, the static
teacher model engages in periodic weight exchange with the student model, en-
suring baseline performance and maintaining the quality of pseudo labels. This
approach significantly mitigates the label noise. We establish the first bench-
mark for SFDA in TAD tasks and conduct extensive experiments across various
datasets. Our method demonstrates state-of-the-art performance, substantiating
the suitability of our method for TAD.

1 INTRODUCTION

Temporal Action Detection (TAD) is essential for understanding long-form videos, aiming to pre-
cisely identify specific actions within untrimmed videos by determining their start and end times,
along with their categories. With the rapid expansion of datasets and advancements in deep learn-
ing models, TAD has achieved remarkable performance on certain datasets (Zhang et al., 2022; Liu
et al., 2024; Singh et al., 2024).

However, current TAD datasets (Caba Heilbron et al., 2015; Idrees et al., 2017; Liu et al., 2022;
Carreira & Zisserman, 2017b) often lack diversity in scenarios, leading to poor generalization of
traditional TAD models (as shown in Fig.1(a)) when encountering unseen scenarios with domain
shifts during real-world deployment. Furthermore, unlike image data, video data is more challeng-
ing and costly to annotate with an additional temporal dimension, making it impractical to label
video data for every new scenario. Consequently, there is a need for models that can adapt to new
scenarios without supervision. To address the challenge of domain shift, researchers have introduced
Unsupervised Domain Adaptation (UDA) (Feng et al., 2021; Luo et al., 2022; Gu et al., 2024). As
shown in Fig.1(b), these methods aim to fine-tune models by leveraging labeled datasets from a
source domain and unlabeled datasets from a target domain, with the goal of minimizing the do-
main gap between the source and target domains. Methods such as adversarial learning, which align
features across domains, have been employed to enhance model performance in the target domain.

Nevertheless, most UDA algorithms assume access to the source domain data, which is often un-
realistic. Video data, such as the ActivityNet1.3 (Caba Heilbron et al., 2015) (700GB), involves
high storage costs and slow transmission speeds, making it unrealistic to access the source dataset
once the model is deployed on different devices. Additionally, transmitting the source dataset raises
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Figure 1: Different Types of TAD Frameworks. (a) Standard Supervised TAD Framework: the
model is supervised trained using labeled images from the dataset; (b) UDA-TAD Framework: after
training on the source domain, the model performs domain adaptation using both labeled source
domain data and unlabeled target domain data; (c) SFDA-TAD Framework: after training on the
source domain, and without access to source domain data, the model performs domain adaptation
using only unlabeled target domain data.

significant privacy and security concerns. Therefore, adapting the model to a target domain without
access to the source domain datasets presents a more realistic and challenging scenario. This chal-
lenge motivates our study of Source-Free Domain Adaptation (SFDA) for TAD tasks. As shown in
Fig.1(c), we perform domain adaptation without accessing the source domain dataset.

Although numerous SFDA methods (Lu et al., 2023a; Yue et al., 2023a; Chu et al., 2023) have
been developed for image classification and object detection, to the best of our knowledge, none
have yet been applied to the task of TAD. Most existing SFDA methods (Karim et al., 2023; VS
et al., 2023) follow the MT framework (Tarvainen & Valpola, 2017), utilizing a pre-trained teacher
model from the source domain to generate pseudo labels for the student model. Since most previous
SFDA algorithms were not designed for TAD tasks, they ignore the temporal dimension inherent
in video data. As a result, directly transferring these models to TAD tasks significantly degrades
performance. Additionally, the few domain adaptation algorithms tailored for videos focus on action
recognition, a classification task—rather than our detection task, making them unsuitable for direct
application in TAD. If these algorithms are applied directly to TAD tasks, the teacher model will
generates unavoidable noisy pseudo labels, as shown in Fig.2(a). This leads the student model to
learn incorrect information, thereby reducing its performance in target domain.

To address the aforementioned challenges, we propose a SFDA method for TAD based on dynamic
switching teacher. Unlike the traditional MT framework, our approach introduces a multi-teacher
mechanism that leverages both static and dynamic teacher models to generate pseudo labels for the
student model. During training, the static teacher model iteratively updates by exchanging weights
with the student model. Due to the noise of pseudo labels generated by the dynamic teacher model,

Figure 2: Pseudo labels Generated by Different Models. We selected certain pseudo labels to
compare with the Ground Truth. The horizontal axis represents time in the video. The vertical
axis pl-i represents the i-th pseudo label predict by teacher model. The color of the pseudo labels
represents their confidence levels, with red indicating the Ground Truth (confidence of 1). (a) Pseudo
labels generated by the source model; (b) Pseudo labels generated by the static teacher model; (c)
Pseudo labels generated by the dynamic teacher model.
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training the student model with these pseudo labels can lead to a decline in performance. There-
fore, employing a static teacher model that retains the student model’s parameters prior to training
serves as an added safeguard. This new static teacher setup ensures a lower bound on the overall
performance of the MT framework, thereby preventing the framework from collapsing due to the
student model’s failure. Additionally, since the static teacher model replicates the student model’s
weights, as shown in Fig.2(b), it can provide stable and reliable pseudo labels. Meanwhile, as shown
in Fig.2(c), the dynamic teacher model, adapted to the target domain, generates more aggressive yet
higher accuracy pseudo labels. By combining these two types of pseudo labels, we effectively reduce
the noise generated by teacher models.

