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Abstract

Cross-domain few-shot learning (CDFSL) is proposed to transfer knowledge from
large-scale source-domain datasets to downstream target-domain datasets with
only a few training samples. However, Vision Transformer (ViT), as a strong
backbone network to achieve many top performances, is still under-explored in the
CDFSL task in its transferability against large domain gaps. In this paper, we find
an interesting phenomenon of ViT in the CDFSL task: by simply multiplying a
temperature (even as small as 0) to the attention in ViT blocks, the target-domain
performance consistently increases, even though the attention map is downgraded
to a uniform map. In this paper, we delve into this phenomenon for an interpretation.
Through experiments, we interpret this phenomenon as a remedy for the ineffective
target-domain attention caused by the query-key attention mechanism under large
domain gaps. Based on it, we further propose a simple but effective method for the
CDFSL task to boost ViT’s transferability by resisting the learning of query-key
parameters and encouraging that of non-query-key ones. Experiments on four
CDFSL datasets validate the rationale of our interpretation and method, showing
we can consistently outperform state-of-the-art methods. Our codes are available
at https://github.com/Zoilsen/Attn_Temp_CDFSL.

1 Introduction

Deep networks have shown great power in learning from large-scale datasets [18, 11, 7]. However,
collecting sufficient training data for every domain is always challenging, which gives rise to the Cross-
Domain Few-Shot Learning (CDFSL) task. CDFSL requires a model to be firstly trained on a large-
scale pretraining dataset (source domain, general dataset, e.g., ImageNet [6]), and then transferred to
downstream datasets (target domain, expert-knowledge dataset, e.g., medical dataset [5, 44]) where
only a few training samples are available. Typically, large domain gaps exist between the source and
target dataset, making the transferring and downstream learning difficult [2, 12, 15].

Vision Transformer (ViT) [8], as a prevailing kind of deep network, has achieved top performances
in many computer vision tasks [47, 9, 37]. However, only a few works [14, 10, 53] studied ViT’s
transferability against large domain gaps for the CDFSL task. In this paper, we find an intriguing
phenomenon for the ViT-based CDFSL task: by multiplying a temperature parameter τ to the attention
map of ViT blocks, the downstream target-domain few-shot performance consistently increases when
τ < 1.0 or even close to 0, albeit the attention map is downgraded to a uniform map (Fig. 1).

In this paper, we delve into this phenomenon for an interpretation. We find the query-key attention
mechanism in the ViT network demonstrates high discriminability but low transferability, which
makes the target-domain attention ineffective, and the temperature adjustment is interpreted as a
remedy for the ineffective target-domain attention. Moreover, we find the non-query-key structures
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Figure 1: (a) Vision Transformer (ViT) is composed of multiple blocks of the MLP and attention
networks. (b) We train a ViT model on miniImageNet (source dataset), and conduct prototype-based
classification on target datasets. By multiplying a temperature τ (even as small as 0) to the attention
in ViT blocks (e.g., the last block) during the target-dataset classification, we find the accuracy
consistently increases on most target datasets (Crop. Euro. ISIC. and Ches., even with a uniform
attention map) while that of the source dataset drops. In this paper, we delve into this phenomenon
for an interpretation, and propose a simple but effective method for the CDFSL task based on it.

in ViT show complementary characteristics against the query-key parts, i.e., higher transferability
but lower discriminability. Based on these interpretations and findings, we propose a method for the
CDFSL task to encourage the learning of non-query-key parameters and resist that of query-key ones,
so as to improve the transferability of ViT against large domain gaps.

In summary, our contribution can be listed as

• To the best of our knowledge, we are the first to unveil the importance of the attention temperature
in ViT-based CDFSL methods.

• Through experiments, we find the query-key attention mechanism shows limited transferability
against large domain gaps, which causes ineffective target-domain attention and needs to be remedied
by the temperature adjustment.

• Based on it, we propose a method for the CDFSL task to boost ViT’s transferability by resisting the
learning of query-key parameters and encouraging that of the non-query-key ones.

• Extensive experiments validate the rationale of our interpretation and method, and show that we
can consistently outperform state-of-the-art works.

2 Delve into Attention in ViT-based Cross-Domain Few-Shot Learning

2.1 Preliminaries

Cross-Domain Few-Shot Learning (CDFSL) requires the model to first learn from a general dataset
(i.e., source dataset) containing sufficient training samples, and then transfer to downstream target
datasets where only scarce training data is available. We denote the source dataset as DS =
{xS

i , y
S
i }Ni=1 where xS

i and ySi represent the ith training sample and its label, respectively. Similarly,
the target dataset is termed as DT = {xT

i , y
T
i }N

′

i=1. During the learning and testing on DT , for the fair
comparison, current works [2, 12] adopt a k-way n-shot paradigm to sample from DT to construct
small datasets (i.e., episodes) consisting of k classes and n training samples in each class. Based
on episodes, the model learns from these k · n samples (a.k.a. support set, {xij , yi}k,ni=1,j=1) and is
evaluated on testing samples from these k classes (a.k.a. query set, {xq}).

