
Learning Riemannian Stable Dynamical Systems
via Diffeomorphisms

Jiechao Zhang1, 2 Hadi Beik-Mohammadi1, 2 Leonel Rozo1
1Bosch Center for Artificial Intelligence. Renningen, Germany.
2. Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.

leonel.rozo@de.bosch.com hadi.beik-mohammadi@de.bosch.com

Abstract: Dexterous and autonomous robots should be capable of executing elab-
orated dynamical motions skillfully. Learning techniques may be leveraged to
build models of such dynamic skills. To accomplish this, the learning model
needs to encode a stable vector field that resembles the desired motion dynam-
ics. This is challenging as the robot state does not evolve on a Euclidean space,
and therefore the stability guarantees and vector field encoding need to account for
the geometry arising from, for example, the orientation representation. To tackle
this problem, we propose learning Riemannian stable dynamical systems (RSDS)
from demonstrations, allowing us to account for different geometric constraints
resulting from the dynamical system state representation. Our approach provides
Lyapunov-stability guarantees on Riemannian manifolds that are enforced on the
desired motion dynamics via diffeomorphisms built on neural manifold ODEs.
We show that our Riemannian approach makes it possible to learn stable dynami-
cal systems displaying complicated vector fields on both illustrative examples and
real-world manipulation tasks, where Euclidean approximations fail.

Keywords: Dynamical systems, Riemannian manifolds, Motion learning

1 Introduction

The promise of having fully-autonomous robots performing a large variety of tasks implies that
robots should be able to execute highly-dynamic motions. The inherent complexity of these move-
ments makes hand coding an infeasible approach. Therefore learning techniques arise as a potential
solution. In particular, learning dynamic robot motions from human demonstrations is a promising
approach to build models of dynamic skills in an intuitive, sample-efficient and quick manner. How-
ever, learning dynamical motions is not trivial as the learning model requires to provide stability
guarantees, which is also an intrinsic property in human motion generation [1]. In this context, most
research works have focused on learning time-invariant stable dynamical systems for goal-driven
motions (a.k.a point-to-point movements) with Lyapunov-stability guarantees [2, 3, 4, 5, 6].

Khansari-Zadeh and Billard [2] proposed one of the first approaches to learn stable dynamical sys-
tems from human demonstrations by imposing quadratic Lyapunov non-linear constraints on the
model parameters’ optimization, which limited the range of possible learnable motions. As the class
of stable dynamical systems constrained by a predefined Lyapunov function is a subset of all possible
stable dynamical systems, this limits the learned model accuracy [4]. To improve accuracy, a more
general parametric control Lyapunov function [7] can be learned from demonstrations [3, 8, 9]. The
trade-off between stability and accuracy motivated the use of diffeomorphisms [4, 5, 6, 10, 11, 12],
which leveraged a more general class of stable dynamical systems. Their main idea is to design
or learn a canonical Lyapunov-stable dynamical system on a latent space and use a diffeomorphic
mapping to transform the demonstrations to the latent space so that they are consistent with the de-
sired Lyapunov-stable behavior. Thus, the modeling accuracy depends on the expressiveness of the
diffeormorphic function, often modeled by a neural network [5, 6, 10, 11].

Most of aforementioned works assume that the training data lie in the Euclidean space [4, 5, 6, 10,
12], with the exception of Urain et al. [11], which severely limits their use in real applications. For

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

mailto:leonel.rozo@de.bosch.com
mailto:hadi.beik-mohammadi@de.bosch.com


instance, there are various types of representation for the robot end-effector’s orientation, namely
unit quaternions in the 3-Sphere manifold [13], and rotation matrices in the special orthogonal group
(SO(3)) manifold [14], which do not lie in the Euclidean space. Accounting for the data geometry
has proven critical when learning and optimizing movement primitives on quaternion space [15, 16,
17, 18, 19], as relying on Euclidean approximations leads to modeling distortions and compromises
extrapolation. The importance of geometry-aware methods when learning dynamical systems was
recently addressed in [11], where a stable dynamical system was learned via diffeomorphisms over
Lie groups. Although Lie theory has been exploited to operate with data of specific geometries [20],
a potential limitation is that not all types of manifolds arising in robotics can be easily endowed with
a Lie group structure (e.g., the space of symmetric positive-definite matrices (SPD)).

A more general solution based on Riemannian geometry [21] is proposed in this paper. We con-
sider dynamical systems evolving on a Riemannian manifold. This arises two main challenges: (1)
designing a canonical Lyapunov-stable dynamical system on Riemannian manifolds, and (2) learn-
ing a diffeomorphism that accounts for the Riemannian geometry. To address these challenges, we
leverage the Lyapunov stability analysis on Riemannian manifolds [22, 23]. Moreover, we exploit
neural ordinary differential equations (ODEs) on Riemannian manifolds [24, 25] for constructing the
diffeomorphism to learn a Riemannnian stable dynamical system (RSDS). Unlike previous works
using diffeomorphisms [4, 5, 6], our approach extends this concept to systems evolving on Rie-
mannian manifolds. In contrast to works assuming Riemannian manifolds that are diffeomorphic
to the Euclidean space [26], or manifold-specific diffeomorphisms built on specialized neural net-
works [27], our approach leverages a general formulation to construct diffeomorphisms based on
solutions of ODEs evolving on arbitrary Riemannian manifolds [24]. Our approach is conceptually
similar to the Lie-group method introduced in [11], as both explicitly consider the data geometry
to design technically-sound learning models via diffeomorphisms. However, our Riemannian for-
mulation substantially differs from [11] in its technical development, and provides a more general
approach that may be exploited for a variety of Riemannian manifolds.

