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ABSTRACT

Recently, adaptive federated optimization methods, such as FedAdam and Fed AMS-
Grad, have gained increasing attention for their fast convergence and stable perfor-
mance, especially in training models with heavy-tail stochastic gradient distribu-
tions. However, these adaptive federated methods suffer from the dilemma of local
steps, i.e., the convergence rate gets worse as the number of local steps increases in
partial participation settings, making it challenging to further improve the efficiency
of adaptive federated optimization. In this paper, we propose a novel method to
accelerate adaptive federated optimization with local gossip communications when
data is heterogeneous. Particularly, we aim to lower the impact of data dissimilarity
by gathering clients into disjoint clusters inside which they are connected with
local client-to-client links and are able to conduct local gossip communications.
We show that our proposed algorithm achieves a faster convergence rate as the
local steps increase thus solving the dilemma of local steps. Specifically, our
solution improves the convergence rate from O(y/7/vT M) in Fed AMSGrad to

O(1/v/TTM) in partial participation scenarios for nonconvex stochastic setting.
Extensive experiments and ablation studies demonstrate the effectiveness and broad
applicability of our proposed method.

1 INTRODUCTION

Federated Learning (Konecny et al.,[2016; McMahan et al.,|2017) has become a crucial large-scale
machine learning paradigm where multiple clients jointly train a machine learning model coordinated
by a central server. Unlike traditional centralized training, where data is stored in a single central
server, in federated learning, training data are stored on each client and only the local trained models
are iteratively exchanged and synchronized to the central server. FedAvg (McMahan et al., [2017))
(also known as Local SGD (Stich, [2018))) has become one of the most popular federated optimization
methods, where each client locally performs multiple steps of SGD updates then aggregates together
for the global model update. Aside from the advantage of data privacy protection, the design of
multiple local update steps also intends to reduce the communication between the server and clients.
Compared with distributed learning (McMahan et al., [2017; [Stichl [2018]) where each local update
step is followed by server aggregation, federated learning can further reduce the communication
rounds. Recently, as the booming interests in training large-scale models such as BERT (Devlin et al.}
2018), GPT-3 (Brown et al., [2020) and ViT(Dosovitskiy et al., 2021)), adaptive federated optimization
methods such as FedAdam (Reddi et al., [2020), FedAGM (Tong et al.,|2020) and FedAMS (Wang
et al.| [2022b)) has also been proposed and attracted a lot of attention. Specifically, adaptive federated
optimization retains the multiple steps of SGD update on local clients but changes the global update of
FedAvg from one-step SGD to one-step adaptive gradient methods update. By introducing adaptivity
into federated learning, it achieves fast convergence, especially for heavy-tail stochastic gradient
noise distributions.

While various adaptive federated optimization algorithms have been proposed, there still exist several
key bottlenecks in applying adaptive federated optimization in practice, such as (1) large client-to-
server communication overhead due to the limited bandwidth and repetitive transmission between
the server and clients; (2) intense sensitivity on data heterogeneity since nonidentical data distribution
on different clients introduce extra variance between clients and slow down the training process of
federated learning. What’s even worse, these two objectives may conflict with each other: while



Under review as a conference paper at ICLR 2023

increasing the number of local training steps and using partial participation strategies can certainly
save the communication costs between the server and clients, it has been shown that the variance
overhead term grows as the number of local steps increases in partial participation settings, which
leads to worse convergence rate in adaptive federated optimization (Reddi et al.,[2020; Wang et al.|
2022b)). Such worse convergence result is largely due to data heterogeneity, as in the i.i.d setting,
the increasing of local steps can indeed lead to a better convergence rate. In this work, we refer this
problem as the dilemma of local steps. Similar issues have also been shown in FedAvg that a larger
number of local SGD steps may cause over-fitting on local clients, also known as client-drift, which
slows down the convergence or leads to an unstable result (Karimireddy et al.,[2020b). This motivates
us to study the following question:

Can we resolve the dilemma of local steps for adaptive federated optimizations? i.e., achieving a
faster convergence rate as the number of local steps increases under the non-i.i.d. setting?