Vision Transformer (ViT) has recently been popular in vision tasks, which divides images into tokens
and captures the image patterns through self-attentions. As shown in Fig. 1, ViT is composed of
stacked blocks containing an attention network and an MLP network, which can be represented as

f(xS
i ) = M(A(M(· · ·A(E(xS

i )) · · · ))), (1)

where M(·) denotes the MLP network, A(·) denotes the self-attention network, and E(·) denotes the
embedding layer. In this paper, we focus on the ViT-based CDFSL method to study its downstream
generalization. Specifically, we follow [10] to initialize ViT on ImageNet [6] by DINO [1] (see
appendix for other settings), and train ViT on DS by the cross-entropy loss with a fully-connected
(FC) layer as

L = Lcls(ϕ(f(x
S
i )), y

S
i ), (2)

2



Figure 2: (a) Visualization of ViT attention. Although ViT behaves well on the source domain
(miniImageNet), on target domains ViT tends to (1) wrongly focus on the CLS token while omitting
the input images, and (2) dispersively focus on a large range of noisy image regions. (b) We
quantitatively plot (top) the attention value of the CLS token and (bottom) the density of attention maps
on image tokens for all images in each domain. The black curve of miniImageNet is always below
other curves of target domains, verifying the ineffectiveness of target-domain attention. Therefore,
we interpret the temperature adjustment as a remedy for the ineffective target-domain attention.

where ϕ(·) denotes the FC-based classifier and f(·) denotes ViT. Finally, we utilize the ProtoNet [33]
with the distance function d(·, ·) for the target domain few-shot learning as

ŷq = argmin
i

d(
1

n

∑
j

f(xij), f(xq)). (3)

In this section, we follow [12] to take miniImageNet [40] as the source dataset, and take CropDis-
eases [30], EuroSAT [13], ISIC2018 [5] and ChestX [44] as target datasets.

2.2 Interpretation: Attention Temperature Remedies Target-Domain Attentions

2.2.1 Intuitive Observation of Ineffective Target-Domain Attentions
To study why the temperature-based attention adjustment improves on target datasets but harms the
source dataset, we first visualize the attention map on each domain in Fig. 2a. As the backbone
network utilizes the CLS token feature from the last ViT block as the final feature, we take the
attention map w.r.t. the CLS token in the last ViT block for visualization, where a large attention
value indicates the color of red and a small value refers to blue. We plot the CLS token’s attention
value in the left-top of the map. We can see the source-domain-trained ViT shows a good capability
of discovering meaningful objects in the source dataset (miniImageNet), but it always shows wrong
attention on target datasets, which is represented in two aspects:

(1) It tends to excessively focus on the CLS token and ignores all image tokens, as the left-top patches
are red but the image heatmap is blue for the first two columns. (2) For its focus on images, it tends
to focus on a large range of noisy regions instead of meaningful objects (the third column).

Ideally, if there is no domain gap between the source and target domains, the target-domain attention
should perform like the source-domain attention to focus on meaningful regions in the image.
Therefore, these phenomena indicate that the attention network performs poorly on target domains.

2.2.2 Quantitative Verification of Target-Domain Attentions’ Ineffectiveness
To verify this observation, we quantitatively measure (1) the attention value on the CLS token and (2)
the sparsity of the attention on image tokens, on all images from different datasets and blocks. The
attention value on the CLS token is measured as

V (A) =
1

b

1

nh

1

nt

∑
i,j,k

r(Ai,j,k)[0], (4)

where A ∈ Rb×nh×nt×nt is the attention map, b is the batch size, nh is the number of heads, nt is
the number of tokens and r(·) denotes the L2-normalization, Similarly, The sparsity of the image

3



Table 1: Ablation of the attention network from ViT’s last block.
Method miniImageNet CropDiseases EuroSAT ISIC2018 ChestX Average

Input Tokens 90.17 79.63 73.12 32.81 22.41 51.99
Input Tokens + SA 92.59 79.10 73.17 32.54 22.47 51.82
Input Tokens + Identity SA 87.45 77.97 69.89 32.15 22.52 50.63
Input Tokens + Cosine SA 88.80 79.98 74.35 32.65 22.57 52.39
Input Tokens + Average SA 89.53 80.73 74.59 32.04 22.64 52.50

Table 2: Domain similarity w.r.t. ablated attention modules.
Method miniImageNet CropDiseases EuroSAT ISIC2018 ChestX Average

Input Tokens 1.0 0.4569 0.4381 0.3608 0.3900 0.4115
Input Tokens + SA 1.0 0.1853 0.1829 0.1344 0.1998 0.1756
Input Tokens + Identity SA 1.0 0.5857 0.5873 0.5376 0.4836 0.5486
Input Tokens + Cosine SA 1.0 0.2692 0.2252 0.1616 0.2295 0.2214
Input Tokens + Average SA 1.0 0.2235 0.2226 0.1580 0.2002 0.2011

attention is measured by the averaged L2-normalized L1 norm [54] of the attention map as

norm(A) =
1

b

1

nh

1

nt

∑
i,j,k

L1(r(Ai,j,k)[1:]). (5)

