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Abstract

Developing bioactive molecules remains a central, time- and cost-heavy challenge
in drug discovery, particularly for novel targets lacking structural or functional
data. Pharmacophore modeling presents an alternative for capturing the key fea-
tures required for molecular bioactivity against a biological target. In this work, we
present PharmaDiff, a pharmacophore-conditioned diffusion model for 3D molec-
ular generation. PharmaDiff employs a transformer-based architecture to integrate
an atom-based representation of the 3D pharmacophore into the generative process,
enabling the precise generation of 3D molecular graphs that align with predefined
pharmacophore hypotheses. Through comprehensive testing, PharmaDiff demon-
strates superior performance in matching 3D pharmacophore constraints compared
to ligand-based drug design methods. Additionally, it achieves higher docking
scores across a range of proteins in structure-based drug design, without the need
for target protein structures. By integrating pharmacophore modeling with 3D
generative techniques, PharmaDiff offers a powerful and flexible framework for
rational drug design.

1 Introduction

Computer-Aided Drug Discovery (CADD) aims to identify novel therapeutics against desired targets
by investigating molecular properties using computational tools and available databases. A pharma-
cophore is a CADD method first introduced by Ehrlich (1909) and is defined by the IUPAC as ”an
ensemble of steric and electronic features necessary to ensure the optimal supramolecular interactions
with a specific biological target and to trigger (or block) its biological response.” (Wermuth et al.,
1998). A 3D pharmacophore hypothesis also accounts for the arrangement of these chemical features
relative to each other in 3D space (Zhu et al., 2023a). Pharmacophores can be either structure-based,
by examining potential interactions between the macromolecular target and ligands, or ligand-based,
by superposing an ensemble of active molecules and extracting consensus chemical features crucial
for binding to a target (Yang, 2010). Typically, pharmacophores are used in virtual screening to filter
large molecular databases such as PubChem (Kim et al., 2016), ChEMBL (Gaulton et al., 2012),
and ZINC (Irwin & Shoichet, 2005) to identify molecules that can potentially bind to a particular
target. In the virtual screening approach, pharmacophore-based filtration is usually combined with
other structure-based methods such as docking and molecular dynamics, and ligand-based methods
such as 2D and 3D QSARs (Yang, 2010).
In parallel, deep generative models have become central to the rational design of molecules with
desired properties by learning underlying data distributions. The most widely used architectures
include recurrent neural networks (RNNs), variational autoencoders (VAEs), generative adversar-
ial networks (GANs), convolutional neural networks (CNNs), and graph neural networks (GNNs).
Hence, those generative models have been trained to generate molecules with desired physicochem-
ical properties, such as the Wildman–Crippen partition coefficient (LogP), synthetic accessibility
(SA), molecular weight (MW), and quantitative estimate of drug-likeness (QED) (Pang et al., 2023).
Yet, it’s more challenging to design molecules with specific bioactivity profiles against therapeutic
targets.
In this study, we introduce PharmaDiff, a novel generative model that produces 3D molecular struc-
tures conditioned on an atom-based representation of 3D pharmacophore hypotheses (Figure 1). By
bridging the gap between pharmacophore modeling and recent advances in 3D molecular generation,
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PharmaDiff aims to enable pharmacophore-informed molecule generation without requiring the 3D
structure of the protein target.

2 Related work

Recent advances in diffusion models have enabled the equivariant generation of 3D molecular struc-
tures (Hoogeboom et al., 2022; Huang et al., 2023; Vignac et al., 2023). The Equivariant Diffusion
Model (EDM) (Hoogeboom et al., 2022) was the first to use diffusion models for 3D molecular
generation, employing an E(n) equivariant graph neural network (EGNN) for denoising and bond
inference. Subsequent models have extended this approach with architectural innovations including
transformer, graph neural networks (GNNs), and convolutional neural network (CNN)-based archi-
tectures (Alakhdar et al., 2024), most notably, MiDi (Vignac et al., 2023), which incorporates a
relaxed EGNN (rEGNN) within its E(3) graph transformer layers.
Structure-based generative models such as Pocket2Mol (Peng et al., 2022), GraphBP (Liu et al.,
2022), and DiffSBDD (Schneuing et al., 2024) aim to generate bioactive molecules by conditioning
generation of 3D structures of the protein’s active site. Some models combine that with other chem-
ical or physical properties such as IPDiff (Huang et al., 2024) that uses protein-ligand interaction
priors, and MOOD (Lee et al., 2023) that aims to generate molecules with several chemical prop-
erties such as binding affinity, drug-likeness, and synthesizability. However, those models require
the 3D structure of the active site to be available either indirectly for feature extraction or directly
for conditioning the model on the 3D structure. Some models, such as Mol2Mol in REINVENT 4
(Loeffler et al., 2024), constrain generation based on molecular similarity to a reference, allowing
scaffold modifications; however, similarity alone may not ensure preservation of pharmacophoric
features in their correct 3D arrangement.
Pharmacophore-informed generative models present an alternative approach where molecular gen-
eration is conditioned on a set of pharmacophoric features or a 3D pharmacophore hypothesis where
pharmacophores act as a bridge to connect bioactivity data to generated molecules, and several
models started adapting pharmacophoric features guidance in molecular generation. For example,
a graph-based generative model called DEVELOP was developed to optimize both leads and hit-
to-lead by designing linkers and R-groups guided by 3D pharmacophoric constraints (Imrie et al.,
2021). LigDream (Skalic et al., 2019) uses a variational autoencoder (VAE) to encode the 3D rep-
resentation of molecules and generate molecules conditioned on molecules’ three-dimensional (3D)
shape, and their pharmacophoric features. Other methods, such as TransPharmer (Xie et al., 2024)
generate molecules satisfying the entire set of pharmacophore features of a reference compound but
do not take into consideration the arrangement of the features in the 3D Euclidean space. PGMG
(Zhu et al., 2023a) aimed to fill that gap by generating bioactive molecules against targets using
the 3D pharmacophore hypothesis. However, PGMG generates molecules represented as SMILES
and replaces the 3D Euclidean distance with the shortest path distances between atoms to match the
pharmacophoric hypothesis (Zhu et al., 2023b).
In this work, we extend MiDi’s transformer (Vignac et al., 2023) to allow the model to generate
molecules that conform to predefined pharmacophoric patterns, and to achieve this goal, we intro-
duced several changes listed in section 4.2. Moreover, by introducing a new pharmacophoric term in
the loss function, our model—unlike MiDi—explicitly enforces 3D pharmacophoric constraints, en-
suring that the generated molecular structures adhere to predefined pharmacophoric features without
relying on protein structural data (Figure 1).

