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ABSTRACT

In reinforcement learning (RL), adaptive curricula have proven highly effective
for learning policies that generalize well under a wide variety of changes to the
environment. Recently, the framework of Unsupervised Environment Design
(UED) generalized notions of curricula for RL in terms of generating entire
environments, leading to the development of new methods with robust minimax-
regret properties. However, in partially-observable or stochastic settings (those
featuring aleatoric uncertainty), optimal policies may depend on the ground-
truth distribution over the aleatoric features of the environment. Such settings
are potentially problematic for curriculum learning, which necessarily shifts the
environment distribution used during training with respect to the fixed ground-
truth distribution in the intended deployment environment. We formalize this
phenomenon as curriculum-induced covariate shift, and describe how, when the
distribution shift occurs over such aleatoric environment parameters, it can lead to
learning suboptimal policies. We then propose a method which, given black-box
access to a simulator, corrects this resultant bias by aligning the advantage estimates
to the ground-truth distribution over aleatoric parameters. This approach leads to a
minimax-regret UED method, SAMPLR, with Bayes-optimal guarantees.

1 INTRODUCTION

Adaptive curricula, which dynamically adjust the distribution of training environments to optimize
the performance of the resulting policy, have played a key role in many recent achievements in
deep reinforcement learning (RL). Applications have spanned both single-agent RL (Portelas et al.,
2020; Wang et al., 2019; Zhong et al., 2020; Justesen et al., 2018), where adaptation occurs over
environment variations, and multi-agent RL (MARL), where adaptation can additionally occur over
co-players (Silver et al., 2016; Vinyals et al., 2019; Stooke et al., 2021). By presenting the agent with
challenges at the threshold of its abilities, such methods demonstrably improve the sample efficiency
and the generality of the final policy (Matiisen et al., 2017; Dennis et al., 2020; Jiang et al., 2021b;a).

This work introduces a fundamental problem relevant to adaptive curriculum learning methods for RL,
which we call curriculum-induced covariate shift (CICS). Analogous to the covariate shift that occurs
in supervised learning (SL), CICS refers to a mismatch between the input distribution at training and
test time, and in this case, specifically when the distribution shift is caused by the selective sampling
performed by an adaptive curriculum. While there may be cases in which CICS impacts model
performance in SL, adaptive curricula for SL have generally not been found to be as impactful as in
RL (Wu et al., 2021). Therefore, here we focus on addressing this problem specifically as it arises in
the RL setting, and leave investigation of its potential impact in SL to future work.

To establish precise language around adaptive curricula, we cast our discussion under the lens of
Unsupervised Environment Design (UED, Dennis et al., 2020). UED provides a formal problem
description for which curriculum learning is the solution, by defining the Underspecified POMDP
(UPOMDP; see Section 2), which expands the classic POMDP with a set of free parameters Θ,
representing the dimensions along which the environment may vary across episodes. The goal of
UED is then to adapt distributions over Θ, so to maximize some objective, which could be tied to an
RL agent’s performance over this distribution. This allows us to view adaptive curricula as emerging
via a multi-agent game between a teacher that proposes environments with parameters θ ∼ Θ and a
student that learns to solve them. In addition to the notational clarity it provides, this formalism lends
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Figure 1: Adaptive curricula can result in covariate shifts in environment parameters with respect to a fixed
ground-truth distribution P (θ) (see top path), e.g. whether apple or banana is the correct fruit to choose per
level. Here, the policy π (π ) always chooses apple (banana). Our method, SAMPLR (bottom path) matches
the advantages in sampled levels to the advantages observed if sampling levels from P (θ) (blue triangles), thus
constraining the optimal policy under the curriculum distribution P (θ) to match that under P (θ).

the analysis of adaptive curricula to useful game theoretic constructs, such as Nash equilibria (NE,
Nash et al., 1950).

This game-theoretic view has led to the development of curriculum methods with principled robustness
guarantees, such as PAIRED (Dennis et al., 2020) and Prioritized Level Replay (PLR, Jiang et al.,
2021a), which showed that curricula optimizing for the student’s regret lead to minimax regret
(Savage, 1951) policies at Nash equilibria, implying the agent can solve all solvable environments
within the training domain. While other methods can also be cast in this framework, they do not hold
the same desirable property at equilibrium. For this reason, we will focus on addressing CICS for
regret-maximizing UED, but note that our solution can be used with other UED methods.