Since no previous work has applied SFDA to the TAD task, this paper introduces the first SFDA-
TAD benchmark. We conduct experiments across three datasets, implementing and comparing some
state-of-the-art SFDA methods. Our approach consistently achieves the best results across multiple
experimental setups. Our contributions are summarized as follows:

• We propose the first SFDA framework for TAD, enabling the transfer of a source-domain
pre-trained TAD model to a target domain without access to source data.

• We introduce a dynamic switching teacher mechanism that effectively ensures the stability
of the MT framework during training, preventing potential framework collapse.

• We employ a multi-teacher fusion strategy to reduce noise in the pseudo labels generated
by the teacher models.

• We establish the first benchmark for SFDA-TAD , where we implemented and compared
some state-of-the-art SFDA methods. Our model consistently outperforms the others,
demonstrating significant performance advantages.

2 RELATED WORKS

2.1 TEMPORAL ACTION DETECTION

TAD (Zhao et al., 2021; Pramono et al., 2022; Zhao et al., 2022a) focuses on detecting both the
categories of actions and their precise start and end times within a video. It has widespread applica-
tions in areas such as abnormal behavior detection, video editing, and video summarization. Since
its introduction, supervised deep learning methods for TAD have shown continuous performance
improvements. Initially, actions were localized using sliding window approach (Shou et al., 2016;
Yeung et al., 2016). Inspired by object detection techniques, TAD methods have been classified
based on their anchor mechanisms into one-stage (Lin et al., 2017; Long et al., 2019; Sridhar et al.,
2021; Yang et al., 2022b), two-stage (Chao et al., 2018; Zeng et al., 2022; Zhang et al., 2022; Zhu
et al., 2023), and anchor-free approaches (Zhao et al., 2020; Lin et al., 2021; Cheng & Bertasius,
2022; Shi et al., 2023). Following the success of fully supervised TAD, researchers propose weakly
supervised temporal action detection (Zhai et al., 2023; Yang et al., 2022a; Huang et al., 2022a; Ren
et al., 2023; Huang et al., 2022b), which relies only on video-level category labels as supervision.
More recently, semi-supervised temporal action detection has also seen rapid development, leverag-
ing small amounts of labeled data alongside large amounts of unlabeled data, with training driven by
pseudo-labeling (Xia et al., 2023; Singh et al., 2024) or consistency regularization (Ding et al., 2021;
Kumar & Rawat, 2022). Although the aforementioned methods have achieved good performance
on specific datasets, their models exhibit significant performance degradation when transferred to a
completely new TAD dataset. Therefore, we propose using domain adaptation algorithms to enhance
the generalization ability of TAD models across different datasets.

2.2 DOMAIN ADAPTATION

Domain adaptation focuses on adjusting models pre-trained on the source domain to reduce the
domain gap, enabling them to perform effectively on the target domain. Current domain adaptation
methods can be classified into two categories based on the availability of source data: UDA and
SFDA.

UDA. Unsupervised domain adaptation focuses on reducing the domain gap when the target domain
is unlabeled. The most common approaches can be categorized into two main types: adversarial

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

learning (Wang et al., 2021; Gao et al., 2021; Gu et al., 2024; Wang et al., 2023b) and self-training.
Self-training involves training the model using pseudo labels (Feng et al., 2021; Lai et al., 2023) or
consistency regularization (Luo et al., 2022; Wang et al., 2023a).

SFDA. Although the aforementioned UDA methods have achieved promising results, our research
focuses on a more practical scenario where the source domain is unavailable (Qu et al., 2024; Luo
et al., 2024; Ragab et al., 2023; Li et al., 2021; Karim et al., 2023). In such cases, Xia et al. (2021);
Chu et al. (2023) addresses the challenge by dividing the target domain data into source-similar and
source-dissimilar sets, allowing adversarial learning without accessing source domain data. Liang
et al. (2020); Lu et al. (2023b); Yin et al. (2023) leverages the model that is trained solely on the
source domain to generate pseudo labels for self-supervised training. Moreover, VS et al. (2023)
introduces an instance relationship graph to guide contrastive representation learning.

Domain Adaptation in Video. The domain adaptation methods mentioned above are primarily
designed for image-based tasks. However, directly applying image-based methods to video data
without considering the spatiotemporal characteristics can lead to a significant drop in performance.
To address this, Li et al. (2023) uses consistency learning from spatial, temporal, and historical
perspectives to train the model. Lee et al. (2024a) proposes a global-local view alignment approach
to handle temporal shifts between source and target domains in video datasets. Although these
techniques have achieved advanced results for video-based domain adaptation, their focus remains
on action recognition (Wu et al., 2021; Zhao et al., 2022b; Sudhakaran et al., 2023). However,
temporal action detection adds the additional challenge of determining the precise start and end times
of specific actions, making our work more complex and challenging compared to action recognition.

