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Abstract

Mathematical modeling is a cornerstone of scientific discovery and engineering
practice, enabling the translation of real-world problems into formal systems across
domains such as physics, biology, and economics. Unlike mathematical reasoning,
which assumes a predefined formulation, modeling requires open-ended problem
analysis, abstraction, and principled formalization. While Large Language Models
(LLMs) have shown strong reasoning capabilities, they fall short in rigorous model
construction, limiting their utility in real-world problem-solving. To this end, we
formalize the task of LLM-powered real-world mathematical modeling, where
agents must analyze problems, construct domain-appropriate formulations, and
generate complete end-to-end solutions. We introduce MM-Bench, a curated bench-
mark of 111 problems from the Mathematical Contest in Modeling (MCM/ICM) []_1
spanning the years 2000 to 2025 and across ten diverse domains such as physics,
biology, and economics. To tackle this task, we propose MM-Agent, an expert-
inspired framework that decomposes mathematical modeling into four stages: open-
ended problem analysis, structured model formulation, computational problem
solving, and report generation. Experiments on MM-Bench show that MM-Agent
significantly outperforms baseline agents, achieving an 11.88% improvement over
human expert solutions while requiring only 15 minutes and $0.88 per task using
GPT-40. Furthermore, under official MCM/ICM protocols, MM-Agent assisted
two undergraduate teams in winning the Finalist Award (top 2.0% among 27,456
teams) in MCM/ICM 2025, demonstrating its practical effectiveness as a modeling
copilot.

O Code is available at https://github.com/usail-hkust/LLM-MM-Agent

-

Demo is available at https://huggingface.co/spaces/
MathematicalModelingAgent/MathematicalModelingAgent

1 Introduction

Mathematical modeling serves as a cornerstone methodology for formulating, analyzing, and solving
complex real-world problems, underpinning scientific discovery and technological advancement
across applied mathematics, natural sciences, engineering, and the social sciences. In practice,
this process often begins by identifying the core problem, abstracting it into a mathematical form,
constructing appropriate models, and solving them to generate actionable insights. It enables the
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Figure 1: Traditional well-defined mathematics problem vs LLM-powered open-ended mathematical
modeling problem. Left: A well-defined mathematical problem, where an agent solves a well-defined
problem to obtain a solution. Right: An open-ended mathematical modeling problem, where given
an abstract application scenario or phenomenon, the agent first needs to formulate the mathematical
problem before solving it and providing an end-to-end solution.

transformation of ill-posed challenges, such as epidemic control, energy forecasting, and supply
chain management, into mathematical systems that support analysis, prediction, and decision-making
through abstraction, theoretical formulation, empirical validation, and iterative refinement [1} 2]]. Un-
like mathematical reasoning, which starts from fixed formulations, mathematical modeling demands
open-ended problem abstraction, assumption design, and domain-grounded interpretation, making it
context-sensitive and hard to automate, as shown in Figure[I] Recent advances in Large Language
Models (LLMs) offer new opportunities to automate parts of this workflow, showing promise in
symbolic reasoning, scientific problem-solving, and numerical computation [3} 4, |5]. Developing
LLM-based modeling agents could unlock scalable, efficient solutions across disciplines. However,
current agents often fail to capture essential modeling principles, such as abstraction, constraints, and
assumptions, leading to oversimplified and scientifically invalid outputs. As shown in Table[T] they
frequently omit key assumptions, producing models with limited real-world validity.

To address this gap, we formally define the task of LLM-powered real-world mathematical modeling,
which requires agents to translate complex real-world problems or phenomena into structured and
executable modeling pipelines, culminating in complete analytical reports. To enable systematic
evaluation, we introduce MM-Bench, a new benchmark constructed from 111 real-world problems
adapted from MCM/ICM, spanning the years 2000 to 2025. MM-Bench covers ten application
domains (e.g., physics, biology, and economics) and eight modeling task types (e.g., decision-
making, prediction, and evaluation). Each sample includes rich contextual components (e.g., textual
descriptions, task goals, dataset information, and variable definitions) and requires agents to conduct
problem interpretation, model formulation, and numerical reasoning in an integrated, end-to-end
fashion. A detailed breakdown of task types and domain distribution is provided in Appendix B.

To address this task, we propose MM-Agent, an end-to-end solution for open-ended real-world
modeling problems. Inspired by expert workflows, MM-Agent systematically analyzes unstructured
problem descriptions, formulates structured mathematical models, derives solutions, and generates
analytical reports. Among these stages, the modeling step poses the greatest challenge, as it requires
abstracting complex scenarios into mathematically coherent formulations grounded in both problem
context and solution feasibility. To address this, we introduce the Hierarchical Mathematical Modeling
Library (HMML): a tri-level knowledge hierarchy encompassing domains, subdomains, and method
nodes. HMML encodes 98 high-level modeling schemas that enable both problem-aware and solution-
aware retrieval of modeling strategies, supporting abstraction and method selection. Specifically,
MM-Agent first analyzes the problem and decomposes it into subtasks. It then retrieves suitable
methods from HMML and refines its modeling plans via an actor-critic mechanism. To solve the
models, the agent autonomously generates and iteratively improves code using the MLE-Solver
for efficient, accurate execution. Finally, it compiles a structured report summarizing the modeling
approach, experimental results, and key insights.

Our contribution can be summarized as follows: (1) We develop MM-Bench, a benchmark comprising
111 real-world mathematical modeling problems across 8 problem types and 10 domains, designed to



evaluate the mathematical modeling capabilities of LLM agents. This benchmark has been carefully
created based on real-world competitions. (2) To enhance the mathematical modeling capabilities
of LLM agents, we construct the HMML, a three-tiered structure that organizes and retrieves
modeling methods through broad domains (e.g., optimization, simulation), specific subdomains
(e.g., linear programming, Monte Carlo simulations), and method nodes representing techniques,
core ideas, and applications, enabling precise task-specific retrieval. (3) We introduce MM-Agent,
an autonomous agent framework to create mathematical representations of real-world scenarios
for making predictions or providing insights. (4) We conduct comprehensive experiments on the
proposed benchmark and demonstrate that MM-Agent effectively solves mathematical modeling tasks,
outperforming baseline approaches, with an average cost of $0.88 and $0.56 per task on GPT-4o [6]
and DeepSeek R1 [[7]], respectively, and achieving an 11.88% gain over human expert solutions.
Furthermore, following official MCM/ICM protocols, MM-Agent helped two undergraduate teams
win the Finalist Award (top 2.0% out of 27,456 teams) in MCM/ICM 2025.

2 Related Works

LLM Agents. Recent advances have led to the development of LLM-based agents that incorporate
structured planning, reasoning, and interaction capabilities. By leveraging mechanisms such as
memory augmentation, reflective reasoning, and tool usage, these agents enhance task decomposition,
iterative refinement, and adaptive problem-solving [8 (9, 10, [11,[12]]. As a result, LLM-based agents
have been successfully applied in diverse areas, including software engineering [13} 14,15 |16, game
playing [[17, [18} [19} 20, 21} 22]], human interaction modeling [23} 24]], cybersecurity [25} 26, 27],
robotics [28 291130, 31} 132]], data science [33\ 34} 35/ [36], medical diagnosis [37, 38,139, 40|, web
automation [41}, 42, 43| 44]], and scientific research [45} 46, 147, 48, 149].

LLMs for Autonomous Research. Automated scientific workflows have enabled the integration of
LLMs across various research stages, such as literature review, idea generation, experimental design,
and scientific writing. Some studies focus on general research tasks [48]], while others explore specific
domains like Al [45} 146,150, 47]], biomedical discovery [S1], chemical experiments [52], and traffic
research [53]]. For instance, Agent Laboratory [46] is an autonomous LLM-based framework designed
to expedite Al research by managing key stages such as literature review, experimentation, and report
generation. Similarly, ORGANA [52]] is a robotic system that automates chemical experiments by
integrating decision-making and perception tools. It collaborates with chemists via LLMs to define
objectives and generate detailed experiment logs.

LLMs for Mathematics. LLMs has advanced mathematical problem-solving through curated
datasets and improved reasoning strategies [4]. The math [54, [55]] benchmarks have become key
resources for evaluating mathematical competence, especially when paired with prompting techniques
such as COT [56]]. In formal mathematics, LLMs have been fine-tuned on theorem-proving datasets
like MiniF2F [57] and integrated with proof assistants such as Lean [S8]] and Coq [S9]. Program-aided
reasoning further enhances LLM performance by allowing models to generate and execute code for
verification [60]. While LLMs perform well on well-defined mathematical tasks [61] (62} [63] |64]
with clear symbolic goals, mathematical modeling remains an open-ended challenge that requires
translating real-world scenarios into formal representations, often without a single correct solution.

To the best of our knowledge, MM-agent is the first work to explore the application of LLMs to
real-world mathematical modeling problems. To facilitate autonomous mathematical modeling, we de-
velop an automated pipeline encompassing problem analysis, mathematical modeling, computational
solving, and solution reporting.

3 Building LLM Agent for Real-World Mathematical Modeling Problems

Section[3.T]introduces the task of real-world mathematical modeling and presents the construction of
MM-Bench, the first benchmark designed to enable systematic evaluation of LLM-based modeling
agents on open-ended tasks. To further support model construction, we also introduce the Hierarchical
Mathematical Modeling Library (HMML), which encodes a tri-level knowledge hierarchy spanning
domains, subdomains, and method nodes to facilitate structured method selection and abstraction in
Section[3.2] In Section[3.3] we present MM-Agent, an expert-inspired framework that decomposes the
modeling process into four key stages: open-ended problem analysis, structured model formulation,
computational problem solving, and report generation.

3.1 MM-Bench



Benchmark Construction. Real-world mathematical modeling competitions, such as MCM/ICM,
challenge undergraduate students worldwide to transform complex real-world phenomena (e.g., risk
management, biological dynamics) into mathematical frameworks for prediction, optimization, and
decision-making[l1, 2]]. Drawing participation from a large and diverse pool of teams across many
countries and regions [65]], these prestigious contests require participants to collaboratively interpret
open-ended problems, conduct in-depth analyses, and develop comprehensive solutions [[66]. These
contests offer a natural benchmark for evaluating the problem-solving capabilities of LLM agents
in complex, real-world scenarios. We collect all competition problems from the MCM and ICM
contests held from 2000 to 2025 El, which include both the problem descriptions and associated
attachments, such as datasets. We then use GPT-40 to extract the following elements from the
competition problems: the background information describing the context of the problem, the
problem requirements outlining the tasks to be completed, the dataset path indicating the location of
the dataset, the dataset description providing details about the dataset, and the variable description
explaining the attributes within the dataset. For policy-oriented or decision-focused tasks, datasets
may not be provided, as these problems typically emphasize qualitative reasoning or scenario-based
analysis. Finally, we manually review and correct errors in the extracted information, resulting in the
creation of the Mathematical Modeling Benchmark, named MM-Bench. The resulting MM-Bench
consists of 10 domains, 8 task types (e.g., decision-making, prediction, evaluation et al.), and a total
of 111 problem samples. Detailed statistical information is provided in Section B]of the Appendix.

Task Formation. MM-Bench evaluates the performance of agents on real-world mathematical
modeling problems, which involve translating real-world phenomena into simplified mathematical
forms to analyze, interpret, and predict system behavior and outcomes. Given a mathematical problem
F, the agent accesses all relevant content f € F (e.g., background information, problem requirements,
dataset path, dataset description, and variable description) to generate a final solution report.

Evaluation. Since real-world mathematical modeling problems are open-ended and often lack
standard solutions, we reference official modeling evaluation criteria to assess agent performance [66].
Specifically, we evaluate the final solution report along four key dimensions: (1) Analysis Evaluation.
Examines problem definition clarity, identification of key components, and the logical coherence
between sub-tasks and overarching objectives. (2) Modeling Rigorousness. Focuses on rigor and
rationality, evaluating whether the assumptions are clearly stated and justified, and whether the
chosen methods, metrics, and model structure accurately and scientifically represent the real-world
problem. (3) Practicality and Scientificity. Evaluates the practicality and scientific validity of the
model, ensuring that it is realistically applicable, provides valuable insights for decision-making, and
adheres to scientific principles. This stage also verifies whether the model is theoretically sound and
considers all relevant scientific factors to ensure its validity. (4) Result and Bias Analysis. Measures
the clarity, interpretability, and analytical depth of results, with attention to identifying and mitigating
data or modeling biases to ensure robustness and transparency. We conduct both LLM-based and
expert-human evaluations to ensure a comprehensive and reliable assessment. For further details,
please refer to Section [D|in the Appendix.

