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ABSTRACT

Reasoning on Temporal Knowledge Graphs (TKGs) is essential for predicting fu-
ture events and time-aware facts. While existing methods are effective at capturing
relational dynamics, their performance is limited by a closed-world assumption,
which fails to account for emerging entities not present in the training. Notably,
these entities continuously join the network without historical interactions. Em-
pirical study reveals that emerging entities are widespread in TKGs, comprising
roughly 25% of all entities. The absence of historical interactions of these entities
leads to significant performance degradation in reasoning tasks. Whereas, we ob-
serve that entities with semantic similarities often exhibit comparable interaction
histories, suggesting the presence of transferable temporal patterns. Inspired by
this insight, we propose TRANSFIR (Transferable Inductive Reasoning), a novel
framework that leverages historical interaction sequences from semantically sim-
ilar known entities to support inductive reasoning. Specifically, we propose a
codebook-based classifier that categorizes emerging entities into latent semantic
clusters, allowing them to adopt reasoning patterns from similar entities. Experi-
mental results demonstrate that TRANSFIR outperforms all baselines in reasoning
on emerging entities, achieving an average improvement of 28.6% in Mean Re-
ciprocal Rank (MRR) across multiple datasets. The implementations are available
at https://github.com/zhaodazhuang2333/TransFIR.

1 INTRODUCTION

Reasoning on Temporal Knowledge Graphs(TKGs) facilitates the prediction of future events and
time-aware facts, significantly enhancing the utility and applicability of temporal knowledge graphs.
By explicitly modeling relation dynamics as the graph evolves, TKG reasoning captures temporal
dependencies and interaction patterns, thereby supporting event forecasting and time-aware infer-
ence (Liang et al., 2024; Zhang et al., 2025a). These capabilities form the foundation for applications
such as temporal question answering, clinical risk analysis, and recommendation systems (Xue et al.,
2024; Postiglione et al., 2024; Hu et al., 2024).

However, existing reasoning methods focus on modeling relation dynamics while neglecting the
emergence of new entities. In real-world graphs, both entities and relations evolve continuously.
Emerging entities often join the network without historical interactions. This phenomenon is ob-
served in various contexts, from social platforms adding new users (Wang et al., 2024a) to molecu-
lar networks coming new compounds (Hadipour et al., 2025). Although current methods effectively
capture relation dynamics and achieve strong forecast performance (Li et al., 2021; Xu et al., 2023b),
they typically assume a closed entity set. Due to the absence of historical interactions, these models
lack adequate supervision and representation for emerging entities, which significantly limits their
reasoning capability. For instance, as shown in Fig. 1, when Barack Obama first assumes office,
predicting his first state visit becomes challenging due to the absence of historical interactions.

To clarify the challenges and opportunities for reasoning on emerging entities, we conduct an empir-
ical study from three progressively deeper perspectives (see Sec. 3). From the Data perspective, we
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observe that emerging entities are widespread in TKGs, with nearly 25% of entities not appearing in
the training set. Meanwhile, existing models show a significant performance drop on related events.
From the Representation perspective, we attribute this degradation to representation collapse,
caused by the lack of supervision signal from historical interactions . Finally, from the Feasibility
perspective, we explore invariant patterns to transfer to emerging entities and find that entities of
semantically similar type often exhibit comparable interaction histories.

As a inspiring method, inductive learning provides a promising approach for reasoning on new en-
tities in knowledge graphs. Unlike transductive methods, which rely on entity-specific embeddings,
inductive approaches learn transferable patterns from subgraphs (Chen et al., 2022). For instance,
InGram (Lee et al., 2023b) constructs relation-affinity graphs to capture neighbor interactions, while
ULTRA (Galkin et al., 2024) generalizes to unseen entities through relative interaction representa-
tion. However, these methods are primarily designed for static KGs, where new entities already
have known interactions. In contrast, emerging entities in TKGs often arrive without any inter-
actions. This lack of supervision signals can lead to representation collapse, raising a significant
challenge: how can we prevent representation collapse in the absence of historical interactions.

President
Tag:Country A

Government
Tag:Country B

(a) Transductive Reasoning

Emerging entity
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(b) Inductive Reasoning
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Figure 1: Illustration of Transduc-
tive vs. Inductive Reasoning on
Emerging Entities.

To address this challenge, we propose TRANSFIR
(Transferable Inductive Reasoning), an inductive rea-
soning framework designed to handle emerging entities
in TKGs. Inspired by our empirical observation that se-
mantically similar entities exhibit transferable patterns,
we propose Interaction Chain to model such structures.
TRANSFIR extracts these patterns from Interaction Chains
and employs a codebook-based classifier to map entities
into latent semantic clusters, thereby transferring patterns
to emerging entities. Specifically, TRANSFIR follows a
Classification–Representation–Generalization pipeline: (i)
Classification maps entities to latent semantic clusters via
an interaction-aware codebook; (ii) Representation encodes
entity’s Interaction Chain to capture reasoning patterns; (iii)
Generalization propagates learned patterns within each cluster,
enabling emerging entities to obtain informative embeddings.
Together, these steps help prevent representation collapse and
improve forecasting performance for emerging entities.

In summary, the main contributions of our work are as follows:

• Novel Framework. We propose TRANSFIR, an inductive framework designed to transfer rea-
soning patterns from semantically similar entities to enable reasoning on emerging ones.

• Codebook-based Classifier for Transfer. We propose an interaction-aware VQ codebook that
maps entities into latent semantic clusters. This facilitates reasoning pattern transfer while pre-
venting representation collapse.

• Problem & Evidence. We formally define the task of inductive reasoning on emerging entities
without historical interactions. Additionally, an empirical study demonstrates that such entities
are widespread in TKGs and existing methods suffer significant performance degradation.

• State-of-the-art Results. TRANSFIR outperforms strong baselines across multiple benchmarks,
with an average improvement of 28.6% in MRR on four datasets.

2 PRELIMINARIES AND PROBLEM FORMALIZATION

Reasoning on Temporal Knowledge Graphs. A temporal knowledge graph (TKG) is structured
as a sequence of timestamped snapshots G = {Gt}t∈T , where each snapshot Gt = (E1:t,R,Ft).
Here E1:t is the set of entities observed up to time t,R is the relation set, and Ft ⊆ E1:t×R×E1:t×
{t} represents the set of timestamped facts.

Given a query (es, r, ?, tq) with tq in the future, temporal KG reasoning aims to predict the missing
entity based on the historical contextHtq =

⋃
i<tq
Fi. It follows a standard chronological time split

to prevent leakage of future information. However, a non-trivial fraction of entities remain unseen
during training, posing significant challenges for generalizing to emerging entities.
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(a) Entity Emergence with Time (b) Performance Comparison (c) Representation Collapse (d) Transferable Patterns
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Figure 2: (a) Entity emergence over time. Across four TKGs, new entities continuously emerge;
about ≈ 25% of entities are unseen during training. (b) Performance comparison. Under Vanilla
vs. Emerging settings, strong baselines consistently drop on emerging entity triples. (c) Represen-
tation collapse. On ICEWS14, t-SNE of LogCL shows representation collapsing after training,
while known entities drift to a separate manifold. (d) Transferable patterns. Semantically similar
entities share relation-conditioned patterns, enabling transfer to emerging entities.
Inductive Reasoning for Emerging Entities in TKGs. We formalize inductive reasoning for
TKGs: reasoning for emerging entities that enter the graph without historical interactions. Define
the first-appearance time of entity e be

te(e) = min{ t ∈ T | e participates in some (es, r, eo, t) ∈ Ft }.
At timestamp t, e is considered as emerging entity if e ∈ E1:t \ E1:t−1. The goal is to answer
temporal queries involving such entities at the moment they emerge— i.e., queries of the form
(e, r, ?, tq) or (?, r, e, tq), where tq = te(e), and no historical interactions are available. This setting
reflects real-world scenarios—such as the introduction of new users, proteins, or organizations—and
highlights the difficulty of reasoning in the absence of historical interaction.