3 METHOD

3.1 PRELIMINARY

Domain adaptation tasks require a labeled source domain dataset and an unlabeled target domain
dataset. We formally represent the labeled source domain data as Ds = {Xn

s , Y
n
s }

Ns
n=1, where Xn

s

denotes the nth video in the source domain. Each Xn
s can be represented by a sequence of feature

vectors {x1, x2, · · · , xT } defined over discretized time steps t = {1, 2, · · · , T}, where the total
duration T varies across videos. Y n

s represents the corresponding label for the input video sequence
Xn

s , consisting of k action instances yi, and the number of action instances k also varies across
videos. Each instance yi = (si, ei, ai) is defined by its start time si, end time ei and action label ai,
where si ∈ [1, T ], ei ∈ [1, T ], ai ∈ [1, · · · , C] (with C being the number of action categories in the
dataset). The unlabeled target domain dataset, is represented as DT = {Xn

t }
NT

n=1, where each Xn
t

corresponds to the nth video in the target domain without the ground-truth annotations. In contrast,
the task of SFDA for TAD addresses a more practical scenario. We aim to adapt a pre-trained TAD
model from the source domain to an unlabeled target domain, without utilizing any source domain
data. Specifically, we aim to update the parameters of model F from Θs to Θt, relying solely on the
unlabeled target domain dataset DT , without any exposure to the source domain data.

3.2 DYNAMIC SWITCHING TEACHER

We denote the student, static teacher, and dynamic teacher models by ΘS , ΘST and ΘDT , respec-
tively. As depicted in Fig.3, each epoch in our methodology is structured into three distinct phases:
Initially, we integrate the predictions of the static teacher model and the dynamic teacher model to
generate pseudo labels; subsequently, the student model leverages these pseudo labels to assimilate
knowledge from the target domain and the dynamic teacher model acquires knowledge of the tar-
get domain through temporal ensembling of student model; and in the final stage, the weights of
student model are exchanged with the static teacher model, ensuring that the static teacher model
consistently produces stable pseudo labels, acting as a performance lower bound for the ensemble.

Consequently, our model experiences two iterative updates within a single epoch. At the beginning
of the tth epoch, we initialize the student model, static teacher model, and dynamic teacher model as
Θ2t

S , Θ2t
ST and Θ2t

DT , respectively. They are first updated to Θ2t+1
S , Θ2t+1

ST and Θ2t+1
DT after applying

MT using pseudo labels. Subsequently, we implement a weight exchange between the student and
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Figure 3: Framework of Dynamic Switching Teacher. The framework is divided into three stages,
Stage One: Pseudo-label filtering and fusion; Stage Two: Training the dynamic teacher and student
models; Stage Three: Weight exchange between static teacher model and student model.

static teacher model, culminating in the parameters Θ2t+2
S , Θ2t+2

ST and Θ2t+2
DT , which serve as the

starting point for the models in the subsequent epoch.

3.2.1 COLLABORATIVE PSEUDO LABEL CONSTRUCTION

In this study, we utilize a multi-teacher model framework, comprising a static teacher model, which
serves as a lower bound for the entire system and generates stable pseudo labels, and a dynamic
teacher model that refines its predictions through iterative learning to produce more precise and
aggressive pseudo labels. Integrating predictions from both teacher models can significantly improve
the quality of pseudo labels. In this section, we elaborate on the mechanisms for pseudo label
filtering and the process of merging prediction from both the static and dynamic teacher models.

Pseudo Label Filtering. To mitigate computational demands during the teacher predictions fusion
process and to prevent noise interference from low-quality predictions, we first conduct preliminary
filtering of outputs from both the static and dynamic teacher models. Previous studies (Liu et al.,
2023) have solely applied confidence thresholds to filter out noisy predictions. However, the static
teacher model, compared to the dynamic teacher model, has less knowledge of the target domain,
resulting in generally lower classification confidence. Conversely, the dynamic teacher model, hav-
ing learned more about the target domain, tends to have higher classification confidence. Therefore,
relying solely on confidence could lead to an overrepresentation of the dynamic teacher model’s
predictions in the merging process, significantly diminishing the role of the static teacher model.

To address this issue, we employ a dual-criteria approach, integrating both confidence scores and
their rankings. If the number of predictions meeting the confidence threshold is fewer than pmin,
we select the top pmin predictions based on confidence ranking for filtering. If the number of
predictions exceeding the confidence threshold is more than pmax, we discard those ranked beyond
pmax in terms of confidence. This approach ensures that both the dynamic and static teacher models
contribute to the prediction fusion phase.