3.2 Hierarchical Mathematical Modeling Library Construction
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Figure 3: Overview of the MM-Agent framework. The workflow consists of four sequential phases:
Problem Analysis, Mathematical Modeling, Computational Solving, and Solution Reporting. In
the Problem Analysis phase, MM-Agent decomposes the input problem into structured subtasks.
In Mathematical Modeling, it constructs formal mathematical representations for each subtask.
During Computational Solving, MM-Agent applies appropriate computational methods to derive
solutions. Finally, in Solution Reporting, it synthesizes the results into a comprehensive report, clearly
summarizing the solutions and associated insights.

level, the library consists of modeling domains 7 = {7(1), 7 ... T Each modeling do-
main 7 is subdivided into multiple subdomains: 7 = {71 7G2) ... TR Within
each subdomain 7 (%), specific method nodes N7 are represented as tuples: N (5D =
{modeling method, core idea, application}. Here, the modeling method provides a high-level
overview, the core idea explains the underlying principles, and the application describes the method’s
typical use cases (e.g., resource allocation, production scheduling). For example, in the domain of
Operations Research (7 (1), the subdomain Programming Theory (7 ('1)) includes the method node
N LD “which involves Linear Programming. The core idea is optimizing linear objectives with
constraints, applied to problems like production resource scheduling. The HMML includes modeling
domains such as Operations Research, Optimization, Machine Learning, Prediction, and Evaluation,
with 17 subdomains and about 98 modeling methods, such as Linear Programming, Ant Colony
Optimization, Expectation Maximization, Analytic Hierarchy Process, and Kolmogorov-Smirnov
Test. For further details, please refer to Section[C|in the Appendix.

3.3 MM-Agent

This section introduces MM-Agent, an LLM-based multi-agent system designed to automate mathe-
matical modeling tasks. Its workflow consists of four key phases: Problem Analysis, Mathematical
Modeling, Computational Solving, and Solution Reporting. MM-Agent begins by analyzing the given
problem and breaking it into subtasks. It then constructs formal mathematical models for each subtask,
conducts experiments, and generates a solution. Finally, MM-Agent produces a comprehensive report
summarizing the solution and results. The overall framework is illustrated in Figure 3]

3.3.1 Problem Analysis

This section presents the problem analysis phase of MM-Agent, which transforms complex real-world
problems into mathematical modeling tasks. The process involves abstracting key elements (e.g.,
background, requirements) and analyzing relationships (e.g., variable dependencies) to identify suit-
able modeling methods. The problem analysis phase consists of three steps: problem understanding,
problem decomposition, and task dependency analysis.

Problem Undersanding. Given a mathematical modeling problem JF, we consider an LLM
y = mo(x;x1), where 7y (+) denotes a language model parameterized by 6, which autoregressively



generates output tokens y from an input sequence x under the guidance of an instruction prompt X;.
The prompt x; encodes task-relevant context such as background information, problem requirements,
and dataset descriptions. Conditioned on this input, the analyst agent performs a structured analysis
to identify the problem type, core concepts, assumptions, objectives, and other essential factors.
Specifically, this process is represented as U,, = mg(F; X, ), where x,, represents the profile prompt
used for problem undersanding, and U4, is the analysis result. To deepen the understanding of the
problem, the analyst agent adopts self-reflection to iteratively refine its analysis.

Problem Decomposition. After understanding the problem, the coordinator agent decomposes it into
a set of subtasks to address its multiple objectives. This process is represented as D = 7y (F, U,; Xa),
where x4 represents the profile prompt used for problem decomposition, D = {Dy,Ds,--- , Dy, }
denotes the set of subtasks, and each D; corresponds to an individual subtask. Each subtask is
associated with a specific objective or component of the problem. As illustrated in Figure [7] in
Appendix for the problem of predicting momentum in tennis matches, the agent decomposes the
problem into four key subtasks: Momentum Quantification, Differentiation between Momentum and
Randomness, Momentum Prediction, and Model Generalization.

Task Dependency Analysis. Since individual tasks are not independent, dependencies exist among
them (e.g., a model prediction task may rely on the analysis results from a data analysis task). To
capture these dependencies and optimally address problem requirements, the task coordinator agent
first conducts a comprehensive analysis to identify interdependencies among tasks. This process is
formulated as U = my(D; x;), where U = {uq,--- ,u,} represents the task-specific dependency
analysis with u,; denoting the detailed analysis of task D;. The instruction prompt x; directs the LLM
to analyze dependencies among tasks. Subsequently, the task coordinator agent further leverages
task analysis results to construct sequential subtasks {D;,Ds,- -+, D, } with depenceny graph
represented by G = (V, &), where V = {D;,Ds,---,D,} represents the set of nodes (tasks),
and & = {(D;,D;)|D;,D; € V} denotes the directed edges indicating task dependencies. The
sequential subtasks are executed in order, with the outcomes of historical modeling processes stored
in memory modules represented as H = {(D1,91), -+, (Dn, Qn)}, where Q; = {M,,C;, O;}
denotes the intermediate outputs of subtask D;. Specifically, Q; contains the mathematical modeling
scheme M;, computational code C;, and experimental results O,. The coordination agent leverages
a dependency graph to manage relationships among subtasks and utilizes the memory module to
facilitate information transfer and communication between tasks.

3.3.2 Mathematical Modeling

To efficiently automate solving mathematical modeling, we propose the Hierarchical Actor-Critic
Modeling Optimization. The specific mathematical modeling process for each subtask D; involves
hierarchical method retrieval from the HMML, followed by actor-critic iterative optimization.

Hierarchical Modeling Knowledge Retrieval. Given a subtask D; and a hierarchical modeling
library 7, a Depth-First Search (DFS) traversal is initiated from the root node 7(¥), to compute
the similarity between the subtask and modeling methods. The similarity measure is defined as
Sim(D,N) = ﬁ%, where ep and e represent embeddings of the subtask D and the math-
ematical modeling method node N/, respectively. In practice, we adopt the embedding model
mGTE [67]] to generate these embeddings. After traversing the entire hierarchical tree of methods,
each method node’s final score is updated by combining its own similarity with the similarity of its
parent node, computed as S(D, ') = w-Sim(D, N') + (1 —w)-Sim(D, Nparent), Where S denotes the
scoring function, w is a hyperparameter, and Nyaren; represents the parent (subdomain) of method node
N Finally, the top- K method nodes with the highest scores, denoted as Niop-x = {N(1), -+ , N (i)}
are selected and returned to the modeling agent.

Actor-Critic Iterative Modeling Optimization. While retrieved mathematical modeling knowledge
offers foundational methods and ideas, it often lacks the depth needed to address specific problem
nuances (e.g., dealing with nonlinear constraints, optimizing multiple conflicting objectives, etc.).
To overcome these limitations, we introduce an actor-critic iterative optimization framework that
progressively refines the modeling scheme, enabling it to effectively manage complex constraints and
enhance overall solution quality.

Given a problem D;, the task coordinator agent retrieves the relevant dependent resource R; from
memory modules H based on the task dependency graph G. Using the retrieved resource R; and



the method set Nqp.x Obtained from the retrieval step, the actor modeling agent generates an initial
modeling scheme: MEO) = m9(D;, Niop-ic, Ri; Xa ), Where X, is the modeling prompt. Subsequently,
the critic agent evaluates the quality of the current modeling scheme M Et) and provides targeted
feedback: fi(t) = my(D;, Mﬁ”, Ri;X.), where x, is the critic feedback prompt. Upon receiving
feedback ]—'i(t), the actor modeling agent refines the scheme by integrating the critic’s suggestions and

corrections by Mgtﬂ) = We(MEt) ; ]:i(t); X,.), where x, is the mathematical modeling refine prompt.
This iterative procedure continues until the maximum number of iterations n,. is reached.

3.3.3 Computational Solving and Solution Reporting

This section describes the computational solving and solution reporting phase of MM-Agent, which
focuses on solving the mathematical model and generating a comprehensive solution report. The
agent autonomously writes code to conduct computational experiments using the MLE-Solver [68]],
which iteratively generates, tests, and refines code to ensure efficient and accurate execution. Upon
completion of the experiments, the agent formulates a structured solution report, summarizing the
modeling approach, experimental results, and key findings.

Code Generation and Execution. Given the mathematical modeling scheme M, the modeling
programmer agent generates the corresponding code as follows: C; = my(D;, M;; x,), where x4
represents the instruction prompt used to direct the LLM to generate the computational code, and C;
denotes the mathematical modeling code for task D;. After code generation, the program is compiled
to check for runtime errors. If it compiles successfully, the experimental results O; are returned. If
the code fails to compile, the agent attempts to repair it over n. iterations by analyzing the last error
message and making the necessary corrections. Upon task completion, the task coordinator agent
updates the agent’s memory: H + H U {D;, Q;}. In practice, for policy-related modeling problems,
where the goal is to provide insights and recommendations based on existing knowledge or models,
the modeling agent directly offers these insights without generating code.

Preliminary Report Outline. After all tasks have been completed, reporting agent compiles a
comprehensive summary of the problem-solving process. The first step is to construct a structured
outline for the mathematical modeling report. This outline establishes the framework of the report,
organizing it into eight key sections: abstract, problem restatement, model assumptions, justification
of assumptions, notation and definitions, problem analysis, solution, and conclusion. To ensure clarity
and coherence, the outline integrates proper LaTeX formatting, facilitating seamless compilation and
further refinements. By structuring the content systematically, it provides a solid foundation for an
in-depth and well-organized final report.

Solution Report. Once the outline is established, the reporting agent employs specialized commands
to progressively refine the report, drawing on the task coordinator agent’s memory . Prior to
incorporating any revisions, the system compiles the LaTeX code to ensure that it functions correctly,
preserving the integrity of the document. Through a series of iterative edits, the agent guarantees that
the report meets the necessary standards for quality, coherence, and academic rigor.

4 Experiments

4.1 Experimental Setup

Baselines. We evaluate MM-Agent against both human-authored solutions and SOTA LLM agents.
As no prior work directly targets mathematical modeling problems, we repurpose existing autonomous
research agents for comparison. The baselines include: (1) Human Team: Award-winning solutions
(Honorable Mention or above) from real-world modeling competitions, serving as a strong human
benchmark; (2) DS-Agent [33]: An LLM agent for automated data science, adapted with its core
case-based reasoning framework for modeling tasks; (3) ResearchAgent [S0]: Originally designed
to automate experimentation loops for machine learning tasks, adapted with its core framework for
modeling problems; and (4) Agent Laboratory [46]: A scientific discovery framework that guides
agents through literature review, experimentation, and report writing. We extend it to search arXiv
for relevant modeling methods and assemble them into problem-solving pipelines.



Table 1: Experimental results on the 2021-2024 and 2025 mathematical modeling competitions. AE,
MR, PS, and RBA denote Analysis Evaluation, Modeling Rigorousness, Practicality and Scientificity,
and Result and Bias Analysis, respectively.

Methods 2021-2024 2025
AET MRT PST RBAT OverallT | AET MRT PST RBAT OverallT

Human

Human Team | 9.04 620 879 7.62 791 1925 742 892 650 8.02
GPT-40

GPT-40 762 386 848 5.17 6.28 7.67 3.67 890 575 6.50

DS-Agent 8.18 7.08 872 7.47 7.86 825 733 892 7.10 7.90

ResearchAgent 7.97 6.80  8.82 7.37 7.74 8.00 7.30 8.60 7.00 7.73

Agent Laboratory | 8.56 635 8.63 5.56 7.28 875 558 8.8 5.33 7.13

MM-Agent 915 728 9.00 8.44 8.85 886 721 9.00 843 8.38

DeepSeek-R1-671B

DeepSeek-R1 723 479 869 450 6.30 742 425 850 525 6.35

DS-Agent 825 6.88 874 7.19 7.77 792 633 9.00 7.60 7.71

ResearchAgent 8.13 7.04 877 6.92 7.72 800 675 8.83 7.58 7.79

Agent Laboratory | 8.65 596  8.70 591 7.31 883 550 8.83 5.58 7.19

MM-Agent 954 825 9.06 854 8.85 950 833 9.25 8.58 8.92

Experimental Implementation. We select a subset of mathematical modeling problems from the
past five years (2021-2025) as our test set, ensuring diversity across problem types and domains to
support a representative evaluation. This subset consists of 32 problems in total. To mitigate potential
data leakage from LLM pretraining, we evaluate problems from 2021-2024 separately from those in
2025. The LLM agents used in this evaluation include GPT-40 and Deepseek-R1 as base models.
For the evaluation, we adopt both GPT-40-based automatic scoring and human expert review, using
a unified 1-to-10 scale. The selected human experts have previously earned at least an Honorable
Mention in mathematical modeling competitions. Additional experimental details are provided in
Appendix |D| To evaluate annotation quality, we measure inter-annotator agreement, including both
human-human and model-human agreements, as detailed in Appendix

4.2 Experimental Results

Main Experiments. Table[I|shows that MM-Agent achieves state-of-the-art (SOTA) performance
across all evaluation dimensions. (1) Directly applying foundational models (GPT-40 or DeepSeek-
R1-671B) without agent-level orchestration results in significantly weaker performance, particularly
in MR and RBA. This gap underscores the inadequacy of LLMs in handling the open-ended, struc-
tured reasoning required for real-world modeling tasks and highlights the necessity of structured
agent-based workflows. (2) MM-Agent consistently outperforms all baseline agents, achieving the
highest overall scores under both GPT-40 and DeepSeek-R1-671B backbones. (3) Agents built on
DeepSeek-R1-671B surpass their GPT-40 counterparts, with MM-Agent demonstrating marked gains
in Modeling Rigorousness and Result and Bias Analysis, suggesting stronger reasoning capabilities in
the larger model. (4) Human teams remain strong competitors, outperforming all LLM-based agents
except MM-Agent on most metrics, underscoring both the complexity of the task and MM-Agent’s
near-human modeling proficiency. (5) The 2025 results closely mirror those from 2021-2024, indi-
cating strong temporal consistency. This robustness mitigates concerns about potential data leakage
(e.g., memorized solutions) and further supports the conclusion that MM-Agent performs genuine
modeling rather than overfitting. In addition to benchmark results, we developed a publicly available
modeling copilot system [’| based on MM-Agent, aligned with official MCM/ICM protocols and
LLM usage guidelines. This system assisted two undergraduate teams in securing the Finalist Award
(top 2.0% among 27,456 teams) in the 2025 MCM/ICM competition. This real-world validation
illustrates MM-Agent’s practical effectiveness as a modeling copilot, capable of supporting human
users in high-stakes, open-ended scientific tasks.