3 Preliminaries

3.1 Denoising diffusion models

Diffusion models are a subtype of deep generative models consisting of two Markov chains: a forward
noise model and a reverse denoising model (Ho et al., 2020; Sohl-Dickstein et al., 2015). The forward
diffusion model is defined by transition kernels q(zt|zt−1) that take input data x0 ∼ q(x) and distort
it by gradually injecting small amounts of noise at each time point t ∈ {1, 2, . . . , T} resulting in a
trajectory of increasingly corrupted data points (z1, . . . , zT ) such that:

q(z1, . . . , zT |x) = q(z1|x)
T∏

t=2

q(zt|zt−1) (1)
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Figure 1: PharmaDiff’s architecture overview simultaneously predicting 2D and 3D coordinates
conditioned on a pharmacophore hypothesis. The model uses 12 layers of an E(3) graph Transformer
architecture, designed to maintain SE(3) equivariance, it used inpainting and a cross-attention layer
between molecular and pharmacophore Node Embeddings to enforce pharmacophore constrains.

Gaussian diffusion for continuous data In the case of continuous data (such as 3D atomic
coordinates), Gaussian diffusion is commonly used, where noise is added at each step via a Gaussian
kernel q(zt|zt−1) ∼ N (αtzt, σ

2
t I). Here, σt determines the amount of noise injected and αt controls

the amount of signal retained. Hence, we can calculate zt directly from x as q(zt|x) ∼ N (ᾱtx, σ̄
2
t I)

where ᾱt :=
∏t

s=1 αs and σ̄2
t = σ2

t − α2
t .

The reverse process is modeled by a neural network ϕθ, which takes as input the noisy data zt, where
zt = ᾱtx + σ̄t · ϵ with ϵ ∼ N (0, I), and is trained to predict either the original clean data x or the
noise ϵ that was added, rather than predicting zt−1 directly. This approach is commonly used in
diffusion models (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song & Ermon, 2019), because in that
case the predicted data is independent of the sampled diffusion trajectory. In the case of Gaussian
diffusion, the sequence trajectories are predicted as:

q(zt−1|zt) = N (zt−1;µθ(zt, t)x,Σθ(zt, t)) (2)

where θ denotes model parameters, and the mean µθ(xt, t) and variance Σθ(xt, t) are parameterized
by deep neural networks.

Discrete diffusion for categorical data Several studies (Austin et al., 2021; Vignac et al., 2023)
suggest that discrete state-space diffusion is more suitable for categorical data (e.g., atom types
or chemical bond types) where each state zt is a one-hot encoded vector representing categorical
distribution over the d possible classes (e.g., atom classes), and the forward diffusion gradually
perturbs the discrete labels using a transition matrix Qt ∈ Rd×d defining the transition probabilities
between discrete states. The transition kernel becomes q(zt|zt−1) ∼ C(zt−1Qt) and therefore zt can
be calculated from x as q(zt = j|x) = [xQ̄t]j where Q̄t = Q1Q2 . . .Qt. In the reverse direction,
the model predicts the sequence trajectories as:

q(zt−1|zt) ∝
∑
x

pθ(x)(ztQ
′

t ⊙ xQ̄t−1) (3)

where Q̄t = Q1Q2 . . .Qt, Q′ denotes the transpose, and ⊙ is a pointwise product.

3.2 Diffusion for molecules

Molecular representation A molecule is represented as a graph G = (X,C,R,E), where X ∈
Rn×d is a discrete vector containing the atom type of n atoms belonging to d classes, C ∈ Rn×a

is also a one-hot encoded vector containing formal charges associated to n atoms over a classes.
R ∈ Rn×3 represents the coordinate vectors of then atoms, andE ∈ Rn×n×b contains the adjacency
matrix of the one-hot bond types encoded in the b classes of bond types.

3
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Noise model We follow the same noise model as MiDi (Vignac et al., 2023) where Gaussian noise
within the zero center-of-mass (CoM) is applied to the atomic coordinates satisfying

∑n
i=1 ϵi = 0,

which ensures roto-translation equivariance. Discrete diffusion is employed for all the discrete
variables, including atom types, formal charges, and bond types. Hence, the noise model can be
defined as shown in Eq.4.

q(Gt|Gt−1) ∼ N CoM(αtRt−1, (σt)2I)× C(Xt−1Qt
x)× C(Ct−1Qt

c)× C(Et−1Qt
e) (4)

We also adapt the same adaptive noise schedules as in MiDi (Vignac et al., 2023), where the noise
scheduler is manipulated, allowing for atom coordinates and bond types to be generated earlier during
sampling, while atom types and formal charges are updated later in the process.