Teacher Bounding Box Fusion. We input weakly augmented video data into both the static and dy-
namic teacher models, obtaining prediction results YST and YDT , respectively. Both YST and YDT

consist of multiple predictions (tST , cST , sST ) and (tDT , cDT , sDT ), where tST and tDT denote
the start and end times of the actions, cST and cDT represent the action category, sST and sDT indi-
cates the classification confidence. Following the Weighted Boxes Fusion (WBF) (Solovyev et al.,
2021), we select predictions with an tIoU greater than 0.5 and belonging to the same class as part of
the same cluster. We compute clusters for the prediction results from both the static teacher model
and the dynamic teacher model, and then fuse them to calculate the pseudo label corresponding to
each cluster using the following formula:
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∼
t =

1

S

 M∑
i=1

siST ∗ tiST +

N∑
j=1

sjDT ∗ t
j
DT

 , (1)

∼
s =

λs

M

M∑
i=1

siST +
1− λs

N

N∑
j=1

sjDT , λs ∈ (0, 1), (2)

where M and N represent the number of predictions stored in the corresponding cluster from static
and dynamic teacher models, respectively. λs is a weight hyperparameter controlling the importance
of the static and dynamic teacher models, and S is the sum of all prediction confidences.

3.2.2 TEACHER-STUDENT TRAINING

Following the fusion of teacher predictions, we obtain reliable pseudo labels
(∼
t ,

∼
c,

∼
s
)

for training
the student model. By applying strong data augmentation to the target domain dataset, we obtain
D

′

T =
{
Xn

aug

}NT

n=1
. The loss function of student model is defined as:

Ldet =

NT∑
n=0

λd ∗ Lcls

(
ΘS

(
Xn

aug

)
,
∼
c
)
+ (1− λd) ∗ Lreg

(
ΘS

(
Xn

aug

)
,
∼
t
)
, λd ∈ (0, 1), (3)

where Lcls is the focal loss function, and Lreg is the tIoU loss function. λd is a weight hyperparam-
eter controlling the importance of Lcls and Lreg . The student model calculates the loss based on the
pseudo labels to update its parameters to Θ2t+1

S .

In each epoch, the static teacher model learns solely through weight exchange. To enhance the
accuracy of pseudo labels in the target domain, the dynamic teacher model update its weights based
on the student model. Following the conventional MT framework, we use the EMA strategy for
weight updates of dynamic teacher model. Thus, in the second phase of tth epoch, the parameter
updates for the student and dynamic teacher models can be represented as:

Θ2t+1
S ←− Θ2t

S + γ
∂ (Ldet)

∂ (Θ2t
S )

, (4)

Θ2t+1
DT ←− αΘ2t

DT + (1− α)Θ2t+1
S , (5)

where the hyperparameters γ and α represent the learning rate of the student model and the EMA
rate of the dynamic teacher model, respectively.

3.2.3 PERIODIC TEACHER-STUDENT WEIGHT EXCHANGE

During the training process, we employ a periodic weight exchange strategy to optimize the per-
formance and stability of both the student and static teacher models. This strategy is detailed as
follows: after training the student model using pseudo labels, we perform a weight exchange to
allow the static teacher model to record the current weights of the student model. Meanwhile, the
student model adopts the weights from the static teacher model to mitigate significant performance
fluctuations during training. The exchange process can be expressed as:

Θ2t+2
S = Θ2t+1

ST ,Θ2t+2
ST = Θ2t+1

S . (6)

In this step, the weights of the student and static teacher models are exchanged, resulting in updated
models Θ2t+2

S and Θ2t+2
ST . We apply this periodic exchange throughout the entire training process,

ensuring the continuity and cyclicality of training. The student model greatly benefits from this
strategy. The static teacher model provides a performance guarantee, allowing the student model to
recover to a more stable state through weight exchange, even if performance fluctuations occur under
the guidance of the dynamic teacher model. This mechanism not only prevents rapid performance
decline but also enhances the robustness of the student model.

The static teacher model plays a crucial role in this process. By periodically updating its knowledge
base, the static teacher model absorbs new information at a slower pace, thereby maintaining model
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stability. This slow and steady updating process helps the model maintain performance over long-
term training. We construct the dynamic teacher model following the MT framework. Compared
with the traditional MT, our strategy implicitly slows down the update speed of the dynamic teacher
model, providing it with stronger noise resistance. Our periodic teacher-student weight exchange
strategy not only prevents catastrophic forgetting and uncontrollable collapse of the student model
but also ensures the stability of the teacher models and the noise resistance of the dynamic teacher
model.

4 EXPERIMENT

4.1 DATASETS

In our experiments, we use three publicly available datasets: ActivityNet1.3 (Caba Heilbron et al.,
2015), Thumos14 (Idrees et al., 2017), and FineAction (Liu et al., 2022). These datasets are chosen
because they offer a wide range of action categories, making it easier to select similar classes for
domain adaptation tasks. The detail information of these datasets is shown in Table 1.

