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Abstract

We revisit the question of accelerating decoding of language models based on
speculative draft samples, inspired by Leviathan et al. [2023], Chen et al. [2023].
Following Sun et al. [2023] which makes connections between speculative decoding
and optimal transport theory, we design improved transport plans for this problem
with no sacrifice in computational complexity in terms of the alphabet size.

1 Introduction

Autoregressive large language models (LLMs) such as GPT-3 [Brown et al., 2020] and PALM
[Chowdhery et al., 2022] have shown impressive performance in several natural language processing
(NLP) tasks [Thoppilan et al., 2022, Touvron et al., 2023]. Given a context xt := x(1), x(2), . . . , x(t),
an autoregressive language model M generates the next token x(t + 1) via sampling from the
conditional distributionM(·|xt). One of the most popular method is to sample from a temperature-
scaled version of M(·|xt) usually called temperature sampling [Ackley et al., 1985, Ficler and
Goldberg, 2017]. If the temperature is chosen to be zero (referred to as greedy decoding), the next
token is determined by x(t+ 1) = arg maxx∈ΩM(x|xt), where Ω is the entire set of tokens (usually
called vocabulary set).
However, there is one inherent limitation to autoregressive language models: during the inference
time, the language modelM has to generate or decode each token one-by-one autoregressively. In
other words, the total decoding time scales with the total number of tokens need to be generated,
which could be prohibitive in many applications [Stern et al., 2018]. Consequently, several techniques
have been developed to speed up transformer-based language model decoding. Before we discuss
those, we first present a simplified computational model, following Sun et al. [2023].

Computational model. Given an autoregressive modelM and a context xt, with O(t2) computa-
tion and O(1) time, one can compute the conditional distributionM(·|xt). Specifically, we allow a
parallel computation along time and batch: given a several contexts, xt1, x

t
2, . . . , x

t
k, withO(k ·t2)

computation and O(1) time, one can computeM(·|xij) for all i = 1, 2, . . . , t and j = 1, . . . , k.

The main premise of the above computation model is that the computation along time and batch axes
does not increase the computation time, with an appropriate parallel computing. It is a simplified
characterization of the typical hardware used in practice, such as TPUs and GPUs.
In this work, following [Leviathan et al., 2023, Chen et al., 2023, Sun et al., 2023], we propose a
generic algorithm for accelerating language model decoding/inference based on speculative decoding.
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Similar to prior work, the approach is generic and modular, which could be combined with other
methods that improve the latency of the model, such as efficient transformer architectures. We first
discuss some background on speculative sampling to set the stage for our main results.

2 Preliminaries: speculative sampling and optimal transport

2.1 Speculative sampling

The main idea of speculative sampling is: First predict multiple tokens with smaller modelsMs

and validate these tokens with bigger models Mb. This general idea was extensively employed
for greedy decoding (i.e., zero temperature) [Stern et al., 2018, Ge et al., 2022, Yang et al., 2023a,
Kim et al., 2023, Yang et al., 2023b], and recently extended to a more practical setting of sampling
in two concurrent works [Leviathan et al., 2023, Chen et al., 2023] under the name of speculative
sampling/decoding. While deferring a more mathematical exposition to the next section, we first
qualitatively describe the main ideas.
The main premise is that we have access to a smaller, i.e., computationally cheaper, model Ms

for draft selection, with a property that it predicts the conditional distributionMs(·|xt) which is
“similar” to that of a larger modelMb(·|xt) for any given prefix xt. Given this access, speculative
sampling/decoding works as follows:

1. Draft construction. We first use the smaller modelMs to efficiently and “speculatively” construct
` draft tokens, and extend the current prefix xt = x(1), x(2), . . . , x(t) with x̃(t + 1), x̃(t +
2), . . . , x̃(t+ `). We then keep the conditional distributionsMs(·|xt, x̃t+1:t+i) for each i < `.

2. Parallel computation of actual conditional distributions. Given the observed draft samples, we
compute the conditional distribution of the larger model,Mb(·|xt, x̃t+1:t+i) for each i ≤ `.

3. Draft validation. “Carefully validate” and select `′ of the ` tokens and set x(t+ i) = x̃(t+ i) for
i ≤ `′. And with the new context xt+`

′
, we repeat this whole process from start.

The most important part of speculative sampling is the “careful validation” step. In particular, we
need to carefully design the validation step such that the output samples have the same distribution as
that ofMb. Fortunately for us, this question of generating samples from a distribution given access
to samples from another distribution is well-studied in probability theory, and generally referred to as
coupling (see, e.g., [Den Hollander, 2012]), which we formally define here.
Definition 1 (Coupling). For two distributions p over Ωp and q over Ωq, we say a joint distribution
π over Ωp × Ωq is called a coupling between p and q if its marginal on Ωp and Ωq are p and q,
respectively. In other words,

∑
y∈Ωq

π(x, y) = p(x) and
∑
x∈Ωp

π(x, y) = q(y). Let Π(p, q) be the
set of all possible couplings between p and q.