In summary, we propose a method to learn Riemannian stable dynamical systems from demonstra-
tions. Our approach provides Lyapunov-stability guarantees on Riemannian manifolds (see § 3.1)
that are enforced on the desired motion dynamics via diffeomorphisms built on neural manifold
ODEs (see § 3.2 and 3.3). Through a set of evaluations on the 2-sphere manifold S2, presented in
§ 4, we show that our Riemannian approach is able to learn complicated dynamical systems, in con-
trast to Euclidean approximations which fail to encode stable vector fields. Also, we learn realistic
motion skills on a 7-DoF robotic manipulator featuring complex full-pose trajectories on R3 × S3.

2 Background

2.1 Dynamical Systems and Lyapunov Stability

We here give a short review of Lyapunov stability in the Euclidean setting. Let us assume an au-
tonomous dynamical system ẋ = f(x), with a single equilibrium point x∗, where x ∈ Rn is the
state variable. Consider a potential function V (x(t)) describing the energy of such a system. If this
system loses energy over time and the energy is never restored, the system must eventually reach
some final resting state. This idea is formally described as (see [28] for details):

Theorem 1 (Lyapunov Stability). A dynamical system ẋ = f(x) is globally asymptotically stable
at x∗ if there exists a continuously differentiable Lyapunov function V (x) : Rn → R such that

V (x∗) = 0, V̇ (x∗) = 0, V (x) > 0, ∀ x 6= x∗, V̇ (x) < 0, ∀ x 6= x∗. (1)

From Theorem 1 we know that we can always find a Lyapunov function that fulfills these four
conditions in Eq. 1 for a globally asymptotically stable dynamical system.

2.2 Riemannian Manifolds

A smooth manifoldM can be seen as a set of points that locally, but not globally, resemble the Eu-
clidean space Rd [21, 29]. An abstract definition of a manifold specifies the topological, differential
and geometric structure by using charts, which are maps between parts ofM to Rd. The collection

2



of these charts (a.k.a. local parameterizations) is called atlas. More formally, a chart on a smooth
manifoldM is a diffeomorphic mapping (i.e. a bijective and differentiable function) ϕ : U → Ũ
from an open set U ⊂M to an open set Ũ ⊆ Rd (see Fig. 6 in App. A.1). Moreover, the transition
map between two intersecting sets U1 and U2, given by ϕ1 ◦ ϕ−12 or ϕ2 ◦ ϕ−11 : Rd → Rd is also
a diffeomorphism. The smooth structure of M makes it possible to take derivatives of curves on
the manifold, leading to tangent vectors in Rd. The set of tangent vectors of all curves at x ∈ M
spans a d-dimensional affine subspace of Rd, which is known as the tangent space TxM ofM at
x. The collection of all tangent spaces ofM is the tangent bundle TM =

⊔
x∈M TxM. Therefore,

a velocity vector ẋ at x ∈M lies on TxM, and consequently a vector field onM lies on TM.

The above definitions do not provide the mechanisms to measure how curvedM is, or to compute
distances onM. To do so, we can endowM with a Riemannian metric, which is a family of inner
products gx : TxM× TxM → R associated to each point x ∈ M. As a result, a Riemannian
manifold (M, g) is a smooth manifold endowed with a Riemannian metric [29]. To operate with
Riemannian manifolds, it is common practice to exploit the Euclidean tangent spaces. To do so,
we resort to mappings back and forth between TxM andM using the exponential and logarithmic
maps. The exponential map Expx(u) : TxM → M maps a point u in the tangent space of x to
a point y on the manifold, so that it lies on the geodesic starting at x in the direction u, and such
that the geodesic distance dM(x,y) = dR(x,u). The inverse operation is the logarithmic map
Logx(y) :M→ TxM. We provide all the necessary operations in App. A.1.

2.3 Diffeomorphism

A diffeomorphism ψ : M → N is a smooth bijective mapping between two smooth manifolds
which preserves the topological properties of M, and whose inverse ψ−1 is also smooth. When
learning stable dynamical systems, diffeomorphisms can be exploited to impose Lyapunov stability
guarantees by transferring a manually-designed stable dynamical system on N to the desired mani-
foldM. We focus on constructing learnable diffeomorphisms that resemble continuous normalizing
flows (CNFs) [30, 31, 32], which are bijective and bidirectionally differentiable mappings, and have
been recently exploited on density estimation problems [33, 34, 35]. We here exploit them to learn
diffeomorphic mappings between Riemannian manifolds.

Most CNFs are constructed from neural ordinary differential equation (Neural ODEs) in Euclidean
space [30, 31, 32], with the exception of neural manifold ordinary differential equations (Neural
MODEs) on Riemannian manifolds [24, 25]. Generally, Neural ODEs parametrize the dynamics of
a hidden variable using a continuous-time ODE represented by a neural network, as follows,

ż(t) = fθ(z(t), t), (2)

where z ∈ Rd is the state variable and fθ : Rd × R → Rd is a neural network. According
to Mathieu and Nickel [25] (see Theorem 2 in App. A.2), we can extend CNFs to the Riemannian
setting, where the state variable z ∈M and the vector field fθ :M×R→ TM. As a result, we can
use (2) as a manifold ODE, whose initial value problem (IVP) solution results in a diffeormorphic
mapping ψθ : M → N , x = z(ts) ∈ M and y = z(te) ∈ N . i.e. y = ψθ(x) = x +∫ te
τ=ts

fθ(z(τ), τ)dτ . To solve the IVP on M, we leverage integrators on Riemannian manifolds
based on the local representation via coordinate charts [36]. This method uses a local representation
of M defined by a coordinate map ϕ : M ⊇ U → Ũ ⊆ Rd with coordinates w(t) = ϕ(z(t)).
Computing integrators onM can be approximated by solving an equivalent ODE in Rd

ẇ(t) = Dϕ−1(w(t))ϕ ◦ fθ(ϕ−1(w(t)), t), (3)

whereDϕ−1(w(t))ϕ represents the differential of ϕ at ϕ−1(w(t)) (see App. A.2 and A.3 for details).
Additionally, we use the adjoint method [30] on Riemannian manifolds [24] to compute gradients,
which can also be used for calculating differentials. Consider a loss function L :M→ R, in order
to compute the derivative of L with respect to an intermediate variable z(t) of the manifold ODE,
we can solve ȧ(t)T = −a(t)TDz(t)fθ(z(t), t), where a(t)T := Dz(t)L (as detailed in App. A.4).