Results are plotted in Fig. 2b. As the smaller the L1 norm is, the sparser (i.e., less dense) the attention
would be, in Fig. 2b (bottom), we use density as the Y-axis to align with the L1 norm value. We can
see that curves of the source dataset (miniImageNet) are always located under those of target datasets
in Fig. 2b, indicating the model averagely pays more attention to the CLS token or noisy image
regions on target datasets, quantitatively validating the ineffectiveness of target-domain attention.

Therefore, we interpret the temperature adjustment as a remedy for ineffective target-domain attention:
If we apply a small temperature to the attention map, the attention map will be smoothed. For example,
given the smallest temperature 0, the attention map will be downgraded to a uniform map. Such a
smoothing operation would remedy the wrong attention on all tokens (i.e., CLS token and image
tokens), because uniform attention is at least better than wrong attention (e.g., uniform attention
allows the model to collect information from image tokens, but the wrong attention restricts the
model to only collect information from the CLS token). These also interpret why the temperature
remedy only improves on target datasets: the source dataset is effective in finding meaningful regions,
indicating a good attention map that does not need to be remedied.

2.3 Why do attention networks get ineffective on target domains?

Then, we take the attention network in the last ViT block for ablation, and study the performance
(5-way 1-shot accuracy, Tab. 1) and domain similarity (Tab. 2) induced by these modules. The
domain similarity is measured by the CKA similarity [17, 23], where we extract features from images
of different domains, and measure the CKA similarity between the source and each target dataset
by aligning the channel dimension. Large domain similarities indicate less domain information
contained. Since a trade-off exists between discriminability and transferability [19, 27, 46], we utilize
the source-domain (miniImageNet) accuracy in Tab. 1 to measure the discriminability and use the
average domain similarity in Tab. 2 to measure the transferability, and the average target-domain
accuracy in Tab. 1 is the result caused by the trade-off.

In Tab. 1, 2, Input Tokens denote features input into the attention network (i.e., the output of the
11th ViT block), and SA (self-attention) denotes the output of the attention network (i.e., the input
of the MLP network in the 12th ViT block), which is the default ViT self-attention module. By
appending SA to Input Tokens, in Tab. 1, the source-domain accuracy increases. Accordingly, in
Tab. 2, the CKA similarity significantly drops, indicating SA is more on the side of discriminability
than transferability, which therefore makes target-domain accuracies decrease.

Then, we study the token relation modeled by the self-attention mechanism. We replace the default
query-key relation with three simpler relations: the identity relation (tokens are not merged), the
cosine relation (tokens are merged by the cosine similarity with softmax), and the average relation
(tokens are merged uniformly, equivalent to the temperature set to 0). Firstly, we can see the identity
SA shows low source and target accuracy but high domain similarity, indicating the merge of tokens
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Figure 3: (a) We visualize the activation maps of Input Tokens in Tab. 1, and find that although the
activation maps are not perfect, they show (1) no exceeding activations on the CLS token, and (2)
rough object contours in input images. (b) We further find CLS token activation values as well as the
map density on image tokens are non-distinguishable between source and target domains, indicating
a better transferability of representations against large domain gaps. These indicate the Input Token
in Tab. 1 tends to be more transferable than the query-key attention.

is crucial for discriminability. Therefore, if target-domain attention majorly focuses on the CLS token
(Fig. 2), the merge of image tokens would be abandoned, leading to downgraded performance.

By substituting the Identity SA with the Cosine and the Average SA, the performance improves on all
datasets, which is lower on the source dataset but much higher on target datasets than the default SA.
Also, the domain similarity is higher than the default SA but is lower than the Identity SA, indicating:

(1) The modeling of token relations contains domain information and discriminability itself, therefore
it contributes to the source domain and reduces the domain similarity. The increase in target-domain
accuracies indicates the gain of discriminability is larger than the loss of transferability.

(2) The default query-key relation contains the most domain information and discriminability, which
increases the source-domain performance the most and decreases the domain similarity the most.
Therefore, the query-key relation even harms the target-domain performance.

As a result, we can conclude that ineffective target-domain attention is majorly caused by the self-
attention mechanism in the attention network. Given the trade-off between discriminability and
transferability, the modeling of token relations is not entirely harmful for target-domain generalization.
However, the query-key attention mechanism tends to be much less transferable, and some related
works [36] have partly shown the tendency of overfitting in this mechanism, therefore it may harm
the generalization to target domains and lead to ineffective target-domain attention.