Table 1: Summary of Datasets Used in Experiments
Dataset ActivityNet1.3 FineAction Thumos14
Number of Videos 13,800 16,732 413
Average Video Length 140s 150s 210s
Number of Action Categories 200 106 20
Average Actions per Video 1.5 5 15
Average Action Duration 50s 7s 4s

4.2 BENCHMARKS

As no SFDA benchmark specifically designed for TAD has been proposed so far, we constructed
three distinct benchmark sets using the aforementioned datasets to evaluate the performance of our
model.

4.2.1 ACTIVITYNET1.3→THUMOS14

Both the ActivityNet1.3 and Thumos14 datasets consist of videos collected from online media, and
we selected 11 shared action classes for our experiments. Despite having the same action cate-
gories, the data between the two datasets often exhibit significant domain gaps. For example, in
the case of the “diving” action, the corresponding class in ActivityNet1.3 is “Springboard diving”,
which specifically refers to athletes diving from a springboard. In contrast, the “Diving” class in
Thumos14 includes both springboard diving and high diving. This difference creates a noticeable
domain gap, ideal for testing domain adaptation algorithms. Additionally, the annotation precision
between ActivityNet1.3 and Thumos14 differs greatly. ActivityNet1.3 has fewer annotations per
video, but each annotation covers a longer duration, whereas Thumos14 contains many dense, short
annotations. This indicates that the annotations in ActivityNet1.3 are coarser, while those in Thu-
mos14 are much more precise. The sample size per class is balanced, with about 70 videos per class
in ActivityNet1.3 and 25 per class in Thumos14.

4.2.2 THUMOS14→FINEACTION

Adapting from small datasets to large ones enables the use of smaller datasets to automatically
annotate larger datasets, greatly reducing the cost of manual labeling. Therefore, the ability of a
model to perform domain adaptation from small to large datasets is essential. In our experiments,
we adapted models trained on the smaller Thumos14 dataset to the larger FineAction dataset. We
collected 12 common action classes shared between the two datasets. On average, each class in the
FineAction contains 147 videos, while in Thumos14, each class has only 23 videos.

7
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Table 2: Comparisons with Other SFDA Methods. “Source-Only” refers to the model trained
only on the source domain. We report the mAP at tIoU=0.3, 0.5 and 0.7, and the average mAP in
[0.3 : 0.1 : 0.7] of each model on the three benchmarks.

Methods Source
Free

A→T T→F F→A

0.3 0.5 0.7 mAP 0.3 0.5 0.7 mAP 0.3 0.5 0.7 mAP

Source-Only - 32.8 18.7 5.5 18.9 39.2 23.4 4.2 22.4 48.0 32.9 3.7 27.5

DANN (Ganin et al., 2016) % 29.4 19.0 6.2 19.2 43.1 26.0 7.8 25.1 49.2 36.0 15.7 33.5

AT (Li et al., 2022) % 30.9 17.9 5.2 18.7 45.7 25.8 6.2 26.3 47.1 32.7 21.5 33.0

ICON (Yue et al., 2023b) % 29.8 17.4 4.1 17.2 48.1 26.9 8.8 27.2 49.9 36.3 20.9 34.2

GLAD (Lee et al., 2024b) % 32.4 20.3 6.3 20.3 46.2 30.1 10.5 29.0 52.3 33.8 18.1 34.9

LUHP (Zhang et al., 2024) % 30.1 19.7 6.5 19.6 46.9 25.5 7.4 26.2 49.7 33.2 18.2 33.7

MT (Tarvainen & Valpola, 2017) ! 29.8 17.0 4.9 17.2 44.7 30.1 9.9 28.7 43.2 28.2 17.4 29.1

SED (Li et al., 2021) ! 30.6 18.3 6.0 18.1 43.1 23.6 4.3 23.7 40.1 25.7 15.5 26.8

A2Net (Xia et al., 2021) ! 34.2 20.1 6.2 20.1 40.7 23.9 5.2 23.3 50.1 29.4 8.8 29.5

A2SFOD (Chu et al., 2023) ! 46.0 13.8 1.8 19.0 41.9 24.5 5.6 24.3 43.8 29.2 19.1 30.2

C-SFDA (Karim et al., 2023) ! 32.1 18.2 5.5 18.5 43.4 27.2 6.3 26.1 45.9 31.4 20.1 32.3

Ours ! 35.0 20.5 6.9 20.6 44.5 30.8 11.7 29.4 47.5 34.8 23.2 35.3

4.2.3 FINEACTION→ACTIVITYNET1.3

We collected 11 common action classes from the FineAction and ActivityNet1.3 datasets. Beyond
the differences in action categories, these datasets also show significant variation in video charac-
teristics and annotation granularity. For example, although the average video length is similar, 12%
of FineAction videos exceed 300 seconds, while videos in ActivityNet1.3 are evenly distributed be-
tween 0 and 250 seconds. Moreover, the average number of annotations per video in FineAction is 3
to 4 times higher than in ActivityNet1.3, but each annotation in ActivityNet1.3 is 7 times longer than
in FineAction. These differences in video length and annotation density create a notable domain gap
between FineAction and ActivityNet1.3, making this dataset pair ideal for evaluating the model’s
ability to adapt across spatiotemporal domains.