3



3 Learning Riemannian Stable Dynamical Systems

Figure 1: Architecture of a diffeomorphism-based
stable vector field on the Riemannian manifold S2.

We here introduce our approach for learning stable
dynamical systems on Riemannian manifolds from
demonstrated point-to-point motions. First, let us
consider that the recorded demonstrations follow a
dynamical system ẋ = f(x), where the state x
evolves on a Riemannian manifoldMwith velocity
ẋ ∈ TxM. This dynamical system is equivalent,
under a change of coordinates, to another system
defined on a latent Riemannian manifoldN . Under
the diffeomorphism ψθ : x 7→ y ∈ N , parameter-
ized by θ, we map the observed states x onto N .
Then, we evaluate the canonical stable vector field
gγ(y) to obtain the velocity ẏ ∈ TyN . Finally, we
leverage the pullback operator Dyψ?θ to project ẏ back to the tangent space TxM. The whole
procedure can be expressed as follows,

ẋ = (Dyψ
?
θ ◦ gγ ◦ ψθ)(x) = Dyψ

?
θ(ẏ), (4)

which is illustrated in Fig. 1 (a proof is given in App. B). In the sequel, we describe how we design a
Lyapunov-stable vector field gγ on N to provide stability guarantees on the learned dynamical sys-
tem. Later, we explain how to compute the diffeomorphism between the target and latent manifolds.
Finally, we introduce two different methods to compute the pullback operator Dyψ?θ.

3.1 Lyapunov-stable Geodesic Vector Fields

To design a stable vector field on the Riemannian manifold N , we enforce the canonical dynam-
ical system to follow geodesic curves that converge to a single equilibrium. Such a vector field
can be designed via the logarithmic map. Specifically, given an equilibrium point y∗ ∈ N , the
corresponding velocity vector ẏ ∈ TyN can be computed as ẏ = gγ(y) = kγ(y)gn(y) with the

normalized geodesics vector field gn(y) :=
Logy(y

∗)

‖Logy(y∗)‖2 . This implies that the direction of tan-
gent vectors is fully specified by Logy(y∗), while their magnitude depends on the scaling factor
kγ : Rn ⊃ N → R≥0. We can prove the stability of this geodesic vector field by choosing the
Lyapunov function V (y) := 〈F, F 〉y∗ with F = Logy∗(y), and applying Theorem 3 for Lyapunov
stability on Riemannian manifolds, as detailed in App. B. Given that our geodesic vector field is Lya-
punov stable, we can easily prove that the desired dynamical system is also globally asymptotically
stable by defining a new valid Lyapunov function Ṽ (x) := V (ψθ(x)) via the diffeomorphism ψθ,
with a single equilibrium point x∗ = ψ−1θ (y∗) ∈M. As ψθ preserves the topological properties of
N , the equilibrium point x∗ is also globally asymptotically stable onM (see App. B for the proof).
Note that for certain Riemannian manifolds, it is only possible to guarantee quasi-global stability
guarantees due to the Poincaré-Hopf theorem (see App. B for details).

Note that we separate the parameterization for the magnitude and direction of vector fields to im-
prove the expressiveness of our framework. By relocating the scaling factor kγ and normalizing the
vector fields governed by (4), we can obtain our final RSDS learning framework

ẋ = k̂γ(x)
(Dyψ

?
θ ◦ gn ◦ ψθ)(x)

‖(Dyψ?θ ◦ gn ◦ ψθ)(x)‖2
, (5)

where k̂γ(x) is the new positive scaling factor that fully determines the magnitude of the learned
vector fields. In App. C, we prove that the models (4) and (5) are equivalent.

3.2 Diffeomorphisms on Riemannian Manifolds

Given the final RSDS in (5) and M demonstrations, the goal of learning stable dynamics on a Rie-
mannian manifold reduces to learning ψθ, computing its pullback operatorDyψ?θ, and subsequently
estimating k̂γ(x). However, due to the geometric constraints arising from M, learning a diffeo-
morphism and calculating the corresponding pullback operator are non-trivial problems. To address
them, we leverage Neural MODEs [24] to build the diffeomorphism ψθ. Unlike [24], we propose a

4



novel approach to compute the pullback operator by reversing the time interval of the ODE integra-
tion (see § 3.3), avoiding to explicitly compute the corresponding inverse. We also propose a method
to design Lyapunov-stable geodesic vector fields on a Riemannian manifold, which are leveraged to
provide stability guarantees on the learned dynamical system, as explained in § 3.1.

According to Theorem 2 in App. A.2, the dynamics fθ of Neural MODEs only has to be a C1
function. To compute the diffeomorphism with a parametric Neural MODE, we solve an integration
problem based on the local parameterization w(t) = ϕ(z(t)) (described in App. A.3). Using this
method requires the selection of coordinate charts, which can be created via the exponential map
ϕ−1i = Expzi and logarithmic map ϕi = Logzi , similarly to [24]. Under this choice of coordinate
mapping and given a fixed number of charts k, the diffeomorphism ψθ : x = z0 7→ zk = y,
obtained via integration on the manifold can be then viewed as the composition of blocks of solving
Neural ODEs and chart transitions defined as,

ψθ = Expzk−1
◦ψ̂θ,k−1 ◦ Logzk−1

◦ . . . ◦ Expz0 ◦ψ̂θ,0 ◦ Logz0 , with

ψ̂θ,i(wi(ti,s)) = wi(ti,s) +

∫ ti,e

τ=ti,s

Dϕ−1
i (wi(τ))

ϕi ◦ fθ(ϕ−1i (wi(τ)), τ)dτ,
(6)

where i is the chart index, ti,s and ti,e are the starting and end time for ith chart. ψ̂θ,i defines a
diffeomorphism computed by the classical ODE solver on the tangent space (i.e. Euclidean space)
and provides the solution of the IVP of the equivalent ODE (3).