4 Methods

4.1 Featurization of pharmacophores

A pharmacophore hypothesis Gp consists of chemical features and their spatial distribution in 3D
space. Pharmacophoric features were represented with n one-hot encoded discrete vectors Fp ∈
Rn×e, containing the feature type associated with each atom over e classes of feature types. Moreover,
each chemical feature is associated with one or more atoms from the molecule. For example, a
hydrogen bond donor feature is associated with a single oxygen or nitrogen atom responsible for the
interaction, and an aromatic feature is associated with the atoms of the aromatic ring (e.g., the six
carbons of a benzene ring) and the bonds between them without any information about neighboring
atoms, as shown in Figure 2.A. To help the model learn the association between the chemical features
and those atoms, node features (atom types, Xp and charges Cp), edge features EP and positions
Rp of atoms associated with the selected pharmacophoric features are stored as a sub-molecular
pharmacophore graph Gp = (Xp,Cp,Fp,Rp,Ep), and given as an input to the model along with
the one-hot encoded pharmacophore features. Hence, the model can infer the spatial arrangement of
the pharmacophoric features from the atomic positions in the pharmacophore graph.

Figure 2: (A) Decomposition of molecular structures into 3D pharmacophore-associated atoms. (B)
Conditioning the PharmaDiff model during the denoising process using the pharmacophore graph
Gp. The pharmacophoric features shown include hydrogen bond acceptor (HBA), hydrogen bond
donor (HBD), hydrophobic (HYD), and aromatic (ARO) groups.

4.2 Model overview

PharmaDiff is a pharmacophore-conditioned, SE(3)-equivariant transformer-based diffusion model
for 3D molecular generation. It builds upon the MiDi architecture (Vignac et al., 2023), which consists
of 12 SE(3)-equivariant Graph Transformer (E3-GT) layers. Each E3-GT layer includes an encoding
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multilayer perceptron (MLP), an update block with a self-attention module, followed by dropout,
normalization layers, and decoding MLPs. PharmaDiff extends MiDi’s transformer by conditioning
the generative process on a pharmacophoric graph Gp, allowing the model to generate molecules that
conform to predefined pharmacophoric patterns. This is achieved by several strategies to effectively
integrate pharmacophoric information into the generation process, which will be described in this
section. 1

Pharmacophore feature encoding To incorporate pharmacophoric information, the input molec-
ular graph is augmented with pharmacophoric features Fp, which are concatenated with atom types
X and formal charges C to form the composite node feature vector h = [X,C,Fp]. This vector is
then encoded using a dedicated multilayer perceptron, denoted MLPh, as illustrated in Figure 1. In
parallel, the pharmacophore graph Gp is also provided as input. Its node feature vector is defined
analogously as hp = [Xp,Cp,Fp], capturing the atom types, formal charges, and pharmacophoric
descriptors associated with each pharmacophore-constrained atom. These features are encoded us-
ing a separate MLP, MLPhp , producing pharmacophore-specific embeddings used in downstream
modules such as inpainting and cross-attention.

Inpainting Inpainting, also referred to as the replacement method, is employed to integrate
pharmacophore-associated atoms into the noisy input. This technique is commonly used to fix
atoms interacting with the protein structure, as demonstrated in structure-based models such as
DiffSBDD (Schneuing et al., 2024). During the inpainting process, a predefined set of mask indices
Mp uniquely identifies the nodes corresponding to fixed atoms associated with the pharmacophore.
These nodes’ features, embedded by MLPhp , along with their 3D positions Rp and edge features
Ep, are selectively replaced in the noisy input as the following:

(MLPinpaint
h [i], Rt

inpaint[i], Et
inpaint[i, j]) =

{
(MLPhp [i], Rp[i], Ep[i, j]), if i ∈ Mp and j ∈ Mp

(MLPh[i], Rt[i], Et[i, j]), otherwise

This replacement mechanism ensures that the pharmacophoric substructure is explicitly injected
at the beginning of each timestep in the diffusion process. To further reinforce the 3D positional
information of the pharmacophoric atoms throughout the network, an inpainting strategy is employed
to reintroduce their positions, denoted as Rp, at the end of each transformer layer. This repeated
reinforcement enables the model to more effectively integrate spatial information with edge features,
resulting in a more stable and structurally coherent molecular representation.

COM adjustment Using inpainting to introduce the 3D positional information of pharmacophoric
atoms, Rp, throughout the network can shift the center of mass (COM) and compromise the E(3)-
equivariance. To prevent this, we realign the noisy atomic positions before inpainting by translating
them such that the input’s COM is centered at the origin

∑n
i=1 ri = 0.

R̃input
t = Rinput

t +
1

n

∑
i∈Mp

Rp −
1

n

∑
i∈Mp

Rinput
t,i

Cross attention To facilitate a more seamless and context-aware integration of pharmacophoric
constraints into the molecular representation, we introduce cross-attention layers between the gener-
ated node embeddings and the pharmacophoric node embeddings. In this setup, each generated atom
node (query) attends to the pharmacophoric atom nodes (keys and values), enabling the molecular
representation to be dynamically influenced by the most relevant pharmacophoric features. Com-
pared to static approaches like inpainting, this method provides a more flexible and learnable fusion
of pharmacophoric information into the molecule. Formally, let Hmol ∈ RN×d denote the molec-
ular node embeddings and Hpharm ∈ RM×d denote the pharmacophoric node embeddings. The
cross-attention projections are computed as follows:

Q = HmolWQ, K = HpharmWK , V = HpharmWV

where WQ,WK ,WV ∈ Rd×d are learnable projection matrices for the query, key, and value,
respectively. The cross-attention output is then computed as:

1The software developed for this study and the processed datasets will be made publicly available on GitHub
after the peer-review process. A temporary anonymous version is available at https://github.com/
pharmadiff/PharmaDiff.
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O = Wout

(
Softmax

(
WA(QK⊤)√

d

)
V
)

Here Wout ∈ Rd×d and WA ∈ Rd×d are additional learnable projections. The output is O is then
used to inpaint Hmol.