4.3 IMPLEMENTATION DETAILS

We use Actionformer (Zhang et al., 2022) as the backbone for our TAD task. All videos are stan-
dardized to 25 FPS, and both original video frames and optical flow features are extracted. We
leverage a two-stream I3D (Carreira & Zisserman, 2017a) pre-trained on Kinetics (Carreira & Zis-
serman, 2017b) to extract features from all videos. Since none of the datasets in our experiments
are related to Kinetics, this ensures that feature extraction model do not introduce unexpected bi-
ases into the domain adaptation process. We extract 1024-dimensional features before the final fully
connected layer and concatenat the I3D features from both the video and optical flow to form a
2048-dimensional input feature for the TAD model. We employ the Adam optimizer with an initial
learning rate of 10−4 and apply cosine learning rate decay. The batch size is set to 16, with a weight
decay of 10−4. The EMA rate in the MT is set to 0.995.

4.4 RESULT

4.4.1 BASELINE METHODS

Since no existing SFDA algorithms are specifically designed for TAD task, we implement several
advanced SFDA algorithms for TAD, including A2Net (Xia et al., 2021), A2SFOD (Chu et al.,
2023), SED (Li et al., 2021) and C-SFDA (Karim et al., 2023). In addition, we select five advanced
UDA methods to compare with our method. To demonstrate the effectiveness of our dynamic teacher
models, we compare them with the standard Mean-Teacher. We also conduct a baseline experiment
where the model is trained solely on the source domain, representing the lower performance limit of
the task.
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Figure 4: Per-category mAP Comparison: Source Only vs Ours. We report the per-category
mAP for TAD under different domain adaptation scenarios. We compare the results of our method
(green dots) with source-only model across three benchmarks. The blue,pink and red bars represent
source-only performance in different benchmarks.

Figure 5: Comparison of prediction density between the source-only model and our model. The
orange bar represents the ground truth time intervals where actions occur in the video. The green
bar indicates the action intervals predicted by the Source-Only model, and the blue bar shows the
predicted action intervals from our proposed model.

4.4.2 COMPARISONS WITH OTHER SFDA METHODS

We evaluate several existing SFDA methods on the three benchmarks we establish: Activi-
tyNet1.3→Thumos14 (A→T), Thumos14→FineAction (T→F), and FineAction→ActivityNet1.3
(F→A). The results are shown in Table 2.

ActivityNet1.3→Thumos14 (Category Difference Domain Adaptation). We conduct experi-
ments on 11 shared classes between the ActivityNet1.3 and Thumos14 datasets. Although these
datasets contain similar categories, but they often have hierarchical relationships. For example, in
the case of diving, ActivityNet1.3 includes the class “Springboard diving”, whereas Thumos14 uses
the broader category “Diving”. Since the model is trained only on “Springboard diving” in the
source domain, its ability to generalize and adapt to the broader “Diving” class in the target domain
is a crucial test of its adaptability. Additionally, Thumos14 also includes certain classes that are sub-
sets of more general actions in ActivityNet1.3. For instance, in the “Cricket” category, Thumos14
contains only the specific action “CricketShot”, which challenges the model’s ability to adapt to
precise actions within a broader category.

We evaluate the domain adaptation performance for each action class and compare the accuracy
of action detection after domain adaptation with the “Source-Only” model. As shown in Fig.4, all
action classes exhibit improved performance after domain adaptation. Moreover, as indicated in
Table 2, our domain adaptation method consistently outperforms other comparative approaches.
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Table 3: Ablation Study on Different Components of Our Method. Here, PLF denotes Pseudo
Label Filtering, and BBF denotes Bounding Box Fusion.

Methods PLF BBF A→T T→F F→A AVG
Source Only - - 18.9 22.4 27.5 22.9
Mean-Teacher - - 17.2 28.7 29.1 25.0
Mean-Teacher ✓ - 19.5 29.0 33.7 27.4
Dynamic-Teacher - - 18.7 28.5 32.5 26.6
Dynamic-Teacher ✓ - 18.8 29.1 34.3 27.4
Dynamic-Teacher - ✓ 18.0 28.9 33.1 26.7
Ours ✓ ✓ 20.1 29.4 35.3 28.3

Thumos14→FineAction (Small to Large Dataset Domain Adaptation). Transferring a model
trained on a small dataset to a larger one can significantly enhance its ability to automatically an-
notate the larger dataset. In our experiments, we train the model on the relatively small Thumos14
dataset and then adapt it to the larger FineAction dataset. As shown in Table 2, our method achieves
a mean Average Precision (mAP) of 29.37%, surpassing all comparison methods. This results in a
6.97% improvement over the source-domain pre-trained model and a 3.27% increase compared to
the best-performing comparison method. Additionally, as illustrated in Fig. 4, all action categories
show significant performance improvements after domain adaptation, with particularly notable gains
in actions such as “High jump”, “Long jump” and “Pole vault”.