3.3 Differential of the Inverse Diffeomorphism

We are now left with the problem of computing the pullback operator Dyψ?θ in (4), which maps
the latent velocity ẏ back to the original tangent space TxM. This operator can be considered as
the inverse mapping of the differential Dxψθ : TxM→ Tψθ(x)N . As we already have the diffeo-
morphism ψθ, the straightforward solution is to compute its derivatives and then obtain the required
inverse. Nevertheless, under the Riemannian setting, particularly for d-dimensional submanifolds
Md embedded in Rn, computing the inverse directly becomes problematic due to the geometric
constraints arising fromM. Next, we provide two methods to deal with this problem.

Pullback operator via constrained optimization: Instead of naively differentiating through the
ODE solver of ψθ, we can use the adjoint method to calculate the differential of a diffeomorphism
constructed by a Neural MODE. Assuming that we have the differential Dxψθ (as computed in
Algorithm 1 in App. A.4), the connection between tangent vectors ẋ and ẏ can be written as
Dxψθ(x)ẋ = ẏ. In the Euclidean case, we can directly compute ẋ = (Dxψθ(x))−1ẏ. How-
ever, under the Riemannian setting, computing the inverse (Dxψθ(x))−1 often leads to a loss of
rank in the matrix representation of Dxψθ(x) for an embedded submanifoldMd due to the intrin-
sic geometric constraints of x. We address this problem by introducing geometric constraints that
allow us to compute ẋ on TxM. For example, for manifold Sd, the tangent vector ẋ is orthogonal
to x, that is xTẋ = 0. Hence, we can find a solution by solving a constrained optimization problem,
from which the pullback operator Dyψ?θ is obtained as,

Dyψ
?
θ =

[
Dxψθ(x)TDxψθ(x) + xxT

]−1
Dxψθ(x)T. (7)

The full derivation and discussions can be found in App. D.1. Note thatDyψ?θ in (7) is specific to hy-
persphere manifolds due to the choice of constraints. Thus, this constrained optimization approach
does not easily scale to compute the pullback operator for arbitrary Riemannian manifolds.

Pullback operator via the adjoint method: To generalize the computation of the pullback oper-
ator for arbitrary Riemannian manifolds, we introduce a new approach based on a modified version
of the adjoint method. By reversing the integration time interval (i.e. from [ts, te] to [te, ts]), we can
determine the inverse diffeomorphism ψ−1θ , which is a distinct benefit of Neural MODEs. Thus, the
pullback operator Dyψ?θ can be viewed as the differential of the inverse diffeomorphism Dy(ψ−1θ ).
Furthermore, we leverage the adjoint method to compute the differential of ψ−1θ using the adjoint
ODE Ȧ∗(t) = −A∗(t)Dz(t)fθ(z(t), t), with A∗(t) := Dz(t)(ψ

−1
θ ). Due to the availability of

starting states z(ts) = x andA∗(ts) = In, we can integrate both the Neural MODE (2) and adjoint
ODE to get the Dy(ψ−1θ ). For clarification, we provide Algorithm 2 in App. D.2 for computing

5



Figure 2: Experiments on LASA dataset on S2 (P and W letters): Demonstrations (white), learned vector fields,
and reproductions (black and blue). Blue trajectories start at the same initial points as the demonstrations, while
the black ones depart from randomly-sampled points around the initial points of the demonstrations. The first
two plots show the results for our RSDS approach, and the last two display the EuclideanFlow results.

Dy(ψ−1θ ). Although, we can use dynamic charts method to solve the Neural MODE, dealing with
the adjoint ODE dynamics is still not straightforward. The main challenge is to compute the dif-
ferential of the vector fields on the Riemannian manifold Dz(t)fθ(z(t), t), despite it is nothing but
partial derivatives in the Euclidean case. To avoid directly computing the differential of vector fields
onM, we adopt an approach similar to (6), such that a component zi = (Expzi ◦ψ̂−1θ,i ◦Logzi)zi+1

for computing the inverse diffeomorphism has its differential as,

Dzi+1
zi = Dwi(ti,s) Expzi ◦Dwi(ti,e)ψ̂

−1
θ,i ◦Dzi+1

Logzi , (8)

where Dwi(ti,e)ψ̂
−1
θ,i boils down to partial derivatives (the proof of (8) is provided in App. D.2).

4 Experiments

We evaluate our method in two settings: reproducing trajectories based on the LASA dataset [29]
projected on S2; and reproducing real dynamic motions learned from demonstrations. To show the
importance of incorporating geometry, we compare against a baseline method similar to Euclideaniz-
ing flows [5], that is implemented using CNFs with Neural ODEs in Rn for illustrative experiments
on a modified LASA dataset. We refer to this baseline as EuclideanFlow and our model as RSDS.

4.1 LASA dataset on S2

Architectures: For EuclideanFlow, we use a fully-connected neural network with an input vector
on R4 (i.e., the 3-dimensional state x and time), and 3 hidden layers each, with 32 hidden units for
S2. We use tanh as activation function to guarantee a C1-bounded mapping for modeling the Neural
ODE. The RSDS architecture has an additional projection operator proju on the head of the network
to impose the output on the tangent space of manifolds. The scaling factor k̂γ is generated using a
network composed of an RBF layer and a linear layer without bias. The network architectures are
depicted in App. E (Fig. 8). For all the experiments, we use an Euler ODE solver with step size of
1/32, and 4 coordinate charts for the integration. For each dataset, one trajectory is used for testing
and the remaining ones as training set. All models are trained using the ADAM optimizer [37] with
learning rate of 10−3 (decaying by factor 0.1 after 1000 epochs) over 2000 epochs.