3 EMPIRICAL INVESTIGATION

In this section, we empirically investigate the proposed inductive reasoning task for emerging enti-
ties from three complementary angles. From the Data perspective, we address the prevalence and
impact of emerging entities on forecasting by answering Q1: How frequently do emerging entities
appear in TKGs, and how do they influence forecasting performance? From the Representation
perspective, we explore the underlying causes of performance degradation by addressing Q2: What
factors contribute to failures on emerging entities? From the Feasibility perspective, we investigate
potential alternatives to overcome the limitations of sparse interactions by answering Q3: Are there
transferable temporal patterns that support reasoning without historical interactions? Details of
datasets, models, and metrics are provided in Sec. 5.

To address Q1, We quantify entity emergence and its impact on performance across multiple TKG
datasets. Specifically, we track both the number and the proportion of emerging entities over time.
To assess impact on forecasting, we evaluate representative baselines in two settings: (i) overall test
triples (Vanilla) and (ii) triples involving at least one emerging entity(Emerging).

Observation 1. From Fig. 2(a), we find that new entities continuously emerge over time. Nearly
25% of entities appear only in inference set, having no historical interactions available for training,
indicating that entity emergence is widespread in TKGs. From Fig. 2(b), all models exhibit signif-
icant performance degradation on emerging triples compared with vanilla triples, underscoring the
challenge of generalizing to entities without historical interactions.

To address Q2, we evaluate the representation quality for all entities using t-SNE (known vs. emerg-
ing). We visualize both the initial embeddings (all entity embeddings are randomly initialized) and
the learned entity embeddings after training in baseline model, LogCL (Chen et al., 2024). Addi-
tionally, inspired by Zbontar et al. (2021), we propose a rotation-invariant mertic, Collapse Ratio, to
quantify the degree of collapse. Collapse ratio measures the geometric spread (log-det covariance)
of emerging-entity embeddings relative to a reference set; lower values indicate stronger collapse.
See Appendix C.2 for the full definition and details.

Observation 2. From Fig. 2(c), we find that after training, emerging entities deviate sharply from
known entities in the embedding space. Quantitatively, their Collapse Ratio drops from 1.0201 to
0.0055 after training, evidencing severe representation collapse.
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Figure 3: The overall architecture of proposed TRANSFIR.

To address Q3, we investigate whether models can perform reasoning that is independent of entity
embedding. Inspired by prior work on inductive and path-based reasoning, we analyze the feasibility
to transfer interaction patterns across entities, and identify concrete instances of this phenomenon.

Observation 3. We observe that certain reasoning patterns can be transferred across entities of
similar semantic types. For example, as shown in Fig. 2(d) , visit–negotiation sequences patterns
can be reused when a new president takes office in another country with no interaction history. This
suggests that invariant event-sequence patterns can be captured and extended to semantically similar
entities, thereby supporting inductive inference for emerging entities.

4 METHODOLOGY

In this section, we present TRANSFIR, an inductive framework designed for emerging entities
without interaction history. As shown in Fig. 3, TRANSFIR employs a three-stage Classifica-
tion–Representation–Generalization pipeline that to transform raw interactions into transferable rep-
resentations:

(1) Codebook Mapping (Classification): Assign emerging and known entities to latent types (se-
mantic clusters) via a vector-quantized (VQ) codebook, providing history-free categorical priors.

(2) Interaction Chain Encoding (Representation): Construct and encode Interaction Chains (ICs)
around query entities to capture transferable interaction sequences.

(3) Temporal Pattern Transfer (Generalization): Propagate learned temporal patterns within each
cluster, enabling emerging entities to acquire informative, time-aware embeddings.

4.1 CODEBOOK MAPPING (CLASSIFICATION)

Entities of similar semantic types often share comparable interaction history (e.g., states show recur-
ring diplomatic rhythms, while individuals follow distinct patterns). Inspired by this, categorizing
entities into latent semantic clusters offers a promising way to import type-level priors for emerging
entities. However, two straightforward strategies prove inadequate: (i) updating entity embeddings
directly risks collapse for emerging entities lack of supervision; (ii) based on frozen embeddings
fails to adapt to dynamic interactions within temporal knowledge graphs.

To address these challenges, we propose a learnable vector quantization (VQ) codebook: entity em-
beddings are fixed for stability, and cluster prototypes are trained to become interaction-aware. This
results in an adaptive latent semantic clustering mechanism to facilitate effective transfer learning.
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Vector-quantized clustering. For each entity e ∈ E , we first obtain a static textual embedding
he ∈ Rd from its title using a pretrained BERT encoder. These embeddings remain fixed during
training, allowing emerging entities to be encoded even without any interaction history.

We maintain a learnable codebook C = {c1, . . . , cK} , where each codeword ck ∈ Rd denotes a
latent cluster. Entity entity embedding is quantized by mapping it to the nearest codeword:

π(e) = argmin
k
∥he − ck∥22, (1)

where π(e) is the cluster index of entity e. This process groups both observed and emerging entities
into consistent categories, forming an adaptive semantic cluster structure for downstream reasoning.

Codebook optimization. To ensure meaningful latent semantic clusters, we adopt two comple-
mentary objectives. The codebook loss updates prototypes toward their assigned embeddings:

Lcb = ∥sg[he]− cπ(e)∥22, (2)

where sg[·] denotes the stop-gradient operator. The commitment loss encourages embeddings to stay
close to their prototypes:

Lcommit = ∥he − sg[cπ(e)]∥22. (3)
The overall objective is

Lcodebook = αLcb + βLcommit, (4)
with α, β > 0 as weighting coefficients. This optimization refines the codewords into semantically
coherent clusters and stabilizes the assignment of entities to prototypes. Unlike static clustering
methods, our approach jointly learns the prototypes with the task objective, making it suitable for
fixed entity embeddings while enabling adaptive category representations for effective classification.

4.2 INTERACTION CHAIN ENCODING (REPRESENTATION)

To capture transferable interaction sequence patterns for emerging entities, we introduce an Interac-
tion Chain (IC) around each query entity. Unlike unordered temporal neighborhoods, ICs preserve
the sequential structure of interactions, thereby reflecting entity-invariant temporal dynamics—such
as periodic behaviors or events that follow a specific order.

Definition. Given a temporal query q = (eq, rq, ?, tq) and a window size T , the IC of eq collects
its past interactions in chronological order:

Cq =
{
(eq, r, o, ti) or (s, r, eq, ti)

∣∣ tq − T ≤ ti < tq
}
, (5)

which captures the behavioral trajectory of eq piror to time tq . This chain-based structure is mo-
tivated by Observation 3., which suggests that such sequential patterns are largely independent of
specific entities and are more effectively modeled through chains than through unordered neighbor-
hoods (see Appendix D.1 for further details).

Construction. At query time tq , for each query q = (eq, rq, ?, tq) we collect past interactions of
eq within window T to form Cq . Let ri be the relation of the i-th interaction in Cq , with trainable
relation embeddings hrq , hri ∈ Rd. We keep the k interactions whose relations are most similar to
the query relation:

C(k)
q = TopKi

(
sim

(
hrq , hri

)
, Cq

)
, (6)

where sim is cosine similarity. Selected interactions are then kept in chronological order; doing this
for all queries at t yields ICs {C(k)

q } as the temporal context for the snapshot.