With the notion of coupling, the design of validation boils down to a design of an appropriate coupling.
In particular, we want to design a coupling carefully such that the number of accepted tokens is
maximized. This draft validation problem is formalized as an optimal transport problem [Villani
et al., 2009, Villani, 2021] in [Sun et al., 2023]. For a principled understanding, we follow the view
of Sun et al. [2023] and summarize the previous approaches from the perspective of designing a good
coupling.

2.2 Optimal transport view of speculative sampling

For simplicity, we describe previous approaches at the token-level draft selection stage, i.e., there
is a single-token draft and the validation step decides whether to accept this draft. Throughout the
section, we fix a context xt and let

p :=Ms(·|xt) and q :=Mb(·|xt).

Then we want to design a coupling that maximizes the chance of getting a draft sample accepted.
This can be nicely formulated in the framework of optimal transport.
Definition 2 (Optimal transport [Villani et al., 2009, Villani, 2021]). For a cost function c : Ωp ×
Ωq → R+, we define the cost associated to a coupling π ∈ Π(p, q) as

C(π) = E(X,Y )∼πc(X,Y ) .

2



The optimal transport plan is referred to a coupling π that minimizes the transport cost. More
precisely, the transport map Tπ : Ωp → P(Ωq) is defined as Tπ(y | x) = π(x, y)/p(x).

With the notion of optimal transport, Sun et al. [2023] formulate the design of a coupling as the
following optimal transport problem with Ωp = Ωq = Ω and

∀x, y ∈ Ω, c(x, y) = 1 {x 6= y} . (1)

Hence the coupling cost is equal to C(π) = EX,Y∼π1 {X 6= Y } = P(X 6= Y ). In fact, the
validation step designed in the previous works [Leviathan et al., 2023, Chen et al., 2023] is a transport
map for the optimal transport problem (1), as pointed out by Sun et al. [2023]. The transport map
for (1) is also known as maximal coupling in the literature [Den Hollander, 2012].

2.3 Sequential speculative sampling of Sun et al. [2023]

Noticing the connection between the scheme in [Leviathan et al., 2023, Chen et al., 2023] and
optimal tranport, Sun et al. [2023] proposed an improvement over the scheme by further exploiting
parallelization over batch. The main idea is to introduce multiple draft tokens to increase the
chance of acceptance. More formally, instead of sampling a single draft sample x fromMs(·|xt),
we draw k samples x1, x2, . . . , xk. Then the corresponding optimal transport problem becomes:
Ωp⊗k = Ω⊗k, Ωq = Ω and

∀(x1, . . . , xk) ∈ Ω⊗k, y ∈ Ω, c((x1, . . . , xk), y) = 1 {y /∈ {x1, . . . , xk}} . (OTMk)

We call the optimal transport problem with the cost given as (OTMk) the optimal transport with
membership cost and denote its optimal cost by OTMk. Note that OTMk recovers (1) when k = 1.
Although OTMk improves upon the scheme in [Leviathan et al., 2023, Chen et al., 2023], unfortu-
nately, to the best of our knowledge, we are currently unaware of an efficient method to solve OTMk.
More precisely, although the optimal transport problem can be written as a linear program [Villani
et al., 2009, Pele and Werman, 2009], given that the support of p⊗k has |Ω|k elements, the computa-
tional complexity of solving the program scales polynomially with |Ω|k, which could be too costly.
We provide a detailed discussion with the comparison between our method and the existing optimal
transport solvers in Subsection 4.3.
To provide an efficient speedup algorithm, an approximate solution to the OTMk was proposed
in [Sun et al., 2023], which they called k-sequential selection algorithm (kSEQ). We will revisit
their method and give a new interpretation for it, which will form a basis for our new algorithm
development. This will be the focus of the next section.

3 A family of sequential speculative sampling schemes

The basis of our method is the following canonical “sequential” selection process:

Algorithm 1 k-sequential selection algorithm (kSEQ)

input: k draft samples, x1, . . . , xk sampled as per p, and carefully chosen constants
α1, α2, . . . , αk > 0 constants and subsets Ω1, Ω2, · · · , Ωk of the vocabulary set Ω.
for i = 1 to k do

Accept y = xi with probability

{
αi · q(xi)

p(xi)
if xi ∈ Ωi

1 otherwise
and continue if rejected.

end for
output: Accepted sample y. (If all are rejected, sample y from the “residual” distribution.)

For k = 1, the optimal transport plan for OTMk [Leviathan et al., 2023, Chen et al., 2023] precisely
corresponds to Algorithm 1 where α1 = 1 and Ω1 = {x ∈ Ω : q(x) ≥ p(x)}. We extend their
scheme to multiple draft samples, and give it an additional flexibility to vary αi’s and Ωi’s. In fact,
the improved algorithm of Sun et al. [2023] is also a special case of Algorithm 1 where αi ≡ α? and
Ωi ≡ Ω? for carefully chosen α? and Ω? (we will shortly discuss this more precisely). However,
below we discuss that choosing identical αi’s and Ωi’s leads to a suboptimal performance even for a
very benign example of Bernoulli random variables.
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Example 1 (Bernoulli random variables). It turns out choosing identical αi’s and Ωi’s as in Sun
et al. [2023] leads to a suboptimal performance even for the simplest example of Bernoulli random
variables. Consider the case where p = Bern(0.5) and q = Bern(0.75) and Ω = {0, 1}. In this case,
we have OTM1 = 0.25 and OTMk = 0 for k ≥ 2. However, when we choose identical αi’s and Ωi’s
as in Sun et al. [2023], the optimal cost for k = 2 is ≈ 0.095, which is strictly greater than OTM2.
We will revisit this example in Subsection 4.4 and show that our proposed algorithms can close this
gap and achieve the optimal cost.

