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Abstract

Mixed-integer nonlinear programs (MINLPs) arise in domains as diverse as energy1

systems and transportation, but are notoriously difficult to solve, particularly at2

scale. While learning-to-optimize (L2O) methods have been successful at con-3

tinuous optimization, extending them to MINLPs is challenging due to integer4

constraints. To overcome this, we propose the first general L2O method for para-5

metric MINLPs with two integer correction layers to ensure the integrality of the6

solution and a projection step to ensure the feasibility of the solution. We prove7

that the projection step converges, providing a theoretical guarantee for our method.8

Our experiments show that our methods efficiently solve MINLPs with up to tens9

of thousands of variables, providing high-quality solutions within milliseconds,10

even for problems where traditional solvers and heuristics fail.11

1 Introduction12

Mixed-integer optimization underlies diverse applications such as pricing [1], battery dispatch [2],13

transportation [3], and control [4]. While mixed-integer linear programs (MILPs) benefit from14

mature exact and heuristic methods [5, 6], many real-world problems are inherently nonlinear. Mixed-15

integer nonlinear programs (MINLPs) remain far more challenging, as classical approaches like outer16

approximation, branch-and-bound, and decomposition [7–9] often fail to scale to large or real-time17

settings.18

In applications such as bidding, energy dispatch, and robotics, problems must be solved repeatedly19

under varying inputs and tight time limits. This has motivated learning-to-optimize (L2O) methods,20

which leverage machine learning to accelerate or replace solvers by directly mapping features to21

decisions [10–12]. While promising, deploying L2O in practice requires respecting hard constraints.22

Prior work has explored constraint-encoding architectures [13], penalty relaxations [14, 15], geometric23

maps [16], and projection layers [17], but most assume continuous variables and cannot enforce24

integerity.25

We address this gap by proposing the first general-purpose L2O framework for parametric MINLPs.26

Our approach introduces differentiable correction layers that enable gradient flow through integer27

outputs and a lightweight projection heuristic to enhance feasibility. We provide theoretical guaran-28

tees on feasibility recovery and demonstrate strong empirical performance on challenging MINLP29

benchmarks.30

2 Related Work31

End-to-end optimization. End-to-end learning predicts optimization solutions directly, bypassing32

solvers for efficiency. Early work used Hopfield networks [18], later extended with penalty functions33
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for energy systems [19] and neural architectures embedding constraints [20]. While these supervised34

methods reduce inference cost, they require large datasets of precomputed solutions [21, 22]. Self-35

supervised approaches [17] address this by training from predicted objectives and constraint violations.36

Our work is the first to extend this paradigm to MINLPs, enabling label-free training at scale.37

Constrained neural architectures. Various techniques enforce constraints in learning-based op-38

timization, including embedding linear operators [13], graph-based architectures for TSP [23, 24],39

and log-barrier methods [25]. Penalty-based relaxations [14, 15] often perform well in practice,40

and differentiable correction layers [17] further improve feasibility. Unlike prior work focused on41

continuous domains, our method introduces integercorrection layers and projection tailored to integer42

variables.43

Learning for mixed-integer programming. Machine learning has been widely used to accelerate44

MILPs, including parameter tuning, branching, node selection, and cut generation [26–29]. Other45

work develops heuristics for generating integer solutions [30–33]. For MINLPs, however, learning46

remains limited, with attempts at cut selection [34], GNNs for assignment problems [35], surrogate47

linearization [36], and hybrid neural-solver approaches [37]. Our framework instead tackles general48

parametric MINLPs end-to-end, producing discrete solutions without reliance on solvers.49

3 Preliminaries50

Learning problem formulation. A generic training formulation for learning-to-optimize with51

parametric MINLPs is given by:52

min
Θ

E
[
f(x̂, ξ)

]
≈ 1

m

m∑
i=1

f(x̂i, ξi) s.t. g(x̂i, ξi) ≤ 0, x̂i ∈ Rnr × Znz , x̂i = ψΘ(ξ
i), ∀i ∈ [m].

For each instance ξi ∈ Rnξ , the neural networkψΘ predicts a solution x̂i = (x̂i
r, x̂

i
z) with continuous53

part x̂i
r ∈ Rnr and integer part x̂i

z ∈ Znz . The goal is to update model weights Θ that minimize54

the expected objective E
[
f(x̂, ξ)

]
while ensuring g(x̂i, ξi) ≤ 0. We assume that the objective and55

constraint functions are differentiable.56

Loss function. Our approach is self-supervised because the loss calculation does not rely on57

labeled data, which is particularly advantageous given the inherent difficulty of computing optimal or58

feasible solutions to MINLPs. The average value of the objective function f(·) serves as a natural59

loss function. However, solely minimizing the objective is insufficient when solutions violate the60

constraints. Therefore, similarly to Donti et al. [17], we incorporate penalty terms to account for61

constraint violations. This results in a soft-constrained empirical risk minimization loss, given as:62

L(Θ) =
1

m

m∑
i=1

[
f(x̂i, ξi) + λ · ∥g(x̂i, ξi)+∥1

]
, (2)

where x̂i = ψΘ(ξ
i) are the neural network outputs, ∥ (·)+ ∥1 penalizes only positive constraint63

violations (implemented via a ReLU function), and λ > 0 is a penalty hyperparameter that balances64

the trade-off between minimizing the objective function and satisfying the constraints.65

4 Methodology66

In this section, we introduce our novel L2O methodology for solving parametric MINLP problems.67

As illustrated in Figure 1, the approach consists of two core components: (i) integer correction layers68

and (ii) an integer feasibility projection. For clarity, we omit the parametric index i throughout.69

4.1 Integer Correction Layers70

To handle the integer decision variables in MINLPs, we propose two learnable correction layers:71

Rounding Classification (RC) and Learnable Threshold (LT). The mapping ψΘ : Rnξ 7→ Rnr × Znz72

from an instance parameter vector ξ to a mixed-integer solution x̂ is performed in two stages:73
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Figure 1: Conceptual diagram for our self-supervised learning-to-optimize approach for parametric
MINLP: Given a parameter ξ, the model predicts a relaxed solution x̄, which is then processed
through integer correction to enforce discrete outputs x̂. The model is trained in a self-supervised
manner using a loss that combines objective value and constraint violations. At inference time, an
iterative feasibility projection is applied to improve constraint satisfaction.

1. Relaxed Solution Mapping: The first step consists in applying a learnable mapping πΘ1
:74

Rnξ 7→ Rnr+nz , parameterized by weights Θ1. It outputs a relaxed solution x̄ ∈ Rnr+nz75

without enforcing integrality, i.e., x̄ = πΘ1
(ξ).76

2. Integer Correction: The second step is a correction module φΘ2
: Rnr+nz × Rnξ 7→77

Rnr × Znz that refines the relaxed solution x̄ into a mixed-integer solution x̂. It includes a78

trainable layer δΘ2 with learnable weights Θ2, which adaptively learns rounding decisions79

conditioned on both the parameter ξ and the relaxed solution x̄, i.e., x̂ = φΘ2(x̄, ξ).80

Algorithm 1 outlines the integer correction layer, implemented with the Straight-Through Estimator81

(STE)[38] to enable gradients through discrete operations. Unlike fixed rounding, our layers learn82

instance-dependent rounding strategies for each ξ. The loss in Equation (2) jointly optimizes network83

weights Θ = Θ1∪Θ2 by balancing objective value and constraint violations. Further implementation84

details and training visualizations are given in Appendices A and B.85

Conceptually, our integer correction layer is a learnable, end-to-end extension of the Relaxation86