4.3 Ablation Study and Further Analysis

To better understand the design and practical utility of MM-Agent, we present a three-part analysis.
First, we conduct an ablation study to quantify the impact of each core module on modeling perfor-

*https://huggingface.co/spaces/MathematicalModelingAgent/MathematicalModelingAgent
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mance. Second, we evaluate token usage, cost, and runtime to assess deployment efficiency. Finally,
we test MM-Agent on well-defined, formulated mathematical problems to examine its generalization
beyond open-ended modeling.

Contribution of Key Components.
We perform an ablation study to as-
sess the impact of three core mod-
ules in MM-Agent: task dependency
analysis (DA), the Hierarchical Math-
ematical Modeling Library (HMML),
and hierarchical actor-critic model-
ing (HACM). Specifically, we (1) re-
place DA with a naive task parser (w/o
DA), (2) substitute HMML with a flat
retrieval library lacking hierarchical
structure (w/o HMML), and (3) re-
move HACM to disable iterative self-refinement (w/o HACM). These variants allow us to evaluate
each module’s contribution to structured problem understanding and modeling performance. As
shown in Figure d] MM-Agent consistently outperforms all ablated variants across GPT-40 and
DeepSeek-R1-671B backbones under four evaluation metrics. Removing DA significantly reduces
MR, indicating that deep task comprehension is essential for rigorous formulation. The absence
of HACM leads to sharp declines in AE and PS, highlighting its critical role in constructing coher-
ent, scientifically sound models. Notably, removing HMML causes clear drops in AE and RBA,
underscoring the importance of structured retrieval in aligning modeling strategies with both problem
context and solution needs. Unlike flat libraries that treat all methods equally, HMML encodes 98
high-level modeling schemas organized hierarchically by problem type, abstraction level, and solution
paradigm. This enables problem-aware and solution-aware retrieval that better supports abstraction,
constraint reasoning, and method selection, key capabilities for effective modeling.

wioDA B w/o HACM wioDA WM w/o HACM

w/o HMML BB MM-Agent w/o HMML HEEE MM-Agent

Score
Score

AE MR PS RBA
(a) GPT-40

AE MR PS RBA
(b) DeepSeek-R1-671B

Figure 4: Ablation study of the effect of the problem analysis
and mathematical modeling.

Cost Efficiency Analysis. We assess the cost ef-  ape 2. Experimental results on average token
ficiency of MM-Agent in solving real-world math- consumption, cost, and runtime.

ematical modeling problems, focusing on token

usage, monetary cost, and runtime. All evalua- Methods | Token Cost($) Runtime(s)
tions are conducted via official APIs provided by GPT-40
model vendors. As shown in Table 2] MM-Agent DS-Agent 198,186 0.77 1,044
matches the performance of DS-Agent and Re- ResearchAgent | 170,732 0.67 459
searchAgent with comparable computational cost ~ Agent Laboratory | 746,159 2.14 1,015
and runtime. Compared to Agent Laboratory, it MM-Agent 240877 0.8 906
. . . . DeepSeek-R1-671B

achieves higher performance while substantially

. . . L. DS-Agent 341,432 0.46 7,035
reducing both cost and execution time, highlight- ResearchAgent | 222,030  0.28 4,816
ing its scalability and practical viability. Further =~ Agent Laboratory | 974,423  0.89 11,331
results on additional models and a detailed case MM-Agent 530,363  0.56 7,529

study are included in Appendix

Experiments on Well-defined Mathematical Optimization Problems. To complement MM-
Bench’s open-ended focus, we evaluate MM-Agent on well-defined mathematical optimization tasks,
including both linear and nonlinear programming. In this setting, the agent receives complete problem
specifications (e.g., variables, objective function, and constraints ) and directly outputs the numerical
solution. Since these tasks have known ground truth answers, accuracy serves as a direct performance
metric. We conduct experiments on the OPTIBENCH dataset [4], with detailed results provided
in Table [5] (Appendix [E2). MM-Agent consistently outperforms GPT-40 across all subtasks in a
zero-shot setting, demonstrating robust generalization to formulated optimization problems.

5 Conclusion

In this work, we introduce MM-Bench, a benchmark for evaluating LLM-based agents in real-world
mathematical modeling. By assessing agents across diverse domains and problems, we expose key
challenges in bridging real-world phenomena with mathematical formulations. Our findings reveal
that existing LLM agents often overlook essential modeling principles, such as abstraction, constraints,
and assumptions, resulting in oversimplified and scientifically invalid outputs. To address these issues,
we propose MM-Agent, an autonomous pipeline that systematically handles problem analysis, model



formulation, solution development, and result interpretation. Comprehensive experiments show that
MM-Agent significantly outperforms existing LLM agents, though challenges remain in higher-order
reasoning and interdisciplinary problem-solving. We hope our benchmark and framework lay a
foundation for future progress in LLM-driven mathematical modeling.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: yes
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: yes
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: no
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: yes
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: yes
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: yes
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: yes
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: yes
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: yes
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: yes
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:
Justification: no
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: CC BY-NC
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: we have provided the dataset and open-sourced the code.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]
Justification: yes
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: yes
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
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Justification: We have developed a mathematical modeling agent based on a large language
model.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21


https://neurips.cc/Conferences/2025/LLM

MM-Agent: LLLM as Agents for Real-world

Mathematical Modeling Problem
Supplementary Material

Contents
M TInfroduction|
2 Related Works

[3__Building LLM Agent for Real-World Mathematical Modeling Problems|
3.1 MM-Benchl . .. ... ... . ...

13.2 Hierarchical Mathematical Modeling Library Construction| . . . . . . .. ... ..
3.3 MM-Agent] . . . . . . . . . ..
[3.3.1 Problem Analysis|. . . . . .. ... ... ...
13.3.2  Mathematical Modeling| . . .. ... ... ... ... ...,
13.3.3  Computational Solving and Solution Reporting| . . . . . ... ... .. ..

4.1 Experimental Setup| . . . . . . . ...

4.2 Experimental Results| . . . . . ... ... ... o o
4.3 Ablation Study and Further Analysts| . . . . . ... ... ... ... ...

5__Conclusion|

~N O Lt b AW W

o e < e

A" Broader impacts|

B Statistics of MM-Benchi

[C_Hierarchical Mathematical Modeling Library Construction|

[D Experiments Setup]

[E Other Experiments|

[E.1 Experiments on Other Models| . . . . ... ... ... ............

|[E.2  Experiments on Well-defined Math Optimization Problems| . . . . . . . . ..

24

24

25

25



| ) study| . . . e e

[F Prompts used for MM-Bench and MM-Agent]

23



A Broader impacts

Mathematical modeling serves as a cornerstone methodology for formulating, analyzing, and solving
complex real-world problems, underpinning scientific discovery and technological advancement
across applied mathematics, natural sciences, engineering, and the social sciences. By automating
this process, our work on LLM-powered mathematical modeling agents (MM-Agents) has the
potential to substantially broaden access to high-quality modeling expertise, accelerate research in
data-scarce or expert-limited domains, and support decision-making in high-stakes environments
such as epidemiology, sustainability, and infrastructure planning.

MM-Agents lower the barrier to mathematical modeling for diverse real-world applications.
MM-Agents can democratize the modeling process by enabling non-experts, such as students,
practitioners, or policymakers, to explore complex systems through structured analytical reasoning.
This may significantly enhance STEM education, interdisciplinary collaboration, and rapid response
in time-sensitive domains like disaster management or urban systems. Moreover, by encoding expert-
level workflows and structured domain knowledge, MM-Agents provide a foundation for scalable,
reusable modeling across diverse fields, potentially catalyzing scientific discovery in areas with
limited modeling resources.

Contamination & Plagiarism. Because our dataset includes publicly available mathematical
modeling competitions, there is a possibility that LLMs may have previously encountered solution
reports (e.g., from websites like Arxiv). This introduces a potential risk of contamination, meaning
models might memorize solutions or gain insights that artificially boost their performance on MM-
bench beyond actual capabilities. To mitigate this risk, we selected competition problems from
the most recent year (2025), ensuring the evaluated LLMs had not been trained on these specific
solutions. Our experiments (Section detected no systematic contamination effects in GPT-40 or
Deepseek-R1. Furthermore, the distribution of results from the 2025 competition aligns consistently
with those from previous years. Nevertheless, we cannot guarantee that future models will remain
unaffected. To proactively manage potential contamination risks, we recommend regularly updating
the MM-bench with new mathematical modeling problems.

Judge Bias and Accessibility. Although we evaluate annotation quality using inter-annotator
agreement metrics, bias still exists in both human and LLM annotators, particularly due to the
inherent subjectivity in evaluating different modeling solutions. In future work, we aim to develop
a mathematical modeling judge, which could provide more structured, transparent, and consistent
evaluations, thereby mitigating annotator bias. Additionally, running LLM agents on MM-Bench is
computationally intensive. In our experiments, GPT-40 and DeepSeek-R1 consumed approximately
0.53 million and 0.24 million tokens, respectively.

Misuse. The MM-agent offers substantial opportunities to streamline real-world mathematical model-
ing tasks across diverse areas such as engineering optimization, environmental resource management,
and epidemic forecasting. By automating complex and labor-intensive processes, this technology
enables researchers to focus more effectively on conceptual innovation and experimental design.
Nevertheless, the agent’s robust automation capabilities also introduce significant ethical concerns.
Reduced barriers to entry may inadvertently promote the generation of low-quality or misleading
scientific outputs. Furthermore, entirely Al-generated reports could potentially be misused in mathe-
matical modeling competitions. To address these ethical challenges and safeguard academic integrity,
it is imperative to transparently disclose any Al assistance involved in competition submissions.

B Statistics of MM-Bench

MM-Bench consists of 10 domains, 8 task types (e.g., decision, prediction, evaluation et al.), and a
total of 111 problem samples, all sourced from undergraduate-level Mathematical Modeling Contests
(MCM and ICM). Each sample in MM-Bench is based on a mathematical modeling competition
problem and includes background information that describes the context of the problem, the problem
requirements outlining the tasks to be completed, the dataset path indicating the location of the
dataset, dataset description providing details about the dataset, and variable description explaining
the attributes within the dataset. For policy-oriented or decision-focused tasks, datasets may not be
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provided, as these problems often emphasize qualitative reasoning or scenario-based analysis. The
statistical information can be seen in Figure[5]

(a) Data Domain (b) Problem Type

Figure 5: Illustrations of problem domain and types.