Given the above example, it is natural to ask how to achieve optimal performance for the above
Bernoulli example. To that end, let us inspect and compare the transport plan for two schemes. It
turns out that for the optimal kSEQ plan, the optimal choice is given as αi ≡ 0.764, while for the
OTM2 plan, α1 = 0 and α2 = 2. Hence, even for this basic example, the lesson is that: one needs to
carefully choose αi’s for higher draft acceptance rate. We discuss this next.

3.1 How to choose αi’s?

For the moment, let us assume that Ωi’s are already chosen and the main focus is to find an optimal
αi’s; we will discuss how to select Ωi’s in Section 4. For simple exposition, we assume throughout
the section that q(x) > 0 for all x ∈ Ω maxx∈Ω

q(x)
p(x) <∞.2

First, carefully inspecting Algorithm 1, note that the transport (or the probability that all draft samples
are rejected) is given as:

Transport cost:
k∏
i=1

(1− βi;αi
) , where βi;αi

:= p(Ωci ) + αi · q(Ωi) . (2)

This is because we accept xi with probability 1 if xi ∈ Ωci and with probability αi · q(xi)
p(xi)

if xi ∈ Ωi.
Hence our goal is to minimize the quantity (2). On the other hand, in order for Algorithm 1 to be a
valid coupling, there are several constraints we need to consider, resulting in:

Optimization variables: αi for i = 1, 2, . . . , k s.t. Ωi 6= ∅.
(for i s.t. Ωi = ∅, we set αi = 0 and exclude it from optimization variables)
minαi

∏k
i=1(1− βi;αi) (. transport cost.)

s.t.
∑k
i=1

[
ri(x) ·

∏i−1
j=1(1− βj;αj

)
]
≤ q(x), ∀x ∈ Ω (. accept prob. ≤ q(x))

where ri(x) :=

{
q(x)αi if x ∈ Ωi
p(x) otherwise.

0 ≤ αi ≤ minx∈Ωi

p(x)
q(x) , ∀i s.t. Ωi 6= ∅. (. accept prob. ≤ p(x))

(OPTk)

The next result shows that the validity of the coupling together with the optimality.
Theorem 1. Let p, q be the probability distributions over the vocabulary set Ω. For given subsets
Ω1,Ω2, . . . ,Ωk of Ω, any feasible points α1, α2, . . . , αk of (OPTk), when used in Algorithm 1 results
in a valid coupling between p⊗k and q. Moreover, let α?1, α

?
2, . . . , α

?
k be the solution to (OPTk).

Then Algorithm 1 with Ωi’s and α?i ’s is a valid coupling that is optimal in terms of the membership
cost (OTMk) among all the couplings of the form of Algorithm 1 with Ωi’s.

Proof. See Subsection A.1 for the proof.

Given Theorem 1, we are now interested in how to solve this nonlinear program (OPTk).

How to solve (OPTk)? At first glance, the optimization problem (OPTk) is a nonconvex polyno-
mial optimization problem, which could be hard to solve in general. However, fortunately to us, it
turns out one can reparametrize the problem so that it becomes a linear program in new variables, as
summarized in the following theorem.

2 Our discussion applies to the general case by considering the “effective” alphabets defined as Ωeff :=
{x ∈ Ω : q(x) > 0}, and assuming that (Ω \ Ωeff) ⊆ Ωi for all i = 1, 2, . . . , k.
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Theorem 2 (OPTk can be solved via a linear program!). Under the setting of Theorem 1,
consider the following substitution of (OPTk): ui =

∏i
j=1(1 − βj;αj ) for i = 1, 2, . . . , k, and

u0 := 1. Then, the optimization problem (OPTk) is equivalent to the linear program (LPk) which
has k variables and |Ω|+ k constraints.

Moreover, let u?1, u
?
2, . . . , u

?
k be the solution to the linear program (LPk). Then, the following

conversion rule turns the optimal solution u?1, u
?
2, . . . , u

?
k of (LPk) into an optimal solution of

(OPTk): for i = 1, 2, . . . , k, (i) if Ωi 6= ∅, set α?i := p(Ωi)/q(Ωi) − ui/(ui−1·q(Ωi)); if Ωi = ∅, set
α?i := 0. In other words, α?i ’s defined as above are the optimal solution to (OPTk).

Proof. See Subsection A.2 for the proof.

Thanks to Theorem 2, one can efficiently compute the optimal αi’s given the choice of Ωi’s. We next
build on the results from this section and discuss how to iteratively improve the solution.

3.2 Iterative scheme

Let Ω
(0)
i , i = 1, 2, . . . , k, be the initial choices of subsets. The main idea is that for a given collection

of initial subsets, we would like to iteratively update the optimal α(j)
i ’s and Ω

(j)
i ’s, for j = 1, 2, . . . .