FineAction→ActivityNet1.3 (Annotation Density Domain Adaptation). The FineAction and Ac-
tivityNet1.3 datasets differ significantly in their intrinsic properties (e.g., video duration) and anno-
tation density. When a model trained on FineAction is directly transferred to ActivityNet1.3, it tends
to produce overly dense predictions, which is unsuitable for ActivityNet1.3, where annotations are
sparser but cover broader time ranges. Therefore, this set of experiments tests the ability of domain
adaptation algorithms to handle these differences in annotation density.

As shown in Fig. 5, the model trained only on the source domain predict multiple short segments
for a single action in ActivityNet1.3. However, after domain adaptation using our algorithms, the
model is able to predict a single complete action, closely matching the ground truth. Additionally,
as shown in Table 2, after domain adaptation, the model achieves mAP of 35.33%, an improvement
of 7.86% compared to before adaptation, and a 3% increase over the best competing method.

4.4.3 ABLATION STUDIES

In Table 3, we report the ablation study results for different components of our domain adapta-
tion algorithm. First, we train the model solely on the source domain and test it on the three
benchmarks, achieving an average mAP of just 25.7%. By applying the basic Mean-Teacher for
domain adaptation, the average mAP increase to 27.4%. Introducing our proposed pseudo-label fil-
tering algorithm further improve the mAP to 30.8%. Replacing the Mean-Teacher with our propose
Dynamic-Teacher lead to an additional 2.5% increase in mAP. Finally, using both the pseudo label
filtering algorithm and the bounding box fusion strategy, the mAP improved by 5.9% compared to
the source-only model, and by 4.2% over the basic Mean-Teacher.

5 CONCLUSION

In this work, we propose a source-free domain adaptation algorithm for temporal action detection
based on dynamic teacher switching. By employing multi-teacher collaborative training and joint
pseudo label generation, our method effectively improves the stability of SFDA algorithms and
enhances the generalization capability for TAD tasks. As the first work to introduce a SFDA algo-
rithm for TAD, we also present three practically meaningful benchmarks base on current popular
video datasets. We reproduce several advanced SFDA algorithms on these benchmarks, and the
experimental results demonstrate that our SFDA algorithm, specifically designed for TAD tasks,
outperforms previous SFDA methods.
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A APPENDIX

A.1 ADDITIONAL EXPERIMENTAL DETAILS

Dataset Details. The FineAction and ActivityNet1.3 datasets exhibit significant differences in anno-
tation density, as illustrated in Fig. 6. For the same action class, the two datasets vary considerably
in terms of scene context. Specifically, the FineAction dataset records brief scene transitions or irrel-
evant footage as background during annotation, whereas the ActivityNet1.3 dataset does not employ
such meticulous labeling. Instead, it focuses solely on detecting the start and end times of actions,
disregarding transitional animations or camera movements that may cause the primary subject of the
action to disappear from view.

Figure 6: Comparison of Annotation Density and Domain Gaps between FineAction and Ac-
tivityNet1.3 Datasets.
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Evaluation Metrics. In our experiments, we used the temporal Intersection over Union (tIoU) as
the evaluation metric for temporal action detection, calculated as follows:

tIoU j
i =

(
tji ∩

ˆ
tji

)
tji ∪

ˆ
tji

, (7)

where tji denotes the segment corresponding to the jth action instance in video i, and t̂ji represents
the predicted segment for the same instance by our model.

The tIoU loss function is computed using the following formula:

Lreg =
1

n ∗m

n∑
i=0

m∑
j=0

(
1− tIoU j

i

)
, (8)

where n represents the total number of videos in the dataset, and m indicates the number of ac-
tion instances contained within each video. We employed five tIoU thresholds of 0.3, 0.4, 0.5, 0.6
and 0.7, with the final mean Average Precision (mAP) calculated as the average of the AP values
corresponding to these thresholds.

Implementation Details. All videos from the three datasets were standardized to 25 FPS. When
extracting I3D features, we set the sliding window size to 16, extracting features every 16 frames,
with the stride of the sliding window also set to 16. Each frame was resized to 244x244 pixels, and
optical flow features were extracted accordingly.

We conducted our experiments using five NVIDIA RTX 3080 GPUs, and the existing code used
included implementations for Actionformer and I3D. The datasets utilized in our experiments were
ActivityNet1.3, Thumos14, and FineAction.

A.2 ADDITIONAL EXPERIMENTAL RESULTS

We recorded the Average Precision (AP) for all action classes in each experiment, as summarized in
the table below. In addition to the results for the Thumos14-FineAction benchmark, we included an
additional set of experiments for FineAction-Thumos14 to evaluate the model’s domain adaptation
capabilities on this benchmark.

A.3 CODE AVAILABILITY

Code is available in Supplementary Material.

Table 4: Performance Comparison on the FineAction→ActivityNet1.3 Benchmark for Each Action
Class.