Enforced Neighborhood Search (RENS) [39], implicitly exploring the neighborhood of relaxed87

solutions. Its simplicity enables fast training and inference, even on large-scale MINLPs.88

Algorithm 1 Integer Correction φΘ2
(x̄, ξ)

1: Input: initial relaxed solution x̄, parameters ξ,
and neural network δΘ2(·)

2: Obtain hidden states h← δΘ2(x̄, ξ)
3: Update continuous variables x̂r ← x̄r + hr

4: Round integer variables down x̂z ← ⌊x̄z⌋
5: if using Rounding Classification (RC) then
6: Obtain values v← Gumbel-Sigmoid(hz)
7: else if using Learnable Threshold (LT) then
8: Obtain logits r← (x̄z − x̂z)− h
9: Obtain values v← Sigmoid(10 · r)

10: end if
11: Obtain rounding directions b← I

(
v > 0.5

)
12: Update integer variables x̂z ← x̂z + b
13: Output: a mixed-integer solution x̂

Algorithm 2 Integer Feasibility Projection ϕ(x̄, ξ)
1: Input: initial relaxed solution x̄, parameters ξ, inte-

ger correction layer φΘ2(·), and step size η
2: while True do
3: Obtain updated integers x̂← φΘ2(x̄, ξ)
4: Compute violations V(x̂, ξ)← ∥g(x̂, ξ)+∥1
5: if V(x̂, ξ) = 0 then
6: Break
7: else
8: Compute gradients d← ∇x̄V(x̂, ξ)
9: Update relaxed solution x̄← x̄− ηd

10: end if
11: end while
12: Output: a mixed-integer solution x̂

4.2 Integer Feasibility Projection89

Despite the effectiveness of the proposed integer correction layers in ensuring integrality, penalty-90

based methods cannot fully guarantee constraint satisfaction. Therefore, we incorporate a gradient-91

based projection method as a post-processing step. This procedure iteratively updates a relaxed92

solution x̄ to reduce constraint violations, while preserving integrality through repeated application93

of the correction layer φΘ2
(x̄, ξ). Moreover, we provide a theoretical convergence guarantee for this94

projection procedure under mild assumptions. See Appendix C for the formal statement and proof.95
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Our approach efficiently alternates two lightweight steps: integer correction and gradient-based96

updates. In Algorithm 2, line 3 applies the correction layer to enforce integrality, while line 9—fol-97

lowing Donti et al. [17]—performs gradient descent to reduce constraint violations V(x̂). But unlike98

Donti et al. [17], who integrate feasibility projection during training, we apply it only at inference.99

Doing so avoids the need to retain deep computation graphs or compute second-order derivatives100

through repeated projections, preserving training efficiency and stability. This iterative structure re-101

sembles the classical “Feasibility Pump” [40], which also alternates between rounding and projection102

to find feasible solutions. However, unlike the original method that requires solving constrained103

subproblems, our correction step is learned from data through a trainable network.104

5 Experimental Results105

5.1 Experimental Setup106

Methods. We evaluate two learning-based methods: Rounding Classification (RC) and Learnable107

Threshold (LT) with their projection-enhanced variants (RC-P, LT-P) for feasibility. Baselines include108

exact solvers (EX: Gurobi for convex, SCIP for nonconvex) and solver heuristics (N1: first feasible109

solution), as well as simple heuristics that directly round continuous solutions (RR). This setup covers110

strategies ranging from exact to heuristic to learning-based, evaluated under a uniform 1000-second111

time limit.112

We also perform ablations: Rounding after Learning (RL) and Straight-Through Estimator rounding113

(RS). Results (Appendix G.1) show both perform substantially worse than our full models, confirming114

the importance of data-driven correction layers.115

Problem classes. We tested the methods on a variety of optimization problems:116

• Integer Quadratic Problems (IQPs). Based on [17], modified to include integer variables117

and reformulated by removing equality constraints.118

• Integer Non-convex Problems (INPs). Extend IQPs with trigonometric terms in the119

objective and parameterized constraint matrices.120

• Mixed-integer Rosenbrock Problems (MIRBs). A new large-scale MINLP benchmark121

with nonlinear constraints and parametric variation in both objectives and constraints.122

Further details on the mathematical formulation and data generation process are provided in Ap-123

pendix D. In addition, we evaluated our methods on integer linear programs (MILPs) in Appendix G.4.124

Training configuration. Each model is trained on 8,000 instances, validated on 1,000, and evaluated125

on a test set of 100 unseen samples. Exact solvers include Gurobi (for convex problems) and SCIP126

with Ipopt (for nonconvex problems). The detail of experimental setups are in Appendix E.1.127

Architecture and training hyperparameters are detailed in Appendix E.2. Our code is available at128

https://anonymous.4open.science/r/L2O-MINLP.129

Overall results. As illustrated in Figure 2, exact solvers such as Gurobi find better solutions over130

time but can be slow. For more complex problem instances, these solvers may fail to find feasible131

solutions within strict time limits. In contrast, our proposed methods consistently achieve high-quality132

feasible solutions within milliseconds. Even when accounting for training time (100 seconds), the133

overall efficiency of RC and LT remains substantially better.134

5.2 Empirical Evaluation135

We evaluate our methods on a range of problem instances. For IQPs and INPs, we tested problem136

sizes from 20 × 20 (20 decision variables and 20 constraints) to 1000 × 1000, while for MIRBs,137

we experimented with instances ranging from 2 to 20,000 decision variables with the number of138

constraints fixed at 4. The results are summarized in Table 2, Table 3, and Table 4, corresponding to139

IQPs, INPs, and MIRBs, respectively. For methods that rely on exact solvers (EX, N1, and RR), the140

solver may fail to find any solution within the time limit. To account for this, we report “%Solved”,141

which indicates the proportion of instances obtained within the given computational budget.142
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Figure 2: Illustration of objective value evolution for a 100 × 100 Integer Quadratic and 60 × 4
Mixed-Integer Rosenbrock over 600 seconds. The RC-P and LT-P methods achieve subsecond
solutions comparable to those found by exact solvers in hundreds of seconds.

Q1. How do learning-based methods compare to traditional solvers and heuristics? Traditional143

methods (EX, RR, N1) struggle on larger instances, often failing to return solutions within 1000144

seconds. N1 quickly finds feasible solutions on small problems but suffers from instability at scale,145

while RR fails to ensure feasibility across all sizes. In contrast, RC and LT remain effective, matching146

EX on objectives with orders-of-magnitude speedups. For IQPs and INPs, they clearly outperform147

heuristic baselines, and in MIRBs, they even surpass EX. Overall, our learning-based methods offer148

significant gains in scalability, speed, and solution quality.149

Q2. How effective is the integer feasibility projection? RC-P and LT-P achieve feasibility on all150

test instances. As shown in Appendix F.1, constraint violations in RC and LT in IQPs and INPs are151

sparse and minor, which allows the projection step to correct infeasibilities with negligible impact152

on the objective value. For MIRBs, it becomes critical. As the feasibility of RC and LT degrade153

at 20,000 variables, RC-P and LT-P still satisfy all constraints. Despite the added step, inference154

remains under one second, preserving large speedups over other methods. These results highlight155

both the effectiveness and efficiency of our projection approach.156

Q3. How does the choice of penalty weight affect performance? The penalty weight (λ in Equa-157

tion (2)) controls the trade-off between objective and feasibility. As shown in Figure 3, On 1000×1000158

INPs (with results for other benchmarks in Appendix G.2), small λ yields better objectives but more159

infeasibility, while large λ improves feasibility at the cost of optimality. Our projection step within160

1000 iterations restores feasibility even under small λ, while largely preserving low objectives. This161

pattern holds across benchmarks, suggesting RC-P and LT-P can exploit lower penalty weights than162

in the main experiments.163

0.1 1 10 100 1000
Penalty Weights

0

20

40

60

80

100

%
F

ea
si

b
ili

ty

Method

RC

LT

RC-P

LT-P

0.1 1 10 100 1000
Penalty Weights

−20

0

20

O
b

je
ct

iv
e

V
al

u
e

Method

RC

LT

RC-P

LT-P

Figure 3: Illustration of the proportion of feasible solutions (Top) and objective value (Bottom) for
1000× 1000 INC on the test set. As the penalty weight increases, the fraction of feasible solutions
increases while the objective value generally deteriorates.