Given Theorem 2, this iterative scheme can be implemented as Algorithm 2.

Algorithm 2 Iterative optimal ratios selection (iOPT(T )
k )

input: Initial choice of subsets Ω
(0)
1 , Ω

(0)
2 , · · · , Ω

(0)
k ⊂ Ω. Number of iterations T .

for j = 1, 2, . . . , T do
Let α(j−1)

i ’s be the solution to (OPTk) with p and q, and the subsets Ω
(j−1)
i ’s.

. Note: thanks to Theorem 2, this step amounts to solving a linear program (LPk).
Set Ω

(j)
i := {x ∈ Ω

(j−1)
i : α

(j−1)
i q(x) < p(x)} for j = 1, 2 . . . , k.

if Ω
(j)
i = Ω

(j−1)
i ∀i then

break
end if

end for
output: Ω

(j)
1 , Ω

(j)
2 , · · · , Ω

(j)
k and α(j)

1 , . . . , α
(j)
k .

Given this iterative scheme, the natural question is whether Algorithm 2 terminates within a finite
number of iterations. The following result precisely addresses this.

Theorem 3. Each iteration of the iterative scheme iOPT(∞)
k (Algorithm 2) monotonically decreases

the transport cost. Moreover, it terminates in at most k|Ω| iterations.

Proof. Let us consider a single iteration of the iterative scheme. For a given collection of subsets Ωi’s,
let αi’s be the solution to (OPTk) with Ωi’s. Let us denote the subsets for the next iteration by Ω′i,
i.e., Ω′i := {x ∈ Ωi : αi · q(x) < p(x)}. Then, it holds that Ω′i ⊆ Ωi for each i = 1, 2, . . . , k. Then
by definition, it holds that Ω′i ⊆ Ωi. In order to show that each iteration monotonically decreases the
transport cost, for previous solution αi’s to (OPTk), it holds that for all x ∈ Ωi, αi · q(x) ≤ p(x).
This is precisely due to the last constraint in (OPTk). This shows that the previous αi’s are still
feasible for the next Ω′i’s. Hence, the next iteration will only decrease the transport cost further.

4 How to initialize the algorithm?

In our main algorithm, we initialize the subsets Ωi’s based on the scheme of Sun et al. [2023].

4.1 The algorithm of Sun et al. [2023]

Although, Sun et al. [2023] had a different motivation for their algorithm design, one can in fact
present their algorithm from a general perspective, given our discussion in Subsection 3.1.
Interpretation of Sun et al. [2023]. It corresponds to the optimization problem (OPTk) where
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• we choose subsets Ωi’s to be same, i.e., Ωi ≡ Ω̂ for some Ω̂, and
• more importantly, we add an additional constraint that all the αi’s have to be the same, i.e.,
αi ≡ α̂ for all i = 1, 2, . . . , k.

Before detailing the choice of Ω?, we first write down the optimization problem (OPTk) for the
case when all Ωi’s are chosen to be same, i.e., Ωi ≡ Ω̂, and αi’s are chosen to be the same, i.e.,
αi ≡ α̂ for all i = 1, 2, . . . , k. Hence, the token-wise acceptance probability is now defined as
βα̂ := p(Ω̂c) + α̂ · q(Ω̂). In that case, the optimization problem (OPTk) gets simplified to:

minα̂ (1− βα̂)k

s.t. 1− (1− βα̂)k ≤ α̂−1 · βα̂ ,
1− (1− βα̂)k ≤ minx∈Ω̂c

q(x)
p(x) · βα̂ ,

0 ≤ α̂ ≤ minx∈Ω̂
p(x)
q(x) .

(3)

See Subsection A.3 for details. In fact, now that there is only a single optimization variable, we
can make another modification that enables us to optimize over Ω̂. Since we only have a single
optimization variable α̂, one can actually include the choice of Ω̂ in the optimization. One can do this
by setting Ω̂ = {x ∈ Ω : p(x) ≥ α̂ · q(x)}. With this choice, the token-wise acceptance probability
can be written as:

β̂α̂ :=
∑
x∈Ω

min{p(x), α̂ · q(x)} ,

which is not a linear function but a piece-wise linear function of α̂. With this choice, (3) gets further
simplified (see Subsection A.4):{

minα̂≥0 (1− β̂α̂)k

s.t. 1− (1− βα̂)k ≤ α̂−1 · β̂α̂ .
(4)

Inspecting the constraint of (4), notice that the LHS is increasing in α̂ and the RHS is decreasing in
α̂. Hence, the unique solution α(k)

? of the above optimization problem is the solution of the equation

α
(k)
? ≥ 0 s.t. 1− (1− β

α
(k)
?

)k = (α
(k)
? )−1β

α
(k)
?
. (5)

We now discuss how we initialize Algorithm 2 with this scheme.

4.2 SpecTr++: two improvements over [Sun et al., 2023]

We now use this solution to initialize the subsets Ωi’s for Algorithm 2. As we discussed in Subsec-
tion 4.1, the optimization problem (4) lets us also optimize over the subset Ω̂. Hence, the subset
induced by the optimization problem (4) is a good candidate for the initialization.