To see how the CICS can be problematic, consider the simplified case of training a self-driving car
in simulation, so it learns to take the fastest route from home to office. Suppose traffic data shows
on 70% of the days, Route 1 is faster than Route 2. Moreover, on any given day the self-driving car
cannot infer which route is faster ahead of time, so always picking Route 1 is faster in expectation.
To support training a policy using an adaptive curriculum, one could build a simulator which sets
road conditions per episode based on a random day sampled from the traffic data. However, adaptive
curriculum over the traffic settings may oversample days when Route 1 is closed—perhaps because
it finds the agent needs more practice on Route 2—shifting the best choice to Route 2 in training.
In fact, methods for minimax regret UED like PLR would keep shifting the distribution of fastest
route, to maximize the agent’s regret. Their curriculum dynamics would map to the zero-sum game
of matching pennies, in which one player wins for guessing whether the other chose heads or tails;
the NE corresponds to each player randomly playing each option half the time. Randomly picking
the route in this way is suboptimal, because in reality Route 1 is faster in expectation. This example
is depicted in Figure 1, where the two routes are replaced by an apple and banana.

If, on a given day, the faster route could be identified before having to pick one, the agent could
choose optimally. Instead, it is an aleatoric parameter, inducing irreducible uncertainty in the limit
of infinite experiential data (Der Kiureghian & Ditlevsen, 2009). When CICS occurs over such
parameters, with respect to a ground-truth distribution of environments P (θ), the learned policy can
be suboptimal with respect to P . It can therefore be useful to ground—that is, to constrain—the
aleatoric parameters Θ′ ⊂ Θ to P (θ′) when it is known or can be learned, as in simulation or from
real-world data. However, grounding all θ is undesirable, preventing the curriculum from sampling
enough opportunities to learn from useful scenarios with low support under P (θ).

In this work, we formalize the problem of CICS in RL, and provide a solution by proposing a UED
method to find robustly Bayes-optimal policies where θ′ is grounded to P (θ′). Our solution called
Sample-Matched PLR (SAMPLR) extends PLR, a state-of-the-art UED algorithm, by constraining the
advantage estimates to match those observed if training under P (θ′). This advantage correction adapts
Off-Belief Learning (Hu et al., 2021) from cooperative MARL, revealing an intriguing connection
between curriculum biases observed in single and multi-agent RL. Our experiments in challenging
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environments based on the NetHack Learning Environment (NLE, Küttler et al., 2020) demonstrate
that SAMPLR learns near-optimal policies under CICS, in cases where standard PLR fails.

2 BACKGROUND

2.1 UNSUPERVISED ENVIRONMENT DESIGN

The problem of Unsupervised Environment Design (UED, Dennis et al. (2020)) is the problem of
automatically generating an adaptive distribution of environments which will lead to policies that
successfully transfer within a target domain. The domain of possible environments is represented
by an Underspecified POMDP (UPOMDP), which adds a set of free parameters to the standard
definition of a POMDP, along which each concrete instantiation, or level, of the UPOMDP. For
instance, these free parameters can be the position of obstacles in a maze, or friction coefficients
in a physics-based task. Formally a UPOMDP is defined as a tupleM = 〈A,O,Θ,S, T , I,R, γ〉,
where A is a set of actions, O is a set of observations, Θ is a set of free parameters, S is a set of
states, T : S ×A×Θ→∆(S) is a transition function, I : S → O is an observation (or inspection)
function,R : S → R is a reward function, and γ is a discount factor. UED typically approaches the
curriculum design problem as training a teacher agent that co-evolves an adversarial curriculum for a
student agent, for example, by maximizing the student’s regret.

We will focus on a recent UED algorithm called Robust Prioritized Level Replay (PLR⊥, Jiang
et al., 2021b), which performs environment design via random search. PLR maintains a buffer of
the most useful levels for training, according to some learning potential score—typically based on
a regret approximation, such as the positive value loss—and with probability p, actively samples
the next training level from this level buffer instead of the ground-truth training distribution. This
selective-sampling mechanism has been demonstrated to greatly improve sample-efficiency and
generalization in several domains, while provably leading to a minimax regret policy for the student
at NE. In maximizing regret, PLR curricula naturally avoid unsolvable levels, which have no regret.

2.2 OFF-BELIEF LEARNING

In cooperative MARL, self-play promotes the formation of cryptic conventions—arbitrary sequences
of actions that allow agents to communicate information about the environment state. These
conventions are learned jointly among all agents during training, but are arbitrary and hence,
indecipherable to independently-trained agents or humans at test time. Crucially, this leads to
policies that fail to perform zero-shot coordination (ZSC, Hu et al., 2020), where independently-
trained agents must cooperate successfully without additional learning steps, or ad-hoc team play.
Off-Belief Learning (OBL) resolves this problem by forcing agents to assume their co-players act
according to a fixed, known policy π0 until the current time t, and optimally afterwards, conditioned
on this assumption. If π0 is playing uniformly random, this removes the possibility of forming
arbitrary conventions.