C Hierarchical Mathematical Modeling Library Construction

To enhance LLM agents’ mathematical modeling capabilities, we introduce the Hierarchical
Mathematical Modeling Library (HMML), a three-level structured hierarchy designed for effi-
cient, targeted method retrieval. Unlike conventional flat libraries, HMML explicitly captures
method heterogeneity by categorizing them into distinct modeling domains (top layer), asso-
ciated subdomains (middle layer), and specific method nodes (bottom layer). This structured
design streamlines retrieval through progressively refined searches guided by high-level reason-
ing schemas tailored specifically to mathematical modeling tasks. Specifically, HMML adopts
a tree structure comprising three abstraction layers, as illustrated in Figure The top layer
represents distinct mathematical modeling domains, the second layer corresponds to their re-
spective subdomains, and the third layer includes specific method nodes. Formally, the hier-
archical structure of HMML is represented as follows: at the highest level, the mathematical
modeling domains are denoted as 7 = {71, 73 ... 7}  Each modeling domain sub-
tree 7 is further subdivided into multiple subdomains: 7 = {701 7G2) ... 7@kRY
Within each subdomain 77, specific method nodes A (»7:)) are structured explicitly as tuples:
N30 = fmodeling method, core idea, application}. Here, modeling method provides a high-level
introduction to the mathematical modeling approach, core idea describes the fundamental princi-
ples underpinning the modeling method, and application indicates typical scenarios and delineates
their application scope, such as resource allocation optimization and production scheduling. For
example, in the domain of operations research (7(*) = Operations Research), the subdomain of
programming theory (7 (1)) = Programming Theory) includes the specific method node N/ (1:1:1)
which involves the modeling method of linear programming, with the core idea of optimization
using linear objectives and constraints, and its application in production resource scheduling. The
final mathematical modeling library features five domains (e.g., Operations Research, Optimization,
Machine Learning, Prediction and Evaluation), with 17 subdomains (e.g., Programming Theory,
Graph Theory, Clustering, Statistics, etc.), encompassing approximately 98 modeling methods (e.g.,
Linear Programming, Ant Colony Optimization, Expectation Maximization, Analytic Hierarchy
Process, Kolmogorov-Smirnov Test).

D Experiments Setup
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Evalaution. Since real-world mathematical modeling problems are open-ended and lack standard
answers, we follow official Mathematical Modeling evaluation standards to assess the final solution
report. We evaluate the agent’s mathematical modeling capabilities across four key aspects: (1)
Analysis Evaluation. Assesses the clarity of problem definition, the identification of key components,
and the coherence of sub-tasks in relation to the overall goal. (2) Modeling Rigorousness. Focuses on
rigor and rationality, evaluating whether the assumptions are clearly stated and justified, and whether
the chosen methods, metrics, and model structure accurately and scientifically represent the real-world
problem. (3) Practicality and Scientificity. Evaluates the practicality and scientific validity of the
model, ensuring that it is realistically applicable, provides valuable insights for decision-making, and
adheres to scientific principles. This stage also verifies whether the model is theoretically sound and
considers all relevant scientific factors to ensure its validity. (4) Result and Bias Analysis. Assesses
the clarity, interpretability, and thoroughness of the results and analysis. Additionally, it evaluates
how well potential biases, such as data or model bias, are identified, analyzed, and mitigated to
enhance robustness and acknowledge model limitations.

Baselines. We compare MM-Agent with both human team competition solutions and existing LLM-
based agents. Since there is no prior work specifically addressing mathematical modeling problems,
we adopt other LLMs agents designed for autonomous research to tackle these problems. Specifically,
our baselines include: (1) Human Team, using original solutions from real-world mathematical
modeling competitions, where teams obtained at least an Honorable Mention. These award-winning
solutions serve as a benchmark reference; (2) LLM, where a LLM is directly used to generate
mathematical modeling solutions; (3) DS-Agent, a specialized LLM agent for automating data science
tasks. We adapt its core design, based on case-based reasoning, to address mathematical modeling
problems; (4) ResearchAgent, an LLM-based agent designed to automate research workflows and
generate research ideas. We integrate it with a machine learning agent to enhance its capabilities
for mathematical modeling; and (5) Agent Laboratory, an LL.M-based framework designed to
accelerate scientific discovery by guiding the research process through stages of literature review,
experimentation, and report writing. For Agent Laboratory, the agent searches arXiv for related
papers to identify mathematical modeling methods, which are then used to construct its pipeline for
solving modeling problems.

E Other Experiments

E.1 Experiments on Other Models

The experimental results in Table[I|demonstrate that MM-Agent consistently outperforms the baseline
agents, DS-Agent and ResearchAgent, across all evaluation metrics in the 2021-2025 mathematical
modeling competitions on Qwen2.5-72B. Since the capabilities of Qwen2.5-72B are weaker than
those of GPT-40 and DeepSeek-R1-671B, the agent’s laboratory workflow is unable to run efficiently.
MM-Agent achieves the highest overall score of 8.37, excelling in Analysis Evaluation (8.61),
Modeling Rigorousness (7.59), and Practicality and Scientificity (8.89), reflecting its superior ability
in handling complex problems with scientific rigor and practical relevance. The stability of MM-
Agent’s performance across the competition years further supports the robustness of its approach,
ensuring that its success is not a result of overfitting, but rather a reflection of its effective modeling
capabilities.

Table 3: Experiment results on the 2021-2025 mathematical modeling competitions on Qwen2.5-
72B. AE, MR, PS, and RBA denote Analysis Evaluation, Modeling Rigorousness, Practicality and
Scientificity, and Result and Bias Analysis, respectively.

2021-2025
Methods AET MRT PST RBAT Overall T
Qwen2.5-72B 7.58 3.71 8.35 5.72 6.34
DS-Agent 8.33 7.08 8.53 7.48 7.86
ResearchAgent | 8.17 694 8.73 7.63 7.87
MM-Agent 8.61 7.59 8.89 8.37 8.37
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Table 4: Experimental results on average token consumption, cost, and runtime using Qwen-2.5 72B.

Methods \ Token  Cost($) Runtime(s)
DS-Agent 264973 0.21 1757
ResearchAgent | 313688 0.24 2577
MM-Agent 455610 0.34 2691

Table 5: Experiment on the well-defined optimization problem under zero-shot setting.

Linear Nonlinear
w/o Table w/ Table w/o Table w/ Table

GPT-40 77.5% 68.8% 48.1% 40.0% 66.8% 89.6%
MM-Agent 79.5% 70.0 % 50.4% 42.0% | 68.8% 99.3%

Model All Code Pass

E.2 Experiments on Well-defined Math Optimization Problems

To further evaluate the capabilities of our MM-Agent, we extended the experiments to well-defined
mathematical optimization problems, including both linear and nonlinear programming. In this
setting, the agent is provided with the variables, objective function, and constraints, and is required to
solve the optimization problem by directly producing the numerical solution. Since these problems
have well-defined ground-truth solutions, accuracy can be directly used as the metric to evaluate
the performance of MM-Agent. Specifically, we conduct experiments on the widely used dataset
OPTIBENCH [4], and the results are shown in Table[5] As these optimization problems do not require
task decomposition, we appropriately modify the agent’s configuration to align with the structure of
this task. As shown in Table[5] MM-Agent consistently outperforms GPT-40 across all subtasks under
the zero-shot setting. In linear programming, MM-Agent achieves 79.5% accuracy without tabular
input and 70.0% with table support, surpassing GPT-40 by 2.0% and 1.2%, respectively. Similar
trends are observed in nonlinear optimization, where MM-Agent improves performance by 2.3%
(w/o table) and 2.0% (w/ table). Notably, MM-Agent also achieves a higher overall accuracy (68.8%)
and code pass rate (99.3%), indicating better robustness and code reliability. These results highlight
MM-Agent’s enhanced reasoning capability and robustness in solving well-structured mathematical
tasks.

E.3 Human Evaluation Results

The experiments evaluated by human experts

are summarized in Figure[6] We report aver- 10
age scores across four key dimensions: Anal- Agent Laboratory
ysis Evaluation (AE), Modeling Rigorousness DS-Agent

(MR), Practicality and Scientificity (PS), and ResedithAgent
Result and Bias Analysis (RBA). As shown MM-Agent

in the figure, the MM-Agent consistently
achieves the highest performance across all
dimensions, particularly excelling in AE and
RBA. DS-Agent and Agent Laboratory ex-
hibit comparable performance in AE and PS, AE MR PS RBA
though the former shows slight superiority in
RBA. Notably, ResearchAgent performs com-
petitively in PS but lags behind in MR and
RBA, indicating weaker modeling rigor and bias awareness. These results demonstrate the superior
overall performance and robustness of MM-Agent under expert evaluation, particularly in producing
well-analyzed and unbiased modeling outputs.

Score
Ul OO N 00 O

Figure 6: Human Evaluation Results.

!The execution failed due to the demanding requirements on the instruction-following capabilities of LLMs.
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/ Step 1: Problem Understanding \

Background: "... the player who seemed to have the advantage are often attributed to “momentum.” " The problem demands a rigorous framework
Problem requirement: "... Develop a model that captures the flow of play as points occur ... " to quantify momentum—a latent construct
Dataset path: ["./Wimbledon_featured matches.csv"] . inferred from observable point outcomes—
Dataset Description: {"Wimbledon_featured_matches": "Data set of ... second round."} while disentangling structural factors (e.g.,
Variable Description: {"match_id" : "match identification", ..., "return_depth": "depth of return"} server advantage) and stochasticity. ...
K Problem Analysis J
4 Step 3: Task Dependency Analysis Step 2: Problem Decomposition N
e The first task serves as the foundational step ... Task 1: Momentum Quantification. ...
o Ao « The second task is dependent on the first task ... Task 2: Differentiating Momentum from Randomness. ...
w The third task relies on the first task ... « Task 3: Predictive Modeling of Momentum Swings. ...
o The fourth task depends on the first three tasks. ... Task 4: Cross-Domain Generalization Analysis. ...
\_Task Dependency Graph Dependency Analysis Tasks J

Figure 7: The workflow of the problem analysis phase in MM-Agent. Mathematical modeling
tasks often involve interdependent objectives and subtasks. MM-Agent addresses this complexity by
decomposing the problem into structured subtasks.

E.4 Annotation Quality

To evaluate annotation quality, we measure inter-annotator agreement on the MM-2025 datasets.
We first rank the scores provided by each human and LLM annotator, and then compute the Pearson
correlation coefficient between the ranked scores of each annotator pair. The results are summarized
in Table[6] Human-Human Agreements: The agreement between two human annotators varies
across evaluation categories. We observe consistently high agreement in the four metrics—Analysis
Evaluation (AE), Modeling Rigorousness (MR), Practicality and Scientificity (PS), and Result and
Bias Analysis (RBA)—indicating strong overall consistency among annotators. Model-Human
Agreements: To further assess annotation reliability, we compare model-generated scores with
human evaluations on the same subset. The model demonstrates reasonable alignment with human
assessments, particularly in MR and PS, as reported in Table[6] While RBA and AE exhibit relatively
lower agreement compared to the other metrics, this does not necessarily indicate a shortcoming in
the quality of problem and result analysis produced by MM-Agent, as demonstrated in Figure [|and
Table[I] Instead, we interpret this as reflecting the inherent subjectivity and variability in how such
explanations are evaluated by different annotators, a phenomenon also discussed by [48]]

Table 6: Results of agreements between two human annotation results and between human and model
evaluation results.

Categories AE MR PS RBA

Human and Human 0.7475 0.4813 0.7890 0.7625
Model and Human  0.5068 0.7130 0.7860 0.5692

E.5 Case Study

This section provides detailed descriptions of the case study shown in Figures[7]and 8] illustrating
how MM-Agent performs end-to-end problem-solving on a real-world mathematical modeling task
from the MCM competition.

In the problem analysis phase (Figure[7), MM-Agent begins with Step 1: Problem Understanding.
It extracts essential elements such as the task background, dataset path, and variable descriptions.
For example, the agent identifies that the modeling task involves quantifying "momentum" in tennis
matches using a dataset named Wimbledon_featured_matches.csv. The agent interprets the
modeling goal as constructing a framework that infers momentum from point-level outcomes while
accounting for severe advantages and inherent stochasticity. In Step 2: Problem Decomposition, MM-
Agent breaks down the overall objective into four coherent subtasks: (1) Momentum Quantification,
(2) Differentiating Momentum from Randomness, (3) Predictive Modeling of Momentum Swings, and
(4) Cross-Domain Generalization Analysis. This decomposition transforms the open-ended problem
into actionable components. Step 3 involves Task Dependency Analysis, where MM-Agent constructs
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4 Mathematical Modeling

Step 1: Hierarchical Modeling Knowledge Retrieval Step 2: Actor-Critic Iterative Modeling Optimization
Task 1: Dym:mic 1.\/lome— B HMML | B> GARCH Model, ... ® To mo.del th.e momentqm C The §tmcture oversimpliﬁes.
ntum Quantification. ... |Retrieve Battle Model, ... quantification, we begin ... nonlinear momentum dynamics ...
\ Task Methods Modeling Scheme Feedback
°
/Step 3: Solution Step 2: Preliminary Step 1: Code Generation and Execution
Report Report Outline

import numpy as np To model the dynamic
= MomentumModel: @ e
\section {Abstract} ... ( ) momentum quantification

« \section{Problem Restatement} ... Code in tennis matches using a

\section {Solution} ... FileNotFoundError: [Errno 2] regime-switching state-
\section{Conclusion} ... No such file or directory: space framework, ...