Methods High jump Long jump Skateboarding Shot put Clean and jerk Volleyball

Source 20.3 18.4 18.5 17.3 44.3 29.4
MT 20.5 18.6 17.7 19.4 49.7 33.3
A2Net 19.3 16.7 20.5 22.6 48.1 33.0
A2SFOD 21.1 18.4 21.0 20.1 50.3 35.2
SED 19.7 18.2 16.6 17.3 47.4 30.6
CSFDA 23.5 18.4 19.5 21.1 52.7 36.0
Ours 23.75 21.85 26.48 24.4 54.56 39.44

Methods Discus throw Javelin throw diving Ping-pong Playing badminton mAP

Source 20.1 23.3 27.3 37.4 45.9 27.4
MT 19.0 25.9 26.3 36.5 53.8 29.1
A2Net 20.6 22.8 29.6 39.0 52.0 29.3
A2SFOD 20.0 25.3 27.2 40.2 54.0 30.0
SED 16.3 24.6 23.6 34.4 45.9 26.8
CSFDA 21.1 26.5 28.5 47.6 63.3 32.2
Ours 27.0 28.1 30.6 51.8 60.8 35.0
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Table 5: Performance Comparison on the FineAction→Thumos14 Benchmark for Each Action
Class.

Methods high jump long jump pole vault shot put clean and jerk play volleyball throw discus

Source 45.8 49.9 28.0 11.1 57.4 12.6 19.8
MT 62.5 59.4 43.7 10.8 39.8 10.8 31.0
A2Net 49.3 51.6 44.4 9.3 51.4 7.3 31.1
A2SFOD 58.9 60.5 44.7 4.4 39.8 16.4 29.5
SED 67.1 61.0 50.8 6.0 52.0 19.3 29.9
C-SFDA 53.5 60.2 43.5 4.6 50.2 13.4 33.5
Ours 73.7 64.0 34.1 9.3 55.6 17.7 30.6

Methods javelin throw diving table tennis baseball basketball mAP

Source 48.8 29.0 14.8 23.0 28.4 30.7
MT 61.9 33.3 15.9 33.6 27.7 35.9
A2Net 49.9 26.5 20.1 32.2 26.3 33.3
A2SFOD 59.1 33.9 24.9 24.1 24.9 35.1
SED 66.2 37.0 23.6 32.2 23.2 39.0
C-SFDA 59.4 38.0 26.4 37.0 23.9 37.0
Ours 67.1 23.9 20.7 42.1 35.2 39.5

Table 6: Performance Comparison on the Thumos14→FineAction Benchmark for Each Action
Class.

Methods high jump long jump pole vault shot put clean and jerk play volleyball

Source 34.3 36.4 50.3 24.7 62.3 1.8
MT 44.5 49.8 64.9 28.4 70.6 1.9
A2Net 34.5 43.2 46.1 31.8 68.1 1.9
A2SFOD 34.8 42.3 49.8 23.9 61.5 2.2
SED 31.3 38.9 46.7 30.7 65.3 1.6
C-SFDA 41.0 48.9 56.2 28.5 65.3 2.0
Ours 46.8 51.3 68.6 27.8 70.7 2.0

Methods throw discus javelin throw table tennis baseball basketball mAP

Source 12.2 13.7 9.6 0.1 1.0 22.4
MT 14.8 20.0 16.8 0.5 3.9 28.7
A2Net 14.7 14.7 12.0 0.1 1.0 24.3
A2SFOD 14.2 16.0 13.4 0.1 2.4 23.7
SED 13.3 15.9 11.2 0.1 1.1 23.3
C-SFDA 15.7 16.6 11.8 0.1 0.7 26.1
Ours 14.4 20.5 16.0 0.6 4.3 29.4

Table 7: Performance Comparison on the ActivityNet1.3→Thumos14 Benchmark for Each Action
Class.

Methods High jump Long jump Shot put Table soccer Clean and jerk Volleyball

Source 23.9 26.0 17.1 5.6 30.6 6.9
MT 21.4 25.0 15.3 4.7 29.4 5.9
A2Net 24.9 28.2 18.0 6.1 32.4 7.2
A2SFOD 38.5 31.5 13.9 8.3 14.9 15.3
SED 25.4 33.2 14.8 4.8 29.3 6.9
C-SFDA 23.5 25.4 16.5 5.5 29.7 6.8
Ours 27.0 28.8 19.7 6.3 26.8 7.6

Methods Discus throw Javelin throw Hammer throw Cricket diving mAP

Source 12.7 16.3 38.4 4.7 25.9 18.9
MT 11.1 14.4 34.4 4.3 22.8 17.2
A2Net 13.3 17.8 39.8 5.0 27.9 20.1
A2SFOD 16.8 17.0 11.9 13.4 27.7 19.0
SED 11.4 17.8 25.8 4.8 25.4 18.1
C-SFDA 12.8 16.2 37.4 4.6 25.5 18.5
Ours 14.4 19.9 45.0 4.9 26.1 20.6
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