Note that previous studies have shown that traditional variance reduction techniques (Johnson &
Zhang| 2013 |[Fang et al., 2018)) can help reduce the client-drift and improve the convergence
rate in FedAvg by additionally computing and communicating a control variate or a full-batch
gradient (Karimireddy et al.,|2020aib). However, it still remains an open problem how to apply such
variance reduction techniques to adaptive federated optimization as it requires precise characterization
of each local SGD iteration, which is incompatible with adaptive federated optimization, whose
current analysis can only give the characterization of cumulative gradient estimators between two
communication rounds. Therefore, we take a different route here to solve the dilemma of local
steps in adaptive federated optimization: since the core idea of variance reduction is to lower the
impact of data dissimilarity between clients, we could obtain a similar effect by enabling the local
client-to-client communications similar to gossip averaging in decentralized training (Boyd et al.,
2006; Lian et al., 2017; [Li et al.| |2019b) for reducing the dissimilarity variance between clients.
Specifically, in this paper, we propose a novel hybrid adaptive federated optimization method, HA-
Fed, which benefits from both adaptive federated optimization (Reddi et al., [2020; (Tong et al., 2020;
Wang et al.l [2022b) and techniques in decentralized training (Lian et al., 2017; [Koloskova et al.,
2020; L1 et al.} | 2019b). HA-Fed is structured by partitioning a global network into disjoint network
clusters, where clients in the same cluster are connected via locally gossip communication links.
These locally communications are fast and frequent, which incurs neglectable extra communication
overhead compared with client-to-server communication links.

Our contributions can be summarized as follows:

1. We propose a new hybrid adaptive federated optimization method, HA-Fed, which benefits
from the frequently local gossip communications to resolve the dilemma of local steps in
adaptive federated optimization methods. i.e., achieves faster convergence rate as the local
steps increases.

2. We show the theoretical convergence improvements for our proposed HA-Fed in the stochastic
nonconvex optimization settings. Specifically, we prove that HA-Fed achieves a faster
convergence rate than FedAMSGrad[ﬂon the non-dominant term in full participation scenarios.
Moreover, we show that in the more practical partial participation setting, HA-Fed improves
the convergence rate (dominant term) from O(y/7/vVTM) to O(1/vVTTM) w.r.t. global
communication rounds 7', local update steps 7 and the number of participation clients M.

3. Extensive experiments are conducted on several benchmarks dataset and show that our pro-
posed HA-Fed effectively saves the client-to-server communication overhead while achieving
faster convergence with heterogeneous data. Extensive ablation studies also show the broad
applicability of our proposed method.

Notation: We consider column vectors throughout this paper except special explanations. For
X,y € R%, denote v/, x2, x/y as the element-wise square root, square, and division of the vectors.
For vector x and matrix A, || - || abbreviates the {5 norm of the vector and Frobenius norm of the
matrix, i.e., ||x|| = ||x||2 and ||A|| = ||A||r, and || A||2 denotes the spectral norm of matrix A. We

!The convergence rate of Fed AMSGrad is obtained from the convergence analysis for FedAMS (Wang et al.,
2022b), where FedAMSGrad gets a similar convergence to FedAMS. FedAMSGrad is also included in (Tong
et al., [2020).



Under review as a conference paper at ICLR 2023

denote 1 as vector with all elements equal to 1 with appropriate dimension, and I as the identity
matrix with appropriate dimension.

2 RELATED WORK

Federated learning: Federated learning (Konecny et all [2016)) has attracted growing interest
recently due to the demand for training models locally at edge devices and the requirements of
privacy protection. Federated optimization methods such as SGD-based optimization algorithm,
FedAvg (McMahan et al.,|2017), also known as Local SGD (Stich, 2018)), have been widely used in
federated learning. Aside from FedAvg, since adaptive gradient methods such as Adam (Kingma &
Ba, 2014)) and its variant AMSGrad (Reddi et al., 2018) overcame the sensitivity to parameters and
slow to convergence issue of SGD, adaptive federated optimizations such as FedAdam(Reddi et al.,
2020), FedAGM (Tong et al., [2020) and FedAMS (Wang et al., [2022b) studied the corresponding
adaptive optimization algorithms in federated learning. Moreover, several works (Hsu et al.,[2019;
Ghosh et al., 2019; Karimireddy et al.| [2020b; L1 et al., [2019a; |Yang et al., [2021) addressed and
focused on the data heterogeneity issues of federated learning, where Karimireddy et al.| (2020b)
proposed a federated learning variance reduction method that overcomes the data heterogeneity, but it
requires extra communication costs for variance reduction operations. |Guo et al|(2021)) considered
heterogeneous communications for modern communication networks that improve communication
efficiency. Hierarchical federated learning algorithms (Liu et al., [2020; [Abad et al.| [2020; (Castiglia
et al}2020) are developed by aggregating client models to edge servers first before synchronizing
them to the central server.