Loss function Our denoising network is trained to recover the original molecular structure G =
(X,C,R,E) from a noisy input Gt. As shown in the loss function, the prediction of atomic
coordinates R̂ is treated as a regression problem, optimized using mean-squared error (MSE),
while the predictions for atom types (X̂), formal charges (Ĉ), and bond types (Ê) are optimized as
classification problems, trained with cross-entropy loss (CE).
However, unlike MiDi, our model explicitly incorporates pharmacophoric constraints to ensure that
the generated molecular structure adheres to the predefined pharmacophoric features. To this end,
we place greater emphasis on the accurate prediction of pharmacophoric atom types Xp, formal
charges Cp, and positions Rp compared to the rest of the molecular atoms. This is achieved through
an additional pharmacophore loss term, which imposes specific position, atom type, and charge
constraints on the atoms associated with the pharmacophore. The final loss function is formulated
as:

l(G, Ĝ) = λr||R̂−R||2 + λxCE(X, X̂) + λcCE(C, Ĉ) + λeCE(E, Ê)︸ ︷︷ ︸
Molecular generation loss

+ λrp ||R̂−Rp||2 + λxpCE(Xp, X̂) + λcpCE(Cp, Ĉ)︸ ︷︷ ︸
Pharmacophore loss

Here, λr, λx, λc, λe, λrp , λxp
, and λcp are weighting factors that control the relative importance

of different components of the loss. Those hyperparameter were selected based in a series of short
numerical experiments.

5 Experiments

5.1 Dataset

The model was trained on the GEOM-DRUGs dataset (Axelrod & Gomez-Bombarelli, 2022), which
is suitable for drug design applications given that it contains over 450,000 drug-sized molecules
with an average of 44.4 atoms (24.9 heavy atoms) and up to a maximum of 181 atoms (91 heavy
atoms). The dataset was split into 80% for training, 10% for validation, and 10% for testing. For
each molecule, the five lowest energy conformations were selected to build the dataset, and for each
conformer, all the chemical features of a molecule are identified using RDKit, and a subset of 3-7
random features was selected to build the 3D pharmacophoric hypothesis. For the structure-based
drug design experiment, the structure of the targets: BRD4 (PDBID: 3MXF), VEGFR2 (PDBID:
1YWN), CDK6 (PDBID: 2EUF), and TGFB1 (PDBID: 6B8Y) were downloaded from the PDB
database (Burley et al., 2017).

5.2 Baselines

In the ligand-based experiment, to evaluate the effectiveness of PharmaDiff in pharmacophore-
conditioned molecular generation, we randomly selected 250 compounds, referred to as conditioning
compounds, along with their corresponding 3D pharmacophore hypotheses from the reserved test set
of the GEOM-Drugs dataset. Each pharmacophore hypothesis consisted of 3 to 7 features, such as
hydrogen bond donors, acceptors, hydrophobic groups, or aromatic rings, randomly extracted from
the conditioning compounds. These hypotheses were used to guide the de novo generation of 3D
molecular structures. We compare our method with TransPharmer’s (72bit, 108bit, 1032bit) models
(Xie et al., 2024), REINVENT 4’s Mol2Mol high and medium similarity models (Loeffler et al.,
2024), and PGMG (Zhu et al., 2023a). For TransPharmer and REINVENT 4 models, 100 molecules
were generated per conditioning compound, each satisfying the full set of pharmacophoric features
derived from the reference compound. PGMG, by contrast, directly employs a 3D pharmacophore
hypothesis to guide the generation process. For all three baseline models, 3D conformations of
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the generated molecules were constructed from SMILES representations using RDKit’s ETKDG
algorithm, followed by geometry refinement via energy minimization with the MMFF94 force field
(Halgren, 1996). For this experiment, results are reported as the mean ± standard errors of per-
condition values, reflecting variability across the 250 pharmacophore conditions (Tables 1 and 2).
For the structure-based setting, we evaluated the ability of PharmaDiff to generate ligands compatible
with the active sites of four proteins: BRD4, VEGFR2, CDK6, and TGFB1 with pharmacophore
hypotheses reported in (Zhu et al., 2023a) and collected from the literature (Lee et al., 2010; Shawky
et al., 2021; Jiang et al., 2018; Roskoski Jr, 2019; Yan et al., 2018). The 3D coordinates and types of
pharmacophore-associated atoms were provided as fixed input. PharmaDiff was compared against
DiffSBDD-cond (Schneuing et al., 2024), which uses protein structure and employs inpainting to
inject information about fixed parts of the ligand into the sampling process. We provided the
pharmacophore-associated atom positions and types as input for the fixed atoms. For each protein
target, 1000 molecules were sampled from each model. For this experiment, results are reported
as the mean ± standard errors of per-molecule values, reflecting variability across the generated
molecules (Table 3). Moreover, ablation studies and other case studies were performed and are
described in detail in the Appendix section A.2.

5.3 Evaluation metrics

Basic generation metrics The quality of the generated molecules was assessed using four core
metrics. Validity was measured by the success rate of RDKit sanitization. Uniqueness represents
the proportion of valid molecules that have distinct canonical SMILES. Novelty is defined as the
fraction of unique molecules whose canonical SMILES do not appear in the training set. Finally,
Diversity was calculated as 1−average pairwise Tanimoto similarity (Tanimoto, 1958; Willett et al.,
1998), using Morgan fingerprints (Rogers & Hahn, 2010) (radius 2, 2048 bits). Diversity values
range from 0 to 1, with the reported value representing the average across all generation conditions.

Pharmacophore match evaluation To assess how well the generated molecules match the phar-
macophore hypotheses they were conditioned on, we used two key metrics. The Match Score (MS),
adapted from PGMG (Zhu et al., 2023a), quantifies the degree to which molecules align with their 3D
pharmacophoric hypotheses, and it ranges from 0 to 1, where an MS of 1.0 entails a perfect match.
Unlike the original PGMG implementation, which uses shortest path (graph-based) distances, we
computed MS using actual Euclidean distances in 3D space between atoms. The second metric,
Perfect Match Rate (PMR), reflects the proportion of generated molecules that achieved an MS of
1, corresponding to a perfect match (MS = 1) to the specified 3D pharmacophore hypothesis.