Q4. How long is the training time? Beyond solution quality and inference time, we also report164

offline training times (Appendix F.2). Training scales well, taking only minutes for small instances165

and under 30 minutes for the largest, often less than finding a single feasible solution with exact166

solvers. Since the cost is amortized across many instances, our approach is well-suited for large-scale,167

real-time applications.168
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Results for IQPs, INPs, and MIRBs over 100 test instances. “Obj Mean”/“Obj Med” are mean/median
objectives (smaller is better). “Feasible” is the fraction of feasible solutions, “Solved” is the percentage
solved within 1000s, and “Time” is the average runtime. “—” indicates no solution found. For
methods with 100% feasibility, the best metrics are in bold.

Table 2: Results for IQP
Metric 20×20 50×50 100×100 200×200 500×500 1000×1000

RC

Obj Mean −4.237 −12.20 −13.54 −31.62 −73.31 −142.7
Obj Med −4.307 −12.20 −13.60 −31.71 −73.38 −142.7
Feasible 99% 99% 96% 97% 86% 82%
Time 0.0019 0.0019 0.0022 0.0021 0.0025 0.0042

RC-P

Obj Mean −4.238 −12.20 −13.54 −31.62 −73.31 −142.7
Obj Med −4.307 −12.20 −13.57 −31.71 −73.38 −142.7
Feasible 100% 100% 100% 100% 100% 100%
Time 0.0045 0.0055 0.0050 0.0050 0.0065 0.0090

LT

Obj Mean −4.302 −12.98 −13.65 −31.34 −72.36 −142.6
Obj Med −4.319 −13.03 −13.77 −31.61 −72.48 −142.6
Feasible 98% 98% 93% 95% 94% 100%
Time 0.0020 0.0020 0.0023 0.0022 0.0026 0.0047

LT-P

Obj Mean −4.301 −12.98 −13.65 −31.34 −72.36 −142.6
Obj Med −4.316 −13.03 −13.77 −31.61 −72.48 −142.6
Feasible 100% 100% 100% 100% 100% 100%
Time 0.0056 0.0055 0.0100 0.0064 0.0063 0.0086

EX

Obj Mean −5.120 −15.93 −20.79 — — —
Obj Med −5.130 −15.96 −20.78 — — —
Feasible 100% 100% 100% — — —
Solved 100% 100% 100% 0% 0% 0%
Time 8.728 1520 1237 — — —

RR

Obj Mean −5.179 −16.17 −21.92 −46.73 −106.5 −213.3
Obj Median −5.217 −16.21 −21.89 −46.76 −106.5 −213.3
Feasible 0% 0% 0% 0% 0% 0%
Solved 100% 100% 100% 100% 100% 100%
Time 0.417 0.440 0.583 0.846 2.639 8.874

N1

Obj Mean 9.8e7 1.7e17 1.5e18 — — —
Obj Med 9.600 2.4e17 1.4e18 — — —
Feasible 100% 100% 100% — — —
Solved 100% 100% 100% 0% 0% 0%
Time 0.415 0.498 104.2 — — —

Table 3: Results for INP
Metric 20×20 50×50 100×100 200×200 500×500 1000×1000

RC

Obj Mean 0.228 0.771 1.664 1.472 0.526 1.422
Obj Med 0.217 0.752 1.594 1.436 0.526 0.809
Feasible 100% 98% 100% 99% 96% 97%
Time 0.0019 0.0020 0.0022 0.0022 0.0029 0.0040

RC-P

Obj Mean 0.228 0.772 1.664 1.471 0.524 1.423
Obj Median 0.217 0.752 1.594 1.436 0.526 0.809
Feasible 100% 100% 100% 100% 100% 100%
Time 0.0045 0.0058 0.0060 0.0054 0.0061 0.0115

LT

Obj Mean 0.195 0.580 0.669 −0.356 −1.374 −3.744
Obj Med 0.175 0.566 0.649 −0.373 −1.594 −3.716
Feasible 99% 98% 96% 100% 98% 99%
Time 0.0019 0.0020 0.0021 0.0023 0.0029 0.0050

LT-P

Obj Mean 0.195 0.580 0.669 −0.356 −1.374 −3.744
Obj Median 0.175 0.566 0.649 −0.373 −1.594 −3.716
Feasible 100% 100% 100% 100% 100% 100%
Time 0.0048 0.0050 0.0058 0.0056 0.0072 0.0117

EX

Obj Mean −0.453 1.649 256.93 — — —
Obj Med −0.463−0.052 134.62 — — —
Feasible 100% 100% 14% — — —
Solved 100% 100% 14% 0% 0% 0%
Time 0.9949 1001 1001 — — —

RR

Obj Mean −0.464 −1.039 −2.068 −3.990 −9.391 —
Obj Med −0.476 −1.215 −2.307 −4.327 −9.221 —
Feasible 3% 0% 0% 0% 0% —
Solved 100% 100% 100% 100% 100% 0%
Time 0.996 1.189 4.600 54.01 449.0 —

N1

Obj Mean 2.1e4 3.7e6 4411 — — —
Obj Med 2.222 45.85 155.2 — — —
Feasible 100% 100% 14% — — —
Solved 100% 100% 14% 0% 0% 0%
Time 0.144 8.968 940.4 — — —

Table 4: Results for MIRB
Metric 2×4 20×4 200×4 2000×4 20000×4 Metric 2×4 20×4 200×4 2000×4 20000×4

RC

Obj Mean 23.27 59.39 503.5 5938 6.7e4

RC-P

Obj Mean 23.50 59.39 504.2 5942 9.8e4
Obj Med 21.48 48.86 461.7 5792 6.7e4 Obj Med 21.48 48.86 461.7 5792 7.3e4
Feasible 97% 100% 99% 99% 76% Feasible 100% 100% 100% 100% 100%
Time 0.0019 0.0019 0.0021 0.0033 0.0121 Time 0.0062 0.0048 0.0052 0.0070 0.0824

LT

Obj Mean 23.18 62.51 622.8 5612 4.8e4

LT-P

Obj Mean 23.33 62.51 622.8 5615 8.0e4
Obj Med 20.80 63.40 626.0 5558 3.5e4 Obj Med 20.80 63.40 626.0 5558 4.5e4
Feasible 98% 100% 100% 97% 66% Feasible 100% 100% 100% 100% 100%
Time 0.0019 0.0020 0.0026 0.0030 0.0127 Time 0.0062 0.0055 0.0062 0.0071 0.0639