Encoding. Each interaction (si, ri, oi, ti) ∈ C
(k)
q is first mapped by component-specific trans-

forms ϕ∗(·) and fused by f(·):

xi = f(ϕe(hsi), ϕr(hri), ϕe(hoi), ϕτ (h∆ti)) , (7)

where hsi , hoi ∈ Rd are frozen entity embeddings (from a pretrained encoder; see Sec. 4.1), hri ∈
Rd is a trainable relation embedding, and h∆ti encodes the relative time gap ∆ti = tq − ti.
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The sequence {xi}ni=1 is then contextualized by a Transformer encoder to yield {hi}ni=1. We apply
relation-guided attention, modulated by the query-relation embedding hrq :

αi =
exp

(
w⊤ tanh(Whhi +Wqhrq )

)∑
j exp

(
w⊤ tanh(Whhj +Wqhrq )

) , hIC
eq =

n∑
i=1

αi hi, (8)

which produces the query-specific chain representation hIC
eq , emphasizing interactions most relevant

to rq while down-weighting irrelevant context.

4.3 CHAIN PATTERN TRANSFER (GENERALIZATION)

Although IC encodings capture query-specific dynamics, entities with limited interactions remain
static, limiting generalization to emerging cases. To address this, we propose Chain Pattern Trans-
fer, a mechanism that propagates interaction patterns across semantic clusters. This approach en-
ables even newly emerging entities to acquire time-aware representations.

Cluster pooling. At each timestamp t, we aggregate IC embeddings {hIC
e } based on codebook

assignments. Let π(e) be the cluster index of entity e. The dynamic prototype of cluster k is

cdyn
k =

1

|Qk|
∑
e∈Qk

hIC
e , Qk = {e ∈ E | π(e) = k}, (9)

which summarizes the shared temporal evolution within semantic cluster k.

Pattern Transfer. Each entity e combines its static embedding he with the cluster-level prototype:

ze = [he ∥ cdyn
π(e)], (10)

where ∥ denotes concatenation. A parametric mapping Ψ(·) generates the transfer vector:

ωe = Ψ(ze), h̃e = he + ωe · cdyn
π(e). (11)

Through the Pattern Transfer module, we transfer Interaction Chain’s information from semantically
similar known entities to emerging ones, resulting in informative entity representations.

Ranking and optimization. Given a query (eq, rq, ?, tq), candidate entities eo are scored as

ϕ(eq, rq, eo, t) = σ
(
f(h̃eq ,hrq , h̃eo)

)
, (12)

where f(·) is implemented with ConvTransE (Shang et al., 2019), a strong score function that is
widely adopted for the recent TKG reasoning methods. The training objective is cross-entropy loss
over all candidate entities:

Llp = −
T∑

t=1

∑
(eq,rq,eo,tq)∈Ft

∑
e∈E

yetq log ϕ(eq, rq, e, tq), (13)

where yetq is the one-hot indicator for the correct entity. The overall objective is

L = Llp + λLcodebook. (14)

In our work, both link prediction loss and codebook loss are trained simultaneously. A complete
algorithmic workflow, detailed pseudo code, and complexity analysis are provided in Appendix D.2.

5 EXPERIMENTS

We evaluate the effectiveness of TRANSFIR through extensive experiments and analyses, guided by
the following research questions:

• RQ1: How does TRANSFIR compare with SOTA baselines in emerging entity reasoning?
• RQ2: What insights can be obtained from the learning behavior of TRANSFIR?
• RQ3: How does each component of TRANSFIR contribute to its overall effectiveness?
• RQ4: How well does TRANSFIR generalize to new inductive scenarios?
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Table 1: Performance comparison of inductive reasoning on emerging entities on four benchmarks.
In each column, best results are highlighted in bold and second-best are underlined. For generative
model GenTKG, MRR is unavailable due to it’s reliance on multiple generations for each query.

ICEWS14 ICEWS18 ICEWS05-15 GDELT
Method

MRR Hits@3 Hits@10 MRR Hits@3 Hits@10 MRR Hits@3 Hits@10 MRR Hits@3 Hits@10

CyGNet(2021) 0.0111 0.0098 0.0202 0.0031 0.0020 0.0047 0.0031 0.0020 0.0048 0.0067 0.0031 0.0147

REGCN(2021) 0.1175 0.1263 0.2232 0.0947 0.1004 0.1797 0.0887 0.0961 0.1803 0.0222 0.0209 0.0393

HiSMatch(2022) 0.0284 0.0285 0.0418 0.0055 0.0058 0.0076 0.0242 0.0238 0.0443 0.0159 0.0141 0.0270

MGESL(2024) 0.0309 0.0361 0.0603 0.0747 0.0809 0.1031 0.1069 0.1166 0.1563 0.0516 0.0471 0.0815

LogCL(2024) 0.1354 0.1770 0.2273 0.0903 0.1064 0.1548 0.1917 0.2452 0.2855 0.0473 0.0479 0.0973

HisRes(2025) 0.1169 0.1107 0.2132 0.0445 0.0434 0.0735 0.1325 0.1332 0.1407 0.0416 0.0737 0.0932

G
ra

ph
-b

as
ed

MLEMKD(2025) 0.0685 0.0728 0.1303 0.0402 0.0382 0.0831 0.0833 0.0848 0.1717 0.0229 0.0215 0.0436

TLogic(2022) 0.0122 0.0107 0.0257 0.0141 0.0131 0.0262 0.0121 0.0108 0.0285 0.0733 0.0749 0.1131

TILP(2024) 0.0397 0.0471 0.1114 0.0498 0.0669 0.1659 0.0358 0.0374 0.1030 0.0053 0.0025 0.0084

ECEformer(2024) 0.0461 0.0496 0.0915 0.0323 0.0680 0.0454 0.0587 0.0642 0.1141 0.0426 0.0410 0.0872Pa
th

GenTKG(2024) — 0.0983 0.1919 — 0.0540 0.1512 — 0.1105 0.1873 — 0.0734 0.1013

CompGCN(2020) 0.0682 0.0906 0.1213 0.0638 0.0745 0.1049 0.1885 0.2103 0.2479 0.0472 0.0791 0.0934

ICL(2023) 0.0252 0.0261 0.0388 0.0639 0.0727 0.0938 0.0254 0.0302 0.0373 0.0277 0.0326 0.0362

PPT(2023) 0.0093 0.1062 0.1716 0.0368 0.0386 0.0650 0.0015 0.0005 0.0022 0.0406 0.0425 0.0764

MorsE(2022) 0.0136 0.0074 0.0185 0.0078 0.0075 0.0126 0.0381 0.0167 0.0439 0.0039 0.0040 0.0152In
du

ct
iv

e

InGram(2023) 0.0563 0.0596 0.1138 0.0254 0.0265 0.0518 0.0771 0.0793 0.1454 0.0471 0.0430 0.0847

TRANSFIR 0.1687 0.1935 0.3246 0.1177 0.1344 0.2324 0.2204 0.2617 0.3827 0.1103 0.1129 0.2278

O
ur

s

Improvements 24.6% 9.3% 42.8% 24.3% 26.3% 29.3% 15.0% 6.7% 34.0% 50.5% 42.7% 101.4%

5.1 SETUP

Datasets. Our experiments are conducted on four widely used benchmark datasets for TKG rea-
soning: ICEWS14, ICEWS18, ICEWS05-15, and GDELT. Unlike the conventional 8:1:1 split, we
adopt a 5:2:3 chronological split. This approach helps reveal more emerging entities and better eval-
uates inductive reasoning performance. A detailed description of the datasets and their statistics can
be found in Appendix E.1.