To illustratively show how RSDS and EuclideanFlow perform, we use a modified version of the
LASA dataset of hand-written letters [38], whose trajectories are projected on S2. The correspond-
ing vector field can be easily computed from the projected trajectories by using the logarithmic map.
As a result, we have a new dataset {{xm,t, ẋm,t}Tm

t=1}Mm=1 ofM demonstrations for each letter, with
positions x ∈ S2 and velocities ẋ ∈ TxS2, from which we learn stable dynamical systems. Fig-
ure 2 shows the resulting demonstrations as white curves for datasets P and W, the corresponding
learned vector fields and the reproduced trajectories. Note that we provide more results in App. F
and comparisons to an alternative method to EuclideanFlow, which projects trajectories onto the
manifold after computing the integration in Euclidean space. Concerning the reproductions, the
blue and black trajectories are rollouts starting from the same initial position as the demonstrations
and from randomly-sampled points around them, respectively. Regarding our RSDS approach (first
two plots in Fig. 2), it is evident that all blue and black rollouts closely match the demonstrations

6



Figure 3: Stability of reproductions on S2 for G and MultiModels: 1000 trajectories starting from uniformly-
sampled points. The successful and failed trajectories are depicted in green and red, respectively. The first two
spheres from the left correspond to RSDS reproductions while the other two relate to EuclideanFlow results.
For EuclideanFlow, we first project the vector fields onto S2 and then compute the integration trajectories.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Success rate

P

G

W

MM

0.0 0.5 1.0 1.5 2.0 2.5 3.0
MSE

0 2 4 6 8 10 12
DTWD

RSDS

EuclideanFlow

Figure 4: Left: Average success rate of RSDS and EuclideanFlow over randomly-sampled initial points on
S2 using 7 different trained models indicated as points. Middle: Average mean square error (MSE) between
observed and predicted velocity over data points in the test trajectories indicated as points. Right: Dynamic
time warping distance (DTWD) between demonstrations and reproductions.

and converge to the equilibrium. In contrast, the EuclideanFlow reproductions constantly leave the
manifold since there are no mechanisms accounting for the inherent geometric constraints of the
data (see last two plots in Fig. 2). The bald regions on the manifold where the velocity vectors
point inwards towards the sphere’s center are also evidence of this phenomenon. We also provide
quantitative metrics for accuracy comparisons. Figure 4-right, and -middle show the dynamic time
warping distance (DTWD) as a measure of reproduced position trajectory accuracy, and the mean
squared error (MSE) of the velocities reproduction. These metrics show that RSDS outperforms
EuclideanFlow for the most complex trajectories, e.g. the W dataset. Although Fig. 4 shows that
both models seem to perform well on the P, G, and MultiModels datasets, as pointed out before,
Fig. 2 displays that the EuclideanFlow trajectories do not obey the data geometry.

Secondly, we evaluate the stability of both approaches. For a fair comparison, we first project the
vector fields onto S2 and compute the integration trajectories for EuclideanFlow. To quantitatively
assess this, we measure the stability of the learned vector fields (i.e. convergence to the equilib-
rium), by uniformly sampling 1000 initial points on S2 and counting the number of trajectories that
successfully converge. This procedure is repeated for 7 different trained models, with the average
success rate computed over the initial points. Using one of the trained models, Fig. 3 shows green
and red curves representing successful and failed trajectories, respectively. It is evident that a large
number of the EuclideanFlows trajectories failed to converge despite the projection, however all the
RSDS trajectories succeeded. This result is supported by the success rate metric displayed in Fig. 4–
left. These results show that accounting for the data geometry, as in our RSDS approach, is crucial
to provide stability guarantees of the learned dynamical system. Additionally, we also compare the
learning efficiency between the two methods, where RSDS generally requires fewer training epochs
than EuclideanFlow. Nevertheless, each training epoch of RSDS is more computationally expensive
due to manifold operations. The details of these results are provided in App. F (Fig. 10).

4.2 Real robot experiments on R3 × S3

We evaluated two different manipulation tasks using the 7-DOF Franka-Emika Panda robot: (1)
a GraspingTask with 90 degrees rotation, and (2) a V-shape DrawingTask. For both experiments,
we collected 10 kinesthetic demonstrations of the robot end-effector motion as position-velocity
trajectories at a frequency of 10 Hz. Here, we show that RSDS can indeed be used in real-world

7



Figure 5: DrawingTask and GraspingTask: Time evolution of the reproductions is depicted by superimposed
images from different time frames. The transparent robots depict the trace of the motion trajectory. The second
plot for each task displays the task reproduction under perturbation, where the unperturbed reproduction is
depicted as a green trajectory for reference.

applications. We train our model on the R3 × S3 manifold accounting for position and orientation
of robot end-effector with the same network architecture as our illustrative experiments, except
that we use 16 hidden units for faster computations. As shown in Fig. 5, while following the V-
shape curve in the DrawingTask, the end-effector always faces the moving direction; similarly, when
approaching the object in the GraspingTask, the gripper rotates 90 degrees. These motion patterns
require synchronized position and orientation trajectories, which is only attainable by training a
model with a state variable on a product manifold, i.e., x ∈ R3 × S3. To deploy the reproduced
motion on the robot, we numerically integrated the desired velocity vector x̂ ∈ TẋM online, and
used it as reference for a Cartesian impedance controller.

As observed in Fig. 5, the reproductions governed by the vector fields learned with our RSDS model
accurately imitate the demonstrated motion patterns and converge to the goal position. Furthermore,
these experiments incorporated some target shifts to test if our model could cope with them without
retraining. We further evaluated the stability of the learned vector fields by perturbing the robot dur-
ing the task reproduction. As Fig. 5 shows, after perturbing the robot, the end-effector still follows
an alternative trajectory computed from the learned vector field (see black and orange trajectories
for DrawingTask and GraspingTask, respectively).