Decentralized learning and other frameworks: Decentralized learning is a large-scale machine
learning paradigm without a central server. It has been firstly studied from gossip averaging techniques
(Tsitsiklis, |1984; Boyd et al., 2006). Decentralized (gossip) SGD algorithms (Lian et al., 2017} |Li
et al.,[2019b; Boyd et al., 2006; [Tang et al., [2018]) are then proposed that consider client-to-client
communications after each step of SGD update on the client. |Lu & De Sal (2021)) proved a tight
lower bound for decentralized training under the nonconvex setting. [Teng et al.|(2019) proposes a
leader-distributed SGD algorithm that pulls workers to the currently best-performing model among all
models, which also utilizes inexpensive gossip communication. Moreover, recent studies generalized
various distributed SGD algorithms under unified frameworks (Wang & Joshi), 2021}, [Koloskova
et al.,2020), where Wang & Joshi|(2021)) included reducing communication costs and decentralized
training in i.i.d. settings, and |[Koloskova et al.|(2020) studied a general network topology-changing
gossip SGD methods that summarize several algorithms in distributed and federated learning.

Communication-efficient federated learning: In terms of reducing the communication overhead
in federated learning, one of the common approaches is to save the communication bits when
synchronizing, such as the compressed and quantized FedAvg-based methods (Reisizadeh et al.|
2020; Jin et al., [2020; Jhunjhunwala et al.| 2021; |Chen et al., [2021a)). Note that the bit compression
strategy is orthogonal to our hybrid adaptive federated learning framework and can potentially be
combined to further reduce communication overheads.

3 PRELIMINARIES ON ADAPTIVE FEDERATED OPTIMIZATION

Firstly, let’s begin with the general federated learning problem under nonconvex stochastic optimiza-
tion settings. Suppose we have N local clients, and our goal is to minimize the following objective:

N
1
i == (%), 3.1
min f(x) N;f(X) G.D
where x denotes the model parameters, f;(x) = Esup, fi(x,&;) is the local nonconvex loss function
corresponding to client ¢, and D; is the local data distribution associated with client i. FedAvg
(McMahan et al.| [2017) is a popular optimization algorithm to solve Eq. 3.1} with the sequential
implementation of local SGD updates and global averaging.

Adaptive federated optimization is then proposed to incorporate adaptivity in federated optimization
methods by replacing the global averaging in FedAvg with one-step adaptive gradient optimization.
For example, FedAMSGrad is designed with multi-steps of local SGD updates and followed by
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one step of global AMSGrad (Reddi et al.,|2018) update. Specifically, at global round ¢, the server
broadcasts the model x; to selected clients. Each client ¢ conducts 7 steps of local SGD updates
with local learning rate 7; and obtains the local model x: - The model difference Al =xi_ —x
for each client is aggregated to the server and averaged to A;. The server updates the global model
x¢+1 by taking A; as a pseudo gradient for calculating momentum m; and variance v, for AMSGrad
optimizer, and performs one step AMSGrad update with global learning rate 7, i.e.,

m; = fimy_1 + (1 — B1)A, v = Bovio1 + (1 — B2) A7,

my
vV Vt —+ 6

the server obtains model x;; after one global round. Besides FedAdam and FedAMSGrad, there
are several adaptive federated optimization methods with slightly changes in update formulas, e.g.,
FedAdagrad and FedYogi (Reddi et al.,[2020), FedAGM (Tong et al., [2020) and FedAMS (Wang
et al.} 2022b).

Vi =max{Vi_1,Vi},Xp41 =Xt + 7 (3.2)

The convergence of FedAMSGrad is affected by several factors such as the number of local steps 7,
global rounds 7', and the number of participating clients M. In full participation settings, where M is
equal to the total number of clients NV, Fed AMSGrad enjoys a convergence rate of O(1/+/T7N). This
suggests that even for heterogeneous data, a larger number of local steps 7 can help save the client-to-
server communication rounds and lead to faster convergence. However, previous study shows that
under more practical partial participation settings, FedAMSGrad only achieves a convergence rate of
O(\/7/VT M) with heterogeneous data. This suggests that while larger 7 can reduce communication
frequency, it scarifies the convergence rate and requires more communication rounds to converge. We
refer to this problem as the dilemma of local steps.