Formally, let G be a decentralized, partially-observable MDP (Dec-POMDP, Bernstein et al., 2002),
with state s, joint action a, observation function Ii(s) for each player i, and transition function
T (s, a). Let the historical trajectory τ = (s1, a1, ...at−1, st), and the action-observation history
(AOH) for agent i be τ i = (Ii(s1), a1, ..., at−1, Ii(st)). Further, let π0 be an arbitrary policy, such
as a uniformly random policy, and Bπ0(τ |τ i) = P (τt|τ it , π0), a belief model predicting the current
state, conditioned on the AOH of agent i and the assumption of co-players playing policy π0 until
the current time t, and optimally according to π1 from t and beyond. OBL aims to find the policy π1

with the optimal, counter-factual value function,

V π0→π1(τ i) = Eτ∼Bπ0
(τ i) [V π1(τ)] . (1)

As the agent conditions its policy on the realized AOH τ i, while transition dynamics are based on
states sampled from B, this mechanism is called a fictitious transition. In Section 5, we show how
OBL’s fictitious transition can be adapted to the single-agent curriculum learning setting to address
CICS, by interpreting the curriculum designer in UED as a co-player.
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3 RELATED WORK

The mismatch between training and testing distributions of input features is referred to as covariate
shift, and has long served as a fundamental problem for the machine learning community. Covariate
shifts have been extensively studied in supervised learning (Vapnik & Chervonenkis, 1971; Huang
et al., 2006; Bickel et al., 2009; Arjovsky et al., 2019). In RL, prior works have largely focused
on covariate shifts due to training on off-policy data (Sutton et al., 2016; Rowland et al., 2020;
Espeholt et al., 2018; Hallak & Mannor, 2017; Gelada & Bellemare, 2019; Thomas & Brunskill,
2016) including the important case of learning from demonstrations (Pomerleau, 1988; Ross &
Bagnell, 2010). Recent work also aims to learn invariant representations robust to covariate shifts
(Zhang et al., 2019; 2021). More generally, CICS can be interpreted as a kind of sample-selection
bias (Heckman, 1979). We believe this work to be the first to formalize and provide a solution to the
problem of covariate shifts in reinforcement learning due to curriculum learning.

Our method fixes a critical flaw that can cause curricula to fail under CICS—an important problem as
curricula have been shown to be essential for training RL agents across many of the most challenging
domains, including combinatorial gridworlds (Zhong et al., 2020), Go (Silver et al., 2016), StarCraft 2
(Vinyals et al., 2019), and achieving comprehensive task mastery in open-ended environments (Stooke
et al., 2021). While this work focuses on PLR, other recent methods include minimax adversarial
curricula (Wang et al., 2019; 2020) and curricula based on changes in return (Matiisen et al., 2017;
Portelas et al., 2020). Most similar to our work, OFFER (Ciosek & Whiteson, 2017) adapts a
curriculum over transition functions and uses importance sampling to correct for biased gradient
estimates. Unlike this work, Ciosek & Whiteson (2017) requires whitebox access to the transition
function and does not directly study the impact of CICS on the learning dynamics. Curriculum
methods have also been studied in goal-conditioned RL (Florensa et al., 2018; Campero et al., 2021;
Sukhbaatar et al., 2018; OpenAI et al., 2021), though CICS does not occur here as goals are observed
by the agent. Lastly, domain randomization (DR, Sadeghi & Levine, 2017; Peng et al., 2017) can
be seen as a degenerate form of UED, though curriculum-based extensions of DR have also been
studied (Jakobi, 1997; Tobin et al., 2017).

Prior work has also investigated methods for learning Bayes optimal policies under uncertainty about
the task (Zintgraf et al., 2020; Osband et al., 2013), based on the framework of Bayes-adaptive
MDPs (BAMDPs) (Bellman, 1956; Duff, 2002). In this setting, the agent can adapt to an unknown
MDP over several episodes by acting to reduce its uncertainty about the identity of the MDP. In
contrast, SAMPLR learns a robustly Bayes optimal policy for the case of zero-shot transfer. Further
unlike these works, our setting assumes the distribution of certain aleatoric parameters are biased
during training, which would lead to biased a posteriori uncertainty estimates with respect to the
ground-truth distribution when optimizing for the BAMDP objective. Instead, SAMPLR proposes a
means to correct for this bias assuming knowledge of the true environment parameters for each level,
to which we can safely assume access in curriculum learning.