Baselines. To demonstrate the effectiveness of TRANSFIR, we compare it with thirteen strong base-
lines across three complementary categories: (1) Graph-based methods; (2) Path-based methods; (3)
Inductive methods. The details of the description and implementation of all methods are provided in
the Appendix E.2.

Evaluation Metrics. We report results using Mean Reciprocal Rank (MRR) and Hits@k (k=3,10),
the standard metrics for link prediction. We pay particular attention to triples involving emerging
entities, which directly reflects the ability to generalize beyond entities observed during training.

5.2 PERFORMANCE COMPARISON (RQ1)

The overall performance of TRANSFIR and all baseline methods on the four benchmark datasets
is summarized in Table 1. The best scores are highlighted in bold, and the second-best scores are
underlined. From the experimental results, we draw the following observations:

Firstly, TRANSFIR achieves the highest average performance across all four benchmarks, consis-
tently ranking first in both MRR and Hits@k on every dataset. Its consistent superiority over graph-
based, path-based, and static inductive baselines confirms the effectiveness of TRANSFIR for induc-
tive reasoning on emerging entities (e.g., average MRR gain of 28.6% over the strongest baseline).

Secondly, on the ICEWS series, TRANSFIR demonstrates notable gains. On ICEWS14 it surpasses
the best baseline by 24.6% in MRR. Notably, the advantage persists on ICEWS05-15 (longer tempo-
ral horizon) and ICEWS18 (larger, denser graph), with improvements of 15.0% and 24.3%, respec-
tively. Such robustness across varying time spans and graph dynamics indicates that the proposed
Classification-Representation-Generalization pipeline enables reliable inductive generalization.
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Thirdly, on GDELT, a large and rapidly evolving dataset, TRANSFIR still outperforms all baselines,
with an MRR gain of 50.5%. We attribute this to the latent semantic cluster that supplies strong
categorical priors for emerging entities and propagates cluster-level dynamics.

5.3 REPRESENTATION AND LEARNING ANALYSIS (RQ2)

We analyze what TRANSFIR learns during training and how it addresses the challenges of emerging
entities, as summarized in Fig. 4.

(a) Representation Collapse of baseline and our model (b) Case Analysis for Cluster and Emerging Entities 

1. Citizen (Nigeria)
2. Student (Thailand)
3. Children (Canada)

C. Citizen
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Figure 4: (a) t-SNE visualization showing the improved separation of clusters in TRANSFIR com-
pared to LogCL, with Collapse Ratio improvement from 0.0055 to 0.8677. (b) Case analysis of three
representative clusters and how TRANSFIR transfers reasoning patterns to emerging entities.

(a) Representation Quality and collapse. Compared to LogCL, TRANSFIR produces well-
separated clusters in embedding space, rather than a single dense cloud. The Collapse Ratio im-
proves markedly from 0.0055 to 0.8677, indicating that embeddings of emerging entities remain
well distributed and informative. These results suggest that the VQ codebook, combined with pat-
tern generalization, jointly prevent representation collapse and yield informative embeddings.

(b) Cluster Structure and Emerging Entities. A closer look at three latent semantic clusters
identified by the codebook reveals semantically coherent, type-like groupings: A. Country (e.g.,
France, Canada, United States); B. Civic & Parties (e.g., Prime Minister (Romania), Officials
(Mexico), Presidential Candidate (Mexico)); C. Citizen (e.g., Citizen (Nigeria), Student (Thailand),
Children (Canada)). Emerging entities (red) are consistently categorizes to appropriate clusters
alongside known ones (blue), providing type-level priors even without historical interactions.

(c) Case study. Consider the query: ”Where did the presidential candidate in Mexico make a state-
ment at tq?” This query is structured as( Presidential Candidate (Mexico), MAKE STATEMENT, ?, tq ).
TRANSFIR retrieves transferable pattern chains from the B. Civic & Parties cluster, including: (i)
Cross patterns, such as (Prime Minister (Romania MAKE STATEMENT−−−−−−−−−→ Gov (Romania)), and (ii)Within-country
patterns (Officials (Mexico) MAKE STATEMENT−−−−−−−−−→ Gov (Mexico)). By leveraging such transferable supervision
signals, TRANSFIR successfully predicts Gov (Mexico). It illustrates how TRANSFIR utilizes
cluster-level priors to extract transferable patterns, enabling reasoning on emerging entities.

5.4 ABLATION STUDY (RQ3)

We conduct ablation experiments to evaluate the contribution of each module in TRANSFIR. The
following variants are considered:

• -IC: removing the Interaction Chain construction and using only entity embeddings.
• -Codebook: removing the codebook mapping and using static clustering features only.
• -Pattern Transfer: removing the pattern transfer mechanism and using static representations.
• -Textual encoding: removing frozen textual embeddings and using random initialization.

The results are summarized in Fig 5. Across all four benchmarks, removing any individual module
leads to a decline in performance. While the relative impact of each ablation varies across datasets,
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Figure 5: Ablation study results on four benchmarks, showing the performance impact of removing
different components. Reported results are for Hits@10, with additional metrics in Appendix F.2.

two consistent patterns emerge (i) removing the codebook-driven mapping or the pattern-transfer
typically results in the most performance drops, highlighting the need to both mapping entities and
propagate pattern signals; (ii) removing IC construction or textual encoding also degrades perfor-
mance. These findings demonstrate the complementary functions of the modules.

Besides, we observe that in GDELT, removing textual encoding can sometimes lead to better perfor-
mance. We believe this is due to the quality of the input text in GDELT, where entity titles often in-
clude abbreviations and symbolic elements (e.g., ”EGYPT (EGY@ OPP REF LEG SPY...)”, which
makes it challenging for the textual encoding module to extract clear semantic information. Incor-
porating external knowledge sources to enrich entity descriptions may further enhance TRANSFIR
’s performance under such conditions.

5.5 EXTENDED EXPERIMENTS (RQ4)

To evaluate the generalization capability and robustness of TRANSFIR in inductive scenarios, we
conduct four additional experiments: (i) performance under the Unknown setting, (ii) robustness
across different temporal splits with varying entity emergence rates; (iii) sensitivity analysis to key
hyperparameters; (iv) model sensitivity to different pretrained language models; and (v)model effi-
ciency in GPU memory and computational time.

 

Figure 6: Experiment results on
ICEWS14 under the Unknown
and Emerging settings.

Generalization to the Unknown Setting. We further assess
TRANSFIR in a more permissive inductive setting where test
entities, although unseen during training, may have historical in-
teractions observable at inference time (i.e., G<t is observable).
This differs from the stricter Emerging setting, where entities
arrive without any interactions. As illustrated in Fig. 6, all meth-
ods exhibit improved performance compared to the Emerging
setting, suggesting that even limited test-time historical context
benefits model inference. TRANSFIR maintains a stable perfor-
mance advantage, highlighting its ability to effectively leverage
local interaction patterns for inductive reasoning. Complete re-
sults and experimental details are available in Appendix F.3.

Robustness under Different Temporal Splits. We construct
four chronological data splits by varying the test horizon to 10%, 30%, 50%, and 70% of the full
timeline. For each ratio, we we re-partition the dataset chronologically into training, validation, and
test sets. This setup reduces the observed historical context and increases the proportion of emerg-
ing entities over time. We compare TRANSFIR against strong baselines strong baselines—LogCL,
REGCN, and MLEMKD. Across all splits, TRANSFIR achieves the best MRR/Hits@10 and ex-
hibits the smallest degradation as emergence increases, demonstrating robustness to reduced histor-
ical coverage. Detailed partitioning protocols and full results are provided in Appendix F.4.