The dilemma of local steps arises in partial participation settings since the heterogeneous data induces
a large variance term in the final convergence result, which is proportional to the number of local
steps 7 and thus leads to a worse convergence rate. For full participation settings, it is fortunate that
this variance overhead only appears on the non-dominant term, thus it does not slow down the overall
convergence. While for partial participation settings, the larger 7 amplifies the over-fitting issue on
local clients as fewer clients participate in each round of global training and becomes a dominant
term in the convergence result. Although variance reduction techniques (Johnson & Zhang, 2013}
Fang et al.} 2018)) can help reduce the client-drift (or the dilemma of local steps) in the local iterations
of FedAvg (Karimireddy et al., 2020bja)), the success of applying variance reduction techniques to
FedAvg rely on the precise characteristic of each local SGD iteration. However, as shown in Eq.
the global adaptive optimizer updates via the cumulative model difference A; between two
communication rounds, which makes how to apply iterative variance reduction bounds to adaptive
federated optimization an open problem. In the following, we will present our attempt to resolve the
dilemma of local steps by a new hybrid adaptive federated optimization method.

4 PROPOSED METHOD

In this paper, we propose a hybrid adaptive federated optimization method (HA-Fed) where the
clients are partitioned into disjoint clusters inside which they can communicate by fast client-to-client
links, and clusters communicate with the central server with client-to-server communication links.
Specifically, assuming we have one central server and K disjoint clusters, each of which contains n
local clients and there are connected by client-to-client links (denoted by the adjacency matrix Wy).
Let’s denote the total number of clients as N = Kn. Our goal is to solve the following optimization
problem:

1 &
min f(x Z fix) =5 kz::l fr(x), .

where f;(x) = E¢up, fi(x,&;) is the nonconvex loss function for the i-th client, and fi,(x) :=
13 ey, fi(x) is the average loss on cluster k. We consider Vj, as the set of local clients in the
cluster k, and clients in cluster k are linked by a connected graph Qkﬂ

’The connected graph implies there is a path from any client to any other client in the graph.
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In order to accelerate FedAMSGrad under heterogeneous data settings, our HA-Fed starts from
FedAMSGrad and introduces intra-cluster gossip communications. Gossip communication is de-
signed for clients in a network to communicate with their neighbors without a central server, and
it has been a popular approach in decentralized learning (Lian et al.,[2017; [Koloskova et al.| 2020
Chen et al., [2021b)). Our proposed HA-Fed adds frequent client-to-client gossip communication
inside each cluster to leverage the over-fitting issue within the cluster. These gossip communications
rely on inexpensive local client-to-client communications without incurring extra client-to-server
communication rounds, but at the same time, prevent over-fitting on local clients since the model on
each client sufficiently communicates with their neighbors.

Algorithm [T summarizes the proposed HA-Fed in full participation scenarios. The major difference
between HA-Fed and FedAMSGrad lies in the local update step within each cluster (Line 9 in
Algorithm|[I)): at the s-th step of intra-cluster training for cluster k, after client ¢ finishes their local
update and obtains xi)s +1 by one step SGD, we conduct one gossip averaging step within the cluster,

i.e., let each client communicate with its neighbors ;' and aggregate the nearby local models with a
weighted matrix Wj,. The rest part of the algorithm is similar to FedAMSGrad.

In order to further reduce client-to-server communication rounds, we also adopt partial participation
setting for HA-Fe(ﬂ Generally, in partial participation settings, the server samples a subset of m
clients in each cluster before each round starts and only broadcasts the current model to these m
selected clients and the selected clients will broadcast the received model to other clients within the
same cluster with client-to-client links. For global model updates, all selected clients send the model
difference A! to the central server, and the server aggregates them to A;. The rest of the partial
participation update is the same as the full participation scenarios.

Algorithm 1 HA-Fed:full participation

Input: initial point x;, global step size 7, local step size 7;, 51, B2, €, weighting matrix W}, for all
clusters k € [K]

1: myg+—0,vg+ 0

2: fort =1to T do

3:  for each cluster k& € [K] in parallel do

4 for each client 7 € V), in parallel do

5: Receive model from the server: x} ; = X,

6 fors=0,....,7—1do

7 Compute local stochastic gradient: g} . = VF(x} ;& )
8

%

Local update: X spl = Xi s — M8t s

9: Gossip communication: X} ., = Zje/\/g (Wk)i,jxiﬁ%
10: end for
11: Get the model difference: A} = x| | — x;
12: end for
13:  end for