Binding affinity estimation We estimated the binding affinity of generated molecules using the
Vina Score (Trott & Olson, 2010), a scoring function from AutoDock Vina that quantifies the
predicted interaction strength between ligands and protein targets in molecular docking simulations.
Average Vina scores are reported for the top 1, 100, and all of the generated molecules.

Drug-likeness and physicochemical properties To evaluate the potential bioactivity of the gen-
erated molecules, we also report several key chemical properties of the generated molecules that
are particularly relevant for drug design applications. These include molecular weight, quantitative
estimate of drug-likeness (QED), synthetic accessibility (SA) score (Ertl & Schuffenhauer, 2009),
partition coefficient (logP), topological polar surface area (TPSA), and the average number of rings.

5.4 Results

5.4.1 3D Pharmacophore matching for ligand-based drug design

In terms of standard molecular generation evaluation metrics, as shown in Table 1, PharmaDiff
achieves the highest novelty (0.9989) and the second-highest uniqueness (0.9933) just after PGMG,
with only a minor difference. Although PharmaDiff’s validity rate of 0.8823 is slightly lower than
the SMILES-based generators PGMG, TransPharmer, and REINVENT4 (which often exceed 0.94),
it is on par with other 3D approaches, especially models using molecular inpainting or fragment-
based design (Igashov et al., 2022; Schneuing et al., 2024). Notably, PharmaDiff excels in diversity
(0.8686), outperforming all other models and indicating a broader exploration of the chemical space.
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In terms of molecular-pharmacophore alignment metrics (Table 2), results reveal that PharmaDiff
achieves the highest MS average (0.8964), along with the highest fraction of molecules matching
exactly to the pharmacophore with an average PMR of 0.6990. It also ranks well with 80.50% of
generated molecules having an MS ≥ 0.8. While the average matching scores (MS) across models
vary only slightly, particularly when compared to similarity-driven methods such as REINVENT4 or
the general pharmacophore-matching approach used in TransPharmer, the proportion of molecules
that either exactly match the pharmacophore hypothesis (PMR) or closely align with it (%MS ≥ 0.8)
is significantly higher in models explicitly conditioned on a specific 3D pharmacophore. Notably,
PharmaDiff achieves superior performance compared to PGMG, likely due to its reliance on true
3D Euclidean distances for pharmacophore matching, as opposed to the graph-based shortest path
approximations employed by PGMG. Examples of the generated molecules are shown in Figure 6 in
the appendix.

Table 1: General generation performance of pharmacophore-conditioned molecular generative mod-
els, results are reported as mean ± error across all 250 conditions.

Metric Validity ↑ Uniqueness ↑ Novelty ↑ Diversity ↑
PharmaDiff (3D) 0.8823 ± 0.0037 0.9933 ± 0.0020 0.9989 ± 0.0002 0.8686 ± 0.0028
PGMG (3D) + MMFF 0.9439 ± 0.0039 0.9945 ± 0.0007 0.9945 ± 0.0010 0.8294 ± 0.0019
TransPharmer-72bit (3D) + MMFF 0.9922 ± 0.0013 0.8928 ± 0.0074 0.9556 ± 0.0034 0.7503 ± 0.0049
TransPharmer-108bit (3D) + MMFF 0.9900 ± 0.0018 0.7658 ± 0.0116 0.9628 ± 0.0032 0.6702 ± 0.0074
TransPharmer-1032bit (3D) + MMFF 0.9690 ± 0.0036 0.7175 ± 0.0130 0.9790 ± 0.0021 0.6148 ± 0.0085
REINVENT4 medium similarity (3D) + MMFF 0.9710 ± 0.0068 0.9877 ± 0.0015 0.9797 ± 0.0038 0.5282 ± 0.0036
REINVENT4 high similarity (3D) + MMFF 0.9551 ± 0.0081 0.9755 ± 0.0021 0.9960 ± 0.0016 0.4210 ± 0.0034

Table 2: Pharmacophore matching performance of pharmacophore-conditioned molecular generative
models.

Metric MS ↑ PMR ↑ %MS ≥ 0.8 ↑
PharmaDiff (3D) 0.8964 ± 0.0050 0.6990 ± 0.0142 0.8050 ± 0.0094
PGMG (3D) + MMFF 0.8938 ± 0.0063 0.5099 ± 0.0225 0.8286 ± 0.0131
TransPharmer-72bit (3D) + MMFF 0.8125 ± 0.0077 0.2795 ± 0.0204 0.6383 ± 0.0195
TransPharmer-108bit (3D) + MMFF 0.8233 ± 0.0078 0.3171 ± 0.0218 0.6570 ± 0.0199
TransPharmer-1032bit (3D) + MMFF 0.8313 ± 0.0078 0.3477 ± 0.0225 0.6758 ± 0.0203
REINVENT4 medium similarity (3D) + MMFF 0.8424 ± 0.0080 0.3826 ± 0.0234 0.7045 ± 0.0196
REINVENT4 high similarity (3D) + MMFF 0.8664 ± 0.0072 0.4252 ± 0.0240 0.7530 ± 0.0189

To assess the relevance of the generated molecules as potential drugs, we compared their physico-
chemical property distributions to those of the training data. As illustrated in Fig. 3, the generated
molecules closely resemble the GEOM-Drugs dataset in terms of key properties, including molecular
weight (MW), LogP, QED, TPSA, and ring count. While PharmaDiff exhibits slightly higher syn-
thetic accessibility (SA) scores, it remains well within the acceptable range for drug-like compounds.
These results suggest that PharmaDiff effectively captures and reproduces the molecular property
distribution of its training data.