Modeling Method

Report Report Outline Error

K Computational Solving and Solution Reporting

Figure 8: The workflow of the mathematical modeling phase and computational solving and solution
reporting phase of MM-Agent.

a dependency graph capturing the logical and computational relationships between subtasks. For
instance, Task 1 is recognized as foundational, while the remaining tasks build on its outcomes. This
structure ensures that the agent follows a semantically grounded modeling order.

In the modeling and reporting phase (Figure [§), Step 1 is Hierarchical Modeling Knowledge Re-
trieval. The agent retrieves candidate methods from the Hierarchical Mathematical Modeling Library
(HMML) based on the task description, including HMMs, GARCH models, and battle models for
momentum estimation. Step 2 features an Actor-Critic Iterative Optimization mechanism. The
actor module proposes an initial modeling scheme, such as a Hidden Markov Model for momentum
quantification. The critic then evaluates the model and returns structured feedback, noting that
the current approach oversimplifies nonlinear momentum dynamics, prompting revisions toward
more suitable alternatives like regime-switching models. Step 3 is Code Generation and Execution.
MM-Agent generates Python code for the selected modeling pipeline. If execution fails due to
errors (e.g., FileNotFoundError), the agent diagnoses the issue and refines the code, continuing
the process until a functioning version is achieved.

The final stage involves constructing the solution report. The agent first drafts a preliminary outline,
including sections like Abstract, Problem Restatement, Solution, and Conclusion. It then
generates a complete report in human-readable LaTeX format, reflecting the entire modeling workflow.
The final solution report can be seen in Figure[9]

F Prompts used for MM-Bench and MM-Agent

This appendix presents the full set of prompts used in the construction of MM-Bench and the
implementation of MM-Agent. These prompts are designed to support the automated, modular, and
rigorous execution of real-world mathematical modeling workflows using large language models.
Each prompt encapsulates a specific functional objective within the overall agent pipeline, including
problem understanding, task decomposition, model formulation, code generation, result interpretation,
and solution synthesis. The prompts are carefully structured to align with academic writing and
reasoning standards, support multi-agent collaboration, and enable traceable, reproducible modeling.
We include both instruction-level and response-format specifications to ensure clarity and operational
consistency. Together, these prompts form the foundation of our benchmark and agent framework,
enabling end-to-end mathematical modeling automation.

Analysis Evaluation Prompt

Your task is to evaluate the rationality and overall coherence of the problem decomposition
into sub-problems by the modeler, given the backgroud and problem requirement in
mathematical modeling.
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< P Agent Contents

Modeling Momentum Dynamies in Tennis
Integrating Quantitative and Qualtative Insights

1 Probiom Resstement

Figure 9: An example report generated by MM-Agent for Problem C of the 2024 MCM.

**Background**:
{background}

**Problem Requirements**:
{requirements }

Below is the modeler’s task analysis:
**Task Analysis**:
{all_task_analyses}
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**Eyaluation Criteria**:
### 1. Problem Analysis and Understanding

#### 1.1 Problem Definition and Goals

Ensure the model definition is clear, the analysis is accurate, and the goals are explicit.
- Is the scope and goal of the problem clearly defined?

- Are the key components of the problem effectively identified?

- Are the actual goals that the model aims to solve clearly stated?

**Scoring Criteria**:
1-2 = Completely unclear; 3-4 = Not clear enough; 5-6 = Basically clear; 7-8 = Clear; 9-10 =
Completely clear.

#i### 1.2 Relevant Scope and Coverage

Ensure that the core part of the problem is not deviated from, and whether each sub-task is
interrelated and completely covers the actual goals.

- Do the sub-tasks have dependencies?

- Are all sub-tasks and steps directly related and support the final goal?

- Are there any key parts missing or deviations from the actual goals?

**Scoring Criteria**:
1-2 = Completely deviated from the goal; 3-4 = Partially deviated; 5-6 = Basically covered;
7-8 = Mostly covered; 9-10 = Completely covered.

**Qutput Format**: Please put your evaluation reasons and scores in the tags <rea-
son> your_reason </reason>, and <score> your_score </score>.

Example:

### 1.1 Problem Definition and Goals: \n\n**Evaluation:**\n\nThe modeler has provided a
clear definition of the problem and its goals. However, there are some areas that need further
clarification, such as the specific metrics used to measure success and the assumptions made
during the analysis. Overall, the problem definition is mostly clear but could benefit from
additional detail.

**Score:**\n<reason> The problem definition is mostly clear but lacks some details
</reason> \n<score> 7 </score>

### 1.2 Relevant Scope and Coverage: \n\n**Evaluation:**\n\nThe sub-tasks are well-
defined and cover the main aspects of the problem. There is a logical flow between the tasks,
and each task supports the overall goal. However, some sub-tasks could be more detailed to
ensure complete coverage of the problem.

**Score:**\n<reason> The sub-tasks are well-defined but could be more detailed </reason>
\n<score> 8 </score>

Please objectively and detailedly evaluate the problem analysis and understanding
according to the above evaluation criteria, and give the final score and reason.
### 1.1 Problem Definition and Goals:

Figure 10: The prompt used for evaluating Analysis of Agent.

Modeling Rigorousness Evaluation Prompt

Your task is to evaluate the rigor and rationality of the modeling given the backgroud and
problem requirement in mathematical modeling, particularly focusing on the assumptions
and rationality.

**Background**:
{background}
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**Problem Requirements**:
{requirements}

Below is the modeler’s modeling analysis:
**Modeling Analysis**:
{all_task_analyses}

**Eyaluation Criteria**:
### 2. Rigor and Rationality of Modeling

##### 2.1 Assumptions

Clear and explicit. These assumptions are the foundation of the model and need to be
rigorously justified.

- Are the model assumptions clearly explained?

- Are the assumptions reasonable and consistent with the background of the actual problem?
- Is the rationality and impact of the assumptions considered?

**Scoring Criteria**:
1-2 = Completely unreasonable; 3-4 = Partially reasonable; 5-6 = Average; 7-8 = Reasonable;
9-10 = Very reasonable.

#### 2.2 Rationality

The rationality of the model is key to evaluation. Evaluation criteria can include: whether an
appropriate model is chosen, whether the model can realistically reflect the problem, etc.

- Has the model chosen appropriate methods and metrics?

- Does the structure of the model scientifically reflect the actual problem?

**Scoring Criteria**:
1-2 = Completely unreasonable; 3-4 = Partially reasonable; 5-6 = Average; 7-8 = Reasonable;
9-10 = Very reasonable.

**QOutput Format**:

Example:

### 2.1 Assumptions\n\n**Evaluation:**\n\nThe assumptions are crucial for model building,
but the modeling analysis does not describe the assumptions in sufficient detail. The
rationality and impact of the assumptions are not fully justified, lacking detailed explanations
of data sources, data distribution, and competition characteristics. For example, the
assumption about "serve advantage" is mentioned but not detailed on how it is quantified and
integrated into the model. Additionally, the assumptions are not clearly explained, making
the foundation of the model less robust.

**Score:**\n<reason> The model assumptions are not clear enough and lack sufficient
explanation of their sources and impacts </reason> \n<score> 3 </score>

### 2.2 Rationality \n\n**Evaluation:**\n\nThe rationality of the model is average. The
modeler chose to evaluate player performance based on match data (such as points won,
games won, and sets won), which is reasonable to some extent. However, the specific
modeling methods and metrics are not detailed. For example, how to quantify "performance
score", how to handle time series data, and whether psychological factors in the competition
are considered. Although some possible methods (such as time series analysis, regression, or
classification) are mentioned, their specific applications and reasons for selection are not
deeply explained. The structure of the model may have certain limitations in reflecting the
actual problem.

**Score: **\n<reason> The rationality of the model is average, with methods and metrics not
detailed, and the model structure has limitations </reason> \n<score> 5 </score>

Please objectively and detailedly evaluate the rigor and rationality of the modeling
according to the above evaluation criteria, and give the final score and reason.
### 2.1 Assumptions\n\n**Evaluation:
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Figure 11: The prompt used for evaluating Modeling Rigorousness of Agent.

Practicality and Scientificity Evaluation Prompt

Your task is to evaluate the practicality and scientificity of the modeling process given the
background and problem requirements in mathematical modeling, particularly focusing on
whether the model can practically solve the problem and whether it adheres to scientific
principles.

**Background**:
{background}

**Problem Requirements**:
{requirements }

Below is the modeler’s modeling process:
**Modeling Process**:
{all_task_analyses}

**Evaluation Criteria**:
### 3. Practicality and Scientificity

#i### 3.1 Practicality

- Does the modeling method match the characteristics and requirements of the problem?

- Does the model provide meaningful insights beyond mere data fitting? Can its output
support decision-making with clear explanations and reliable predictions across different
datasets?

- Does the approach go beyond standard machine learning or data processing? Has it
been deeply optimized or extended, potentially integrating interdisciplinary methods like
mathematical or physical modeling?

- Does the model introduce novel frameworks, constraints, objectives, or data representations?
Does it push beyond conventional techniques to propose new theoretical or computational
approaches?

- Is the selected modeling method appropriate for the given problem?

- Is the model reasonably constructed?

- Can the model solve the actual problem?

- Are the application scenarios of the model clear? Is it feasible for practical operation?

- Can the model’s output provide useful information for decision-making or exaplaining or
predcting?

- Does the approach go beyond basic data analysis and machine learning algorithms?

- Does the model demonstrate innovation or creativity in its approach to addressing the
problem?

- Is the modeling approach tailored to the specific problem rather than using generic methods?

**Scoring Criteria**:
1-2 = Completely impractical; 3-4 = Partially practical; 5-6 = Average; 7-8 = Practical; 9-10
= Very practical.

#### 3.2 Scientificity

- Does the model adhere to scientific principles? Is there a theoretical basis?

- Are the assumptions and methods of the model scientifically justified?

- Does the model consider all scientific factors to ensure its rationality?

- Does the approach transcend simple data analysis to incorporate deeper mathematical or
domain-specific principles?

- Is the approach innovative rather than a standard application of common techniques?

- Does the modeling process demonstrate understanding of the problem’s unique characteris-
tics?
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**Scoring Criteria**:
1-2 = Completely unscientific; 3-4 = Partially scientific; 5-6 = Average; 7-8 = Scientific; 9-10
= Very scientific.

**Qutput Format™®*:

Example:

### 3.1 Practicality\n\n**Evaluation: **\n\n The model is somewhat practical, but it lacks
several key aspects. The modeling method does not fully match the characteristics and
requirements of the problem. Additionally, the model does not provide meaningful insights
beyond mere data fitting, and its output lacks clear explanations and reliable predictions
across different datasets. The approach does not go beyond standard machine learning or data
processing, and it has not been deeply optimized or extended to integrate interdisciplinary
methods like mathematical or physical modeling. Furthermore, the model does not introduce
novel frameworks, constraints, objectives, or data representations, and it does not push
beyond conventional techniques to propose new theoretical or computational approaches.
**Score: **\n<reason> The model lacks several key aspects, including matching the problem
characteristics, providing meaningful insights, and introducing novel approaches </reason>
\n<score> 6 </score>

### 3.2 Scientificity\n\n**Evaluation:**\n\nThe model adheres to clear scientific
principles and employs reasonable theoretical foundations. The assumptions and methods
are scientifically justified, and the modeler has thoroughly explained the rationality of the
assumptions. Rather than relying solely on basic data analysis techniques, the approach
incorporates sophisticated mathematical principles and demonstrates innovative application
of theoretical concepts to the specific domain of the problem.

**Score:**\n<reason> The model adheres to scientific principles, incorporates advanced
mathematical concepts, and demonstrates innovative application rather than generic
approaches </reason> \n<score> 7 </score>

Please objectively and detailedly evaluate the practicality and scientificity of the
modeling process according to the above evaluation criteria, and provide the final score and
reason.

### 3.1 Practicality\n\n**Evaluation:

Figure 12: The prompt used for evaluating Practicality and Scientificity of Agent.

Result and Bias Analysis Evaluation Prompt

Your task is to evaluate the result analysis and bias analysis of the given modeling report,
particularly focusing on the rationality, interpretability of the model output, and the
identification and correction of biases.

**Background**:
{background}

**Problem Requirements**:
{requirements }

Below is the modeler’s modeling report:
**Modeling Report**:
{all_task_analyses}

**Evaluation Criteria**:
#i## 4. Result Analysis and Bias Analysis

#i### 4.1 Result Analysis
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- Are the model output results clear and as expected?

- Does the result provide sufficient analysis to explain the model’s inference process?

- Are the model results interpretable and do they help in understanding the essence of the
problem?

- Does the analysis provide clear conclusions and highlight the strengths and weaknesses of
the model?