14: Server gets model difference: Ay = % 5 cix) & 2iev, A
15:  Update: m; = Symy 1 + (1 — 81) A,

16: Update: Vi = 62Vt_1 + (1 — ﬁg)A%

17: /V\t = max(@t_l, Vt) and {\/.t = dlag(@ + 6)

18:  Server updates X;41 = X; + 77\/%

19: end for

In a nutshell, HA-Fed takes advantage of decentralized training to resolve the dilemma of local
steps in adaptive federated optimization while preserving the benefit of adaptive optimizations: The
server aggregation rule and update schemes follow standard adaptive federated optimization, which
enjoys nice convergence properties, especially for heavy-tail stochastic gradient noise distributions.
Meanwhile, the local gossip communications alleviate the impact of data dissimilarity between clients
on the final convergence rate. Of course, this design requires all clients within each cluster to stay
active and perform gossip communications. Yet we also want to emphasize that HA-Fed can also be

3Due to the space limit, see details in Algorithm 2 in the Appendix.
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compatible with scenarios where not all clients are active at each iteration by simply adapting the
frequency of local gossip communications. We refer interested readers to Appendix F.3 for more
details.

5 CONVERGENCE ANALYSIS

In this section, we provide the theoretical convergence analysis of the proposed HA-Fed method.
Before starting with the main theoretical results, let us first state the following assumptions:

Assumption 5.1 (Smoothness). Each loss function on the i-th client f;(x) is L-smooth, i.e., Vx,y €
(x) = fily) = (Vfily), x = y)| < 5lx—y*

Assumption 5.2 (Bounded Gradient). Each loss function on the i-th client f;(x) has G-bounded
stochastic gradient on /s, i.e., for all £, we have ||V f;(x,&)|| < G.

Assumption 5.3 (Bounded Stochastic Variance). Each stochastic gradient on the i-th client has a
bounded local variance, i.e., for all x,i € [m],we have E[||V fi(x,£) — V f;(x)||?] < o2

Assumption5.1]also implies the L-gradient Lipschitz condition, i.e., ||V fi(x) -V f;(y)|| < L||x—y]l,
it is a standard assumption in nonconvex optimization problems (Kingma & Bal 2014} Redd1 et al.|
2018} [Li et al., 20194} [Yang et al., 2021). Assumption[5.2]is usually adopted in studying adaptive
gradient methods (Kingma & Ba, 2014 Reddi et al., 2018} Zhou et al.l [2018; |Chen et al., [2020).
Assumption [5.3] is frequently stated in studying distributed and federated learning optimization
problems (Reddi et al., 2020} |Yang et al., 2021} |Chen et al.,|2021bf; [Wang et al., [2022a)).

Assumption 5.4 (Bounded Inter-Client Variances). The variance between local client’s objective
function and the objective function on the corresponding cluster is bounded, i.e., for all x, k € [K],
we have 1 Yiev, IV fi(x) = Vfiu(x)||* < of. The objective function on each cluster and the
global function has a bounded variance: for & > 1 and o, > 0, there is & > kelK] IV Fe(x)|? <
2|V f(=)[* + o

Assumption [5.4] represents the data heterogeneity in a cluster and between clusters. The similar
data heterogeneity assumption, which considers the variance between local clients, is common in
federated learning (Reddi et al., 2020; [Yang et al., 2021) and decentralized learning (Lian et al.,|2017;
Li et al., 2019b; |Koloskova et al.| [2020).

Assumption 5.5 (Gossip Weighting Matrix). The local clients in cluster k& are connected in the
graph Gy, and the corresponding weighting matrix W, is a doubly stochastic matrix with the fact:
Wi € [0,1]"*", W1 = 1, 1TW;, = 17 and null(I — W}) = span(1). We further assume the
spectral gap py: there exists pi, € [0, 1) such that |[W), — 1117 |5 < py.

Assumption@is usually assumed for decentralized learning framework (Koloskova et al., [2020;
Chen et al.} 2021b; |Guo et al.,|2021). Specifically, pr = 0 means the matrix W}, with all elements %,
corresponding to a fully connected graph Gy, and p, — 1 means the matrix W, tends to be elements
with either 0 or 1, corresponding to a graph that is nearly disconnected. Several works (Lian et al.,
2017; L1 et al., 2019b) alternatively assume the spectral gap p of a weighting matrix W as the second
largest eigenvalue of a doubly stochastic matrix W, i.e., p = |A2(W)], and this spectral gap holds the
same role for revealing the connectivity of the graph.