5.4.2 Demonstration of application in structure-based drug design

Table 3 compares PharmaDiff and DiffSBDD across four protein targets: 1ywn (6 features), 2euf
(3 features), 3mxf (4 features), and 6b8y (4 features), using docking scores, synthetic accessibility,
diversity, and pharmacophore matching metrics. PharmaDiff consistently achieves better average
Vina scores across all targets, and stronger top-100 docking performance in three out of the four
targets, particularly excelling on 1ywn and 6b8y, which have more complex pharmacophore con-
straints. While Top-1 scores are more competitive, with DiffSBDD slightly outperforming on 3mxf
and 6b8y, PharmaDiff still matches or exceeds performance on the remaining targets. PharmaDiff
also demonstrates better synthetic feasibility, as shown by consistently lower SA scores across all
targets, indicating its ability to generate realistic and accessible molecules even under stricter phar-
macophore demands, such as those in 1ywn. In terms of chemical diversity, DiffSBDD holds a slight
advantage across the board; however, the difference is minor, and PharmaDiff maintains high diver-
sity while also enforcing complex constraints. Most notably, PharmaDiff significantly outperforms
DiffSBDD in pharmacophore matching score (MS) across all targets, especially in 1ywn and 2euf,
suggesting a higher fidelity in satisfying both simple (3 features) and more intricate (6 features) 3D
pharmacophore patterns during molecule generation.
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Figure 3: Distribution of physicochemical properties for the GEOM-Drugs training set and molecules
generated by PharmaDiff. The plot compares 100,000 molecules generated from random pharma-
cophore hypotheses with 100,000 conformers randomly selected from the GEOM-Drugs training
set.

Table 3: Comparison of docking scores and drug-like properties between PharmaDiff and DiffSBDD
across four protein targets, results are reported as mean ± standard error (SE)

Protein Method Vina score (Min) ↓ Vina score (Min) ↓ Vina score (Min) ↓ SA Score ↓ Diversity ↑ MS ↑
All (kcal/mol) Top 1 (kcal/mol) Top 100 (kcal/mol) Top 100 Top 100 Top 100

1ywn PharmaDiff -5.7730 ± 0.0513 -10.6380 -8.3185 ± 0.0489 3.3236 ± 0.0560 0.8098 ± 0.0008 0.8840 ± 0.0150
DiffSBDD -4.6341 ± 0.0224 -8.9850 -6.4088 ± 0.1175 3.6607 ± 0.0961 0.8373 ± 0.0013 0.5827 ± 0.0306

2euf PharmaDiff -7.4273 ± 0.0405 -9.2768 -9.2767 ± 0.0388 3.2241 ± 0.0657 0.8309 ± 0.0008 0.9700 ± 0.0126
DiffSBDD -7.2906 ± 0.0379 -9.0236 -9.0236 ± 0.0435 3.8148 ± 0.0781 0.8737 ± 0.0005 0.7833 ± 0.0290

3mxf PharmaDiff -6.8463 ± 0.0355 -10.7130 -8.5968 ± 0.0485 3.5691 ± 0.0642 0.8537 ± 0.0006 0.8183 ± 0.0203
DiffSBDD -5.7141 ± 0.0535 -10.8790 -8.6539 ± 0.0640 4.2065 ± 0.0673 0.8830 ± 0.0005 0.5767 ± 0.0236

6b8y PharmaDiff -7.8427 ± 0.0440 -11.4270 -9.7503 ± 0.0485 3.4352 ± 0.0500 0.8307 ± 0.0008 0.8800 ± 0.0126
DiffSBDD -6.2078 ± 0.0601 -12.1900 -9.4052 ± 0.0706 3.7569 ± 0.0800 0.8818 ± 0.0006 0.7217 ± 0.0250

6 Discussions and Conclusions

PharmaDiff demonstrates strong performance in pharmacophore-conditioned generation—achieving
higher pharmacophore match accuracy than SMILES-based baselines and outperforming prior 3D
structure-based generative models in docking scores. However, the model still faces challenges,
particularly in the inpainting process where atoms are modified to align with predefined pharma-
cophoric features. While this approach can retain important properties such as aromaticity or the
presence of hydrogen bond acceptors, it may occasionally lose key pharmacophoric features when
the local atomic context changes. Subtle structural modifications can disrupt hydrogen bonding,
hydrophobic interactions, or other non-covalent forces essential for target binding and biological
activity. Although PharmaDiff implicitly incorporates pharmacophoric feature types as contextual
input during generation, these features are not explicitly reinforced. Despite the strong performance
achieved through this implicit integration—evidenced by an average PMR of 0.6990—future work
could explore explicitly enforcing the retention of pharmacophoric features in the loss function
through a differentiable, feature-aware model to better preserve those critical for target interactions.
An additional challenge common to atom-level inpainting approaches—including PharmaDiff and
similar models (Runcie & Mey, 2023; Schneuing et al., 2024)—is the generation of disconnected
molecular structures, particularly when handling complex pharmacophores with several features and
thus a large number of associated inpainted atoms. The common practice of retaining only the largest
connected fragment to maintain connectivity can lead to the exclusion of pharmacophore-associated
atoms, potentially resulting in the loss of critical functional groups. As a result, the generated
molecules may lack features essential for bioactivity. Future improvements could focus on enhanc-
ing connectivity within the inpainting process through stricter structural constraints, energy-guided
sampling, or post-processing optimization and energy-minimization techniques that preserve both
the overall molecular integrity and key pharmacophoric elements.
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nett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URLhttps://proceedings.neurips.cc/paper_files/paper/
2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf.

Taffee T Tanimoto. An elementary mathematical theory of classification and prediction. International
Business Machines Corporation, 1958.

Oleg Trott and Arthur J. Olson. Autodock vina: improving the speed and accuracy of docking with
a new scoring function, efficient optimization, and multithreading. Journal of Computational
Chemistry, 31(2):455–461, 2010. doi: 10.1002/jcc.21334.

Clement Vignac, Nagham Osman, Laura Toni, and Pascal Frossard. Midi: Mixed graph and 3d
denoising diffusion for molecule generation, 2023.

Camille-Georges Wermuth, CR Ganellin, Per Lindberg, and LA Mitscher. Glossary of terms used
in medicinal chemistry (iupac recommendations 1998). Pure and applied Chemistry, 70(5):
1129–1143, 1998.