4 CURRICULUM-INDUCED COVARIATE SHIFT

As UED algorithms formulate curriculum learning as a multi-agent game between teacher and student
agents, we can formalize when CICS become problematic by considering the equilibrium point of this
game: Let θ be the environment parameters controlled by UED, P (θ), the ground truth distribution
of θ, and P (θ), the curriculum distribution at equilibrium. Further, let τt be (o1, a1, ..., at−1, ot), the
student agent’s action-observation history (AOH) until time t (though we will use simply τ when
clear from context). The optimal action-value function Q∗ with respect to P (θ) can then be expressed
as a marginalization over θ:

Q
∗
(at|τt) = Eτt+1:∞

at+1:∞
∼π∗

[ ∞∑
l=0

γlrt+l

]
=
∑
θ

P (θ|τt)Q
∗
P (at|τt, θ) (2)

∝
∑
θ

P (θ)P (τt|θ)Q
∗
P (at|τt, θ). (3)

From Equation 2, we see that Q
∗
(at|τt) remains optimal under different values of P (θ) at each time

t as long as it is possible to infer θ deterministically from τt, implying that P (θ′|τt) = 1 for some θ,
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Figure 2: A standard RL transition (left) and the fictitious transition used by SAMPLR (right).

in which case the RHS of Equation 1 reduces to the LHS. If P (θ|τt) < 1 for all θ, then some subset
θ′ ⊂ Θ results in irreducible uncertainty at time t, thereby constituting aleatoric parameters. Letting
Q∗(at|τt) be the optimal action-value function when P (θ) is replaced with P (θ) in Equation 2, we
can then state that curriculum-induced covariate shift results in suboptimal policies with respect to
the ground truth distribution when

arg max
a

Q∗(a|τt) 6= arg max
a

Q
∗
(a|τt).

Moreover, this formulation highlights how this effect results from the presence of aleatoric parameters.

This description categorizes errors made by a policy trained on P evaluated on levels drawn from P (θ)
into two categories: The first type of error, which we call a mistake, simply arises when P (θ′′) = 0
for some non-aleatoric θ′′ where P (θ′′) > 0, i.e. the policy did not train on trajectories needed to
learn to behave optimally under some set of otherwise identifiable level parameters. This is distinct
from the second kind of error, which we call a misunderstanding, and which corresponds to the
problematic mismatch between training and test time distributions of specifically aleatoric parameters
θ′, so that P (θ′) 6= P (θ′), as we just previously characterized.

This taxonomy also clarifies errors in cooperative MARL, where the co-players shape environment
interactions, and thus play a similar role to the UED teacher. Failures in ZSC can then be diagnosed
as due to (i) a mistake, because the co-players fail to generate trajectories that occur with test-time
co-players; or (ii), a misunderstanding, because the train-time co-players shift the training distribution
of aleatoric parameters P (θ′), which impacts the inference of P (τ) =

∑
θ′ P (θ′)P (τ |θ′) needed for

optimal cooperation—for example, through the use of cryptic conventions. This view then connects
generalization errors in cooperative MARL to those in single-agent RL, implying that methods like
OBL devised to solve one type of error in one of the settings may be adapted for the other. Indeed,
we now describe our method, which does exactly this: By adapting OBL to single-agent curriculum
learning, we can ground the values of P (θ′|τt) by forcing P (θ′) = P (θ′), thereby ensuring that the
distribution of the aleatoric parameters at equilibrium is equivalent to their ground truth distribution.

5 SAMPLE-MATCHED PLR (SAMPLR)

We now describe how OBL’s fictitious transition can be adapted for PLR⊥ (Jiang et al., 2021a) to
address CICS, resulting in Sample-Matched PLR (SAMPLR). To avoid CICS, we must ground θ′
to the ground-truth distribution P (θ′), while allowing the remaining parameters in Θ to vary under
UED, so as to still benefit from a curriculum. To achieve this, we adapt the fictitious transition to
single-agent curriculum learning by treating the UED teacher as a co-player—one that performs the
single action of choosing the level θ at the start of each episode, and subsequently performs no-ops.
Under this fictitious transition, we ground the teacher’s choice of θ such that the aleatoric parameters
θ′ are assumed to be sampled from P (θ).

Thus, at each time t, the agent takes actions at based on its AOH as usual, but estimates the advantage
A(at, st) using fictitious transitions, which assume subsequent state transitions and rewards occur
with Θ′ fixed to θ′ ∼ P (θ′), sampled at the start of the episode. More formally, the fictitious transition
is performed as s′t ∼ B(s′t|τ), at ∼ π(·|τ), s′t+1 = T (s′t, at), and r′t = R(st+1), where τ is the

5



Under review as a conference paper at ICLR 2022

Algorithm 1: Sample-Matched PLR (SAMPLR)
Randomly initialize policy π(φ), an empty level buffer Λ of size K, and belief model B(st|τ).
while not converged do