5.1 CONVERGENCE ANALYSIS FOR HA-FED: FULL PARTICIPATION

We first study the convergence behaviour of HA-Fed under full participation scenarios.

Theorem 5.6 (HA-Fed full participation). Under Assumptions | if the local learning rate
Y

OL\/CCOT (74+p2,.xD~+,0)

satisfies 7; < min { ) 5r Co o } then the iterates of Algorlthm satisfy

- o
E[|V < 8(BomP G2 %fOf*—cbcb, 5.1
moin IV F(x)[?] < 8(BamfT°G? + €) T T TPt P 5.1
where ¥ = Cﬁfd 4 2L gy = CEA 202 4 702 Drph + 70%(E 4 )|,

Py = Cppzo?®, where Cg = f}%, Csy = ((C’g + 3)nL + 2y/1 = B2G), C is a constant
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irrelevant to parameters, Pmax = MaXpe(x] Pk 1S the maximum spectral gap of all K clusters,

D, , = min { ;——, 7} describes the density and connectivity of clusters, and 57 = % YK o2
is the average dissimilarity between local clients in the same cluster.

Remark 5.7. The convergence rate Eq. [5.1]is composed of four terms. The first and second terms are
related to 7" and vanish as 7" increases. The third term ® represents the variance overhead introduced
by both stochastic and inter-client variances. The last term ®, represents the stochastic variance
from all N clients. Note that only @, is related to the cluster connectivity py,.x While the other three
terms are identical to the corresponding term in the convergence rate of N- cllents FedAMSGrad.

Specifically, the dependency of ®; for HA-Fed is ®; = O(nf7%0} + 771 ,OmaXT aL + (L +

p2ax)T02), while the corresponding term ®; for Fed AMSGrad is O (1?72 0. + niTo?). When

Pmax = 0, @1 in HA-Fed becomes 0(771 T O’ +7; T—) which is better than that of FedAMSGrad.
And when py. — 1, ®; in HA-Fed becomes O(nf2(02 + 63) + nf7To?), which matches the
results in FedAMSGracﬂ In terms of the overall convergence rate, since ®; in HA-Fed has the
same order of dependency w.r.t. 7 and n; as in FedAMSGrad, suppose we pick the learning rates
n=0O(v7N)and i = ©(1/VT72) and when T is sufficient large, i.e., T > 7N, HA-Fed achieves
the same convergence rate of O(1/v/T7N) as FedAMSGrad (Wang et al.,2022b) and also same as

other general federated nonconvex optimization methods such as FedAvg (Yu et al.,[2019; |Yang et al.,
2021) and FedAdam (Reddi et al., [2020).

5.2 CONVERGENCE ANALYSIS FOR HA-FED: PARTIAL PARTICIPATION

In such settings, we assume that only selected clients participate in each round of global synchro-
nization. We assume the sampling strategy is random sampling without replacement in each cluster.
Generally, at the beginning of global iteration ¢, the server samples a subset S¥ for cluster & that
contains m clients, these M = Km clients receive the model from the server and synchronize their
model difference for the global update.

Theorem 5.8 (HA-Fed partial participation). Under Assumptions [5.1H5.5] if the local learning
Ve

1
rate satisfies < min
" {4COCﬂ (71 90 [\/CCOor (1492 Dr.p) | 12802CC0Ch 10210 Dr.p (

n—m

m(n—1) +

ﬁ) }, then the iterates of Algonthmm partial participation scenarios satisfy

fozfe | ¥ +<I>1+<I>2+<I>3+<I>4} (5.2)

. 21 < 222 3
min E[IVFGe)|*) < 8B TG + 93 { T + 7

202 LG?d
Bnm; , d = E\L/nl |:T 0’ + Tp2axDr 03 + TO ( + p?nax)},
2
Cﬁ n [1 + ( m )pmax] eN 0—2 (I)3 CCBW ’ m(n_l)nlDTaPpmax [Ug + JL + J + DTvPﬁ]’

<I>4 = C’Cﬁﬂ7 ML Dy pp2ax [og +02 +0%+ DW)TUTQH], where C and C are constants irrelevant
to parameters and pmax, D7 p, 5%, Cs, ), Cp are same defined as Theorem

where ¥ = cﬂﬁw +

Remark 5.9. When p,,,x = 0, i.e., clients in each cluster are fully connected, in such case, there
are &, = O(npr?0l + 77127%2), oy = (’)(mT”2 max{n,1}) and 3 = ¢4 = 0 in Eq. which
matches the result of fully participated HA-Fed with p,,.x = 0. It is worth noting that although
partially participated HA-Fed aggregates M client models in each global round, since clients are fully
connected inside the clusters, picking a part of the clients (inside each cluster) for global aggregation
is the same as picking all the clients. Therefore, partially participated HA-Fed recovers to fully
participated HA-Fed under such a setting.