EX

Obj Mean 19.62 64.67 8.4e5 4.7e10 1.1e15

RR

Obj Mean 22.24 1.2e4 1.4e4 2.1e6 1.7e8
Obj Med 18.20 59.16 908.8 9262 1.0e5 Obj Med 22.19 51.17 501.9 5437 7.0e6
Feasible 100% 100% 100% 96% 78% Feasible 55% 59% 40% 6% 18%
Solved 100% 100% 100% 96% 78% Solved 100% 100% 58% 7% 22%
Time 3.5090 1005 1002 1002 1040 Time 0.1805 0.5570 1.2396 9.2334 1064

N1

Obj Mean 40.37 87.83 3.7e8 8.3e12 1.2e15
Obj Med 27.93 77.34 957.4 9379 1.0e5
Feasible 100% 100% 100% 95% 78%
Solved 100% 100% 100% 95% 78%
Time 0.0323 0.0813 0.2608 71.91 782.1

6 Conclusion169

We presented the first general L2O framework for parametric MINLPs, introducing integer correction170

layers that enable neural networks to produce feasible, high-quality solutions without labeled data.171

A lightweight feasibility projection further strengthens constraint satisfaction with negligible cost.172

Our methods outperform solvers and heuristics across diverse problems, scaling to high-dimensional173

settings where traditional approaches fail. To our knowledge, the first successful L2O approach for174

large-scale MINLPs.175

Our feasibility guarantees rely on specific assumptions, and extending them to more general non-176

convex MINLPs remains challenging. Future work may explore hybrid approaches, where some177

constraints are enforced by differentiable layers [41] and others by loss-based penalties, as well as178

specialized architectures [20, 42] that inherently satisfy constraints.179
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A Details of Correction Layers341

The following subsections detail the two distinct approaches for designing the correction layer φΘ2342

while sharing the same network πΘ1 for generating relaxed solutions x̄i in both methods. RC and343

LT in Algorithm 1 differ in how they determine the rounding direction: RC adopts a probabilistic344

approach to decide the rounding direction for each integer variable, while LT yields a threshold vector345

to control the rounding process. Both methods are differentiable, easy to train using gradient descent,346

and computationally efficient during inference. The workflow for each approach is illustrated in347

Figure 4.348

Rounding Classification
𝜑𝜑Θ1 𝑎𝑎, 𝑏𝑏, 𝑥̅𝑥, �𝑦𝑦

Input: 𝑎𝑎 = 3.83, 𝑏𝑏 = 6.04

Relaxed Solution:
𝑥̅𝑥 = −1.17, �𝑦𝑦 = 2.98 

Neural Network 𝛿𝛿Θ2 𝑎𝑎, 𝑏𝑏, 𝑥̅𝑥, �𝑦𝑦

Hidden State:
ℎ𝑥𝑥 = −0.68, ℎ𝑦𝑦 = 9.49

Update Continuous Var:
 �𝑥𝑥 = 𝑥̅𝑥 + ℎ𝑥𝑥 = −1.85 

Round Integer Var:
Gumbel_Sigmoid ℎ𝑦𝑦 ≥ 0.5 
→ �y = �𝑦𝑦 = 3 

Loss Function: ℒO𝑏𝑏𝑏𝑏 + 𝜆𝜆 � ℒ𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

Mixed-Integer Solution: �𝑥𝑥 = −1.85, �y = 3 

min
𝑥𝑥∈ℝ,𝑦𝑦∈ℤ

𝑎𝑎 − 𝑥𝑥 2 + 50 𝑦𝑦 − 𝑥𝑥2 2

𝑠𝑠. 𝑡𝑡.  𝑦𝑦 ≥
1
2 𝑏𝑏, 𝑥𝑥2 ≤ 𝑏𝑏, 𝑥𝑥 ≤ 0, 𝑦𝑦 ≥ 0

Relaxed Solution Mapping 
𝜋𝜋Θ1 𝑎𝑎, 𝑏𝑏

Learnable Threshold
𝜑𝜑Θ1 𝑎𝑎, 𝑏𝑏, 𝑥̅𝑥, �𝑦𝑦

Input: 𝑎𝑎 = 3.83, 𝑏𝑏 = 6.04

Relaxed Solution:
𝑥̅𝑥 = −1.14, �𝑦𝑦 = 3.09 

Neural Network 𝛿𝛿Θ2 𝑎𝑎, 𝑏𝑏, 𝑥̅𝑥, �𝑦𝑦

Hidden State:
ℎ𝑥𝑥 = 0.14, ℎ𝑦𝑦 = −1.84

Update Continuous Var:
 �𝑥𝑥 = 𝑥̅𝑥 + ℎ𝑥𝑥 = −1.83 

Round Integer Var:
 Sigmoid �𝑦𝑦 − �𝑦𝑦 − ℎ𝑦𝑦 > 0.5

→ �y = �𝑦𝑦 = 3

Loss Function: ℒO𝑏𝑏𝑏𝑏 + 𝜆𝜆 � ℒ𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

Mixed-Integer Solution: �𝑥𝑥 = −1.83, �y = 3 

min
𝑥𝑥∈ℝ,𝑦𝑦∈ℤ

𝑎𝑎 − 𝑥𝑥 2 + 50 𝑦𝑦 − 𝑥𝑥2 2

𝑠𝑠. 𝑡𝑡.  𝑦𝑦 ≥
1
2 𝑏𝑏, 𝑥𝑥2 ≤ 𝑏𝑏, 𝑥𝑥 ≤ 0, 𝑦𝑦 ≥ 0

Relaxed Solution Mapping 
𝜋𝜋Θ1 𝑎𝑎, 𝑏𝑏

Figure 4: Examples of the two integer correction layers: Rounding Classification (left) uses a
classification-based rounding strategy, while Learnable Threshold (right) yields a threshold to guide
rounding decisions.

A.1 Rounding Classification349

Forward Pass. The key step of the Rounding Classification (RC) approach is performed in line 6350

of Algorithm 1. For the integer variables, RC applies a stochastic soft-rounding mechanism to the351

neural network output hz = δΘ2
(x̄, ξ), producing a binary vector b ∈ {0, 1}nz . Each entry of b352

determines whether the fractional part of the relaxed value x̄z is rounded down (0) or up (1).353

To introduce stochasticity and enhance exploration during training, the Gumbel-noise method [43] is
employed. Specifically, logits hz are perturbed by noise sampled from the Gumbel distribution:

ϵ = − log(− log(U)), U ∼ Uniform(0, 1).

where U is a random variable drawn from the uniform distribution over the interval [0, 1]. The
perturbed logits are then passed through the Sigmoid function to produce a soft decision (probability)
v for rounding. Hence our binary Gumbel-Sigmoid(h) layer is defined as:

v =
1

1 + exp
(
− h+ϵ1−ϵ2

τ

)
where ϵ1 and ϵ2 are vectors of independent Gumbel samples, and τ > 0 is the scalar temperature354

parameter controlling the smoothness of the approximation. A smaller τ produces sharper transitions,355

approaching a hard step function, while a larger τ yields smoother probabilistic behavior. In our356

experiments, we set τ = 1 for simplicity.357

To obtain binary decisions, we apply the following indicator function in the forward pass:

b = I(v > 0.5).