**Scoring Criteria**:
1-2 = Completely unclear; 3-4 = Partially clear; 5-6 = Average; 7-8 = Clear; 9-10 = Very
clear.

#i### 4.2 Bias Analysis

- Does the model identify and analyze potential biases?

- Does it consider data bias, model bias, and other factors?

- Does the model appropriately correct biases to reduce their impact on the results?

**Scoring Criteria**:
1-2 = Completely ignored biases; 3-4 = Partially considered biases; 5-6 = Average; 7-8 =
Considered biases and corrected; 9-10 = Very thorough, biases effectively corrected.

**QOutput Format**:

Example 1:

### 4.1 Result Analysis\n\n**Evaluation:**\n\nThe model output results are clear and
well explain the model’s inference process. The modeler has detailed the background and
significance of the model results, helping to understand the core of the problem. The results
show a reasonable inference path, making the entire analysis process more transparent. The
analysis also provides clear conclusions and highlights the strengths and weaknesses of the
model.

**Score:**\n<reason> The result analysis is very clear and effectively supports decision-
making </reason> \n<score> 9 </score>

### 4.2 Bias Analysis\n\n**Evaluation:**\n\nThe model effectively identifies and
analyzes biases, particularly potential data biases. The modeler provides correction measures
for biases and explains how these corrections affect the model results. Although there are
still some biases in certain aspects of the model, overall, a comprehensive correction has
been made.

**Score:**\n<reason> The bias analysis is thorough, and biases have been effectively
corrected </reason> \n<score> 8 </score>

Please objectively and detailedly evaluate the result analysis and bias analysis of
the modeling according to the above evaluation criteria, and provide the final score and
reason.

#i## 4.1 Result Analysis\n\n**Evaluation:

Figure 13: The prompt used for evaluating Result and Bias Analysis of Agent.

Data Description Prompt

Data Description:
{data_description}
{variable_description}

Your task is to generate a detailed summary of the dataset based on the dataset de-
scription provided. It needs to cover comprehensive information, but not explain each field
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one by one. Using plain text to describe in a single paragraph, without any Markdown
formatting or syntax.

Figure 14: The prompt used to describe the dataset.

Problem Template

Problem Background:
{problem_background }

Problem Requirement:
{problem_requirement}
{addendum}

Dataset Path:
{dataset_path}

Data Description:
{data_summary}

Figure 15: The Problem Template prompt.

Problem Understanding Prompt

# Mathematical Modeling Problem:
{modeling_problem}

You are tasked with analyzing a mathematical modeling problem with a focus on
the underlying concepts, logical reasoning, and assumptions that inform the solution process.
Begin by considering the nature of the problem in its broader context. What are the primary
objectives of the model, and how do they shape the way you approach the task? Think
critically about the assumptions that may be inherently embedded in the problem. What
implicit beliefs or constraints have been set up, either explicitly or implicitly, within the
problem’s description? Reflect on how these assumptions might influence the interpretation
and application of any potential solutions.

Dive deeper into the relationships and interdependencies between the different com-
ponents of the problem. What are the potential hidden complexities that may arise from these
interconnections? Are there any conflicts or tensions between different aspects of the problem
that need to be resolved? Explore how these interdependencies might lead to unforeseen
challenges and require revisiting initial assumptions or redefining the parameters of the task.

Consider how the complexity of the problem may evolve across different scales or
over time. Are there time-dependent factors or long-term consequences that should be
accounted for, especially in terms of the stability or sustainability of the model’s outcomes?
Think about how the model’s behavior might change under different scenarios, such as
variations in input or changes in external conditions. Reflect on whether any simplifications
or idealizations in the problem might inadvertently obscure key dynamics that are crucial for
an accurate representation.

In your analysis, also give attention to possible alternative perspectives on the prob-
lem. Are there different ways to frame the issue that could lead to distinct modeling
approaches or solution strategies? How would those alternative perspectives impact the
overall approach? Additionally, evaluate the potential risks or uncertainties inherent in the




problem, especially when it comes to choosing between competing modeling approaches.
Consider how the outcomes might vary depending on the choices you make in constructing
the model, and how you would manage such trade-offs.

Finally, reflect on the dynamic nature of the modeling process itself. How might
your understanding of the problem evolve as you continue to explore its intricacies? Ensure
that your thought process remains flexible, with a readiness to revise earlier conclusions as
new insights emerge. The goal is to maintain a reflective, iterative analysis that adapts to
deeper understandings of the task at hand, rather than pursuing a fixed or rigid approach.

{user_prompt}

Respond as comprehensively and in as much detail as possible. Do not format your
response in Markdown. Using plain text, without any Markdown formatting or syntax.
Written as one or more cohesive paragraphs. Avoid structuring your answer in bullet points
or numbered lists.

Figure 16: The prompt used in the Problem Understanding step. It guides the agent to perform a
deep conceptual and contextual analysis of the modeling task, encouraging reflection on assumptions,
interdependencies, temporal dynamics, uncertainties, and alternative perspectives to support rigorous
and adaptive problem framing.

Problem Understanding Critique Prompt

# Mathematical Modeling Problem:
{modeling_problem}

# Problem Analysis:
{problem_analysis}

Critically examine the analysis results of the given mathematical modeling problem,
focusing on the following aspects:

1. Depth of Thinking: Evaluate whether the analysis demonstrates a comprehensive
understanding of the underlying problem. Does it go beyond surface-level observations? Are
the assumptions, limitations, and potential implications of the results carefully considered?
Assess whether the analysis adequately addresses both the broader context and specific
intricacies of the problem.

2. Novelty of Perspective: Analyze the originality of the approach taken in the analysis.
Does it introduce new insights or merely rehash well-established methods or solutions? Are
alternative perspectives or unconventional techniques explored, or is the analysis constrained
by a narrow set of assumptions or typical approaches?

3. Critical Evaluation of Results: Consider the extent to which the analysis critically
engages with the results. Are the conclusions drawn from the analysis well-supported by the
mathematical findings, or do they overlook key uncertainties or counterexamples? Does the
analysis acknowledge potential contradictions or ambiguities in the data?

4. Rigor and Precision: Assess the level of rigor applied in the analysis. Are the steps
logically consistent and mathematically sound, or are there overlooked errors, gaps, or
assumptions that undermine the conclusions? Does the analysis exhibit a clear, methodical
approach, or is it characterized by vague reasoning and imprecision?

5. Contextual Awareness: Evaluate how well the analysis situates itself within the broader
landscape of mathematical modeling in this area. Does it consider previous work or
developments in the field? Is there any indication of awareness of real-world implications,
practical constraints, or ethical concerns, if applicable?
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Critique the analysis without offering any constructive suggestions—your focus should solely
be on highlighting weaknesses, gaps, and limitations within the approach and its execution.

Figure 17: The prompt used for criticizing problem analysis in the Problem Understanding step.
It prompts the agent to conduct a focused critique of the initial analysis by evaluating its depth,
originality, logical rigor, and contextual awareness, helping identify gaps and limitations without
providing corrective suggestions.

Problem Understanding Improvement Prompt

# Mathematical Modeling Problem:
{modeling_problem}

# Problem Analysis:
{problem_analysis}

# Problem Analysis Critique:
{problem_analysis_critique}

Refine and improve the existing problem analysis based on the critique provided to
generate insightful analysis.

Provide the improved version directly. DO NOT mention any previous analysis con-
tent and deficiencies in the improved analysis. Just refer to the above critical suggestions and
directly give the new improved analysis.

{user_prompt}

Respond as comprehensively and in as much detail as possible. Do not format your response
in Markdown. Using plain text, without any Markdown formatting or syntax. Written as one
or more cohesive paragraphs. Avoid structuring your answer in bullet points or numbered lists.

IMPROVED PROBLEM ANALYSIS:

Figure 18: The prompt used for improving problem analysis in the Problem Understanding step.
It guides the agent to revise its initial analysis by incorporating critical feedback, enabling more
rigorous, insightful, and context-aware problem understanding through iterative refinement.

Task Decompose Prompt

# Decompose Principle:
{decomposed_principle}

# Mathematical Modeling Problem:
{modeling_problem}

# Problem Analysis:
{problem_analysis}

# Modeling Solution:
{modeling_solution}

Please decompose the given modeling solution into {tasknum} distinct and well-
defined subtasks that collectively contribute to the overall objective. These subtasks should
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be clearly separated in their focus, each addressing a specific aspect of the modeling process.
The goal is to break down the solution into key stages or methodologies, ensuring that all
components of the solution are covered without redundancy. For each subtask, the approach
or technique should be explicitly described, detailing the specific data, algorithms, or
models required. The decomposition should reflect a logical and comprehensive path toward
completing the task, with each part having a clear purpose and contributing to the final result.
{user_prompt}

Each subtask should be described as comprehensively and in as much detail as possible
within a single paragraph using plain text and seperated by "— for each subtask. All the
contents and details of the original solution need to be covered by the {tasknum} subtasks
without omission.

Figure 19: The prompt used in the Problem Decomposition step. It instructs the agent to transform a
holistic modeling solution into a coherent set of structured subtasks, each with distinct objectives,
methods, and contributions to the overall problem, ensuring logical coverage and methodological
clarity.

Task Description Prompt

# Mathematical Modeling Problem:
{modeling_problem}

# Problem Analysis:
{problem_analysis}

# Modeling Solution:
{modeling_solution}

# Decomposed Subtasks:
{decomposed_subtasks}

You are tasked with refining and improving the description of subtask {task_ i} to
ensure it is more detailed, clear, and focused. Provide a precise and comprehensive
explanation of the task, specifically elaborating on its scope, goals, and methodology without
venturing into other subtasks. Make sure the description includes clear and concise language
that defines the necessary steps, techniques, or approaches required for this subtask. If
applicable, specify the data inputs, tools, or models to be used, but do not introduce analysis,
results, or discussions related to other components of the modeling process. The goal is
to enhance the clarity, depth, and precision of this subtask description, ensuring it is fully
understood on its own without needing further explanation.

The description of subtask {task_i} should be as comprehensive and in as much detail as
possible within a single paragraph using plain text.

Figure 20: The prompt used for refining and improving task descriptions. It guides the agent to
produce a precise, self-contained, and detailed explanation of a specific subtask, clarifying its scope,
objectives, methodology, and required resources while avoiding overlap with other components.

Task Dependency Analysis Prompt

Understanding the dependencies among different tasks in a mathematical modeling process
is crucial for ensuring a coherent, logically structured, and efficient solution. Given a
mathematical modeling problem and its solution decomposition into {tasknum} subtasks,
analyze the interdependencies among these subtasks.
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## Input Information:

- **Mathematical Modeling Problem:** {modeling_problem }
- **Problem Analysis:** {problem_analysis}

- **Modeling Solution:** {modeling_solution}

- **Decomposed Tasks:** {task_descriptions}

## Task Dependency Analysis Instructions:

1. **Identify Task Dependencies:** For each task, determine which preceding tasks provide
necessary input, data, or conditions for its execution. Clearly outline how earlier tasks
influence or constrain later ones.

2. **Describe Dependency Types:** Specify the nature of the dependencies between tasks.
This includes:

- *Data Dependency:* When one task produces outputs that are required as inputs for
another task.

- *Methodological Dependency:* When a later task builds upon a theoretical framework,
assumptions, or models established by an earlier task.

- *Computational Dependency:* When a task requires prior computations or optimizations
to be completed before proceeding.

- *Structural Dependency:* When a task is logically required to be completed before
another due to hierarchical or sequential constraints.

- *Code Dependency:* When one task relies on code structures, functions, or modules that
are defined or executed in a preceding task. This includes shared variables, functions, or
libraries that must be defined before their use in later tasks.

3. **Ensure Completeness:** Verify that all tasks in the decomposition are accounted for in
the dependency analysis and that no essential dependencies are missing.

## Output Format:

Respond as comprehensively and in as much detail as possible. Do not format your response
in Markdown. Using plain text, without any Markdown formatting or syntax. Written as
tasknum cohesive paragraphs, each paragraph is a dependency analysis of a task.

The response should be comprehensive and written in a clear, well-structured for-
mat without bullet points, ensuring a logical flow of dependency relationships and their
implications.

Figure 21: The prompt used in the Task Dependency Analysis step. It guides the agent to identify and
describe data, methodological, computational, and structural dependencies among subtasks, ensuring
a coherent and executable modeling workflow.

DAG Construction Prompt

A well-structured Directed Acyclic Graph (DAG) is essential for visualizing and optimizing
the dependencies between different tasks in a mathematical modeling process. Given
a problem and its solution decomposition into tasknum subtasks, construct a DAG that
accurately represents the dependency relationships among these tasks. The DAG should
capture all necessary dependencies while ensuring that no cycles exist in the structure.