5 Discussion

We introduced a new approach RSDS to accurately learn vector fields on Riemannian manifolds
while ensuring global asymptotic stability, which can not be achieved without taking into account
the underlying geometry structure of the data. Our model inherits all the advantages of stable dy-
namical systems, such as high robustness against environmental perturbations. To our knowledge,
RSDS is the first to leverage neural ODEs on Riemannian manifolds to learn Lyapunov-stable Rie-
mannian dynamical systems. Moreover, RSDS builds on a new methodology to compute the pull-
back operator leveraging the characteristics of neural MODEs. Our framework is generic and can
theoretically be used to learn vector fields on any Riemannian manifolds with defined exponential
and logarithmic maps. As future work, we will leverage RSDS to learn vector fields on other Rie-
mannian manifolds such as the manifold of symmetric-positive-definite (SPD) matrices Sd++, which
is relevant in manipulability learning [23] and video tracking [39].

Limitations: Due to the complexity of the Riemannian operators and the Neural MODE solvers,
our framework runs relatively slowly, making it unsuitable for hard real-time applications. This
problem can be alleviated by switching to faster ODE solvers after training, which allows us to
accelerate the query time at the expense of precision. To improve the accuracy and stability of solv-
ing Neural MODEs, we can take advantage of techniques such as regularization [32] and recording
checkpoint for the forward mode [40]. In addition, since we leverage the Lyapunov stability to a sin-
gle fixed point, the model may still reproduce some trajectories that are inconsistent with the trend of
demonstration data due to lack of information for points far from demonstrations. It may be worth-
while exploring other stability criteria, such as contraction analysis [41], to ensure the incremental
exponential stability of trajectories with respect to each other on the manifold.

8



Acknowledgments

J. Zhang was supported by the Bosch Center for Artificial Intelligence (BCAI) as a master thesis
student.

References
[1] E. Burdet, K. P. Tee, I. Mareels, T. E. Milner, C. M. Chew, D. W. Franklin, R. Osu, and

M. Kawato. Stability and motor adaptation in human arm movements. Biological Cybernetics,
20(32), 2006. doi:10.1007/s00422-005-0025-9.

[2] S. M. Khansari-Zadeh and A. Billard. Learning stable nonlinear dynamical systems with
Gaussian mixture models. IEEE Transactions on Robotics, 27(5):943–957, 2011. doi:
10.1109/TRO.2011.2159412.

[3] S. M. Khansari-Zadeh and A. Billard. Learning control Lyapunov function to ensure stability
of dynamical system-based robot reaching motions. Robotics and Autonomous Systems (RAS),
62(6):752–765, 2014. doi:https://doi.org/10.1016/j.robot.2014.03.001.

[4] K. Neumann and J. J. Steil. Learning robot motions with stable dynamical systems under
diffeomorphic transformations. Robotics and Autonomous Systems (RAS), 70:1–15, 2015. doi:
https://doi.org/10.1016/j.robot.2015.04.006.

[5] M. A. Rana, A. Li, D. Fox, B. Boots, F. Ramos, and N. Ratliff. Euclideanizing flows: Dif-
feomorphic reduction for learning stable dynamical systems. In Conference on Learning for
Dynamics and Control (L4DC), pages 630–639, 2020. URL https://proceedings.mlr.
press/v120/rana20a.html.

[6] Y. Zhang, L. Cheng, H. Li, and R. Cao. Learning accurate and stable point-to-point motions:
A dynamic system approach. IEEE Robotics and Automation Letters (RA-L), 7(2):1510–1517,
2022. doi:10.1109/LRA.2022.3140677.

[7] E. D. Sontag. A Lyapunov-like characterization of asymptotic controllability. SIAM Journal
on Control and Optimization, 21(3):462–471, 1983. doi:10.1137/0321028.

[8] H. Ravanbakhsh and S. Sankaranarayanan. Learning control Lyapunov functions from coun-
terexamples and demonstrations. Autonomous Robots, 45:275–307, 2019. doi:10.1007/
s10514-018-9791-9.

[9] I. D. J. Rodriguez, A. D. Ames, and Y. Yue. Lyanet: A Lyapunov framework for training
neural ODEs. In International Conference on Machine Learning (ICML), pages 1–10, 2022.
URL https://arxiv.org/abs/2202.02526.

[10] J. Urain, M. Ginesi, D. Tateo, and J. Peters. Imitationflow: Learning deep stable stochas-
tic dynamic systems by normalizing flows. In IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 5231–5237, 2020. URL 10.1109/IROS45743.2020.
9341035.

[11] J. Urain, D. Tateo, and J. Peters. Learning stable vector fields on Lie groups, 2021. URL
https://arxiv.org/abs/2110.11774.

[12] W. Zhi, T. Lai, L. Ott, and F. Ramos. Diffeomorphic transforms for generalised imitation
learning. In Learning for Dynamics and Control Conference (L4DC), pages 508–519, 2022.
URL https://proceedings.mlr.press/v168/zhi22a.html.

[13] J.-Y. Wen and K. Kreutz-Delgado. The attitude control problem. IEEE Transactions on Auto-
matic Control, 36(10):1148–1162, 1991. doi:https://doi.org/10.1109/9.90228.

[14] Y. Gu. Analysis of orientation representations by Lie algebra in robotics. In International
Conference on Robotics and Automation (ICRA), pages 874–879, 1988. doi:https://doi.org/10.
1109/ROBOT.1988.12170.