Sample replay-decision Bernoulli, d ∼ PD(d)
if d = 0 or |Λ| = 0 then

Sample level θ from level generator
Collect π’s trajectory τ on θ, with a stop-gradient φ⊥
Use observed ground-truth states to update B

else
Use PLR to sample a replay level from the level store, θ ∼ Λ
Collect fictitious trajectory τ ′ on θ, based on s′t ∼ B
Update π with rewards R(τ ′)

end
Compute PLR score, S = score(τ ′, π)
Update Λ with θ using score S

end

AOH of the student. Figure 2 summarizes this transition mechanism. Here, the belief model B(st|τ)
can be expressed as

B(st|τ) =
∑
θ′

P (st|τ, θ′)P (θ′|τ). (4)

This shows that, assuming blackbox simulator access, we can generally implement B as follows:
Periodically during training, we sample N trajectories, such that each is generated under a level
with θ′ ∼ P (θ′). We use these {(θ′k, τk)}Nk=1 pairs to update a posterior model P (θ′|τ) that predicts
the underlying θ′ given τ . We can then sample from B by first sampling θ ∼ P (θ′|τ), followed by
stepping forward a parallel simulator that has been initially reset to the current AOH τ , with fixed
Θ′ = θ′, thereby yielding a desired sample of st according to B.

In practice, it is often the case that θ′ can be uniquely identified by some revelatory event by time t,
so that P (θ′|τ) = 1 for some θ′ and τ , and P (st|τ, θ′) = P (st|τ) otherwise. In this case, we can
implement the fictitious transition by setting θ′ ∼ P (θ′) at the start of each episode; subsequent
transitions will then be consistent with B. For example, in the fruit choice example, whether apple
or banana was the right goal is deterministically revealed by the final reward, and otherwise, does
not impact transition dynamics. Additionally, we often only have limited access to P (θ) throughout
training, for example, if sampling P (θ) is costly. In this case, we can learn an estimate P̂ (θ′) using
the samples we do collect from P (θ), which can occur online. We then use P̂ (θ′) in sampling
fictitious transitions during UED. We refer to the resulting P̂ (θ′) as a learned belief prior.

SAMPLR, summarized in Algorithm 1, incorporates this fictitious transition by replacing the
advantages of trajectories on replay levels sampled by PLR⊥ with their fictitious counterparts,
as only these trajectories are used by PLR⊥ for training. To reduce the cost of sampling P (θ′), we
can use the new levels regularly sampled by PLR⊥ to estimate the learned belief prior P (θ′), and use
P (θ′) in sampling fictitious transitions on replay levels.

6 GROUNDED POLICIES ARE ROBUSTLY BAYES OPTIMAL

We can view OBL-based correction as a method for training a policy to be optimal with respect to the
ground-truth value function, with levels sampled from some generating distribution Λ defined as:

V
Λ

(π) = Eτ∼MΛ(π)

[
V
π
(τ)
]
. (5)

Note that when Λ = P (θ) this reduces to the ground-truth value function notated simply as V (π).
First, we will note that, for any UED method, our OBL-based correction will ensure that, in
equilibrium, the resulting policy is Bayes-optimal on the ground truth beliefs, on any trajectory
sampled fromMΛ(π), the distribution of trajectories of π in levels sampled from Λ.
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Remark 1. If π is optimal with respect to the grounded value function V
Λ

(π) then it is Bayes optimal
with respect to the ground-truth parameter distribution P (θ) on the support ofMΛ(π).

Proof. By definition we have that π ∈ arg max
π∈Π

{V Λ
(π)} = arg max

π∈Π
{Eτ∼MΛ(π)

[
V
π
(τ)
]
}. Since

π can condition on the initial trajectory τ , the action selected after each trajectory can be independently
optimized. Thus we have, for all τ ∈MΛ(π), π ∈ arg max

π∈Π
{V π(τ)} implying that π is the optimal

grounded policy and V
π

= V
∗
.

Thus, assuming the base RL algorithm finds Bayes optimal policies, a UED method that optimizes
the grounded value function, as done by SAMPLR, will result in Bayes optimal performance over the
ground-truth distribution. When the UED method aims to maximize worst-case regret, we can prove
an even stronger property we call robust ε-Bayes optimality.

Let V
θ
(π) be the value function for π evaluated on a specific level θ. We will say that a policy is

robustly ε-Bayes optimal iff for all θ in the domain of P (θ) and for all π′ we have

V
θ
(π) ≥ V θ(π′)− ε.

Note how this differs from being only ε-Bayes optimal, which means for all π′,

V (π) ≥ V (π′)− ε

With robust ε-Bayes optimality, we must be ε-optimal even on levels which are rarely sampled from
the ground-truth distribution. We will show that if SAMPLR is in an ε-Nash Equilibrium, then a
policy is robustly ε-Bayes optimal with respect to the grounded value function V (π) rather than only
ε-Bayes optimal as one would expect from training directly on the true distribution of levels.

Theorem 1. If π is ε-Bayes optimal by V
Λ

(π) for Λ minimizing worst-case regret as is done in
SAMPLR, then it is robustly ε-Bayes optimal with respect to the grounded value function, V (π).