2.4 Handle the Ineffective Target-Domain Attention

Besides the query-key attention (SA) in Tab. 1 and 2, we can also find the rows of Input Tokens and
Average SA demonstrate higher domain similarity and good target-domain performance, albeit the
limited source-domain performance. This indicates these features, compared with the features of the
query-key attention, tend to be on the transferability side in the trade-off between discriminability
and transferability, since the query-key attention contains more learnable parameters.

To verify this hypothesis, we also visualize the activation map of the Input Tokens of Tab. 1 in Fig. 3a.
We observe (1) no exceeding activation on the CLS token, and (2) the activation maps can indeed
reflect rough object contours in images from different domains, although not perfect.

Moreover, we measure the image token density and the CLS token value on these features. Sim-
ilar to norm(A) and V (A), these two criteria are written as norm(M) = 1

b

∑
i L1(r(Mi)[1:])

and V (M) = 1
b

∑
i r(Mi)[0], where M ∈ Rb×nt×c is the MLP outputs and r(M) =

1
c

∑
M:,:,k/|| 1c

∑
M:,:,k|| ∈ Rb×nt is the L2-normalized average activation of each token. The

results are plotted in Fig. 3b, and we can see the source and target datasets are non-distinguishable
on these two criteria, indicating better transferability and adequate discriminability.
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Figure 4: During the source-domain training, we propose to randomly abandon the attention network
by multiplying a temperature of 0 to the attention in each block respectively, which resists the learning
of the query-key attention parameters and enhances the non-query-key parts.

Therefore, we conclude that the query-key features tend to be discriminative but less transferable,
while the non-query-key features tend to be transferable but less discriminative. This inspires us to
encourage the learning of the non-query-key parameters in ViT (since their ability to be discriminative
and overfitting is limited by parameters), and resist the learning of the query-key parts (as they are
discriminative enough after the pretraining, so the source-domain training may not be needed).

2.5 Conclusion and Discussion

The self-attention mechanism is the core design of ViT, where the query-key attention mechanism is
capable of fitting large-scale training data. However, such characteristic also limits the transferability
against large domain gaps, leaving the target-domain attention ineffective. Therefore, a remedy of the
attention map by the temperature adjustment is needed, as a uniform attention map is at least better
than a wrong attention map. Compared with the query-key attention, the non-query-key components
in ViT tend to be more transferable but less discriminative than the query-key components, which
inspires us to improve the generalization of ViT by encouraging the learning of non-query-key parts
and resisting the learning of query-key ones during the source-domain training.

3 Method

Based on the above analysis, we further propose a simple but effective method to boost ViT’s
transferability, which can be divided into a source-domain stage and a target-domain stage.

3.1 Source-Domain Attention Abandonment

Since the default query-key attention is verified to be vulnerable to domain gaps, we aim to enhance
the non-query-key part of ViT in the source-domain training. We propose to stochastically abandon the
query-key attention of all ViT blocks during the source-domain training, by multiplying a temperature
of 0 (Fig. 4), so that the attention will be randomly downgraded to a uniform map. This is written as

A(x) = softmax(A′(x) · τS(p)), (6)

where A′(x) ∈ Rb×nh×nt×nt denotes the un-normalized attention map in Eq. 1, τS(p) ∈ {0, 1} is a
scalar sampled from the binary distribution, and p (typically set to 0.8) is the probability of being 0.

This operation will resist the learning of the query-key attention parameters (i.e., Q and K in Fig. 4),
as query-key attention will be applied in the forward pass with a probability of 1− p. This operation
will also encourage the learning of the non-query-key attention parameters, as the average attention
is applied with a probability of p. Moreover, it will also resist the exceeding attention on the CLS
token, as the CLS token’s attention value in the uniform map would be 1/nt which is very small.
Note that it is different from the Dropout [34] operation in (1) Dropout is carried out element-wisely
in the attention map, but we directly shift the whole attention map to a uniform map; (2) Dropout is
conducted after the softmax function, but ours is before it.

3.2 Target-Domain Attention Adjustment

During the finetuning and evaluation of target datasets, the default query-key attention is still applied
in the network, but we follow section 2 to set a pre-defined hyper-parameter τT for ViT blocks to
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alleviate the influence of ineffective attention maps. This operation is written as

A(x) = softmax(A′(x) · τT ). (7)

Finally, we follow current works [12, 4] to conduct the prototype-based classification on the target-
domain episodes as Eq. 3, or finetune our model on the support set of these episodes for the
classifier-based classification.

4 Experiments

Table 3: Comparison with state-of-the-art works by the 5-way 1-shot classification.
Method backbone FT Mark Crop. Euro. ISIC. Ches. Ave.