Definition 3 (Saturated subsets). For a given pair of distributions p and q, let α(k)
? be the optimal

solution of (5). We define the saturated subset as Ω
(k)
? := {x ∈ Ω : p(x) ≥ α(k)

? · q(x)}.

For Algorithm 2, let us initialize the subsets Ωi’s to be Ω
(k)
? . Since each iteration of iOPT(T )

k
monotonically decreases the transport cost, we have the two improvements over Sun et al. [2023].

Definition 4 (SpecTr++). For a given pair of distributions p and q, consider running iOPT(T )
k

(Algorithm 2) with the initialization of subsets given as Ωi ≡ Ω
(k)
? . Let STrk(p, q) be the algorithm

of [Sun et al., 2023], i.e., iOPT(0)
k = STrk(p, q). Then, we define the following two improvements:

• STr+k (p, q): the result of iOPT(1)
k .

• STr++
k (p, q): the result of iOPT(∞)

k .

Computational complexity of proposed methods. Here we discuss the computational complexity
of the methods in Definition 4. As noted by Sun et al. [2023], in practical applications, we typically
have k � |Ω|, so we mainly focus on the complexity dependence on |Ω|.
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• As discussed in [Sun et al., 2023], the runtime of STrk is equal to O(|Ω| log k).
• During the first iteration of Algorithm 2, since Ωi’s are all equal, the first |Ω| constraints of (LPk)

becomes identical. Hence, (LPk) has k variables and k+ 1 constraints. Hence, the total complexity
of STr+k is still O(|Ω| log k), where the polynomial dependence on |Ω| is disregarded.

• Recall that the complexity of linear program in the fixed dimension with m constraints is O(m)
(see, e.g., [Megiddo et al., 1986]). Hence, for T iterations of Algorithm 2, the total complexity is
O(|Ω| log k + T · |Ω|). In light of Theorem 3, it holds that the worst-case complexity of STr++

k is
O(k · |Ω|2). However, in practice, we observe that the number of iterations Algorithm 2 takes to
converge is much smaller than k · |Ω| and the bound is rather conservative.

We now compare the computation complexity of our schemes with the existing(approximate) optimal
transport solvers.

4.3 Comparison with optimal transport solvers

Let V = |Ω|. We first note that the optimal transport problem (OTMk) is a linear program with
V k+1 variables (in order to express the joint distribution) and O(V k + V ) constraints to enforce
the constraints for correct marginal distributions. Hence, the computational complexity of solving
this linear program using the interior point method requires time O(V 3.5(k+1)) [Renegar, 1988],
and a method based on Lee-Sidford barrier requires time Õ(V 2.5(k+1)) [Lee and Sidford, 2014].
Moreover, other practical algorithm like Orlin’s algorithm based on minimul cost flow has complexity
of Õ(V 3(k+1)). Note that all these methods have complexity of O(V Ω(k)), which could be highly
costly for applications where both V and k become larger.
Next, we make a comparison with another popular optimal transport solvers based-on Sinkhorn
projections [Cuturi, 2013, Altschuler et al., 2017]. For a detailed comparison, let C ∈ (RV )⊗(k+1)

be the cost matrix of (OTMk), i.e.,

Ci1,i2,...,ik,j = 1 {j /∈ {i1, . . . , ik}} for i1, i2, . . . , ik, j ∈ Ω.

Then, note that the number of nonzero elements in C is Ω(V k). The main component of Sinknorn
iteration is the Sinkhorn projection of the matrix A = exp(−ηC) for a chosen step size η > 0. More
specifically, the for scaling constants given an iteration, say x ∈ (RV )⊗k and y ∈ RV , the Sinkhorn
projection requires the computation of diag(x)Adiag(y), which requires time Ω(V k), since A has at
least Ω(V k) nonzero entries. Hence the overall computation complexity would be still O(V Ω(k)).
We conclude this section by revisiting the example of Bernoulli distributions (Example 1) and discuss
how our proposed methods overcome the limitations of [Sun et al., 2023].

4.4 The Bernoulli example (Example 1) revisited

Consider a pair of Bernoulli distributions, i.e., p = Bern(0.5) and q = Bern(0.75) and Ω = {0, 1}.
For k = 2, the optimal transport plan is equal to:

• OTM2 plan:
{

w.p. 1 , if X1 = 1

w.p. 0 , if X1 = 0
and

{
w.p. 1 , if X2 = 1

w.p. 1 , if X2 = 0
.

On the other hand, α(k)
? defined in (5) is 0.764, which leads to the following transport plan:

• Sun et al. [2023] plan:
{

w.p. 1 , if Xi = 1

w.p. 0.764 · 0.5 = 0.382 , if Xi = 0
for i = 1, 2.

This transport plan does not achieve the OTM transport cost of 0. On the other hand, a single iteration
of Algorithm 2 (namely STr+k (p, q)) would lead to the solution of α1 = 0 and α2 = 2. Note that this
choice of α1, α2 corresponds to the optimal transport plan.