Hyperparameter Sensitivity. We analyze the sensitivity of TRANSFIR to several key hyperpa-
rameters: codebook size K, Interaction Chain length k, hidden dimension d, and number of layers
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Figure 7: GPU memory usage and empirical running time on ICEWS14. TRANSFIR achieves
significantly lower peak GPU memory usage while maintaining competitive training speed.

L. TRANSFIR demonstrates consistent performance across a wide range of parameters. Our ex-
periments show that datasets with greater diversity (e.g., ICEWS18) require a larger number of
codebooks. For chain length, most datasets achieve best performance at k = 30, longer chains
potentially introducing noise. Comprehensive experiment results can be found in Appendix F.5.

Table 2: Different Textual Encoder exper-
iment result on TRANSFIR.

PLM ICEWS14 ICEWS18 GDELT

Baseline 0.2273 0.1797 0.1131

T5 0.3057 0.2061 0.2082

RoBERTa 0.2934 0.1939 0.2289

Qwen3 0.2567 0.2009 0.2030

BERT 0.3246 0.2324 0.2278

Different Textual Encoder. We investigate the im-
pact of different pretrained language models(PLM)
on TRANSFIR, as its latent semantic clustering re-
lies on textual representations. Specifically, we eval-
uate four widely-used PLMs: BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), T5 (Raffel et al.,
2020), and Qwen3-Embedding (Zhang et al., 2025b).
As shown in Table 2, TRANSFIR consistently outper-
forms the strongest baseline across all pretrained lan-
guage models, demonstrating both its robustness and
adaptability.

Model Efficiency in GPU Memory and Training Time. We evaluate the efficiency of TRANS-
FIR in terms of the runtime and GPU memory usage, comparing it against several strong baselines,
including HisRes and LogCL, on the ICEWS14 dataset. As shown in Fig. 7, TRANSFIR achieves
significantly lower peak GPU memory usage while maintaining competitive training speed, demon-
strating strong efficiency and scalability. This suggests that TRANSFIR is not only effective in
performance but also efficient in resource utilization, making it scalable for large-scale datasets and
suitable for long-term applications in temporal knowledge graphs (TKGs). This efficiency is crucial
for real-world deployment, where both computational resources and time are limited.

6 CONCLUSION

In this work, we introduce TRANSFIR, a novel inductive reasoning framework designed to handle
emerging entities in temporal knowledge graphs. By leveraging transferable reasoning patterns and
utilizing an interaction-aware codebook, TRANSFIR effectively bridges the gap for emerging en-
tities in the absence of historical interactions. Experimental results demonstrate that TRANSFIR
outperforms strong baselines across multiple benchmarks, with a significant improvement in MRR
on four datasets, showcasing its ability to perform effective inductive reasoning on emerging entities.

In the future, we plan to improve TRANSFIR by enhancing entity textual embeddings through ex-
ternal knowledge and LLMs to handle noisy or sparse entity descriptions. We also aims to extend
TRANSFIR to handle emerging relations and explore its application in more open-world scenarios.
Furthermore, we will investigate methods to model long-term evolution of entity semantics, enabling
TRANSFIR to adapt to changing knowledge over time.
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8 REPRODUCIBILITY STATEMENT

We have taken concrete steps to ensure the reproducibility of our work. The full implementation
details of our models, training setup, and baselines are provided in Appendix E. To further en-
hance reproducibility, we make our code publicly available at the following anonymous repository:
https://github.com/zhaodazhuang2333/TransFIR. These resources should enable independent verifi-
cation of our results.
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A LLM USAGE DISCLOSURE

In this work, we used GPT-4o to assist with grammar checking and polishing. All LLM-generated
content was thoroughly reviewed and validated by the authors to ensure the accuracy of the pre-
sented information. Additionally, the items representing ”President” and ”Government” in Fig. 1
and Fig. 2 are generated by GPT for illustrative purposes. The use of LLM aligns with ICLR’s
ethical guidelines, and all contributions from the LLM have been transparently acknowledged and
reviewed to avoid any false or misleading statements.

B RELATED WORK

Reasoning on Temporal Knowledge Graphs. Reasoning on temporal knowledge graphs (TKGs)
aims to infer missing or future facts by modeling temporal evolution. Prior work falls into inter-
polation (filling unobserved facts within the time window) and extrapolation (forecasting beyond
training) Cai et al. (2023). Representative interpolation approaches extend static models with tem-
poral mechanisms: TTransE introduces temporal constraints across adjacent facts Garcia-Duran
et al. (2018); TNTComplEx employs a fourth-order tensor for time-aware entity/relation embed-
dings Lacroix et al. (2020); TEILP parameterizes temporal logical rules with neural modules Xiong
et al. (2024b).

In contrast, the extrapolation setting focuses on predicting future events using only historical in-
teractions, without access to future information during training. Extrapolative methods typically
aggregate historical interactions and capture cross-time dependencies: CyGNet uses time-aware
copy mechanisms for recurrence Zhu et al. (2021); CENET applies contrastive learning to disen-
tangle historical vs. non-historical influences Xu et al. (2023b); LogCL blends local and global
temporal context Chen et al. (2024). More recent approaches leverage Transformer architectures
and large language models (LLMs): GenTKG combines retrieval-augmented generation with in-
struction tuning Liao et al. (2024); LLM-DA dynamically updates temporal rules for domain adap-
tation Wang et al. (2024b); and ECEformer encodes chronological event chains using a Transformer
structure Fang et al. (2024).

Despite these advances, a key challenge remains unaddressed: handling emergent entities that ap-
pear during graph evolution. Current methods operate under a closed-world assumption and typ-
ically initialize the embeddings of all new entities randomly. As these emerging entities lack any
historical interactions during the training phase, the absence of sufficient supervision often results
in representation collapse.

Knowledge Graph Inductive Learning. Inductive learning on static KGs aims to generalize to
unseen entities/relations, or even entirely new graphs without retraining under a fixed vocabulary.
Classical approaches such as GraIL Teru et al. (2020) and TACT Chen et al. (2021) reason from
local subgraph structure and relational patterns, reducing reliance on pre-learned entity embeddings.
Recent work strengthens inductive reach from complementary angles: INDIGO enables fully induc-
tive link prediction directly from GNN outputs Liu et al. (2021); MorsE employs meta-learning to
transfer knowledge for initializing unseen-entity embeddings Chen et al. (2022); InGram integrates
relation-aware attention to better handle novel relations Lee et al. (2023b); and ULTRA learns con-
ditional relational representations for zero-shot generalization across different graphs Galkin et al.
(2024).

However, these methods are designed for static KGs, where new entities typically possess at least
some known relations. Few works focus on inductive reasoning in TKGs. ALRE-IR (Mei et al.,
2022) combines embedding-based and logical rule-based methods to capture deep causal logic,
demonstrating strong zero-shot reasoning capabilities. zrLLM (Ding et al., 2024) leverages large
language models to generate relation representations from text descriptions, enabling reasoning for
unseen relations. POSTRA (Pan et al., 2025) enables cross-dataset knowledge transfer through si-
nusoidal positional encoding.

Despite these advances, they overlook the fact that emerging entities in temporal knowledge graphs
often arrive without any historical interactions, a common scenario in real-world applications. The
absence of relational context makes it particularly challenging to derive meaningful representations
for such entities.
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C EMPIRICAL STUDIES

C.1 VISUALIZATION DETAILS FOR Q2

For the visualization study, we adopt LogCL as the base model. We record entity embeddings at two
stages: (i) init, right after model initialization, and (ii) trained, after convergence on the training set.
Entities are categorized as known if they are present in the training data, and as emerging otherwise.