GNN+AFA [15] ResNet10 × ECCV-22 67.61 63.12 33.21 22.92 46.97
LDP-net [50] ResNet10 × CVPR-23 69.64 65.11 33.97 23.01 47.18
FLoR [53] ResNet10 × CVPR-24 73.64 62.90 38.11 23.11 49.69
SDT [29] ResNet10 × NN-24 73.92 65.87 36.45 23.22 49.97
MEM-FS [42] ViT-S × TIP-23 81.11 68.11 32.97 22.76 51.24
StyleAdv [10] ViT-S × CVPR-23 81.22 72.15 33.05 22.92 52.34
SDT [29] ViT-S × NN-24 81.03 72.71 33.40 22.79 52.48
FLoR [53] ViT-S × CVPR-24 81.81 72.39 34.20 22.78 52.80
AttnTemp ViT-S × Ours 84.02 74.35 34.92 23.19 54.12
FLoR [53] ResNet10 ✓ CVPR-24 84.04 69.13 38.81 23.12 53.78
PMF [14] ViT-S ✓ CVPR-22 80.79 70.74 30.36 21.73 50.91
FLoR [53] ViT-S ✓ CVPR-24 83.55 73.09 35.49 23.26 53.85
StyleAdv [10] ViT-S ✓ CVPR-23 84.11 74.93 33.99 22.92 53.99
AttnTemp ViT-S ✓ Ours 84.78 75.09 38.05 23.63 55.39

LDP-net* [50] ResNet10 ✓ CVPR-23 81.24 73.25 33.44 22.21 52.54
RDC* [22] ResNet10 ✓ CVPR-22 85.79 70.51 36.28 22.32 53.73
FLoR* [53] ResNet10 ✓ CVPR-24 86.30 71.38 41.67 23.12 55.62
MEM-FS+RDA* [42] ViT-S ✓ TIP-23 83.74 75.91 37.07 23.85 55.14
AttnTemp* ViT-S ✓ Ours 87.58 77.40 40.13 23.96 57.23

4.1 Datasets

Following current works [2, 12], we utilize the miniImageNet dataset [40] as the source dataset, and
utilize 4 cross-domain datasets as the target datasets, including CropDiseases [30], EuroSAT [13],
ISIC2018 [5] and ChestX [44] for few-shot training and evaluation, using the k-way n-shot classifica-
tion as stated in section 2.1. miniImagenet [40] is a subset of the large-scale ImageNet [6] dataset with
100 categories and 60,000 images, where 64 categories are utilized for training. CropDiseases [30]
is a dataset for agricultural disease recognition, consisting of 38 categories and 43,456 images.
EuroSAT [13] is a satellite image dataset for land classification, comprising 10 classes and 27,000
images. ISIC2018 [5] is for skin lesion recognition, comprising 7 categories with 10,015 images.
ChestX [44] contains chest X-ray images, with 7 categories and 25,847 images.

4.2 Implementation Details

We follow StyleAdv [10] to take ViT-S as the backbone network and take the DINO [1] pretraining
on ImageNet as the initialization (other pretraining can be found in the appendix). During the source-
domain training, we apply all ViT blocks to the Attention Abandonment. We use the Adam [16]
optimizer with a learning rate of 0.001 for the classifier and 10−6 for the backbone network. During
the target-domain few-shot evaluation, we set the temperature for the first two blocks as 0.3, and set
the attention of the CLS token to 0 for blocks whose ID is greater than 4.

4.3 Comparison with State-of-the-Art Works

Tab. 3 and 4 report our results compared with state-of-the-art works for both 1-shot and 5-shot
settings. We separately compare works with and without finetuning (FT) for fairness. The asterisk
(*) denotes a transductive setting. PMF [14], StyleAdv [10], MEM-FS [42] and FLoR [53] are
introduced for comparison. For all results, our work achieves the top average performance in all
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Table 4: Comparison with state-of-the-art works by the 5-way 5-shot classification.
Methods backbone FT Mark Crop. Euro. ISIC. Ches. Ave.

LDP-net [50] ResNet10 × CVPR-23 89.40 82.01 48.06 26.67 61.29
GNN+AFA [15] ResNet10 × ECCV-22 88.06 85.58 46.01 25.02 61.67
SDT [29] ResNet10 × NN-24 90.27 82.02 48.66 27.20 62.04
FLoR [53] ResNet10 × CVPR-24 91.25 80.87 51.44 26.70 62.32
MEM-FS [42] ViT-S × TIP-23 93.74 86.49 47.38 26.67 63.57
StyleAdv [10] ViT-S × CVPR-23 94.85 88.57 47.73 26.97 64.53
MICM [49] ViT-S × MM-24 94.61 90.08 46.85 27.11 64.66
SDT [29] ViT-S × NN-24 95.00 89.60 47.64 26.72 64.75
FLoR [53] ViT-S × CVPR-24 95.28 90.41 49.52 26.71 65.48
AttnTemp ViT-S × Ours 95.53 90.13 53.09 27.72 66.62
FLoR [53] ResNet10 ✓ CVPR-24 92.33 83.06 56.74 26.77 64.73
PMF [14] ViT-S ✓ CVPR-22 92.96 85.98 50.12 27.27 64.08
StyleAdv [10] ViT-S ✓ CVPR-23 95.99 90.12 51.23 26.97 66.08
FLoR [53] ViT-S ✓ CVPR-24 96.47 90.75 53.06 27.02 66.83
AttnTemp ViT-S ✓ Ours 96.66 90.82 54.91 28.03 67.61