Peter Willett, John M Barnard, and Geoffrey M Downs. Chemical similarity searching. Journal of
chemical information and computer sciences, 38(6):983–996, 1998.

Weixin Xie, Jianhang Zhang, Qin Xie, Chaojun Gong, Youjun Xu, Luhua Lai, and Jianfeng Pei.
Accelerating discovery of novel and bioactive ligands with pharmacophore-informed generative
models, 2024. URL https://arxiv.org/abs/2401.01059.

Guoyi Yan, Manzhou Hou, Jiang Luo, Chunlan Pu, Xueyan Hou, Suke Lan, and Rui Li.
Pharmacophore-based virtual screening, molecular docking, molecular dynamics simulation, and
biological evaluation for the discovery of novel brd 4 inhibitors. Chemical Biology & Drug Design,
91(2):478–490, 2018.

Sheng-Yong Yang. Pharmacophore modeling and applications in drug discovery: challenges and
recent advances. Drug discovery today, 15(11-12):444–450, 2010.

Huimin Zhu, Renyi Zhou, Dongsheng Cao, Jing Tang, and Min Li. A pharmacophore-guided
deep learning approach for bioactive molecular generation. Nature Communications, 14(1):6234,
2023a.

Huimin Zhu, Renyi Zhou, Dongsheng Cao, Jing Tang, and Min Li. A pharmacophore-guided
deep learning approach for bioactive molecular generation. Nature Communications, 14(1):6234,
2023b.

A Appendix

A.1 Implementation Details

A.1.1 Software

Dataset processing was done in Python (v.3.9.) using RDKit (2022.03.2) for molecular prepro-
cessing, chemical structure handling, pharmacophore features extraction, MMFF minimization and
calculating SA, QED and molecular fingerprints. PyTorch (v2.0.1, CUDA 11.8), PyTorch Lightning
(v2.0.4), and Torch Geometric (v2.3.1) were used for model development and training. Configuration
was managed with Hydra (v1.3.2) and OmegaConf (v2.3.0). Logging and experiment tracking were
handled via Weights & Biases (wandb, v0.15.4).
Baseline methods were obtained from their official implementations with only minimal adapta-
tions for input/output compatibility. PGMG Zhu et al. (2023a) was used under the CC BY-NC-SA
4.0 License from https://github.com/CSUBioGroup/PGMG. REINVENT4 Loeffler et al.
(2024) (Apache 2.0) was obtained fromhttps://github.com/MolecularAI/REINVENT4.
TransPharmer Xie et al. (2024) and DiffSBDD Schneuing et al. (2024) were both used un-
der the MIT License from https://github.com/iipharma/transpharmer-repo and
https://github.com/arneschneuing/DiffSBDD, respectively.
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A.1.2 Hardware

Data processing was conducted on an RM-512 partition of a high-performance computing (HPC)
system, Model training was performed on an NVIDIA RTX 3090 Ti GPU over 390 epochs, requiring
a total of 16 days. The 25k molecules sampled, with 100 molecules for each of the 250 conditions,
took around one day.
In addition, the baseline or comparison method was executed on an HPC system equipped with
NVIDIA V100 GPU nodes. Molecular structures were converted from SMILES to 3D conformers,
followed by MMFF (Merck Molecular Force Field) minimization, all of which were executed on RM
nodes of a high-performance computing (HPC) system.

A.2 Additional Analyses

A.2.1 Ablation study: impact of inpainting and cross attention on
pharmacophore-conditioned generation

To evaluate the role of inpainting in PharmaDiff’s pharmacophore-constrained molecular genera-
tion, we performed an ablation study comparing the full PharmaDiff model against a variant with
inpainting disabled and a variant with the cross-attention mechanism disabled. In the full model,
inpainting provides explicit spatial and chemical control by conditioning the generation on both the
3D coordinates and identities of pharmacophore-associated atoms/fragments. In the ablated version,
this detailed conditioning was removed. Only the pharmacophore types (e.g., donor, acceptor, hy-
drophobe) were provided, without positional or fragment-level information, effectively eliminating
spatial pharmacophore guidance.
These results (as shown in Table 4) clearly highlight how important inpainting is for generating
high-quality molecules satisfying the pharmacophore hypothesis. Validity dropped from 0.8789
to 0.6494 without inpainting, suggesting a decline in structural coherence. While uniqueness and
novelty remained high in both settings, pharmacophore match scores decreased significantly: the
average MS declined from 0.8995 to 0.6899, and the proportion of molecules fully satisfying the
pharmacophore (PMR) dropped from 0.6823 to just 0.2105. For cross attention, disabling it led to a
minor decrease in the validity, dropping to 0.8682, and a more notable decline in MS to 0.8335, and
PMR to 0.6423. These findings demonstrate that inpainting is essential for ensuring both feature
perseverance and spatial alignment in pharmacophore-conditioned generation, while cross attention
plays a minor role. Without inpainting, the model struggles to translate abstract feature types into
correctly positioned and chemically appropriate substructures.

Table 4: Ablation study comparing PharmaDiff with and without inpainting. Results are reported
over 1,024 generated molecules.