All embeddings are first reduced to 50 dimensions via PCA and then projected into a 2D space using
t-SNE (perplexity=30, 2000 iterations). The main text presents visualization results on ICEWS14,
while additional plots for other datasets are provided in Appendix F.2 for comparison with TRANS-
FIR. Known and emerging entities are distinguished by color to facilitate comparative analysis.

C.2 REPRESENTATION COLLAPSE AND COLLAPSE RATIO

Representation Collapse. In representation learning, collapse refers to a degradation in the ex-
pressiveness of the embedding space, where multiple input instances are mapped to (approximately)
identical points or confined to a low-rank subspace. This phenomenon typically manifests as van-
ishing variance along principal directions, rank deficiency, or excessively homogeneous node repre-
sentations in graph models Thrampoulidis et al. (2022); Jing et al. (2022). Common causes include
inadequate supervision, degenerate learning objectives, or limited contextual information. As a re-
sult, collapsed representations exhibit poor separability and diminished generalization performance.

Collapse Ratio. In TKGs, emerging entities arrive with no historical interactions, so their learn-
ing signal is under-constrained and easily pulled toward generic priors. To quantify this, let
X = {zi}ni=1 ⊂ Rd be a centered set of embeddings with covariance estimator ΣX . We measure
dispersion via the generalized variance (the geometric mean of principal-axis standard deviations)

GS(X) =
(
detΣX

) 1
2d ,

which decreases whenever variance collapses along any eigen-direction and is rotation-invariant An-
derson et al. (1958); Zbontar et al. (2021). For numerical stability when n < d or directions are
nearly collinear, we compute log det(ΣX) from the (nonnegative) eigenvalues of ΣX . Given an
emerging set Xemerg and a reference set Xref (e.g., the set of known entities), we define

CR =
GS(Xemerg)

GS(Xref)
.

Values < 1 indicate collapse (e.g., CR = 0.2 means the average per-axis scale is 5× smaller). Be-
cause GS summarizes the available variance across all informative directions, lower Collapse Ratio
corresponds to reduced separability and weaker discriminative capacity of emerging-entity represen-
tations. We report Collapse Ratio alongside t-SNE visuals as quantitative evidence of representation
collapse.

D ADDITIONAL DETAILS OF METHODOLOGY

D.1 CHAIN STRUCTURE MOTIVATION

In this section, we provide additional motivation for modeling historical interactions as Interaction
Chains (ICs).

Sequential nature of temporal reasoning. Reasoning over temporal knowledge graphs often in-
volves sequential dependencies akin to multi-step inference paths. For example, consider an en-
tity representing a person with interactions such as “visited Country A at t1”, followed by “visited
Country B at t2”. At a later time tq , predicting that this person may “visit Country C” often depends
on the sequential chain of prior visits, rather than an unordered set of neighbors. Such sequential
dynamics are difficult to capture when historical interactions are aggregated as a bag-of-events.
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Entity-invariant temporal patterns. Many chains reflect patterns that are largely entity-invariant
(e.g., successive state visits). Organizing history into chains exposes such transferable regularities,
enabling generalization to emerging entities with no prior representations; in contrast, updating static
embeddings tends to overfit well-observed entities and fails to extrapolate.

Benefit of chain formulation. By preserving the temporal order of events, the chain formula-
tion naturally captures the progression of interaction dynamics, making it particularly suitable for
inductive temporal reasoning. Our proposed Interaction Chain (IC) design offers a principled ap-
proach to extracting reusable temporal patterns directly from raw interaction logs, thereby forming
the foundation of our framework.

D.2 ALGORITHM FLOW AND PSEUDOCODE

Here we include a detailed pseudocode of our framework TRANSFIR, covering the Classifica-
tion–Representation–Generalization pipeline.

Initialization. Entity textual embeddings {he}e∈E are obtained with a pretrained BERT encoder
and kept frozen. Learnable parameters include relation embeddings {hr}r∈R, the IC encoder Θenc
(component-wise MLPs, Transformer, query-aware attention), the VQ codebook C = {ck}Kk=1, the
drift MLP Ψ, and the scoring module f(·) (ConvTransE). Training and inference proceed strictly in
chronological order.

Training-time Flow (per timestamp) At each timestamp t with query set Qt = {(es, r, ?, t)},
TRANSFIR executes:

(i) Classification — quantize frozen he to the nearest codeword in C; get VQ losses Lcodebook;

(ii) Representation — build and encode an IC for each query q, yielding hIC
eq ;

(iii) Generalization — form cluster-level dynamic prototypes {cdyn
k } by pooling {hIC

e } per cluster
of the query entity; propagate temporal transfer to non-query entities via h̃e = he+Ψ([he∥cdyn

π(e)]) ·
cdyn
π(e).

(iv) Ranking & Loss — score candidates with ConvTransE and optimize L = Llp +λLcodebook. For
implementation details and the step-by-step routine, please refer to Alg. 1.

D.3 COMPLEXITY ANALYSIS

We analyze the time and space complexity of TRANSFIR per timestamp t. Let nt = |Qt| be the
number of queries at t, k the Interaction Chain length (Top-k), d the hidden size, L the number
of Transformer layers, K the codebook size, m the hidden width of the drift MLP, and E = |E|,
R = |R|.

Codebook (classification). Vector-quantized assignment has worst-case timeO(EKd) per update
(nearest-prototype search) and space O(Kd) for the codebook. Because entity text embeddings are
frozen, assignments can be cached and updated lazily; thus the amortized assignment cost is small
relative to encoding.

IC construction(representation). IC construction keeps a bounded chain of length k for each
query, yielding time O(ntkd) for token projections. The Transformer encoder dominates with

O
(
nt L (k2d+ kd2)

)
(attention and feed-forward), and memory O(ntkd) for activations.

Pattern transfer (generalization). Forming cluster prototypes requires O(ntd + Kd). Broad-
casting drift via the MLP costs O(Emd) with space O(Ed) for (temporary) updated embeddings.
In practice we apply drift only to non-query entities at t.
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Algorithm 1 TRANSFIR Training (per epoch, chronological)
Require: Train timestamps {1, . . . , ttrain}; frozen entity embeddings {he}e∈E ; learnable {hr}r∈R,

IC encoder Θenc (MLPs+Transformer+attn), VQ codebook C = {ck}Kk=1, transfer MLP Ψ,
scorer f (ConvTransE); window T , Top-k.

1: for epoch = 1, 2, . . . do
2: for timestamp t = 1 to ttrain do
3: Qt ← {(eq, rq, ?, t)} ▷ All queries at time t

4: (1) Codebook Mapping (Classification)
5: for each e ∈ E do
6: π(e)← argmink ∥he − ck∥22 ▷ VQ assignment
7: end for
8: Lcb ←

∑
e

∥∥sg[he]− cπ(e)
∥∥2
2
; Lcommit ←

∑
e

∥∥he − sg[cπ(e)]
∥∥2
2

9: Lcodebook ← αLcb + β Lcommit

10: (2) IC Encoding (Representation)
11: for each q = (eq, rq, ?, t) ∈ Qt do
12: Cq←{(si, ri, oi, ti) | t− T ≤ ti < t, eq∈{si, oi}}
13: C

(k)
q ←TopKi

(
sim(hrq ,hri), Cq

)
▷ cosine sim

14: Encode C
(k)
q with Θenc; relation-guided attn⇒ hIC

eq

15: end for

16: (3) Temporal Pattern Transfer (Generalization)
17: Group {hIC

eq} by π(eq); for k=1. . .K: cdyn
k ← 1

|Qk|
∑

eq :π(eq)=k

hIC
eq

18: St ← {eq | (eq, rq, ?, t) ∈ Qt} ▷ Query entities at time t
19: for each e ∈ E do
20: ze ← [he ∥ cdyn

π(e)]; ωe ← Ψ(ze)

21: ĥe ← he + ωe · cdyn
π(e)

22: end for

23: Ranking & Loss
24: Llp ← 0
25: for each q = (es, rq, ?, t) ∈ Qt do
26: Score all (or sampled) eo: ϕ(es, rq, eo, t) = σ

(
f(ĥes ,hrq , ĥeo)

)
27: Llp += − log softmaxeo

(
ϕ(es, rq, eo, t)

)
28: end for
29: Update by backprop on L = Llp + λLcodebook; update {hr},Θenc,Ψ, f, C
30: end for
31: end for

Overall. Ignoring the shared scoring cost, the dominant model-specific complexity of TRANSFIR
per timestamp is

O
(
nt L (k2d+ kd2)

)
+ O(EKd) + O(Emd)

Since k, L, K, and m are small constants (e.g., k≤32), TRANSFIR scales linearly with the number
of queries and entities, and its controllable chain length avoids dependence on the full neighborhood
size.