Remark 5.10. When p.x — 1 and K = 1, i.e., all clients are tending to disconnected, HA-Fed
will reduce to partial participated Fed AMSGrad with M clients. Under such cases, we have D, , =
17p1 —, 7} = 7. By choosing same learning rates n = ©(v/7M) and i, = ©(1/VT72) as

in FedAMSGrad, ¢35 = (9( \/\;LM) dominates the convergence rate of HA-Fed, which recovers the

convergence of partially participated FedAMSGrad.

min {

452 4 1s the global variance obtaining by a similar assumption on clients’ loss function , i.e., the loss function

on each client of FedAMSGard satisfies + SN | ||V fi(x) — V f(x)||* < 2.
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Remark [5.9]and [5.10]implies that when clients are sparsely connected, the convergence of partial
participated HA-Fed still suffers from dilemma of local steps as in FedAMSGrad, while HA-Fed
indeed resolves the dilemma when clients are densely connected. Therefore, it is crucial to investigate
how cluster connectivity helps solve the dilemma of local steps. The following corollary gives a
precise characterization on condition of p,.x needed for solving the dilemma of local steps.

Corollary 5.11. Suppose all clusters satisfies ppax < Q\/ﬁ and K < n, then by choosing the

global learning rate n = ©(v/7M) and local learning rate 7; = @(ﬁ), when T is sufficient

large, i.e., T' > 7 M, then the convergence rate for HA-Fed in partial participation settings satisfies

minge 7y BV £(x:)[?] = O( =)

Remark 5.12. Corollary[5.1T|shows that HA-Fed successfully resolves the dilemma of local steps:
larger number of local steps 7 can now achieve a faster convergence rate if clusters satisfy certain

. _ . . P . . . 1
constraints. Note that when m = n, i.e., in the full participation setting, this ppax < W=

condition imposes no actual constraint on py,,x. When m becomes smaller, the requirements for
Pmax also get stronger, i.e., the local cluster needs to be more densely connected. Also, for a given
number of total clients /V, the condition K < n implies the number of clients in each cluster is larger
than the number of clusters in the network, which ensures that each cluster has enough clients for
local gossip communications and thus can reduce the variance and resolve the dilemma of local steps
in the partial participation settings.

6 EXPERIMENTS

In this section, we present the empirical evaluations for the HA-Fed algorithm. We mainly compare
HA-Fed with the adaptive federated optimization counterpart, FedAMSGrad, and also conduct several
ablation studies related to the algorithm framework and the intra-cluster topology.

Experimental Setup: We compare our proposed HA-Fed with FedAMSGrad, on CIFAR-10/CIFAR-
100 (Krizhevsky et al., 2009) using (1) ResNet-18 (He et al.;, 2016) model, and (2) ConvMierE] model
(Trockman & Kolter, [2022), and Fashion MNIST (Xiao et al.,[2017) datasets using (1) ConvMixer
model and (2) CNN modeﬂ For HA-Fed, the global network topology is set up with 32 total clients,
and they are equally divided into 4 clusters where each cluster contains 8 clients. We set the default
partial participation ratio as p = 0.25, i.e., 2 clients participated per cluster per round. We adopt ring
topology for all clusters by default with maximum spectral gap pmax = 0.805. For Fed AMSGrad,
we set the number of clients and the partial participation ratio the same, i.e., 32 clients in total and 8
clients synchronize to the central server in each round. For both methods, we conduct 7 = 48 steps
of local training with a batch size of 50. We search for the best training hyper-parameter for both
models. Due to the space limit, we leave the CIFAR-10 and Fashion MNIST experiments as well as
the other experimental details in Appendix F.

—— FedAMSGrad
—— HA-Fed

—— FedAMSGrad
10° —— HA-Fed

o

Training Loss

Training Loss

Test Accuracy
o

°

Test Accuracy

—— FedAMSGrad
—— HA-Fed

—— FedAMSGrad
—— HA-Fed

0.40

0 100 200 300 400 500 o 0 100 200 300 400 500 0 100 200 300 400 500 © 0 100 200 300 400 500
#Rounds #Rounds #Rounds #Rounds
(a) ResNet-18 (b) ConvMixer-256-8

Figure 1: The learning curves for HA-Fed and FedAMSGrad in training CIFAR-100 data on (a)
ResNet-18 model and (b) ConvMixer-256-8 model using ring topology for local communications.