Ablation Study: Effect of Inpainting and cross attention
Model Validity ↑ Uniqueness ↑ Novelty ↑ MS ↑ PMR ↑
PharmaDiff (3D) 0.8789 0.9900 1.00 0.8995 0.6823
PharmaDiff (3D, no inpainting) 0.6494 1.00 1.00 0.6899 0.2105
PharmaDiff (no cross attention) 0.8682 0.9933 1.00 0.8335 0.6423

A.2.2 Case study: design of BBB-permeable PI3Kα inhibitors via pharmacophore-guided
generation

Phosphoinositide 3-kinase alpha (PI3Kα) plays a central role in oncogenic signaling and is frequently
activated in solid tumors such as breast, colorectal, and brain cancers. Its dysregulation promotes
tumor proliferation, survival, and resistance to targeted therapies. Despite the development of several
PI3Kα inhibitors, their effectiveness against brain cancers remains limited due to poor penetration
of the blood–brain barrier (BBB). To overcome this limitation, we implemented a scaffold hopping
strategy aimed at designing PI3Kα inhibitors with enhanced central nervous system (CNS) drug-
like properties Lian et al. (2024). A structure-based pharmacophore model was derived from the
co-crystal structure of Taselisib bound to PI3Kα (PDB ID: 8EXL) using PLIP Adasme et al. (2021).
Guided by this pharmacophore hypothesis, we generated a library of 5,000 molecules through scaffold
replacement, retaining the essential interaction-driving pharmacophore features while introducing
scaffold diversity. In particular, we aimed to replace Taselisib’s hydrophilic heterocycles, specifically
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the pyrazole and the triazole rings, which contribute significantly to its topological polar surface
area (TPSA) and may hinder BBB permeability, with less polar scaffolds that preserve the spatial
arrangement of key pharmacophoric groups. As illustrated in Figure 4, PharmaDiff successfully
generated molecules with chemically diverse scaffolds that preserved the 3D spatial alignment of the
pharmacophore hypothesis with the reference ligand, Taselisib.
To prioritize BBB-permeant candidates, we applied CNS drug-like property filters based on molec-
ular weight (≤ 400 Da), logP (2–4), topological polar surface area (TPSA ≤ 90 Å2), hydrogen bond
donors (≤ 2), and acceptors (≤ 6). Molecular descriptors were computed using RDKit. This filtering
step yielded 441 compounds, 433 of which were unique. All filtered compounds were docked to
the PI3Kα structure (8EXL) using AutoDock Vina, focusing on the Taselisib binding site. The
best-scoring pose for each molecule was retained for further analysis. Of these, 113 compounds
(26.10%) achieved docking scores below −8.0 kcal/mol, and 39 compounds (9.01%) surpassed
the reference ligand Taselisib, which scored −8.512 kcal/mol. These results demonstrate the po-
tential of pharmacophore-guided scaffold hopping to identify novel PI3Kα inhibitors with improved
BBB permeability and potent binding affinity. As illustrated in Figure 4, PharmaDiff was able to
generate diverse scaffolds, allowing us to explore alternative core structures while preserving key
pharmacophoric interactions essential for PI3Kα binding.

Figure 4: Top 4 molecules ranked by docking score, showing chemically diverse scaffolds generated
by PharmaDiff. The top row illustrates the spatial alignment of pharmacophoric features in the
generated ligands (green) to the pharmacophore derived from Taselisib (grey). Pharmacophore
features are color-coded as follows: hydrogen bond acceptors in cyan, hydrophobes in green, and
hydrogen bond donors in magenta. The middle row shows the docked poses of the generated
ligands within the PI3Kα binding pocket. The bottom row displays the corresponding 2D chemical
structures, highlighting scaffold diversity among the top-scoring candidates.

A.2.3 Case study: pharmacophore-Guided R-Group Sampling in CDK2 inhibitors

Cyclin-dependent kinase 2 (CDK2) regulates the G1/S phase transition of the cell cycle and is fre-
quently dysregulated in a variety of cancers, making it a well-studied therapeutic target. Roscovitine,
a purine-based ATP-competitive inhibitor, binds to CDK2 as captured in the co-crystal structure
PDBID: 2A4L Azevedo et al. (1997). By inspecting this structure with PLIP Adasme et al. (2021),
we extracted a set of pharmacophore features that reflect key ligand–protein interactions. To test the
ability of PharmaDiff to generate analogs that preserve these interactions while allowing chemical
variation in the R substituents, we followed a structured protocol. We first extracted 3D pharma-

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

cophore points from the ligand–protein complex and then sampled small molecular fragments or
atoms corresponding to each pharmacophore type, such as oxygen and nitrogen atoms for hydrogen
bond donors and acceptors, and aromatic heterocycles like pyridine, pyrimidine, imidazole, or furan
for the aromatic site. A variety of hydrophobic fragments were also incorporated, including benzene
rings, cycloalkanes (e.g., cyclobutane, cyclopropane), and branched groups such as isopropyl or tert-
butyl. The 3D geometries of all fragments were minimized using the MMFF94 force field. Finally,
PharmaDiff was conditioned on the combined pharmacophore and its associated 3D atoms/fragment
inputs to generate a set of 200 candidate molecules.
As shown in Figure 5, the generated molecules align well with the active conformation of Roscovitine
in the CDK2 binding pocket. Remarkably, this approach for R group sampling enables PharmaDiff
to generate molecules with various chemical groups under the same pharmacophore constraints. For
example, the aromatic ring is fulfilled by a variety of heteroaromatics, including pyridine, pyrimi-
dine, furan and imidazole, while the hydrophobic pharmacophore is matched by structurally diverse
fragments such as branched alkyl groups, benzene and cycloalkyl rings. These findings highlight
PharmaDiff’s potential for fragment replacement, and R-group exploration in lead optimization
workflows.

Figure 5: pharmacophore-aligned generated ligands (green) compared to the reference CDK2 in-
hibitor ligand Roscovitine (grey). Pharmacophore features are color-coded as follows: hydrogen
bond acceptors in cyan, hydrophobes in green, and aromatic groups in orange and hydrogen bond
donors in magenta.

Large Language Model (LLM) Disclosure

The authors used a large language model (ChatGPT, OpenAI, 2025) to aid in polishing the writing
and formatting of text (e.g., LaTeX syntax, grammar, and figure captions). All scientific content,
results, and conclusions are entirely the work of the authors.
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Figure 6: Examples of non-curated molecules generated conditionally on a predefined pharma-
cophore hypothesis. Molecules are shown as stick representations, while pharmacophore features
are visualized as spheres: hydrophobic (green), hydrogen-bond acceptors (cyan), hydrogen-bond
donors (magenta), aromatic features (orange), and positively ionizable features (yellow).
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