E ADDITIONAL EXPERIMENTAL SETTINGS

E.1 DETAILED DATASET INFORMATION

Table E.1 presents comprehensive statistics for all datasets, encompassing entity counts, relation
counts, fact counts, and the proportion of emerging entities in validation and test splits. We uti-
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lize four temporal event datasets spanning crisis early - warning contexts and diverse global event
landscapes to evaluate the model’s multi - dimensional performance.

Table 3: Statistics of all datasets, including ICEWS14, ICEWS18, ICEWS05-15 and GDELT.

Dataset Entities Relation Time Snapshots Total Triples Emerging Entities

ICEWS14 7128 230 365 90730 1301

ICEWS18 23033 256 304 468558 3434

ICEWS05-15 10488 251 4017 461329 1954

GDELT 7691 240 2976 2278405 1020

• ICEWS14(Trivedi et al. (2017)): A subset of the Integrated Crisis Early Warning System
(ICEWS) dataset for 2014, focusing on short-term conflict events within a single year. After prepro-
cessing (e.g., entity standardization, confidence filtering), it contains 8 high-frequency event types
(e.g., protests, attacks). It is used to evaluate the model’s performance in local temporal window
event prediction.

• ICEWS18 (Boschee et al. (2015)): The 2018 ICEWS dataset, maintaining the core focus on crisis
events but introducing emerging subtypes (e.g., ”economic sanctions”) to reflect modern conflict
dynamics. It tests the model’s cross-year stability and adaptability to emerging event types.

• ICEWS05-15(Jin et al. (2019)): A long-term crisis dataset covering 2005–2015, including histor-
ical events such as financial crises and regional conflicts. Characterized by sparse daily events and
a large time span, it serves as the primary training set to validate the model’s long-term temporal
dependency modeling and generalization under low-resource scenarios.

• GDELT(Leetaru & Schrodt (2013)): The Global Database of Events, Language, and Tone, cov-
ering political, economic, and cultural events beyond crises. It complements ICEWS by including
non-conflict scenarios, enabling validation of the model’s cross-domain generalization and utiliza-
tion of multi-dimensional information.

E.2 BASELINES (OVERVIEW AND IMPLEMENTATION)

Families. Graph-based (temporal GNN/embedding; mostly transductive), Path-based (query-
centered relational paths or reasoning rules), and Static inductive (inductive graph learning but
without temporal encoder).

Implementation. We follow chronological splits (5:2:3) consistent with the main paper. For
Graph-based and Path-based methods, we keep the original settings and only adjust the temporal
split and test set to fit the emerging-entity evaluation. For rule-mining approaches (e.g., TILP) with
high search complexity, we reduce the maximum rule length from 5 to 3 (ICEWS) and 2 (GDELT)
to control computation while preserving the core mechanism. For Static inductive methods, which
assume a static graph, we merge a small window of timestamps (e.g., 7) into a subgraph to run, and
we inject relative time into features to enable comparison under the same prediction protocol.

Baseline briefs.

CyGNet [GRAPH] Zhu et al. (2021). Sequential copy-generation with a time-aware dual-mode in-
ference to predict recurrent and de-novo events.

REGCN [GRAPH] Li et al. (2021). Recurrent GCN that learns evolving entity/relation states by
capturing temporal–structural patterns and injecting static constraints.

HiSMatch [GRAPH] Li et al. (2022). Historical structure matching with entity/relation/time seman-
tics and sequential cues; background knowledge improves matching.

MGESL [GRAPH] Mingcong et al. (2024). TKG reasoning model combines multi-granularity his-
tory and entity similarity via hypergraph convolution, includes candidate-known setting.
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LogCL [GRAPH] Chen et al. (2024). Local–global contrastive learning with entity-aware attention
to mine query-relevant histories and suppress noise.
HisRes [GRAPH] Zhang et al. (2025a). Historically relevant event structuring with multi-granularity
evolution and global relevance encoders, fused adaptively.
MLEMKD [GRAPH] Qian et al. (2025). Mutual-learning KD for temporal KGs using soft-label
filtering and adaptive distillation to curb anomaly diffusion with minimal drop.
TLogic [PATH] Liu et al. (2022). Time-constrained random-walk rule mining that yields time-
consistent explanations and competitive forecasting.
TLIP [PATH] Xiong et al. (2024a). Differentiable temporal rule learner extracting interpretable
patterns via constrained walks and temporal features.
ECEformer [PATH] Fang et al. (2024). Transformer over Evolutionary Chains of Events with intra-
quadruple representation and inter-quadruple context mixing.
GenTKG [PATH] Liao et al. (2024). Retrieval-augmented generation: temporal rule retrieval +
few-shot instruction tuning for LLM-based forecasting.
CompGCN [INDUCTIVE] Vashishth et al. (2020). Multi-relational GCN with relation composition
operators, unifying KG embedding tricks beyond plain graph conv.
ICL [INDUCTIVE]Lee et al. (2023a) TKG forecasting via in-context learning with LLMs requires no
fine-tuning or prior semantic knowledge and performs competitively on benchmarks.
PPT [INDUCTIVE]Xu et al. (2023a) TKG completion uses pre-trained LMs and time prompts, via
masked token prediction, with competitive benchmark results.
MorsE [INDUCTIVE] Chen et al. (2022). Meta-knowledge transfer that learns entity-agnostic struc-
tural priors for unseen entities via relation-aware initialization.
InGram [INDUCTIVE] Lee et al. (2023b). Inductive KG embedding using relation-affinity graphs
and attention-based aggregation to form embeddings for unseen nodes/relations.

E.3 EVALUATION

Metrics We use two standard metrics: Mean Reciprocal Rank (MRR) and Hits@K. MRR is de-
fined as:

MRR =
1

N

N∑
i=1

1

ri
,

where ri is the rank of the correct answer for the i-th query. Hits@K measures the proportion of
queries for which the correct answer is ranked in the top K.

Experimental Setup We evaluate all models on emerging entity-related quadruples using MRR,
Hits@3, and Hits@10. For inverse relation triples (eo, r−1, es, tq), we also perform tests, and report
the average of both directions. During testing, we follow the same filtering strategy as LogCL Chen
et al. (2024), excluding quadruples involving the same query entity and relation at the same times-
tamp to avoid redundant results.

All experiments of TRANSFIR are conducted with three random seeds, and the reported results
are the averages across these runs. Detailed results are presented in Table 1. Note that GenTKG
generates 10 samples to compute Hits, so MRR values are not available for this method.