9

http://dx.doi.org/10.1007/s00422-005-0025-9
http://dx.doi.org/10.1109/TRO.2011.2159412
http://dx.doi.org/10.1109/TRO.2011.2159412
http://dx.doi.org/https://doi.org/10.1016/j.robot.2014.03.001
http://dx.doi.org/https://doi.org/10.1016/j.robot.2015.04.006
http://dx.doi.org/https://doi.org/10.1016/j.robot.2015.04.006
https://proceedings.mlr.press/v120/rana20a.html
https://proceedings.mlr.press/v120/rana20a.html
http://dx.doi.org/10.1109/LRA.2022.3140677
http://dx.doi.org/10.1137/0321028
http://dx.doi.org/10.1007/s10514-018-9791-9
http://dx.doi.org/10.1007/s10514-018-9791-9
https://arxiv.org/abs/2202.02526
10.1109/IROS45743.2020.9341035
10.1109/IROS45743.2020.9341035
https://arxiv.org/abs/2110.11774
https://proceedings.mlr.press/v168/zhi22a.html
http://dx.doi.org/https://doi.org/10.1109/9.90228
http://dx.doi.org/https://doi.org/10.1109/ROBOT.1988.12170
http://dx.doi.org/https://doi.org/10.1109/ROBOT.1988.12170


[15] A. Ude, B. Nemec, T. Petrić, and J. Morimoto. Orientation in Cartesian space dynamic move-
ment primitives. In IEEE International Conference on Robotics and Automation (ICRA), pages
2997–3004, 2014. URL https://doi.org/10.1109/ICRA.2014.6907291.

[16] M. Zeestraten. Programming by Demonstration on Riemannian Manifolds. PhD thesis, Uni-
versity of Genova, Italy, 2018. URL https://iris.unige.it/handle/11567/930621#
.YCgbRuoo85k.

[17] L. Koutras and Z. Doulgeri. A correct formulation for the orientation dynamic movement prim-
itives for robot control in the Cartesian space. In Conference on Robot Learning (CoRL), pages
293–302, 2020. URL https://proceedings.mlr.press/v100/koutras20a.html.

[18] L. Rozo and V. Dave. Orientation probabilistic movement primitives on Riemannian manifolds.
In Conference on Robot Learning (CoRL), 2021. URL https://openreview.net/forum?
id=csMg2h_LR37.

[19] N. Jaquier, V. Borovitskiy, A. Smolensky, A. Terenin, T. Asfour, and L. Rozo. Geometry-aware
Bayesian optimization in robotics using Riemannian Matérn kernels. In Conference on Robot
Learning (CoRL), pages 794–805, 2021. URL https://proceedings.mlr.press/v164/
jaquier22a.html.

[20] J. Solà, J. Deray, and D. Atchuthan. A micro Lie theory for state estimation in robotics. CoRR,
abs/1812.01537, 2018. URL http://arxiv.org/abs/1812.01537.

[21] M. P. do Carmo. Riemannian Geometry. Birkhäuser, 1st edition, 1992.

[22] F. Pait and D. Colón. Some properties of the Riemannian distance function and the position
vector X, with applications to the construction of Lyapunov functions. In IEEE Conference on
Decision and Control (CDC), pages 6277–6280, 2010. doi:10.1109/CDC.2010.5717398.

[23] N. Jaquier, L. Rozo, D. G. Caldwell, and S. Calinon. Geometry-aware manipulability learning,
tracking, and transfer. The International Journal of Robotics Research (IJRR), 40(2-3):624–
650, 2021. doi:10.1177/0278364920946815.

[24] A. Lou, D. Lim, I. Katsman, L. Huang, Q. Jiang, S. N. Lim, and C. M. De Sa. Neu-
ral manifold ordinary differential equations. In Neural Information Processing Systems
(NeurIPS), pages 17548–17558, 2020. URL https://proceedings.neurips.cc/paper/
2020/file/cbf8710b43df3f2c1553e649403426df-Paper.pdf.

[25] E. Mathieu and M. Nickel. Riemannian continuous normalizing flows. In Neural Informa-
tion Processing Systems (NeurIPS), pages 2503–2515, 2020. URL https://proceedings.
neurips.cc/paper/2020/file/1aa3d9c6ce672447e1e5d0f1b5207e85-Paper.pdf.

[26] M. C. Gemici, D. Rezende, and S. Mohamed. Normalizing flows on riemannian manifolds,
2016. URL https://arxiv.org/abs/1611.02304.

[27] D. J. Rezende, G. Papamakarios, S. Racaniere, M. Albergo, G. Kanwar, P. Shanahan, and
K. Cranmer. Normalizing flows on tori and spheres. In International Conference on Ma-
chine Learning (ICML), pages 8083–8092, 2020. URL https://proceedings.mlr.press/
v119/rezende20a.html.

[28] J. E. Slotine and W. Li. Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs, NJ,
1991.

[29] J. Lee. Introduction to Riemannian Manifolds. Springer, 2nd edition, 2018. doi:10.1007/
978-3-319-91755-9.

[30] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neu-
ral ordinary differential equations. In Neural Information Processing Systems
(NeurIPS), 2018. URL https://proceedings.neurips.cc/paper/2018/file/
69386f6bb1dfed68692a24c8686939b9-Paper.pdf.

[31] W. Grathwohl, R. T. Q. Chen, J. Bettencourt, and D. Duvenaud. Scalable reversible gener-
ative models with free-form continuous dynamics. In International Conference on Learning
Representations (ICLR), 2019. URL https://openreview.net/forum?id=rJxgknCcK7.

10

https://doi.org/10.1109/ICRA.2014.6907291
https://iris.unige.it/handle/11567/930621##.YCgbRuoo85k
https://iris.unige.it/handle/11567/930621##.YCgbRuoo85k
https://proceedings.mlr.press/v100/koutras20a.html
https://openreview.net/forum?id=csMg2h_LR37
https://openreview.net/forum?id=csMg2h_LR37
https://proceedings.mlr.press/v164/jaquier22a.html
https://proceedings.mlr.press/v164/jaquier22a.html
http://arxiv.org/abs/1812.01537
http://dx.doi.org/10.1109/CDC.2010.5717398
http://dx.doi.org/10.1177/0278364920946815
https://proceedings.neurips.cc/paper/2020/file/cbf8710b43df3f2c1553e649403426df-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/cbf8710b43df3f2c1553e649403426df-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1aa3d9c6ce672447e1e5d0f1b5207e85-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1aa3d9c6ce672447e1e5d0f1b5207e85-Paper.pdf
https://arxiv.org/abs/1611.02304
https://proceedings.mlr.press/v119/rezende20a.html
https://proceedings.mlr.press/v119/rezende20a.html
http://dx.doi.org/10.1007/978-3-319-91755-9
http://dx.doi.org/10.1007/978-3-319-91755-9
https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://openreview.net/forum?id=rJxgknCcK7


[32] C. Finlay, J.-H. Jacobsen, L. Nurbekyan, and A. M. Oberman. How to train your neural ODE:
the world of jacobian and kinetic regularization. In International Conference on Machine
Learning (ICML), pages 3154–3164, 2020. doi:10.5555/3524938.3525234.