The correction layer φΘ2 for RC produces the final integer output as:

x̂z = ⌊x̄z⌋+ b.
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Backward Pass. Because the binarization operation is non-differentiable, the gradient of b w.r.t.
the v is approximated with STE. Hence, the final gradient of b w.r.t. the input logit h is approximated
by the gradient of the Gumbel-Sigmoid given as:

∂b

∂h
:=

∂v

∂h
=

1

τ
· v ⊙ (1− v)

where the gradient expression is computed elementwise, with ⊙ denoting the Hadamard (elemen-358

twise) product. This formulation allows gradients to flow during backpropagation despite the359

non-differentiable binarization.360

Lipschitz Smoothness Lφ of the Gradient. Now applying the chain rule, the gradient of the binary
decision vector b with respect to the inputs x̄z of the network δΘ2 is given by:

∂b

∂x̄z
=

∂b

∂hz
· ∂hz

∂x̄z
≈ ∂v

∂hz
· ∂δΘ2

(x̄, ξ)

∂x̄z
=

1

τ
· v ⊙ (1− v) · ∂δΘ2

(x̄, ξ)

∂x̄z
.

Meanwhile, since the floor operation ⌊x̄z⌋ is non-differentiable, we again apply the STE by treating361

it as the identity function during backpropagation:362

∂⌊x̄z⌋
∂x̄z

:= I,

hence, contributing a Lipschitz constant of 1 to x̄z .363

The Jacobian of the RC correction layer to the neural network input x̄ can thus be approximated as:

∇x̄φΘ2(x̄) ≈ I+
1

τ
· diag(v ⊙ (1− v)) · ∇x̄δΘ2(x̄, ξ).

We now analyze the Lipschitz constant of this gradient map. Define the scalar function. Let us define
the scalar function:

g(h) =
1

τ
· σ (z) (1− σ (z)) ,

where σ(·)is the sigmoid function, z = h+ϵ1−ϵ2
τ , and ϵ1, ϵ2 ∼ Gumbel(0, 1) are independent samples.364

This function corresponds to the elementwise gradient of the Gumbel-Sigmoid output with respect to365

its input logit h, under the STE approximation we use in the backward pass. It reflects the sensitivity366

of the soft relaxation v to changes in the perturbed logits h. The shape and boundedness of g(h)367

directly influence the stability and smoothness of our optimization process.368

The maximum absolute value of this derivative over all z ∈ R determines the Lipschitz constant. The
product σ(z)(1−σ(z))(1− 2σ(z)) attains its maximum absolute value at σ(z) = 1

2 ± 1
2
√
3

, yielding:

|g′(h)| ≤ 1

6
√
3τ2
≈ 0.0962

τ2

Hence, the Lipschitz constant of the STE-approximated gradient of the Gumbel-Sigmoid layer is
bounded by:

LGumbel ≤
0.0962

τ2

This implies that as the temperature τ decreases (to make the sampling sharper), the gradient becomes369

more sensitive to changes in h, which can affect training stability.370

We now estimate the Lipschitz constant of the approximate Jacobian ∇x̄φΘ2
(x̄), which is central to

the convergence analysis of the integer feasibility projection (see Theorem 1). Since both the Gumbel
modulation term and the neural network are Lipschitz continuous, the local Lipschitz constant is
bounded by

Lφ ≤ LGumbel · ∥∇x̄δΘ2(x̄, ξ)∥ ,
where ∥·∥ denotes the spectral (operator) norm, i.e., the largest singular value of the Jacobian. For a
global Lipschitz estimate, we have

Lglobal
φ ≤ 0.0962

τ2
· sup

x̄
∥∇x̄δΘ2

(x̄, ξ)∥ .

This bound highlights how the temperature parameter τ and the smoothness of the logit network371

jointly affect the stability of the correction layer. In our setup with τ = 1, this yields a concrete local372

bound Lφ ≤ 0.0962 · ∥∇x̄δΘ2
(x̄, ξ)∥.373
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A.2 Learnable Threshold374

Forward Pass. The Learnable Threshold (LT) approach, detailed in of Algorithm 1, provides an
alternative correction strategy. Instead of relying on probability as in RC, LT learns to predict a
threshold vector hi ∈ [0, 1]nz by applying a Sigmoid activation, which guides rounding decisions for
each integer variable. These thresholds h are then compared against the fractional part of the relaxed
integer variables. Specifically, a variable is rounded up if its fractional part x̄z − x̂z exceeds the
threshold h, and rounded down otherwise. Thus, the binary decision in the forward pass is computed
as:

b = I(x̄z − x̂z − h > 0).

Backward Pass. Although the forward pass applies a hard threshold, the backward pass approxi-
mates the gradient from the following smoothed Sigmoid surrogate:

v =
1

1 + exp (−β · (x̄z − x̂z − h))
,

where β > 0 controls the steepness of the approximation. A higher β yields sharper transitions. We375

use β = 10 in our experiments.376

Thus, the approximated partial derivatives of b w.r.t. the threshold h are:
∂b

∂h
:=

∂v

∂h
= −β · v ⊙ (1− v).

Lipschitz Smoothness Lφ of the Gradient. Since the gradient of the LT correction layers is377

approximated with a scaled sigmoid, let’s analyze its maximum slope. The product σ(z)(1− σ(z))378

is maximized at z = 0, where:379

σ(0) = 0.5 ⇒ σ(0)(1− σ(0)) = 0.25

So the maximum value of the derivative of the scaled sigmoid function is:380

max
x

∣∣∣∣ ddxσ(βx)
∣∣∣∣ = β ·max

z
σ(z)(1− σ(z)) = β · 0.25 =

β

4

Hence, similar to the RC method, the local Lipschitz constant of the approximate Jacobian∇x̄φΘ2381

for the LT correction layer is bounded by:382

Lφ ≤
β

4
· ∥∇x̄δΘ2(x̄, ξ)∥ ,

while the global Lipschitz constant is bounded by:383

Lglobal
φ ≤ β

4
· sup

x̄
∥∇x̄δΘ2

(x̄, ξ)∥ .

In our setup with β = 10, this yields the concrete local bound Lφ ≤ 2.5 · ∥∇x̄δΘ2
(x̄, ξ)∥.384

Remark 1 (The role of Lipschitz constants). These concrete estimates for the Lipschitz constants of385

the approximate gradients in both integer correction layers enable the choice of appropriate step sizes386

η ∈ (0, 1/L] during feasibility projection defined by Algorithm 2. For theoretical background, we387

refer readers to Appendix C. For practical methods to estimate or constrain the Lipschitz constants or388

operator norms of neural network gradients ∥∇x̄δΘ2
(x̄, ξ)∥, we refer to prior work such as [44–47].389

B Example Illustration390

This section illustrates the process of our Integer Correction and Feasibility Projection components in391

producing solutions. We present a two-dimensional Mixed-Integer Rosenbrock Benchmark (MIRB)392

instance, formulated as follows:393

min
x∈R,y∈Z

(a− x)2 + 50(y − x2)2

subject to y ≥ b/2, x2 ≤ b, x ≤ 0, y ≥ 0.