F EXTENDED EXPERIMENTAL RESULTS

F.1 REPRESENTATION AND LEARNING ANALYSIS (RQ2)

Representation quality and collapse. We further evaluate TRANSFIR’s ability to represent
emerging entities through t-SNE visualizations across multiple datasets. As illustrated in Fig. 8,
TRANSFIR consistently yields well-separated clusters in the embedding space, in contrast to
LogCL, which only distinguishes between emerging and known entities, resulting in a distribu-
tion shift between their embeddings. In comparison, our approach clearly groups emerging entities
into distinct latent semantic clusters. The Collapse Ratio is significantly improved across all four
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datasets, underscoring the effectiveness of our VQ codebook and pattern transfer mechanism in
preventing representation collapse. This enhancement enables the model to produce informative
embeddings that support inductive reasoning for emerging entities.

Figure 8: t-SNE visualizations comparing LogCL and TRANSFIR on multiple datasets. The top
row shows LogCL embeddings, with a clear representation collapse for emerging entities (red).
The bottom row shows TRANSFIR, where emerging entities are well-separated into latent semantic
clusters, significantly improving the Collapse Ratio across all datasets.

Failure case analysis. To provide a deeper understanding of the model’s limitations,
we provide a failure case due to insufficient semantic information in dataset ICEWS14:
((Court Judge (Nigeria), INVESTIGATE, (Bala Ngilari), t184 ). In this case, the emerging entity Bala Ngi-
lari lacks sufficient semantic information in the textual input. Since TRANSFIR relies on semantic-
based clustering to align emerging entities with known entities, the absence of meaningful textual
features prevents the model from assigning Bala Ngilari to the correct latent semantic cluster. Con-
sequently, the model fails to infer that Court Judge (Nigeria) will investigate Bala Ngilari at t184.

F.2 ABLATION: ADDITIONAL METRICS (RQ3)

Beyond Hits@10 reported in the main paper, we further evaluate the ablations on MRR and Hits@3.
As shown in Fig. 9, the qualitative conclusions remain unchanged across four benchmarks: (i) re-
moving the codebook mapping yields the largest drop, confirming the importance of aligning enti-
ties into latent semantic clusters for reliable transfer; (ii) both IC construction and pattern transfer
contribute consistently; (iii) discarding textual encoding degrades performance, since text provides
a stable prior for emerging entities. Results are averaged over three random seeds; error bars denote
standard deviation.

F.3 GENERALIZATION TO THE UNKNOWN SETTING(RQ4)

Definition. We keep the temporal KG notation G = {Gt}t∈T with Gt = (E1:t,R,Ft). Let the
timeline be split into disjoint windows Ttr, Tval, Tte. For any window W ⊂ T , define the entity set
EW = { e | ∃(es, r, eo, t)∈Ft, t∈W, e∈{es, eo} }. The Unknown entity set is

Eunk = ETte \
(
ETtr ∪ ETval

)
.

During testing, we evaluate queries of the form (es, r, ?, tq) or (?, r, eo, tq), where tq ∈ T te and
the queried entity e ∈ Eunk. Unlike the Emerging setting (Sec. 2) which enforces tq = te(e) (zero
history), the Unknown setting allows the model to observe local pre-query history within the test
window, defined as

Hte
tq =

⋃
i∈Tte, i<tq

Fi,

while future facts (≥ tq) remain hidden.
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Figure 9: Ablation results on four benchmarks under MRR (top row) and Hits@3 (bottom row).
The ranking of variants mirrors the main-paper Hits@10.

 

Figure 10: Results on ICEWS18, ICEWS05-15, and GDELT under the Unknown (blue; observable
G<t) vs. Emerging (green; zero history) settings. All methods improve with pre-query history, and
TRANSFIR remains best on both MRR and Hits@10 across datasets.

Relation to the Emerging setting We distinguish between two test settings. Let Tte denote the
test window, and letHte

tq =
⋃

i<tq,,i∈Tte
Fi represent the test-time history available prior to time tq .

Emerging. In this setting, queries are restricted to the first appearance of an entity. For a target entity
e, the query time is set to tq = te(e) (its emergence time). Consequently, Hte

tq contains no prior
interactions involving e (strict zero-history condition).

Unknown. Here, entities are also unseen during training and validation. However, queries can occur
at any time tq > te(e) within the test window Tte. Therefore, Hte

tq may include earlier test-time
interactions of e, providing a short local history. In practice, since an unseen entity can appear
multiple times during testing, we evaluate its predictions specifically at non-first occurrences. This
allows us to isolate the benefit of having limited test-time context.

Experiment Results. As shown in Fig. 10, across all datasets, every method achieves higher MRR
and Hits@10 scores in the Unknown setting than in the Emerging setting, confirming that even brief
interaction histories (G<t) are beneficial. TRANSFIR consistently outperforms all baselines on ev-
ery dataset and metric, maintaining a clear advantage even when test-time history is provided. This
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Figure 12: Hyperparameter study on four benchmarks, exploring effects of codebook size K, Inter-
action Chain length k, hidden dimension d, and the number of layers l. Brown and green represent
MRR and HITS@10, respectively.

suggests that TRANSFIR effectively leverages both local historical patterns and type-level regular-
ities, while baseline methods rely primarily on entity-specific history and still fall short. Overall,
these results demonstrate the robust inductive generalization capability of TRANSFIR: its perfor-
mance gains do not hinge on the zero-history setup, and its superiority persists as more historical
context becomes available.

F.4 DETAILED RESULTS FOR DIFFERENT TEMPORAL SPLITS(RQ4)
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Figure 11: Experiment results on
ICEWS14 and ICEWS05-15 un-
der different time splits.

To test generalization under varying emergence, we build four
chronological splits with test horizons of {10%, 30%, 50%,
70%}, corresponding to train:val:test timeline ratios [8 : 1 : 1],
[5 : 2 : 3], [3 : 2 : 5], [2 : 1 : 7]. For each split, we re-partition the
data strictly in time (validation is re-cut per split), which short-
ens training history and increases the share of first-appearance
entities. We evaluate on ICEWS14 and ICEWS05-15, report-
ing MRR and Hits@10, and compare TRANSFIR against strong
baselines (LogCL, REGCN, MLEMKD); all models are re-
trained for each split with the main hyperparameters.

Results and discussion. As shown in Fig. F.4, performance
drops for all methods as the test horizon expands and emer-
gence increases. TRANSFIR consistently attains the best scores
across splits and exhibits the smallest degradation, indicating ro-
bustness when historical coverage is reduced. A mild uptick
for some baselines at the 70% horizon likely stems from un-
dertraining with a shorter history, which narrows the gap between known and emerging enti-
ties and partially curbs collapse. Overall, these trends support that TRANSFIR ’s Classifica-
tion–Representation–Generalization pipeline remains effective across diverse temporal partitions.
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F.5 HYPERPARAMETER SENSITIVITY(RQ4)

We investigate the hyperparameter sensitivity of TRANSFIR, focusing on codebook size K, Inter-
action Chain length k, hidden dimension d, and the number of layers L in the IC Encoder.

First, we examine the impact of codebook size K, testing values {10, 25, 50, 100}. As shown in
Figure 12, performance improves with increasing K, with K = 50 yielding the best results across
most datasets.

Next, we analyze the effect of Interaction Chain length k by testing values {10, 15, 30, 50}. While
the best length varies across datasets, the performance remains stable across different lengths for all
datasets, with no significant drop in performance.

Additionally, we assess the hidden dimension d and the number of layers L. Performance is stable
across a range of hidden dimensions, with d = 768 providing optimal results in most cases. Sim-
ilarly, two to three layers in the Chain Encoder provide the best performance, with no significant
improvement from adding more layers.
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