Proof. Let π be ε-optimal with respect to V
Λ

(π) where Λ minimizing worst-case regret with respect
to π. Let π∗ be an optimal grounded policy, and let θ be arbitrary. Then we have:

V
θ
(π∗)− V θ(π) ≤ V Λ

(π∗)− V Λ
(π) ≤ ε (6)

Where the first inequality follows from Λ minimizing worst-case regret with respect to π, and the
second follows from π being ε-optimal on Λ. Rearranging terms gives the desired condition.

7 EXPERIMENTS

We investigate the performance of SAMPLR with respect to the the standard PLR and domain
randomization in environments based on MiniHack (Samvelyan et al., 2021), a library for creating
custom environments based on the runtime of the NetHack Learning Environment (NLE) (Küttler
et al., 2020). Acting optimally in our environments requires grounding to the ground-truth distribution.

Our agents are trained using PPO (Schulman et al., 2017), using the best hyperparameters found
via grid search, and use the policy architecture in Küttler et al. (2020). We tune the PLR-specific
hyperparameters shared among PLR⊥ and SAMPLR variants for each environment, based on the
performance of PLR⊥. Full details of our environments, agent architecture, and hyperparameters
are provided in Appendix A, and our SAMPLR implementation, in Appendix B. We compare both
standard SAMPLR and a variant called LP-SAMPLR that learns a belief prior over the true goal,
against PLR⊥ and standard PPO baselines. These baselines allows us to separate the relative changes
in performance metrics due to curriculum learning and our proposed correction for CICS.
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Figure 4: Episodic returns (left) and number of rooms in solved levels (middle) during training (dotted lines)
and test on the ground-truth distribution (solid lines), for q = 0.7. Normalized test returns and proportion of
apple goals during training for various q are shown on the right. Plots show mean and standard error of 10 runs.

In our experiments, we first adapt the apple and banana example, depicted in Figure 3 into a fully
procedurally-generated RL environment set in the world of NetHack. For each level, the agent can
only learn to choose optimally in expectation at test time by grounding to the distribution of correct
choices in the deployment domain. Specifically, in each level, the agent must traverse between one to
eight randomly generated rooms, and in the final room, the agent must choose to eat the apple or the
banana. The correct choice is fixed for each level, but indiscernible to the agent. Thus, the identity of
the true goal acts as the aleatoric parameter. Figure 3 shows example levels from this environment.

This environment presents a hard exploration challenge for standard RL algorithms, as it requires
learning to both navigate multiple rooms, as well as the NLE-specific skills of kicking doors and
eating. The doors opening into adjacent rooms are locked. In order to go from one room to the next,
the agent must learn to, potentially repeatedly, kick the locked door until it opens. Likewise, upon
reaching a piece of fruit in the final room, the agent must learn to deliberately choose to eat the fruit.
If the right choice of fruit were determinable per episode, we expect PLR⊥’s adaptive curriculum to
improve learning by selectively sampling levels at the threshold of the agent’s abilities.

Figure 3: Levels from the
stochastic fruit-choice environment.
Across levels, the correct choice of
fruit is distributed according to P .

Let πA be the policy in which the agent always chooses the apple,
and πB , the banana. If the probability of the goal being apple
P (A) = q, the expected return of the agent is RAq under πA
and RB(1 − q) under πB . The optimal policy is then to act
according to πA when q > RB/(RA +RB), and according to πB
otherwise. We expect training under domain randomization, which
samples each level completely at random from the ground-truth
distribution P (θ), defined by the environment parameterization,
would converge to the correct choice of πA or πB , assuming
the environment is learnable by the choice of RL algorithm. In
contrast, PLR evolves an adversarial curriculum, incentivizing
PLR to shift the distribution over goals throughout training. For
example, PLR is incentivized to flip the curriculum distribution
to favor eating apples whenever the agent begins to consistently
succeed at eating bananas. We thus expect the PLR curriculum to
continually oscillate the preferred choice of goal.

In our experiments, we set RA = 3, RB = 10, and q in {0.7, 0.5, 0.3}, making it always optimal to
follow the banana-eating policy πB , but with the marginal benefit of doing so varying with q. We
report train and test performance of each agent over 200M training steps in Figure 4. We find that
DR struggles to learn an effective policy, plateauing at an expected return under 1.0; PLR performs
even worse, due to its adversarial curriculum shifting the distribution over the correct goal, leading to
rapid oscillations in the optimal choice of fruit under the curriculum distribution, as visible in the
high-variance oscillations in the proportion of apple goals selected by PLR for each value of q in 4).
This makes it difficult for the agent to settle on the optimal policy with respect to any ground-truth
distribution. The proportion of each choice outcome, shown in Figure 5, reveals that both DR and
PLR policies fail to eat any fruit most of the time, even after 200M training steps. In contrast, both
SAMPLR and LP-SAMPLR realize a marked improvement in test performance by grounding PLR’s
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Figure 5: Left: Proportion of training episodes in which the agent fails to eat any fruit; eats the apple; or eats
the banana. Right: Number of rooms in levels during training. Plots show mean and standard error of 10 runs.
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Figure 6: Left: Levels from FireDungeon. Middle: Test return on the ground-truth distribution of FireDungeon.
Right: Proportion of training levels with fireproof armor. Plots show mean and standard error of 10 runs.