LDP-net* [50] ResNet10 ✓ CVPR-23 91.89 84.05 48.44 26.88 62.82
RDC* [22] ResNet10 ✓ CVPR-22 93.30 84.29 49.91 25.07 63.14
FLoR* [53] ResNet10 ✓ CVPR-24 93.60 83.76 57.54 26.89 65.45
MEM-FS+RDA* [42] ViT-S ✓ TIP-23 95.04 88.77 51.02 27.98 65.70
AttnTemp* ViT-S ✓ Ours 96.74 91.34 55.22 28.41 67.93

Table 5: Ablation study by the 5-way 5-shot accuracy.
Adjustment Abandonment CropDisease EuroSAT ISIC2018 ChestX Ave.

94.24±0.27 88.62±0.22 45.72±0.33 25.66±0.17 63.53±0.13

✓ 94.48±0.31 88.73±0.25 49.12±0.28 25.81±0.21 64.53±0.20

✓ 95.40±0.33 89.08±0.29 52.01±0.31 27.49±0.19 66.00±0.19

✓ ✓ 95.53±0.22 90.13±0.33 53.09±0.18 27.72±0.19 66.62±0.19

Learnable Temp. [52] 94.26±0.08 88.91±0.09 46.45±0.11 26.44±0.08 64.02±0.07

Dropout [34] 94.44±0.17 89.62±0.22 46.03±0.16 26.34±0.18 64.11±0.17

Masking Diagonal Atten. [20] 94.83±0.08 88.95±0.09 46.98±0.12 26.74±0.09 64.38±0.17

Fix Attention 94.67±0.22 89.66±0.20 46.22±0.19 26.31±0.20 64.08±0.19

Totally abandon attention 95.07±0.18 88.90±0.23 49.23±0.19 27.44±0.14 65.16±0.16

settings and achieves the highest performance in almost all datasets. This demonstrates that our
method effectively reduces the domain gap and enhances model transferability.

4.4 Ablation Study

We first ablate the Attention Adjustment and Abandonment. In Tab. 5 we can see both modules
contribute to the performance, especially for the Attention Abandonment module which yields a
significant 2.47% average improvement. By adding the Adjustment module, the performance also
increases but is smaller than that applied to the baseline model. This is because by applying Attention
Abandonment, the attention is improved so that the remedy by temperature is not in great need.

Then, we ablate our designs and compare them with other attention-temperature-based works.

(1) Learnable or stochastic temperature? [52] applied a small network to dynamically learn tem-
peratures, which shows only trivial improvements, showing the importance of stochastic temperature.

(2) Global or element-wise temperature? Dropout [34] element-wisely abandons the attention after
softmax and LSA [20] masks the diagonal attention map, which shows only marginal improvements
on CDFSL, indicating the importance of a global temperature for each attention map.

(3) Train attention or not? Since abandoning the attention network can reduce its training and alle-
viate overfitting, we directly fix the attention network for verification and see only slight performance
improvements, as the training of non-query-key parameters is limited by ineffective attention.

(4) Maintain attention or not? Due to the ineffectiveness of attention, we try to directly abandon all
attention by setting a temperature of 0 for all blocks. We can see the performance is improved by
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Figure 5: (a) Visualization of attention maps of our model. We can see images activated only on
the CLS token in Fig. 2a are now correctly activated, and the model can focus on the meaningful
and concentrated regions, verifying the improved attention networks. (b) By evaluating the image-
token-attention density and the CLS-token-attention value of our model, we can see these criteria
are non-distinguishable between the source and target domains (compared with Fig. 2b), indicating
attention networks’ transferability against domain gaps is improved.

Table 6: Verification of improved self-attention w.r.t. domain similarity and target-domain accuracy.
Metric. 1 2 3 4 5 6 7 8 9 10 11 12

BL CKA 0.9805 0.9500 0.9667 0.9654 0.9455 0.9146 0.8940 0.8406 0.7446 0.6337 0.2063 0.1756
Ours CKA 0.9857 0.9590 0.9659 0.9704 0.9547 0.9347 0.9148 0.8763 0.7903 0.6655 0.2955 0.1886

BL Acc. 34.67 39.88 42.19 44.73 47.20 48.93 50.05 50.98 52.60 53.02 52.03 51.82
Ours Acc. 34.91 40.47 43.01 45.19 47.28 48.93 50.40 51.47 53.26 54.34 53.98 53.70

more than 1%, indicating relying on the non-query-key outputs can indeed help the cross-domain
transferring. However, the accuracy is still lower than Attention Abandonment, showing that the
query-key attention network still contains useful information for classification.