In this formulation, x is a continuous decision variable, while y is an integer decision variable. Both394

variables are subject to linear constraints. The instance parameters a and b serve as input features to395

the neural network.396
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Integer Correction Layer. Figure 5 illustrates the progression of relaxed solutions (x̄, ȳ) and their397

corresponding mixed-integer solutions (x̂, ŷ) across different training epochs. In this example, the398

instance parameters are set to a = 3.83 and b = 6.04. Throughout training, the relaxed solutions399

(x̄, ȳ) are iteratively adjusted by the neural network, and the integer correction layer transforms them400

into mixed-integer solutions. As training progresses, the model learns to generate solutions that are401

not only integer-feasible but also of high quality in terms of the objective function and constraint402

satisfaction.403

Integer Feasible Projection. Figure 6 illustrates the iterative refinement process of the feasibility404

projection step, applied to an initially infeasible solution. In this example, the instance parameters are405

set to a = 4.16 and b = 2.19. The relaxed solution (x̄, ȳ) is iteratively adjusted through gradient-406

based updates, reducing constraint violations while preserving the integer feasibility enforced by the407

correction layer. As the projection process progresses, the solution moves towards the feasible region,408

forcing that the final mixed-integer solution (x̂, ŷ) satisfies all constraints.409

C Theoretical Guarantees for Integer Feasibility Projection410

C.1 Convergence Guarantees for Integer Feasibility Projection411

For feasibility guarantees, we analyze the convergence of our integer feasibility projection ϕ(x, ξ)412

for a single parametric instance ξ which remains fixed during the inference. Hence, for simplicity413

of exposition, we omit the parameters ξ and denote the integer correction layer by φ(x), and414

constraint functions by g(x) = [g1(x), . . . , gnc
(x)], and ReLU function by (·)+. Theorem 1 provides415

conditions for asymptotic convergence, while Theorem 2 provides non-asymptotic convergence to416

the approximate feasible set.417

Theorem 1 (Asymptotic Convergence of Integer Feasibility Projection). Let V(x) :=418

∥g(φ(x))+∥1 =
∑nc

j=1 max(0, gj(φ(x))), where g : Rn → Rnc and φ : Rn → Rn are continu-419

ously differentiable with gradients∇g,∇φ with Lipschitz constants Lg, Lφ and bounded Jacobians420

∥∇g∥ ≤ Gg, ∥∇φ∥ ≤ Gφ. Assume all gradient descent iterates x(k) ∈ D := {x ∈ Rn : V(x) > 0},421

and the number of active constraints is uniformly bounded |Ix| := |{j : gj(φ(x)) > 0}| ≤ n̄c. Then422

for step size η ∈
(
0, 1

L

]
, where L := n̄c(GgLφ +GφLg), the following hold:423

(i) L-smoothness: V ∈ C1(D), with ∇V(x) = ∑
j∈Ix
∇φ(x)⊤∇gj(φ(x)), and ∇V is Lips-424

chitz continuous on compact subsets of D with Lipschitz constant at most L.425

(ii) Descent and vanishing gradient: Gradient descent generates a non-increasing sequence426

V(x(k))→ V⋆ ≥ 0, and limk→∞ ∥∇V(x(k))∥ = 0.427

14



(iii) Convergence to feasibility: If every x∗ ∈ D with V(x∗) > 0 satisfies ∃j ∈428

Ix∗ such that∇gj(φ(x∗)) ̸= 0, then limk→∞ V(x(k)) = 0.429

Theorem 2 (Non-Asymptotic Convergence of Integer Feasibility Projection). Under the assumptions430

of Theorem 1, suppose gradient descent is applied to the function V(x) = ∑nc

j=1 max(0, gj(φ(x))),431

with fixed step size η ∈
(
0, 1

L

]
, where L := n̄c(GgLφ +GφLg) is an upper bound on the Lipschitz432

constant of∇V over the region D := {x : V(x) > 0}. Then for any number of iterations K ≥ 1, the433

minimum gradient norm over the first K iterates satisfies434

min
0≤k<K

∥∇V(x(k))∥2 ≤ 2

ηK

[
V(x(0))− V⋆

]
,

where V⋆ := infx∈D V(x) ≥ 0. In particular, to ensure min0≤k<K ∥∇V(x(k))∥ ≤ δ, it suffices to435

run K ≥ 2
ηδ2 (V(x(0))− V⋆) iterations with complexity K = O

(
1
δ2

)
. Furthermore, if V⋆ = 0, then436

for any ϵ > 0 this implies approximate feasibility V(x(k)) < ϵ for all k ≥ Kϵ for some Kϵ.437

The proofs of the above theorems, iteration complexity, an alternative asymptotic convergence via438

Łojasiewicz inequality, and other supplementary theoretical analysis can be found in Appendix C.439

C.2 Asymptotic Convergence440

Proof. Now we prove Theorem 1 in the following steps.441

L-smoothness of ∇V on compact subsets of D. Define the region of interest as D := {x ∈ Rn :
V(x) > 0}, which consists of all points where at least one constraint is violated. That is, there exists
j ∈ {1, . . . , nc} such that gj(φ(x)) > 0. The penalty function is given by

V(x) = ∥g(φ(x))+∥1 =

nc∑
j=1

max(0, gj(φ(x))).

For any x ∈ D, define the active set:

Ix := {j ∈ {1, . . . , nc} : gj(φ(x)) > 0}.
On this set, max(0, gj(φ(x))) = gj(φ(x)), which is smooth since both gj and φ are continuously
differentiable. The terms with gj(φ(x)) ≤ 0 contribute a constant zero and hence do not affect
differentiability. Thus, the function simplifies to:

V(x) =
∑
j∈Ix

gj(φ(x)),

and is differentiable on D. By the chain rule, its gradient is:

∇V(x) =
∑
j∈Ix

∇ [gj(φ(x))] =
∑
j∈Ix

∇φ(x)⊤∇gj(φ(x))

Let x1,x2 ∈ D belong to a compact subset K ⊂ D. Define the union of their active sets Ix1
∪ Ix2

,
and let |Ix1

∪ Ix2
| denote the number of active constraints in this union. We compare:

∥∇V(x1)−∇V(x2)∥ ≤
∑
j∈Ix

∥∥∇φ(x1)
⊤∇gj(φ(x1))−∇φ(x2)

⊤∇gj(φ(x2))
∥∥ .

Each term is bounded by:∥∥∇φ(x1)
⊤∇gj(φ(x1))−∇φ(x2)

⊤∇gj(φ(x2))
∥∥

≤ ∥∇φ(x1)−∇φ(x2)∥ · ∥∇gj(φ(x1))∥
+ ∥∇φ(x2)∥ · ∥∇gj(φ(x1))−∇gj(φ(x2))∥.

By the assumptions:442

• ∥∇φ(x1)−∇φ(x2)∥ ≤ Lφ∥x1 − x2∥,443
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• ∥φ(x1)− φ(x2)∥ ≤ Gφ∥x1 − x2∥,444

• ∥∇gj(φ(x1))−∇gj(φ(x2))∥ ≤ LgGφ∥x1 − x2∥,445

• ∥∇gj(φ(x))∥ ≤ Gg, ∥∇φ(x)∥ ≤ Gφ.446

Putting it together:

∥∇V(x1)−∇V(x2)∥ ≤ |Ix1
∪ Ix2

| · (GgLφ +GφLg) · ∥x1 − x2∥.
Therefore, ∇V is Lipschitz continuous on compact subsets of D, with local Lipschitz constant:

L(x1,x2) := |Ix1 ∪ Ix2 | · (GgLφ +GφLg).

In particular, the Lipschitz constant of ∇V depends only on the number of active constraints at x1447

and x2. If the number of active constraints |Ix| is uniformly bounded by n̄c ≪ nc, i.e., only a448

few constraints are typically active, the global Lipschitz constant estimate L = n̄c(GgLφ +GφLg)449

becomes significantly tighter than the worst-case constant L = nc(GgLφ +GφLg).450

Descent lemma and vanishing gradient norm. Because V is differentiable with L-Lipschitz
gradient, the standard descent lemma for gradient descent implies:

V(x(k+1)) ≤ V(x(k))− η
(
1− Lη

2

)
∥∇V(x(k))∥2.