5 Experiments

In order to test the performance of our proposed methods from Definition 4, we conduct an experiment
where the distributions p and q are generated randomly over a fixed vocabulary set Ω. In NumPy, we
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used the code p = np.random.rand(|Ω|) and p = p/np.sum(p). We measure the performance
of each algorithm according to the token acceptance probability: for an algorithm A and a pair of
distributions p, q, we define the acceptance probability accA(p, q) as (1− transport cost of A(p, q)).
We repeat the experiments over 100 different random pairs of distributions. We choose the support
size |Ω| ∈ {5, 10} to make the OTM solution feasible. We compare the following five algorithms:

• Three algorithms STrk(p, q), STr+k (p, q), and STr++
k (p, q) from Definition 4.

• The optimal transport plan (OTMk).
• The optimal kSEQ algorithm (of the form Algorithm 1) where we search over all possible sequences

of subsets Ω1,Ω2, . . . ,Ωk and pick the best choice.

In Figure 1 and Figure 2, we report the experimental results for the support sizes 5 and 10, respectively.
For each algorithm A, we report two different metrics: (i) acceptance probability accA; (ii) the worst-
case approximation ratio for A formally defined as minp,q

accA(p,q)
accOTM(p,q) , where the minimum is taken

over 100 different random pairs of distributions.

Figure 1: Results for |Ω| = 5.

Figure 2: Results for |Ω| = 10.

From Figure 1, one can see that the performance of our proposed methods are quite close to that
of the optimal kSEQ algorithm. Compared to the optimal transport plan, we observe that among
the examples, our proposed methods achieve an approximation ratio of at least ≈ 0.85, which is an
improvement over STr [Sun et al., 2023]. Similar observations holds for a bigger support size of 10 as
shown in Figure 2. We leave rigorously proving that the propose methods achieve better worst-case
approximation ratios than STr as an important future direction.
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A Deferred derivations from the main text

A.1 Derivation of the optimization problem (OPTk)

In this section, we provide the precise derivation of the optimization problem (OPTk). We first
compute the probability that the algorithm accepts a draft sample, namely, P (accept, y = x) =∑k
i=1 P (accept at ith sample, y = x). Let’s compute for each i = 1, 2, . . . , k:

P (accept at ith sample, y = x) =

{
αi · q(x) ·

∏i−1
j=1(1− βj;αj

) , if x ∈ Ωi ,

p(x) ·
∏i−1
j=1(1− βj;αj

) , if x ∈ Ωci .

Using this calculation, we compute the probability that Algorithm 1 accepts the draft sample x ∈ Ω:

P (accept, y = x) =

k∑
i=1

(1 {x ∈ Ωci} · p(x) + 1 {x ∈ Ωi} · q(x)αi) ·
i−1∏
j=1

(1− βj;αj )


In order to ensure that this probability is smaller than q(x), we hence need the constraint:

k∑
i=1

(1 {x ∈ Ωci} · p(x) + 1 {x ∈ Ωi} · q(x)αi) ·
i−1∏
j=1

(1− βj;αj
)

 ≤ q(x), ∀x ∈ Ω

Next, we also need a constraint that for each alphabet x in Ωi, αi can’t be scaled up too much; the
probability with which we accept the token cannot go beyond 1. For this constraint, we focus on the
case Ωi 6= ∅.

• For each alphabet x ∈ Ωi, the token acceptance probability is given as αi · q(x)
p(x) . This has to be less

than equal to 1, which introduces the following constraint:

∀i = 1, 2 . . . , k, 0 ≤ αi ≤
p(x)

q(x)
∀x ∈ Ωi ,

or equivalently, we have

∀i = 1, 2 . . . , k, 0 ≤ αi ≤ min
x∈Ωi

p(x)

q(x)
.

Note that when Ωi = ∅, then αi is not relevant anymore, so we set αi to be 0 and exclude αi from
the optimization variables. This completes the derivation of (OPTk).

A.2 Proof of Theorem 2

Before we get into the proof, recall the definitions. First, we have βi;α = p(Ωci ) + α · q(Ωi) and

ui =

i∏
j=1

(
p(Ωi)− αi · q(Ωi)

)
for i = 1, 2, . . . , k , (6)

and u0 := 1. With this substitution, we will show that (OPTk) becomes the following linear program:

Optimiazation variables: ui for i = 1, 2, . . . , k s.t. Ωi 6= ∅.
(for i s.t. Ωi = ∅, we set ui = ui−1 and exclude it from optimization variables)
minu1,...,uk

uk
s.t.
∑k
i=1 fi(x) ≤ q(x), ∀x ∈ Ω

where fi(x) :=

{
q(x)

(
p(Ωi)
q(Ωi)

ui−1 − 1
q(Ωi)

ui

)
if x ∈ Ωi

p(x)ui−1 otherwise.
(p(Ωi)− γmin

i · q(Ωi)) · ui−1 ≤ ui ≤ p(Ωi) · ui−1, ∀i s.t. Ωi 6= ∅.

(LPk)

Here, γmin
i := minx∈Ωi

p(x)
q(x) for i = 1, 2, . . . , k.
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We begin by deriving the conversion formula between αi’s and ui’s. From (6), it follows that
ui
ui−1

= 1− p(Ωci )− αi · q(Ωi) = p(Ωi)− αi · q(Ωi) .

Hence, whenever Ωi 6= ∅, we have the following conversion formula between αi’s and ui’s.