otherwise wild shifts in q. Figure 4 shows this improvement is most pronounced when the expected
difference in πA and πB is smaller, and therefore easier for PLR to flip the agent’s policy. Moreover,
we see in Figure 5 that both SAMPLR methods present levels with higher room counts on average,
indicating that early in training, it is able to discover easier, few-room levels in which the agent
can capture reward signal, and which can then be made more complex to push the agent along its
threshold of abilities.

We next turn to a more challenging environment that introduces additional NetHack-specific dynamics.
The FireDungeon environment (see Figure 6 for example levels), requires the agent to navigate through
up to 13 chambers, and ultimately choose between chamber A or B, each containing a valid goal.
Reaching this goal ends the episode and provides the agent with a sparse reward. Further, in this
penultimate chamber, there is an armor, which if worn grants the agent with fire resistance with
probability q. Chamber B is marked by a red gemstone by the door and contains enemy units, whose
fire attack will instantly kill the agent. Killing each enemy grants the agent with +1 final reward,
which is only provided upon reaching either goal. The agent thus stands to attain a higher reward
by attacking the enemies in Chamber B, before reaching the goal, only if the armor is fireproof.
This environment presents an even more difficult exploration problem for the agent, yet we see in
Figure 6, both SAMPLR variants begin to learn to solve this environment with significantly greater
sample-efficiency than DR, while PLR again struggles to learn. As in the case of the previous
stochastic choice environment, we see that PLR rapidly oscillates the key aleatoric parameter, which
in this case, determines whether the armor is fireproof.

8 CONCLUSION

Using the formal notions of environment parameterizations in the framework of UED, we defined
the problem of curriculum-induced covariate shift in RL. Our definition highlights the issues that
can arise when there is persisitent uncertainty over the environment parameters, either because the
uncertainty is irreducible or because reducing the uncertainty is costly. We then adapted a fictitious
transition mechanism previously used to improve zero-shot coordination in cooperative MARL to
correct for this covariate shift. We demonstrated that our resulting algorithm, SAMPLR, avoids the
pitfalls of this type of covariate shift, while preserving the benefits of curriculum learning.
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A EXPERIMENTAL DETAILS AND HYPERPARAMETERS

In this section, we expand on stochastic binary choice environment featured in our experiments, as
well as our choice of agent architecture and hyperparameters. Additionally, we provide details on
how we implemented SAMPLR and LP-SAMPLR for this environment.

A.1 ENVIRONMENT DETAILS

Multi-Room Stochastic Fruit Choice We make use of MiniHack (Samvelyan et al., 2021),
a library built on top of the NetHack Learning Environment (NLE, Küttler et al., 2020), for
creating custom environments in the NetHack runtime. In particular, our environment, MultiRoom-
BinaryChoice-N8-Random, expands the example in Figure 1 into a challenging, procedurally-
generated exploration problem. The agent must navigate through up to eight rooms in each level, and
in the final room, choose the correct piece of fruit, either the apple or banana, to receive a reward. If
the agent eats the wrong fruit for the level, it receives a reward of 0. With probability q, the apple is
the correct fruit to eat. Eating either fruit terminates the episode. The episode also terminates once
the budget of 250 steps is reached. Notably, passage into adjacent rooms requires first kicking down
a locked door. As per NLE game dynamics, locked doors may require a random number of kicks
before they give way. To complicate the learning of this kicking skill, kicking the stone walls of the
room will lower the agent’s health points; multiple misguided kicks can then lead to the agent dying,
ending the episode.

FireDungeon Each level of the FireDungeon environment corresponds to a procedurally-generated
sequence of connected dungeon chambers. Except for the penultimate chamber, which opens to two
goal chambers, each chamber only has one adjacent chamber, connected by a locked door. Entering
any adjacent chamber thus requires first kicking open the locked door. The penultimate chamber
is connected via locked doors to two goal chambers, and contains a piece of armor of a random
variety. With probability q, the armor is of the fireproof variety. The first room is empty aside from a
goal, which when reached, terminates the episode and grants the agent +1 reward. The second room
contains a goal, in addition to three enemy units (pyrolisks), whose ranged fire attack can instantly
kill the agent. However, the agent is immune to the pyrolisk’s attacks when wearing fireproof armor.
Killing each pyrolisk earns the agent an additional +1 reward, creating a natural choice for the
agent: Whether to brave the room with enemies for a greater return or choose the safer goal with
a guaranteed +1 reward. The optimal choice depends on whether the armor is fireproof, the key
aleatoric parameter for this environment.