If η ∈ (0, 1/L], then 1− Lη
2 ≥ 1/2, and so:

V(x(k+1)) ≤ V(x(k))− η

2
∥∇V(x(k))∥2.

This shows {V(x(k))} is non-increasing and bounded below by 0, hence converges to some finite
V⋆ ≥ 0.
Summing from k = 0 to K − 1:

K−1∑
k=0

∥∇V(x(k))∥2 ≤ 2

η

(
V(x(0))− V(x(K))

)
≤ 2

η
V(x(0)).

Therefore:
∞∑
k=0

∥∇V(x(k))∥2 <∞ ⇒ lim
k→∞

∥∇V(x(k))∥ = 0.

Convergence to Feasibility. Suppose by contradiction that V⋆ > 0. Then, by the descent lemma451

and vanishing gradient condition, there exists a subsequence {x(kj)} converging to a point x∗ ∈ D452

such that V(x∗) > 0 and ∇V(x∗) = 0.453

Since the ReLU penalty is smooth at points where gj(φ(x∗)) > 0, the composite violation gradient454

at x∗ is given by455

∇V(x∗) =
∑
j∈Ix∗

∇φ(x∗)⊤∇gj(φ(x∗)).

Now, suppose there exists at least one active constraint j ∈ Ix∗ such that both ∇gj(φ(x∗)) ̸= 0456

and ∇φ(x∗) ̸= 0. Then the corresponding inner product is generically nonzero, implying that457

∇V(x∗) ̸= 0, which contradicts stationarity.458

While it is theoretically possible for cancellation among nonzero inner products or orthogonality459

between∇φ(x∗) and all∇gj to cause∇V(x∗) = 0, such configurations are nongeneric in practice460

and do not correspond to local minima of V , as shown in Theorem 5. In particular, when∇φ(x∗) = 0,461

these points arise from flat regions of the rounding map and are ruled out as attractors by the462

Łojasiewicz descent framework of Theorem 4.463

Therefore, no infeasible critical point can be a stable limit point of the projected gradient iterates, and464

we conclude:465

lim
k→∞

V(x(k)) = 0.

466
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C.3 Non-Asymptotic Convergence467

Proof. Now we prove Theorem 2.468

Since V is differentiable and has L-Lipschitz gradient on D, and gradient descent is performed with
step size η ≤ 1

L , we have:

V(x(k+1)) ≤ V(x(k))− η

2
∥∇V(x(k))∥2.

Summing from k = 0 to K − 1 gives:

V(x(0))− V(x(K)) ≥ η

2

K−1∑
k=0

∥∇V(x(k))∥2.

So:
K−1∑
k=0

∥∇V(x(k))∥2 ≤ 2

η

(
V(x(0))− V⋆

)
.

Dividing by K, we obtain:

min
0≤k<K

∥∇V(x(k))∥2 ≤ 2

ηK

(
V(x(0))− V⋆

)
.

To ensure mink ∥∇V(x(k))∥ ≤ δ, it suffices to choose

K ≥ 2

ηδ2

(
V(x(0))− V⋆

)
.

Finally, if V⋆ = 0, then V(x(k))→ 0, so for any ϵ > 0, there exists Kϵ such that

V(x(k)) < ϵ for all k ≥ Kϵ.

Thus, the iterates eventually enter and remain in the approximate feasible region Sϵ := {x ∈ Rn :469

V(x) < ϵ}.470

Remark 2. Theorem 2 guarantees convergence to an approximate first-order stationary point of the471

composite integer constraint violation function V(x) = ∑
j max(0, gj(φ(x))) at a rate of O(1/K),472

under standard smoothness and boundedness assumptions. This result ensures that the projected473

gradient method reaches a critical point of this nonconvex function, but does not by itself ensure474

that the hard-rounded point φ(x) satisfies all constraints. However, Theorem 5 shows that infeasible475

stationary points are generically not local minima, and are thus avoided by gradient descent under476

mild structural conditions. Taken together, Theorems 2 and 5 ensure convergence to approximately477

feasible integer solutions in practice.478

Corollary 3 (Iteration Complexity for Approximate Feasibility via Integer Feasibility Projection).
Suppose the conditions of Theorem 2 hold and that the infimum value satisfies V⋆ = 0. Then for any
tolerance ϵ > 0, gradient descent with step size η ∈

(
0, 1

L

]
will produce an iterate x(k) satisfying:

V(x(k)) < ϵ

after at most

Kϵ :=

⌈
2

ηϵ
V(x(0))

⌉
iterations. That is,

x(k) ∈ Sϵ := {x ∈ Rn : V(x) < ϵ} for all k ≥ Kϵ.

Proof. Now we prove Corollary 3.479

We begin with the inequality established in the proof of Theorem 2, which follows from the descent
lemma for gradient descent with an L-Lipschitz smooth function and step size η ≤ 1

L :

V(x(k+1)) ≤ V(x(k))− η

2
∥∇V(x(k))∥2.
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Summing this inequality from k = 0 to K − 1 yields:

V(x(0))− V(x(K)) ≥ η

2

K−1∑
k=0

∥∇V(x(k))∥2.

Since V(x(K)) ≥ 0, we have:

V(x(K)) ≤ V(x(0))− η

2

K−1∑
k=0

∥∇V(x(k))∥2.

Now assume for contradiction that V(x(k)) ≥ ϵ for all k < K. Then, since V is non-increasing, this
implies V(x(k)) ≥ ϵ for all k < K, and so:

V(x(0))− V(x(K)) ≥ V(x(0))− ϵ.
At the same time, from the descent inequality:

V(x(0))− V(x(K)) ≥ η

2

K−1∑
k=0

∥∇V(x(k))∥2.

We bound the sum from below by using the minimum value over the sequence:
K−1∑
k=0

∥∇V(x(k))∥2 ≥ K · min
0≤k<K

∥∇V(x(k))∥2.

Then
V(x(0))− V(x(K)) ≥ η

2
K · min

0≤k<K
∥∇V(x(k))∥2.

Since ∥∇V(x(k))∥ ≥ 0 and V(x(k)) ≥ ϵ, the total descent must continue until V(x(K)) < ϵ. Solving
for K, the smallest K such that V(x(K)) < ϵ must satisfy:

V(x(0))− ϵ < η

2
K · min

0≤k<K
∥∇V(x(k))∥2.

To guarantee this, a sufficient condition is to ensure:

V(x(K)) < ϵ whenever K ≥ 2

ηϵ
V(x(0)).