4.5 Verification of Improved Attention

4.5.1 Qualitative Study

We visualize attention maps of our model on both the source and target domain in Fig. 5a. In contrast
to Fig. 2a, where attention primarily focuses on the CLS token in the target domain, our model can
correctly activate meaningful and discriminative tokens. Furthermore, compared to the dispersed
attention observed in Fig. 2a, our model focuses on more concentrated regions within the image,
indicating that our model effectively transfers the attention network from the source to target domains.

4.5.2 Quantitative Study
We compare the image token attention density and the CLS token attention value mentioned in
Sec. 2.2. As depicted in Fig. 5b, these criteria are mostly consistent between the source and target
domain, in contrast to the disparities in Fig.2b, suggesting improved transferability of attentions.

Moreover, in Tab. 6, we report the domain similarity and target-domain accuracy of the features
output by the attention network from each ViT block. Following Tab. 2, we measure the domain
similarity by the CKA similarity. From Tab. 6, we can see our model improves the domain similarity
of each self-attention’s output, indicating improved transferability of attention networks. Consistently,
the target-domain accuracy is also improved by our method.

Finally, following Tab. 1, we compare the domain similarity and performance between the default
query-key attention and other attention choices in Tab. 6ab. We can see the Input feature of the
attention network’s CKA is decreased, as we encourage the learning of non-query-key parameters in
ViT. However, such a decrease in CKA is much smaller than the decrease brought by the query-key
attention. In contrast, the CKA of the attention network’s output consistently increases, indicating
better transferability against domains. This can also be verified in Tab. 6b that the performance
difference between different attention choices is narrowed.
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Figure 6: (a) Domain similarity of self-attention outputs consistently increases. (b) The difference in
accuracy between different attention choices is narrowed. (c) A high probability of abandoning query-
key attention can help the transferability. (d) All blocks need to be put into Attention Abandonment.

4.5.3 Sensitivity Study of Hyper-parameters
We plot the average target-domain accuracy vs. abandonment probability p in Fig. 6c. When p = 0,
it is downgraded to the baseline method. When p = 1, it means all attentions are abandoned. A high
probability of abandoning can help the cross-domain transferring, but we cannot simply abandon all
attention, indicating useful information in the attention network. Moreover, we ablate ViT blocks
added to the Abandonment method in Fig. 6d. By gradually adding or removing abandoned blocks, the
accuracy of the target domain increases or decreases accordingly. This indicates each block positively
contributes to the model, highlighting the necessity of all blocks for Attention Abandonment.

5 Related Work
Cross-Domain Few-Shot Learning (CDFSL) aims to acquire knowledge from the target domain
with limited training samples [2, 12]. The domain gaps between source and target domains make it
challenging. Current works can be categorized into two groups: meta-learning based [2, 38, 43, 15],
which simulates the data structure for the target-domain learning, and transferring-based [12, 32,
28, 25], involving training a model with strong generalization. However, they are mainly limited
to the CNN structure, and while recent works [10, 42, 14, 45] have begun to utilize the transformer
architecture for CDFSL tasks, they have not fully leveraged the potential of the ViT architecture.

Domain Generalization (DG) aims to generalize models from seen to unseen domains [41, 24],
aligning with the objective of CDFSL. Recently, transformer-based approaches have been studied [48,
21, 31, 35]. [36] discovered that self-attention is not indispensable. [46] discovered that self-attention
is not adept at distinguishing the transferability and discriminability of features across different
domains. Different from them, we explore the influence of temperature on attention transferability
against large domain gaps, without introducing any additional modules.

Attention Temperature can adjust the smoothness of the Softmax output distribution in the attention
network. [39] proposes using a constant temperature to scale the dot product to alleviate a small
extreme gradient. Recently, some methods have emerged to dynamically adjust the temperature while
training deep learning models [26, 20, 3]. [20] proposes to apply a learnable temperature to attention
scores to address overly smooth distributions. [3] reduces attention noise by suppressing accumulated
trivial attention weights. In contrast, our study is the first, to our knowledge, to delve into the impact
of attention temperature on cross-domain transferability.

6 Conclusion

In this paper, we find a phenomenon for the temperature-based attention adjustment in the ViT-based
CDFSL task and delve into it for an interpretation. We interpret it as a remedy for the ineffective
target-domain attention caused by the default query-key attention mechanism. Based on it, we further
propose a method for CDFSL. Experiments validate our rationale and effectiveness.
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A Appendix / supplemental material

A.1 Dataset Description

Figure 7: Samples of source domain miniImagenet dataset (left) and target domain datasets (right),
from top to bottom correspond to CropDiseases, EuroSAT, ISIC2018, and ChestX. We can see large
domain gaps between source and target domains.

miniImageNet [40] is a subset derived from the larger ImageNet [6] dataset. It consists of 100
categories, each containing 600 natural images. Following the current works [2, 12], we employ the
training set of miniImageNet as the source domain dataset, consisting of 64 classes and 38,400 images.
Additionally, as depicted in Fig. 7, we utilize datasets from four distinct domains as target domains
following [12], including plant disease images, surface satellite imagery, skin disease images, and
chest X-ray images. We will introduce them sequentially below.