Observation space The agent’s observation consists of two primary elements: The nethack glyph
and blstats tensors. The glyph tensor represents a 2D symbolic observation of the dungeon.
This glyph tensor contains a 21× 79 window of glyph identifiers, which can each be one of the 5991
possible glyphs in NetHack, which represent monsters, items, environment features, and other game
entities. The blstats vector contains character-centric values, such as the agent’s coordinates and
the information in the “bottom-line stats” of the game, such as the agent’s health stats, attribute levels,
armor class, and experience points.

Action space The agent’s actions include the eight navigational actions, corresponding to moving
toward each cell in the agent’s Moore neighborhood, in addition to two additional actions for kicking
(doors) and eating (apples and bananas). Melee attacks in NLE correspond to simply walking towards
and colliding with an enemy.

A.2 ARCHITECTURE

We make use of the same agent architecture from Küttler et al. (2020). The policy applies a
ConvNet to all visible glyph embeddings, and a separate ConvNet to a 9 × 9 egocentric crop
around the agent—which was found to improve generalization—producing two latent vectors. These
are then concatenated with an MLP encoding of the blstats vector, and the resulting vector
is processed by an MLP, and finally, input through an LSTM to produce the action distribution.
We used the implementation of this policy architecture available at https://github.com/
facebookresearch/nle.
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A.3 CHOICE OF HYPERPARAMETERS

Our choice of PPO hyperparameters, shared across all baselines and SAMPLR variants in our
experiments, was based on a grid search, in which we train agents with domain randomization on
a 15× 15 maze, in which up to 50 walls can be randomly placed in each position, and the agent’s
starting position along with the positions of the goal and up to 50 walls are randomly placed in each
level. We chose this environment to perform the grid search, as it allows for faster training than the
multi-room environment featured in our main experiments. Specifically, we swept over the following
hyperparameter values: number of PPO epochs in 5, 20, number of PPO minibatches in 1, 4, PPO clip
parameter in {0.1, 0.2}, learning rate in {1e-3, 1e-4}, and discount factor γ in {0.99, 0.995}. Fixing
these hyperparameters to the best setting found, we then performed a separate grid search PLR’s
replay rate p in {0.5, 0.95} and replay buffer size in {4000, 5000, 8000}, evaluating settings based
on evaluation levels sampled via domain randomization, after 50M steps of training. Our choice of
hyperparameters is summarized in Table 1.

Table 1: Hyperparameters used for training each method.

Parameter
PPO
γ 0.995
λGAE 0.95
PPO rollout length 256
PPO epochs 5
PPO minibatches per epoch 1
PPO clip range 0.2
PPO number of workers 32
Adam learning rate 1e-4
Adam ε 1e-5
PPO max gradient norm 0.5
PPO value clipping yes
return normalization no
value loss coefficient 0.5
entropy coefficient 0.0

PLR⊥, SAMPLR
Replay rate, p 0.95
Buffer size, K 4000
Scoring function positive value loss
Prioritization rank
Temperature, β 0.3
Staleness coefficient, ρ 0.3
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B SAMPLR IMPLEMENTATION DETAILS

As the aleatoric parameter θ′ in MultiRoom-BinaryChoice-N8-Random corresponds to a Bernoulli
determining whether the goal is to eat the apple, its value does not impact transition dynamics except
potentially at the final time step, in which it determines the return. We can therefore implement
SAMPLR’s fictitious transition by simply setting Θ′ = θ′ ∼ P (θ′) at the beginning of each episode.

In our experiments, LP-SAMPLR learns a belief prior over the Bernoulli parameter q, corresponding
to the probability that the correct goal for a level is apple (or if the armor is fireproof), that is P (A) = q,
and consequently, the probability the goal is banana is P (B) = 1 − q. We implement posterior
inference by assuming a prior Beta(1, 1) over whether the correct goal is apple or banana. Given NA
apple levels and NB banana levels thus far sampled from the ground-truth distribution during the non-
replay training episodes, the posterior predictive is then P (A) = (NA + 1) /

(∑
i∈{A,B}Ni + 1

)
.

As seen in Figure 7, LP-SAMPLR quickly converges to the approximate ground-truth distribution
over the correct goal, where here, q = 0.7.
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Figure 7: LP-SAMPLR quickly learns an accurate estimate of the ground-truth mass assigned to apple goals.
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