Figure|l|shows the convergence result of HA-Fed and Fed AMSGrad on training CIFAR-100 with
ResNet-18 and ConvMixer-256-8 model. We compare the training loss and test accuracy against
global rounds for both models. For the ResNet-18 model, HA-Fed achieves faster convergence than

ConvMixer shares similar ideas to vision transformer (Dosovitskiy et al.,[2021) to use patch embeddings to
preserve locality and similarly, and it is trained via adaptive gradient methods by default.
8See details for the CNN model in Appendix F.3.
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FedAMSGrad in reducing training loss, and HA-Fed grows rapidly to obtain an overall higher test
accuracy. For the ConvMixer-256-8 model, HA-Fed again shows its faster convergence speed on
training loss; in the meantime, HA-Fed still holds a higher test accuracy compared to FedAMSGrad
under the same settings.

Now we study how the participation
ratio p and network connectivity ppax

would affect the convergence of our —— Pmax=0.805
proposed HA-Fed algorithm. Figure ., 7 Pmang'iii
[2(a) illustrates the ablation study on & 8 _ ﬁ::;o'

the participation ratio p. Specifically, £ £

we test various values of p fromp = gw- g0 \\\,\
{0.125,0.25,0.5,1.0}. From Figure

[2(a), we observe that a larger partici-

pation ratio p slightly improves the 0 100 200 300 200 500 0 100 200 300 460 500
convergence on training loss. This (a) Ablation on the ratio p (b) Ablation on pmax

is consistent with our theoretical con-
vergence rate that increasing the num-

ber of participating clients improves Figure 2: The learning curves with (a) different participating

ratio p and (b) different maximum spectral gap pyax of clus-

the convergence rate, but the improve- ters in training CIFAR-100 data on ConvMixer-256-8 model.
ment is slight compared to a large

number of global round 7" and local

steps 7. Figure[2(b) then shows ablation study on clusters’ maximum spectral gap pmax. Specifically,
we compare various of pyax from ppax = {0,0.125,0.599,0.805} calculated by different network
typologies. From Figure [2b), we can observe that smaller p.,ax contributes to a faster convergence
on training loss, which is shown as the red and green lines achieve faster convergence on training
loss than the orange and blue lines. This result matches the theoretical result that p,,.x holds the non-
dominant term in the convergence of HA-Fed even for partial participation scenarios. This suggests
that without a dense network topology, HA-Fed can still take the benefit of gossip communication to
achieve the expected convergence result.

We further study how the number of
local update steps 7 would affect the
convergence of our proposed HA-Fed
algorithm. Figure 3] shows the abla-
tion study about the number of local
steps 7, we compare different 7 from
T = {24,48,96}. We observe that a . o
larger number of local steps 7 indeed ' — 1—o6
helps accelerate convergence on train- 0 100 200 300 400 500 0 100 200 3060 4060 500
ing loss, as the green line (7 = 96) in #Rounds #Rounds

the left plot keeps the smallest training
loss. From the right plot in Figure 3]
larger T generally achieves better gen-
eralization performance with higher
test accuracy. This result backup our theory and show that HA-Fed achieves a faster convergence as
the number of local steps increases, and HA-Fed indeed resolves the dilemma of local steps.

Training Loss
Test Accuracy
S

0.50 =24

Figure 3: The learning curves with different numbers of local
steps 7 in training CIFAR-100 on ConvMixer-256-8 model.

7 CONCLUSIONS

In this paper, we propose a novel hybrid adaptive federated optimization algorithm, HA-Fed, that
overcomes the dilemma of local steps and achieves a faster convergence rate as the local training
step increases. HA-Fed mitigates the impact of data heterogeneity by adding inexpensive client-
to-client communications hence resolving the dilemma of local steps without extra client-to-server
communications. We present a completed theoretical convergence analysis for the proposed HA-
Fed. We prove that HA-Fed achieves a faster convergence rate than the previous adaptive federated
optimization method for both full and partial participation scenarios with heterogeneous data under
nonconvex stochastic settings. Experiments on several benchmarks and ablation studies verify our
theory.
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