[33] D. J. Rezende and S. Mohamed. Variational inference with normalizing flows. In Interna-
tional Conference on Machine Learning (ICML), pages 1530––1538, 2015. doi:doi/10.5555/
3045118.3045281.

[34] G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed, and B. Lakshminarayanan. Nor-
malizing flows for probabilistic modeling and inference. Journal of Machine Learning Re-
search, 22(57):1–64, 2021. URL http://jmlr.org/papers/v22/19-1028.html.

[35] I. Kobyzev, S. J. Prince, and M. A. Brubaker. Normalizing flows: An introduction and review
of current methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(11):
3964–3979, 2021. doi:10.1109/TPAMI.2020.2992934.

[36] E. Hairer. Solving differential equations on manifolds, 2011. URL http://www.unige.ch/

~hairer/polycop.html.

[37] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International Con-
ference for Learning Representations (ICLR), 2015. URL http://arxiv.org/abs/1412.
6980.

[38] A. Lemme, Y. Meirovitch, M. Khansari-Zadeh, T. Flash, A. Billard, and J. J. Steil. Open-
source benchmarking for learned reaching motion generation in robotics. Paladyn, Journal of
Behavioral Robotics, 6(1), 2015. doi:doi:10.1515/pjbr-2015-0002.

[39] G. Cheng and B. C. Vemuri. A novel dynamic system in the space of SPD matrices with
applications to appearance tracking. SIAM Journal on Imaging Sciences, 6(1):592–615, 2013.
doi:10.1137/110853376.

[40] J. Zhuang, N. Dvornek, X. Li, S. Tatikonda, X. Papademetris, and J. Duncan. Adaptive check-
point adjoint method for gradient estimation in neural ODE. In International Conference on
Machine Learning (ICML), pages 11639–11649, 2020. URL https://proceedings.mlr.
press/v119/zhuang20a.html.

[41] C. Dawson, S. Gao, and C. Fan. Safe control with learned certificates: A survey of neural
Lyapunov, barrier, and contraction methods. ArXiv, abs/2202.11762, 2022. URL https:
//arxiv.org/abs/2202.11762.

[42] N. Boumal. An introduction to optimization on smooth manifolds. To appear with Cambridge
University Press, Apr 2022. URL http://www.nicolasboumal.net/book.

[43] X. Pennec. Manifold-valued image processing with spd matrices. In X. Pennec, S. Som-
mer, and T. Fletcher, editors, Riemannian Geometric Statistics in Medical Image Analy-
sis, pages 75–134. Academic Press, 2020. ISBN 978-0-12-814725-2. URL 10.1016/
B978-0-12-814725-2.00010-8.

[44] C.-A. Cheng, M. Mukadam, J. Issac, S. Birchfield, D. Fox, B. Boots, and N. Ratliff. Rmpflow:
A geometric framework for generation of multitask motion policies. IEEE Transactions on
Automation Science and Engineering, 18(3):968–987, 2021. URL 10.1109/TASE.2021.
3053422.

[45] K. Van Wyk, M. Xie, A. Li, M. A. Rana, B. Babich, B. Peele, Q. Wan, I. Akinola, B. Sun-
daralingam, D. Fox, B. Boots, and N. D. Ratliff. Geometric fabrics: Generalizing classical
mechanics to capture the physics of behavior. IEEE Robotics and Automation Letters (RA-L),
7(2):3202–3209, 2022. URL 10.1109/LRA.2022.3143311.

[46] H. Beik-Mohammadi, S. Hauberg, G. Arvanitidis, G. Neumann, and L. Rozo. Learning Rie-
mannian manifolds for geodesic motion skills. In Robotics: Science and Systems (R:SS), 2021.
URL https://roboticsconference.org/2021/program/papers/082/index.html.

[47] H. Beik-Mohammadi, S. Hauberg, G. Arvanitidis, G. Neumann, and L. Rozo. Reactive motion
generation on learned riemannian manifolds, 2022. URL https://arxiv.org/abs/2203.
07761.

11

http://dx.doi.org/10.5555/3524938.3525234
http://dx.doi.org/doi/10.5555/3045118.3045281
http://dx.doi.org/doi/10.5555/3045118.3045281
http://jmlr.org/papers/v22/19-1028.html
http://dx.doi.org/10.1109/TPAMI.2020.2992934
http://www.unige.ch/~hairer/polycop.html
http://www.unige.ch/~hairer/polycop.html
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://dx.doi.org/doi:10.1515/pjbr-2015-0002
http://dx.doi.org/10.1137/110853376
https://proceedings.mlr.press/v119/zhuang20a.html
https://proceedings.mlr.press/v119/zhuang20a.html
https://arxiv.org/abs/2202.11762
https://arxiv.org/abs/2202.11762
http://www.nicolasboumal.net/book
10.1016/B978-0-12-814725-2.00010-8
10.1016/B978-0-12-814725-2.00010-8
10.1109/TASE.2021.3053422
10.1109/TASE.2021.3053422
10.1109/LRA.2022.3143311
https://roboticsconference.org/2021/program/papers/082/index.html
https://arxiv.org/abs/2203.07761
https://arxiv.org/abs/2203.07761