CropDiseases [30] is a dataset for agricultural disease recognition, encompassing 38 distinct classes
and a total of 43,456 images. The dataset comprises images of various crops, including infected and
healthy plants, and corresponding disease category labels.

EuroSAT [13] is a comprehensive dataset comprising satellite imagery of the Earth. It encompasses
a total of 27,000 images distributed across 10 distinct classes. The dataset offers a diverse range of
geographical and topographical features.

ISIC2018 [5] is a medical imaging dataset for skin lesion classification. The dataset consists of
10,015 images categorized into 7 distinct classes.

ChestX [44] is an X-ray medical imaging dataset for chest classification. The dataset consists of
25,847 images across 7 different classes.

A.2 More experiments

A.2.1 Applying Our Method to ViT Variants

Table 7: Our method with iBOT-pretrained ViT-S.

Method Shot ChestX ISIC2018 EuroSAT CropDiseases Average

iBOT 1 22.67 31.61 72.85 81.35 52.12
iBOT+Ours 1 23.01 34.69 73.04 82.39 53.28

iBOT 5 26.31 44.54 89.65 94.79 63.82
iBOT+Ours 5 27.63 51.06 89.21 95.20 65.78

We also apply our method to ViT-Small pretrained by iBOT[51] and ViT-Base pretrained by DINO[1].
iBOT is a self-supervised pre-training framework that learns semantic representations of images
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Table 8: Our method with DINO-pretrained ViT-Base.

Method Shot ChestX ISIC2018 EuroSAT CropDiseases Average

DINO-B 1 22.78 34.08 71.89 82.77 52.88
DINO-B+Ours 1 22.81 35.98 72.98 83.14 53.73

DINO-B 5 26.52 48.77 89.67 95.45 65.10
DINO-B+Ours 5 27.09 52.71 90.06 95.70 66.39

through Masked Image Modeling (MIM) and an online Tokenizer, enabling effective pre-training of
vision Transformers without needing labeled data. The results are shown in Tab. 7. iBOT represents
the iBOT-pretrained ViT baseline, while iBOT+Ours denotes our method applied to iBOT. As we
can see, our method also shows considerable improvement on the ViT pre-trained with iBOT, with a
1.16 point increase in 1-shot and a 1.96 point increase in 5-shot. The results of our method applied to
DINO-pretrained ViT-Base are shown in Tab. 8. DINO-B represents the DINO-pretrained ViT-Base
baseline in our CDFSL task, and DINO-B+Ours denotes our method applied to DINO-pretrained
ViT-Base. This also shows an improvement in ViT-Base with a 0.85 point increase in 1-shot and a
1.29 point increase in 5-shot.

A.2.2 The Effectiveness of Our Attention

Figure 8: Average target domain accuracy vs. temperature. The red point represents the temperature
is 1.0. If the attention is good enough, the attention adjustment will be trivial. Our method shows
less reliance on the attention adjustments compared with the baseline method and achieves the best
performance when the temperature is 1.0 in most blocks. This indicates the attention produced by our
method is improved.

In Fig. 8, we illustrate the average target domain accuracy of the baseline method and our model with
attention adjustment. The red point means the temperature is 1.0 (i.e., no temperature is applied).
The accuracy of the baseline method increases with the temperature decrease from 2.0 to 0.0 in
most blocks, which means temperature adjustment is important in the target domain. If the attention
is already good enough, the impact of attention adjustment is trivial. As we can see, our method
exhibits little variation in performance with temperature adjustment compared to the baseline method,
and the highest accuracy is achieved when the temperature is 1.0 in most blocks. This verifies the
effectiveness of our attention.

16



A.3 Broader Impact

Our research introduces an improved ViT model based on attention temperature adjustment, aimed at
addressing the ineffective target-domain attention caused by the query-key attention mechanism in
CDFSL tasks. By suppressing the learning of query-key parameters and encouraging that of non-
query-key parameters, our method significantly enhances the model’s cross-domain transferability.
This work is not only applicable to CDFSL but can also be extended to other domains, such as
domain generalization, domain adaption, and few-shot class-incremental learning, where enhancing
the transferability of self-attention is a prevalent challenge. While our method has been evaluated
across four distinct target domains, providing a good initial assessment of our method’s cross-domain
applicability, the diversity of these domains may not encompass all possible real-world scenarios.
Future work will aim to extend our evaluations to include a wider range of target domains to
understand their performance in diverse real-world settings better.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in the appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: We do not have theoretical results or proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have reported the detailed settings and hyper-parameters. We will release
our codes.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We have reported the detailed settings and hyper-parameters. We will release
our codes.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have reported the detailed settings and hyper-parameters. We will release
our codes.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have reported the confidence interval in our ablation studies.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have reported the computer resources in the implementation details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the broader impact in the appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not have the risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have respected the license of assets used in this paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not have new assets in this paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not include human subjects information.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not include human subjects information.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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