## Input Information:

- **Mathematical Modeling Problem:** {modeling_problem}
- **Problem Analysis:** {problem_analysis}

- **Modeling Solution:** {modeling_solution}

- **Decomposed Tasks:** {task_descriptions}

- **Dependency Analysis:** {task_dependency_analysis}

## Output Format (STRICT REQUIREMENT):
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You **MUST#** return a valid JSON-formatted adjacency list **without** any additional
text, explanations, or comments. **Only** output the JSON object.

### JSON Format (Strictly Follow This Format):

json

{{
"task_ID": [dependent_IDs],

1

## Example Output:

113

json

1

1113

Figure 22: The prompt used for constructing the Task Dependency Graph. It instructs the agent
to generate a DAG in strict JSON format, capturing all task-level dependencies derived from prior
analysis to enable structured visualization and execution planning.

Model Formulas Construction Prompt

# Reference Modeling Methods:
{modeling_methods}

{data_summary}

# Task Description:
{task_description}

# Task Analysis:
{task_analysis}

# The structure of code for Task {task_id}:
{code_structure}

# The result for Task {task_id}:

{task_result}

When formulating the mathematical model for the current task, it is essential to consider how
this task depends on other tasks in the overall process.

You are collaborating as part of a multi-agent system to solve a complex mathemati-
cal modeling problem. Each agent is responsible for a specific task, and some preprocessing
or related tasks may have already been completed by other agents. It is crucial that you **do
not repeat any steps that have already been addressed** by other agents. Instead, rely on their
outputs when necessary and focus solely on the specific aspects of the task assigned to you.

You are tasked with developing a set of precise, insightful, and comprehensive mathematical
formulas that effectively model the problem described in the task. Begin by conducting an
in-depth analysis of the system, process, or phenomenon outlined, identifying all relevant
variables, their interdependencies, and the fundamental principles, laws, or constraints that
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govern the behavior of the system, as applicable in the relevant field. Clearly define all
variables, constants, and parameters, and explicitly state any assumptions, approximations, or
simplifications made during the formulation process, including any boundary conditions or
initial conditions if necessary.

Ensure the formulation considers the full scope of the problem, and if applicable,
incorporate innovative mathematical techniques. Your approach should be well-suited for
practical computational implementation, addressing potential numerical challenges, stability
concerns, or limitations in simulations. Pay careful attention to the dimensional consistency
and units of all terms to guarantee physical or conceptual validity, while remaining true to the
theoretical foundations of the problem.

In the process of deriving the mathematical models, provide a clear, step-by-step
explanation of the reasoning behind each formula, highlighting the derivation of key
expressions and discussing any assumptions or trade-offs that are made. Identify any
potential sources of uncertainty, limitations, or approximations inherent in the model, and
provide guidance on how to handle these within the modeling framework.

The resulting equations should be both flexible and scalable, allowing for adapta-
tion to different scenarios or the ability to be tested against experimental or real-world
data. Strive to ensure that your model is not only rigorous but also interpretable, balancing
complexity with practical applicability. List all modeling equations clearly in LaTeX format,
ensuring proper mathematical notation and clarity of presentation. Aim for a model that is
both theoretically sound and practically relevant, offering a balanced approach to complexity
and tractability in its use.

{user_prompt}

Respond as comprehensively and in as much detail as possible, ensuring clarity, depth, and
rigor throughout. Using plain text and LaTeX for formulas. Written as one or more cohesive
paragraphs. Avoid structuring your answer in bullet points or numbered lists.

\. J

Figure 23: The prompt used for constructing the model formulas. It instructs the agent to derive
detailed, rigorous, and task-specific mathematical formulations by integrating prior task outputs,
domain principles, and computational considerations, ensuring both theoretical soundness and
practical applicability.

Model Formulas Critique Prompt

{data_summary}

# Task Description:
{task_description}

# Task Analysis:
{task_analysis}

# Task Modeling Formulas:
{modeling_formulas}

The goal of this task is to critically evaluate the modeling formulas used to repre-
sent a given mathematical modeling problem. Your analysis should address the following
dimensions: accuracy and rigor, innovation and insight, and the applicability of the models to
real-world scenarios.

1. Accuracy and Rigor:
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- Formula Integrity:

Evaluate whether the mathematical models and the corresponding formulas are mathemati-
cally sound and consistent with the underlying assumptions of the problem. Are the formulas
properly derived, free from logical errors, and reflective of the relevant domain knowledge?

- Are any simplifications or approximations made, and if so, are they justifiable within the
context of the model’s scope?

- Examine the assumptions made in formulating the model. Are these assumptions realistic,
and how do they affect the model’s precision and robustness?

2. Innovation and Insight:

- Novelty of Approach:

Critique the originality of the modeling approach. Does the model present a new
or unconventional way of solving the problem, or does it simply rely on established
methodologies without offering new insights?

- Consider whether any innovative methods, such as the introduction of novel variables or
the use of innovative computational techniques, contribute to improving the model.

- Theoretical Insight:

Evaluate the depth of the theoretical insights provided by the model. Does it offer a fresh
perspective or new understanding of the problem? How well does it illuminate the key
dynamics and relationships within the system under study?

- Does the model reveal previously unnoticed phenomena, or does it suggest new directions
for further research?

- Integration of Existing Knowledge:

Assess the extent to which the model integrates existing mathematical, theoretical, and
empirical work. Does it build on prior research, and if so, does it do so in a way that adds
substantial value or clarity? Are there gaps where additional cross-disciplinary knowledge
could enhance the model?

3. Applicable:

- Real-World Relevance:

Evaluate the model’s practical applicability. How well does it apply to real-world problems,
and to what extent does it provide actionable insights for decision-making or problem-solving
in the field?

Critique the analysis without offering any constructive suggestions—your focus should solely
be on highlighting weaknesses, gaps, and limitations within the formulas.

\. J

Figure 24: The prompt used for criticizing the model formulas. It guides the agent to identify
weaknesses in mathematical soundness, theoretical depth, and real-world applicability of the formulas,
fostering rigorous evaluation without offering corrective suggestions.

Model Formulas Improvement Prompt

{data_summary}

# Task Description:
{task_description}

# Task Analysis:
{task_analysis}
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# Task Modeling Formulas:
{modeling_formulas}

# Task Modeling Formulas Critique:
{modeling_formulas_critique}

Based on the provided critique and analysis, refine the existing modeling formulas
to address the identified limitations and gaps.

Respond as comprehensively and in as much detail as possible, ensuring clarity,
depth, and rigor throughout. Using plain text and LaTeX for formulas. Written as one or
more cohesive paragraphs. Avoid structuring your answer in bullet points or numbered lists.
{user_prompt} Provide a new version of the task modeling formulas that integrates these
improvements directly. DO NOT mention any previous formulas content and deficiencies.

IMPROVED TASK MODELING FORMULAS:

Figure 25: The prompt used for improving the model formulas.

Model Construction Prompt

{data_summary}

# Task Description:
{task_description}

# Task Analysis:
{task_analysis}

# Task Modeling Formulas:
{modeling_formulas}

# The structure of code for Task {task_id}:
{code_structure}

# The result for Task {task_id}:
{task_result}

Please consider the dependencies between the current task and the preceding tasks.

You are collaborating as part of a multi-agent system to solve a complex mathemati-
cal modeling problem. Each agent is responsible for a specific task, and some preprocessing
or related tasks may have already been completed by other agents. It is crucial that you **do
not repeat any steps that have already been addressed** by other agents. Instead, rely on their
outputs when necessary and focus solely on the specific aspects of the task assigned to you.

Please continue the modeling formula section by building upon the previous intro-
duction to the formula. Provide comprehensive and detailed explanations and instructions that
elaborate on each component of the formula. Describe the modeling process thoroughly, in-
cluding the underlying assumptions, step-by-step derivations, and any necessary instructions
for application. Expand on the formula by incorporating relevant mathematical expressions
where appropriate, ensuring that each addition enhances the reader’s understanding of
the model. Make sure to seamlessly integrate the new content with the existing section,
maintaining a natural flow and avoiding any repetition or conflicts with previously covered
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material. Your continuation should offer a clear and in-depth exploration of the modeling
formula, providing all necessary details to facilitate a complete and coherent understanding
of the modeling process.

{user_prompt}

Respond as comprehensively and in as much detail as possible. Do not format your response
in Markdown. Using plain text, without any Markdown formatting or syntax. Written as one
or more cohesive paragraphs. Avoid structuring your answer in bullet points or numbered
lists.

\.

J

Figure 26: The prompt used for improving the model formulas. It instructs the agent to revise existing
formulas by directly integrating feedback from prior critique, ensuring the final formulation is more

rigorous, complete, and aligned with problem-specific constraints.

Code Generation Prompt

# Dataset Path:
{dataset_path}

# Data Description:
{data_summary}

# Variable Description:
{variable_description}

# Other files (Generated by Other Agents):
{dependent_file_prompt}

# Task Description:
{task_description}

# Task Analysis:
{task_analysis}

# Task Modeling Formulas:
{modeling_formulas}

# Task Modeling Process:
{modeling_process }

# Code Template:
{code_template}

## Role & Collaboration:

You are an expert programmer working as part of a multi-agent system. Your role is to
implement the code based on the provided dataset (**refer to the Dataset Path, Dataset
Description, and Variable Description**) **or preprocessed files generated by other agents**
(**refer to "Other Files"**), along with the modeling process and given code template. Other

Therefore, it is crucial that:

1. **Ensure the code is executable** and will successfully run without errors, producing the
expected results. **It should be tested to verify it works in the intended environment**.

2. **Reuse files from "Other Files" whenever possible** instead of redoing tasks that have
already been completed by other agents.

3. **All data processing steps must save the processed results to local files (CSV, JSON, or
pickle) for easy access by other agents.**

agents will use your results to make decisions, but they will **not** review your code.
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4. **The output should be as detailed as possible**, including intermediate results and final
outputs.
5. **Ensure transparency** by logging key computation steps and providing clear outputs.

## Implementation Guidelines:

- **Prioritize using files from "Other Files" before processing raw data** to avoid redundant
computation.

- Follow the provided **modeling formulas** and **modeling process** precisely.

- The **code must be executable**: ensure that the Python code you generate runs without
errors. Do not just focus on producing the correct output format; **focus on producing a
working solution** that can be executed successfully in a Python environment.

- **Store intermediate and final data processing results to local** in appropriate formats (e.g.,
CSV, JSON, or pickle).

- Provide **detailed print/logging outputs** to ensure that other agents can understand the
results without needing to read the code.

{user_prompt}

## Expected Response Format:

You **MUST** return the Python implementation in the following format:
“‘python

# Here is the Python code.

1113
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Figure 27: The prompt used for generating code. It instructs the agent to produce fully executable
Python implementations aligned with prior modeling outputs, while ensuring correctness, repro-
ducibility, and interoperability within a multi-agent system through structured input, logging, and

file-based output handling.

Code Debugging Prompt

# Code Template:
{code_template }

# Modeling Process:
{modeling_process}

# Current Code:
{code}

However, there are some bugs in this version. Here is the execution result:
# Execution Result:
{observation }

You are a helpful programming expert. Based on the provided execution result,
please revise the script to fix these bugs. Your task is to address the error indicated in the
result, and refine or modify the code as needed to ensure it works correctly.

{user_prompt}

Please respond exactly in the following format:

“‘python

# Provide the corrected python code here.

1113

Figure 28: The prompt used for debugging code. It instructs the agent to identify and fix execution
errors based on observed outputs, ensuring that the corrected Python script is functional, aligned with

the modeling process, and ready for downstream use.
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Code Structure Extraction Prompt

You are a programming expert. Please extract the structure from the following code and
output it in the following JSON format, please return an empty list if the corresponding item
is not available.:

The code is:

“‘python

{code}

1113

The output format is:

133

json
{{
"script_path": {save_path}
"class": [
{{
"name": class name,
"description": description of class,
"class_functions": [
{{
"name": function name,
"description": description of class function,
"parameters": [
{{
"name": param name,
"type": param type,
"description": description of param,

s
]9
"returns": {{
"description": "return of the function."
H,
H
]
H
1,
"function": [
8t
"name": function name,
"description": description of class function,
"parameters": [
{{
"name": param name,
"type": param type,
"description": description of param,
s
1,
"returns": {{
"description": "return of the function."
1
H
I,
"file_outputs": [
{

"path": "file_path",
"file_description": "description of the file",
"column_name": ["column_name_if csv_else_None"]
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1,

—_

Figure 29: The prompt used for extracting the structure of code.