αi =
p(Ωi)

q(Ωi)
− 1

q(Ωi)

ui
ui−1

, for i = 1, 2, . . . , k s.t. Ωi 6= ∅.

This in particular implies that for i s.t. Ωi 6= ∅,
ri(x) = 1 {x ∈ Ωci} · p(x) + 1 {x ∈ Ωi} · q(x)αi

= 1 {x ∈ Ωci} · p(x) + 1 {x ∈ Ωi} · q(x)

(
p(Ωi)

q(Ωi)
− 1

q(Ωi)

ui
ui−1

)
,

and hence the “left hand side” of the first constraint in (OPTk) becomes:
k∑
i=1

ri(x) ·
i−1∏
j=1

(1− βj;αj
)

 =

k∑
i=1

[ri(x) · ui−1]

=

k∑
i=1

[
1 {x ∈ Ωci} · p(x)ui−1 + 1 {x ∈ Ωi} · q(x)

(
p(Ωi)

q(Ωi)
ui−1 −

1

q(Ωi)
ui

)]
.

Now using the notation γmin
i := minx∈Ωi

p(x)
q(x) for i = 1, 2, . . . , k, the last constraint of (OPTk)

becomes:
0 ≤ αi ≤ γmin

i , ∀i s.t. Ωi 6= ∅.

Hence, for i s.t. Ωi 6= ∅, using the relation αi = p(Ωi)
q(Ωi)

− 1
q(Ωi)

ui

ui−1
, it follows that

0 ≤ αi ≤ γmin
i ⇐⇒ (p(Ωi)− γmin

i q(Ωi)) · ui−1 ≤ ui ≤ p(Ωi) · ui−1 .

This completes the derivation of (LPk).

A.3 Derivation of the optimization problem (3)

Recall that we have the following two additional constraints:

• we choose subsets Ωi’s to be same, i.e., Ωi ≡ Ω̂ for some Ω̂, and
• αi ≡ α̂ for all i = 1, 2, . . . , k.

With these additional constraints, we have the following simplifications:

• The cost simplifies to (1− βα̂)k.

• As for the first constraint, we only need to maintain two constraints depending on whether x ∈ Ω̂
or not:
– When x ∈ Ω̂, ri(x) = αq(x), and hence the LHS of the constraint becomes

k∑
i=1

ri(x) ·
i−1∏
j=1

(1− βj;αj )

 = αq(x) ·
k∑
i=1

(1− βα)i−1 = αq(x) · 1− (1− βα)k

βα
.

Thus, the first constraint in this case becomes

αq(x) · 1− (1− βα)k

βα
≤ q(x) ⇐⇒ 1− (1− βα)k ≤ α−1 · βα

– When x /∈ Ω̂, ri(x) = p(x), and hence the LHS of the constraint becomes

p(x) · 1− (1− βα)k

βα
≤ q(x) ⇐⇒ 1− (1− βα)k ≤ min

x∈Ωc

q(x)

p(x)
· βα .

• Lastly, the second constraint becomes 0 ≤ α ≤ minx∈Ω̂
p(x)
q(x) .

Combining all these simplifications, we obtain (3).
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A.4 Derivation of the optimization problem (4)

Recall that relative to the optimization problem (4), we set Ω̂ = {x ∈ Ω : p(x) ≥ α̂ · q(x)}, and
hence, the token-wise acceptance probability is

β̂α̂ :=
∑
x∈Ω

min{p(x), α̂ · q(x)} .

In particular, some constraints in (3) become redundant:

• By the choice of Ω̂, we have α̂−1 < q(x)
p(x) for all x ∈ Ω̂c, which implies that α̂−1 < minx∈Ω̂c

q(x)
p(x) .

Hence, in (3), the first constraint implies the second constraint, and we can omit the second
constraint.

• Moreover, we have p(x) ≥ α̂ · q(x) for all x ∈ Ω̂, which implies that α̂ ≤ minx∈Ω̂
p(x)
q(x) holds.

Hence, with this simplification, the optimization problem (3) reduces to (4).

B Algorithm derivations for general case

B.1 Derivation of the optimization problem (general)

Questions:

• How to initialize Ωi’s (when pi’s are different)?

Transport cost:
k∏
i=1

(1− βi;αi) , where βi;αi
:= pi(Ω

c
i ) + αi · q(Ωi) .

This is because we accept xi with probability 1 if xi ∈ Ωci and with probability αi · q(xi)
p(xi)

if xi ∈ Ωi.

Optimization variables: αi for i = 1, 2, . . . , k s.t. Ωi 6= ∅.
(for i s.t. Ωi = ∅, we set αi = 0 and exclude it from optimization variables)
minαi

∏k
i=1(1− βi;αi

) (. transport cost.)

s.t.
∑k
i=1

[
ri(x) ·

∏i−1
j=1(1− βj;αj

)
]
≤ q(x), ∀x ∈ Ω (. accept probability ≤ q(x))

where ri(x) :=

{
q(x)αi if x ∈ Ωi
pi(x) otherwise.