Result Interpretation Prompt

# Task Description:
{task_description}

# Task Analysis:
{task_analysis}

# Task Modeling Formulas:
{task_formulas}

# Task Modeling:
{task_modeling}

# Code Execution Result:
{execution_result}

Based on the task description, analysis, modeling framework, and code execution
result, present a comprehensive and detailed account of the intermediate results, calculations,
and outcomes generated during the task. Clearly articulate the results of any computations
or operations performed, providing numerical values, data trends, or statistical measures
as necessary. If visual representations such as graphs, charts, or tables were used to
communicate the results, ensure they are clearly labeled and explained, highlighting their
relevance to the overall task. Discuss the intermediate steps or processes that led to the
results, including any transformations or assumptions made during calculations. If applicable,
compare and contrast these results with expected outcomes or previously known results to
gauge the task’s success. Provide a thoughtful interpretation of the findings, considering how
they contribute to advancing understanding or solving the problem at hand, and highlight any
areas where further investigation or refinement may be needed.

{user_prompt}

Respond as comprehensively and in as much detail as possible. Do not format your response
in Markdown. Using plain text and LaTeX for formulas only, without any Markdown
formatting or syntax. Written as one or more cohesive paragraphs. Avoid structuring your
answer in bullet points or numbered lists.

Figure 30: The prompt used for extracting the structure of code. It guides the agent to parse and
represent the structural elements of the code, including functions, classes, parameters, and output
files, in a standardized JSON format to support traceability, reuse, and documentation in downstream
tasks.

Solution Formulation Prompt

# Task Description:
{task_description}

# Task Analysis:
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{task_analysis}

# Task Modeling Formulas:
{task_formulas}

# Task Modeling:
{task_modeling}

# Task Result:
{task_result}

Craft a comprehensive and insightful answer section that synthesizes the findings
presented in the results section to directly address the research questions and objectives
outlined at the outset of the study. Begin by clearly stating the primary conclusions drawn
from the analysis, ensuring that each conclusion is explicitly linked to specific aspects of
the results. Discuss how these conclusions validate or challenge the initial hypotheses or
theoretical expectations, providing a coherent narrative that illustrates the progression from
data to insight.

Evaluate the effectiveness and reliability of the mathematical models employed,
highlighting strengths such as predictive accuracy, robustness, or computational efficiency.
Address any limitations encountered during the modeling process, explaining how they
may impact the validity of the conclusions and suggesting potential remedies or alternative
approaches. Consider the sensitivity of the model to various parameters and the extent to
which the results are generalizable to other contexts or applications.

Analyze potential biases that may have influenced the results, including data bias,
model bias, and computational bias. Discuss whether the dataset is representative of the
problem space and whether any imbalances, selection biases, or sampling limitations might
have affected the conclusions. Examine modeling assumptions, parameter choices, and
architectural constraints that could introduce systematic deviations in the results. Assess how
numerical precision, algorithmic approximations, or implementation details might influence
the stability and fairness of the model’s predictions.

Discuss strategies to mitigate identified biases and improve the reliability of the
conclusions. Consider adjustments in data preprocessing, such as resampling, normalization,
or augmentation, to address distribution imbalances. Explore refinements to the modeling
process, including regularization techniques, fairness constraints, and sensitivity analyses, to
ensure robustness across different scenarios. Evaluate the impact of alternative modeling
approaches and discuss the extent to which the proposed methods can generalize beyond the
given dataset or problem context.

Explore the broader implications of the findings for the field of study, identifying
how they contribute to existing knowledge, inform future research directions, or influence
practical applications. Discuss any unexpected outcomes and their significance, offering
interpretations that may reveal new avenues for exploration or theoretical development.
Reflect on the societal, economic, or environmental relevance of the results, if applicable,
and propose recommendations based on the study’s insights.

Conclude the section by summarizing the key takeaways, emphasizing the contribu-
tion of the research to solving the problem at hand, and outlining the next steps for further
investigation or implementation. Ensure that the discussion is logically structured, with each
paragraph building upon the previous ones to form a cohesive and persuasive argument that
underscores the study’s value and impact.
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The content of this Task Answer section should be distinct and not merely a repeti-
tion of the Task Result section. Ensure that there is no duplication.

{user_prompt}

Respond as comprehensively and in as much detail as possible. Do not format your
response in Markdown. Using plain text and LaTeX for formulas only, without any
Markdown formatting or syntax. Written as one or more cohesive paragraphs. Avoid
structuring your answer in bullet points or numbered lists.

\. J

Figure 31: The prompt used for formulating the solution. It guides the agent to synthesize modeling
results into a coherent, bias-aware, and insight-driven conclusion that addresses research objectives,
evaluates model reliability, and reflects on broader implications.

Chart Guidelines Generation Prompt

## Instruction

Create a highly detailed and comprehensive chart that effectively visualizes the complex
mathematical relationships and insights presented in the provided mathematical modeling
paper. Begin by selecting the most appropriate type of chart—such as a line graph, bar chart,
scatter plot, heatmap, or 3D surface plot—based on the nature of the data and the specific
relationships being analyzed. Clearly define the variables involved, including their units and
scales, and incorporate any derived metrics that enhance interpretability. Ensure that the axes
are labeled accurately and descriptively, with appropriate units and scales, whether linear
or logarithmic, to best represent the data distribution and relationships. Include a clear and
concise legend that distinguishes between different datasets or variables, using distinct colors
or patterns that are both aesthetically pleasing and easily distinguishable. Utilize gridlines to
aid in the accurate reading of values, and choose a color scheme that enhances readability
while maintaining visual appeal.

Emphasize the core purpose of the chart, whether it is to highlight trends over time,
compare different values, show distributions, illustrate correlations, validate theoretical
models, or support key arguments within the paper. Articulate the intended message of
the chart clearly, ensuring that every design choice—from the type of chart to the specific
visual elements used—aligns with the objectives of the mathematical modeling paper.
Incorporate multiple lines or bars if comparing different datasets, use shading or contouring
for density representation, and add error bars to indicate uncertainty where applicable.
Include annotations to highlight significant data points, trends, or anomalies that are critical
to the analysis, providing context and explanations that guide the viewer’s understanding.

Balance aesthetics with functionality by selecting colors and contrasts that not only
make the chart visually compelling but also enhance readability and comprehension. Avoid
unnecessary complexity by keeping the design clean and focused, ensuring that the chart
remains clear and easy to interpret without sacrificing accuracy or depth of information. If
beneficial, incorporate supplementary visual aids such as trend lines, regression curves, or
overlays of empirical and theoretical results to strengthen the analysis and provide additional
layers of insight. The final chart should serve as a precise and compelling visualization
that effectively conveys the mathematical insights, facilitates understanding, and robustly
supports the overall narrative and conclusions of the mathematical modeling paper.

{user_prompt}

## Paper Content
<paper>

{ paper_content}
</paper>
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## Existing Charts
{existing_charts}

## Create a New Chart

Please create a chart that aligns closely with the above paper content while avoid-
ing redundancy with existing charts. Follow the markdown format below to describe your
chart:

**Chart Title**
[Provide a clear and descriptive title for the chart]

**Chart Type**
[Specify the type of chart]

**Purpose™*
[Describe the core purpose of the chart in a paragraph]

**Data or Variables**
[Describe the data or variables used in the chart in a paragraph]

**Chart Presentation Guidelines**

[A comprehensive guide on chart presentation, covering data representation, key layout
elements, units, axis labels, legends, gridlines, annotations, and other essential considerations
for effective visualization.]

**Intended Message**
[Articulate the key message or insight the chart is intended to convey in a paragraph]

\. J

Figure 32: The prompt used for generating chart creation guidelines. It instructs the agent to
design detailed, purpose-driven visualizations that align with the mathematical insights of the paper,
specifying data, layout, annotation, and interpretability considerations to ensure clarity, relevance,
and analytical depth.

Paper Chapter Creation Prompt

You are tasked with creating a publication-quality LaTeX chapter for a mathematical
modeling research paper. Carefully transform the provided structured draft into a coherent,
rigorous, and concise narrative chapter that aligns logically and seamlessly with the
previously written content.

## Target Chapter:
{chapter_path}

## Structured Draft:
<structured_draft>
{json_context}
</structured_draft>

## Preceding Chapters (for seamless narrative integration and avoiding repetition):
<preceding_content>

{previous_chapters}

</preceding_content>

## Requirements:
- Write exclusively in accurate, idiomatic LaTeX; avoid Markdown syntax and symbols
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entirely.

- Clearly indicate the chapter content corresponds precisely to the target chapter ‘{chap-
ter_path}‘; do not repeat or reference explicitly the content of other chapters.

- Integrate any mathematical formulas properly using correct LaTeX environments
(“\begin{align} ‘). Truncate and wrap long formulas and symbols.

- Present the chapter as a continuous, fluent narrative without section headings, subsections,
bullet points, or numbered lists, Response only chapter content, do not include headlines and
anything else.

- Critically evaluate the structured draft, selecting only most high-quality important and
relevant content. Remove all redundancy, eliminate low-value statements, and distill essential
information clearly and succinctly.

- Maintain rigorous academic style, logical coherence, and clarity throughout, ensuring that
the chapter integrates naturally with preceding chapters.

## Output Format:

“‘latex
CHAPTER_CONTENT_TEXT

113
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Figure 33: The prompt used for creating a paper chapter. It guides the agent to transform a structured
draft into a fluent, publication-ready LaTeX chapter that integrates rigorously with preceding content
while ensuring clarity, conciseness, and academic coherence.

Paper Chapter Creation with Preceding Prompt

You are tasked with generating a publication-quality LaTeX chapter for a mathematical
modeling paper. Write a cohesive, academically rigorous chapter that integrates seamlessly
with the preceding content of the paper.

## Chapter to write:
{chapter_path}

## Preceding Content:
<preceding_content>
{previous_chapters}
<preceding_content>

## Writing Requirements:
- Use accurate and proper LaTeX syntax throughout, avoid all Markdown syntax or symbols.
- Present the content as a continuous, coherent narrative without using sections, subsections,
or bullet points. Response only chapter content, do not include headlines and anything else.
- Make it clear that the section you need to write is ‘{chapter_path}‘. Do not involve the
content of other chapters.

\. J

Figure 34: The prompt used for creating a paper chapter with preceding content. It guides the agent
to generate a cohesive, LaTeX-formatted chapter that maintains academic rigor and continuity with
prior sections, ensuring seamless narrative flow while adhering strictly to chapter boundaries.

Paper Notation Creation Prompt

You are an Al assistant trained to extract and typeset the Notations table from a mathematical
modeling paper in LaTeX format. Your task is to take the input paper and output a properly
formatted LaTeX table displaying the notations used in the paper.

1. Well-structured and easy to read.
2. Properly typeset for LaTeX documents.
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3. Adaptive in size and position to fit neatly into any document.
4. Truncate and wrap long formulas, symbols and text in the table for better readability.

<paper>
{previous_chapters}
</paper>

Exmple of Table Format:
“‘latex
\begin{table}[H]
\centering
\renewcommand{\arraystretch}{1.3}
\begin{tabular} {>{\raggedright\arraybackslash}p{3cm}>
{\raggedright\arraybackslash}p{11lcm}}
\toprule
\textbf{Notation} & \textbf{Description}
\midrule
(f(x) ) & description...
\bottomrule
\end{tabular}
\caption{Table of Notations}
\label{tab:notations }
\end{table}

1113

Response only latex table content, do not include headlines and anything else.

Figure 35: The prompt used for creating paper notations. It instructs the agent to extract and format
a LaTeX-compatible notations table from the paper, ensuring clarity, structural consistency, and
integration within mathematical modeling documents.

Paper Meta Information Prompt

You are an expert academic writer tasked with analyzing paper chapters and generating key
metadata for a mathematical modeling paper.

# Input Chapters
{paper_chapters}

Based on the content of these chapters, please generate:

1. A concise, descriptive title that reflects the paper’s main focus

2. A comprehensive and detailed summary highlighting key findings and methodology
3. 4-6 relevant keywords that capture the paper’s main themes

Returns the Legal JSON Format:
“Json
{{

"title": "A clear, concise title",

"summary": "A well-structured summary covering the following information: \n-
Restatement and Clarification of the Problem: Describe the problem to be solved in your own
words.\n- Explanation of Assumptions and Their Rationality: Highlight the assumptions
made in the modeling process and clearly list all the variables required for the model.\n-
Model Design and Rationality Argumentation: Specify the type of model used or describe
the construction of a new model, explain how it was established and the rationale behind its
design.\n- Description of Model Testing and Sensitivity Analysis: Include error analysis and
other testing items.",
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"keywords": "keyword1; keyword2; keyword3; keyword4..."
1

1113

Requirements:

- Title should be specific and academic in tone

- Summary should follow standard academic abstract structure and be approximately 400
words

- Keywords should be ordered from general to specific

- must return a strictly legal JSON

Figure 36: The prompt used for creating paper meta information. It instructs the agent to generate a
publication-ready title, abstract, and keyword set from chapter content, producing a structured and
legally formatted JSON summary aligned with academic conventions.
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