0 ≤ αi ≤ minx∈Ωi

pi(x)
q(x) , ∀i s.t. Ωi 6= ∅. (. accept≤ p(x))

We first compute the probability that the algorithm accepts a draft sample, namely,
P (accept, y = x) =

∑k
i=1 P (accept at ith sample, y = x). Let’s compute for each i = 1, 2, . . . , k:

P (accept at ith sample, y = x) =

{
αi · q(x) ·

∏i−1
j=1(1− βj;αj

) , if x ∈ Ωi ,

pi(x) ·
∏i−1
j=1(1− βj;αj ) , if x ∈ Ωci .

Using this calculation, we compute the probability that Algorithm 1 accepts the draft sample x ∈ Ω:

P (accept, y = x) =

k∑
i=1

(1 {x ∈ Ωci} · pi(x) + 1 {x ∈ Ωi} · q(x)αi) ·
i−1∏
j=1

(1− βj;αj
)


In order to ensure that this probability is smaller than q(x), we hence need the constraint:

k∑
i=1

(1 {x ∈ Ωci} · pi(x) + 1 {x ∈ Ωi} · q(x)αi) ·
i−1∏
j=1

(1− βj;αj
)

 ≤ q(x), ∀x ∈ Ω

Next, we also need a constraint that for each alphabet x in Ωi, αi can’t be scaled up too much; the
probability with which we accept the token cannot go beyond 1. For this constraint, we focus on the
case Ωi 6= ∅.
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• For each alphabet x ∈ Ωi, the token acceptance probability is given as αi · q(x)
pi(x) . This has to be

less than equal to 1, which introduces the following constraint:

∀i = 1, 2 . . . , k, 0 ≤ αi ≤
pi(x)

q(x)
∀x ∈ Ωi ,

or equivalently, we have

∀i = 1, 2 . . . , k, 0 ≤ αi ≤ min
x∈Ωi

pi(x)

q(x)
.

Note that when Ωi = ∅, then αi is not relevant anymore, so we set αi to be 0 and exclude αi from
the optimization variables. This completes the derivation of (OPTk).

B.2 Proof of Theorem 2

Before we get into the proof, recall the definitions. First, we have βi;α = pi(Ω
c
i ) + α · q(Ωi) and

ui =

i∏
j=1

(
pi(Ωi)− αi · q(Ωi)

)
for i = 1, 2, . . . , k ,

and u0 := 1. With this substitution, we will show that (OPTk) becomes the following linear program:

Optimiazation variables: ui for i = 1, 2, . . . , k s.t. Ωi 6= ∅.
(for i s.t. Ωi = ∅, we set ui = ui−1 and exclude it from optimization variables)
minu1,...,uk

uk
s.t.
∑k
i=1 fi(x) ≤ q(x), ∀x ∈ Ω

where fi(x) :=

{
q(x)

(
pi(Ωi)
q(Ωi)

ui−1 − 1
q(Ωi)

ui

)
if x ∈ Ωi

pi(x)ui−1 otherwise.
(pi(Ωi)− γmin

i · q(Ωi)) · ui−1 ≤ ui ≤ pi(Ωi) · ui−1, ∀i s.t. Ωi 6= ∅.

Here, γmin
i := minx∈Ωi

pi(x)
q(x) for i = 1, 2, . . . , k.

We begin by deriving the conversion formula between αi’s and ui’s. From (6), it follows that
ui
ui−1

= 1− pi(Ωci )− αi · q(Ωi) = pi(Ωi)− αi · q(Ωi) .

Hence, whenever Ωi 6= ∅, we have the following conversion formula between αi’s and ui’s.

αi =
pi(Ωi)

q(Ωi)
− 1

q(Ωi)

ui
ui−1

, for i = 1, 2, . . . , k s.t. Ωi 6= ∅.

This in particular implies that for i s.t. Ωi 6= ∅,
ri(x) = 1 {x ∈ Ωci} · pi(x) + 1 {x ∈ Ωi} · q(x)αi

= 1 {x ∈ Ωci} · pi(x) + 1 {x ∈ Ωi} · q(x)

(
pi(Ωi)

q(Ωi)
− 1

q(Ωi)

ui
ui−1

)
,

and hence the “left hand side” of the first constraint in (OPTk) becomes:
k∑
i=1

ri(x) ·
i−1∏
j=1

(1− βj;αj )

 =

k∑
i=1

[ri(x) · ui−1]

=

k∑
i=1

[
1 {x ∈ Ωci} · pi(x)ui−1 + 1 {x ∈ Ωi} · q(x)

(
pi(Ωi)

q(Ωi)
ui−1 −

1

q(Ωi)
ui

)]
.

Now using the notation γmin
i := minx∈Ωi

pi(x)
q(x) for i = 1, 2, . . . , k, the last constraint of (OPTk)

becomes:
0 ≤ αi ≤ γmin

i , ∀i s.t. Ωi 6= ∅.
Hence, for i s.t. Ωi 6= ∅, using the relation αi = pi(Ωi)

q(Ωi)
− 1

q(Ωi)
ui

ui−1
, it follows that

0 ≤ αi ≤ γmin
i ⇐⇒ (pi(Ωi)− γmin

i q(Ωi)) · ui−1 ≤ ui ≤ pi(Ωi) · ui−1 .

This completes the derivation of (LPk).
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