Therefore, setting

Kϵ :=

⌈
2

ηϵ
V(x(0))

⌉
guarantees that V(x(k)) < ϵ for all k ≥ Kϵ, or in other words x(k) ∈ Sϵ for all k ≥ Kϵ.480

Remark 3 (On Regularity and Practical Tightness of Lipschitz Assumptions). The convergence481

analysis in Theorem 1 and Theorem 2 assumes that g and φ are C1 with Lipschitz continuous482

gradients and bounded Jacobians. These conditions are realistic in practice:483

• ReLU penalty function is smooth on D := {x : V(x) > 0}, and thus does not interfere with484

differentiability of V .485

• The constraint map g : Rn → Rnc consists of smooth nonlinear functions (e.g., polynomials,486

exponentials, or trigonometric expressions) defined on a compact domain such as [0, 1]n.487

Under this assumption, g ∈ C2 and its Jacobian∇g is Lipschitz continuous and bounded.488

• Surrogate rounding φ is in our case approximated with Gumbel-Sigmoid and scaled sigmoid489

functions, which are smooth and parameterized by a temperature or sharpness term. When490

this parameter is finite and bounded away from zero, φ is C2, with bounded and Lipschitz491

continuous gradient. Smoothness and boundedness are easily satisfied when the neural492

component of φ is implemented using standard smooth activations over a compact domain.493

The bound L := n̄c(GgLφ + GφLg) used in Theorem 1 is conservative. In many applications,494

g(φ(x)) is sparse or low-rank, and individual gj depend on a few coordinates of φ(x), allowing495

for significantly smaller effective Lipschitz constants. Exploiting such a structure can yield tighter496

complexity bounds and improved convergence in practice.497
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C.4 Asymptotic Convergence Based on the Łojasiewicz Inequality498

Theorem 1 relies on mild regularity assumptions, as noted in Remark 3. Alternatively, convergence499

can be shown using the Łojasiewicz inequality by leveraging the analytic or subanalytic structure of500

g and φ, without requiring explicit smoothness or curvature bounds.501

Theorem 4 (Feasibility Convergence of Integer Feasibility Projection via Łojasiewicz Inequality).
Let V(x) =

∑nc

j=1 max(0, gj(φ(x))), where g ∈ Cω (real analytic) and φ ∈ C∞ are composed
with piecewise-linear ReLU, and suppose V(x) > 0 on the region D ⊂ Rn. Then V is subanalytic
and satisfies the Łojasiewicz gradient inequality at every critical point x∗ ∈ D. As a result, for any
initialization x(0) ∈ D, the gradient descent iterates

x(k+1) = x(k) − η∇V(x(k)), η ∈ (0, 1/L],

converge to a critical point x∞ ∈ D, and V(x(k))→ V(x∞). If further, all critical points x∗ ∈ D
with V(x∗) > 0 are not local minima of V , then

lim
k→∞

V(x(k)) = 0.

Proof. We divide the proof of Theorem 4 into two parts: convergence of gradient descent to a critical502

point, and convergence to feasibility under a non-minimality assumption.503

Subanalyticity and Łojasiewicz inequality. Since g : Rn → Rnc is real analytic and φ : Rn →
Rn is C∞, their composition g ◦ φ is real analytic as well. The ReLU function max(0, zj) is
piecewise analytic and semialgebraic. Therefore, the function V(x) = ∑nc

j=1 max(0, gj(φ(x))) is a
finite sum of semialgebraic (hence subanalytic) functions composed with analytic mappings, and is
itself a subanalytic and C1 function on the open region

D := {x ∈ Rn : V(x) > 0}.
By a standard result in nonsmooth analysis (see [48]), every C1 subanalytic function satisfies the
Łojasiewicz gradient inequality at all its critical points. That is, for each critical point x∗ ∈ D, there
exist constants C > 0, θ ∈ [0, 1), and a neighborhood U ⊂ D of x∗ such that:

∥∇V(x)∥ ≥ C(V(x)− V(x∗))θ, ∀x ∈ U .

Convergence of gradient descent to a critical point. Let x(k+1) = x(k) − η∇V(x(k)) be the
gradient descent update with constant step size η ∈ (0, 1/L], where L is a Lipschitz constant for ∇V
on compact subsets of D (as shown in Theorem 1). The descent lemma implies:

V(x(k+1)) ≤ V(x(k))− η

2
∥∇V(x(k))∥2.

Since V(x(k)) ≥ 0 and is non-increasing, it converges to a finite limit V⋆ ≥ 0. Furthermore, summing
the descent inequality gives:

∞∑
k=0

∥∇V(x(k))∥2 <∞, ⇒ lim
k→∞

∥∇V(x(k))∥ = 0.

Hence, the sequence {x(k)} has at least one accumulation point x∞ ∈ D with∇V(x∞) = 0, i.e., a504

critical point. Since V is subanalytic and satisfies the Łojasiewicz inequality at all critical points, the505

full sequence x(k) → x∞, as shown by the convergence theorem for gradient descent on Łojasiewicz506

functions (see [49]).507

Convergence to feasibility under non-minimality. Suppose now that x∞ ∈ D is a critical point
with V(x∞) > 0. Then, by the Łojasiewicz inequality:

∥∇V(x(k))∥ ≥ C(V(x(k))− V(x∞))θ.

But this contradicts the fact that ∥∇V(x(k))∥ → 0 unless V(x(k)) → V(x∞). Thus V(x(k)) →
V(x∞) > 0. To rule this out, we assume that no such point x∞ ∈ D with V(x∞) > 0 is a local
minimum of V . That is, every critical point with V(x∗) > 0 is a saddle or otherwise unstable. This
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ensures that the gradient descent trajectory cannot converge to any such point x∞. Hence, it must
converge to a point where V(x∞) = 0, i.e., feasibility is achieved:

lim
k→∞

V(x(k)) = 0.

508

Remark 4 (Relationship Between Theorems 1 and 4). Theorem 1 shows that under a mild structural509

condition, gradient descent converges to feasibility with vanishing gradient norm. Theorem 4 provides510

a complementary convergence result using the Łojaśiewicz gradient inequality, which is automatically511

satisfied due to the analytic structure of the composite function V representing our integer feasibility512

projection. This yields convergence to feasibility without requiring explicit curvature conditions.513

Hence, generalizing the convergence guarantees to non-smooth but subanalytic neural surrogates of514

the rounding operation φ, such as those with ReLU activation functions. However, this comes at the515

expense of losing explicit rates.516

C.5 Feasibility Convergence Despite Local Minima in the Correction Layer517

While Theorem 4 guarantees convergence to feasibility under a general non-minimality condition, we518

now show that this condition is satisfied for a wide class of problematic critical points, namely, strict519

local minima of the integer correction layer φ.520

Theorem 5 (Strict Local Minima of φ Do Not Trap Gradient Descent with ReLU-L1 Penalty).
Let φ : Rn → Rn be twice continuously differentiable, and let g : Rn → Rnc be continuously
differentiable. Define the ReLU-based penalty function:

V(x) :=
nc∑
j=1

max(0, gj(φ(x))).

Suppose x∗ ∈ Rn is a strict local minimum of φ, i.e.,

∇φ(x∗) = 0, ∇2φ(x∗) ≻ 0,

and that at least one constraint is violated at x∗, i.e., gj(φ(x∗)) > 0 for some j. Then521

1. ∇V(x∗) = 0, so x∗ is a stationary point of V ,522

2. x∗ is not a local minimum of V ,523

3. For small perturbations δ,∇V(x∗ + δ) ̸= 0 generically,524

4. Therefore, gradient descent initialized near x∗ will escape.525

Proof. Now we prove Theorem 5 in the following steps.526

Stationarity. We define the active index set at x∗ as:

Ix := {j : gj(φ(x∗)) > 0}.
Since gj(φ(x∗)) > 0, the ReLU is smooth at those points, and we have:

V(x) =
∑
j∈Ix

gj(φ(x)) in a neighborhood of x∗.

Thus, V is differentiable at x∗, and by the chain rule:

∇V(x) =
∑
j∈Ix

∇φ(x)⊤∇gj(φ(x)).

At x∗, ∇φ(x∗) = 0, so:
∇V(x∗) = 0.
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Not a Local Minimum of V . We now analyze the second-order behavior at x∗. Since:

V(x) =
∑
j∈Ix

gj(φ(x)),

we compute the Hessian:
∇2V(x∗) =

∑
j∈Ix

∇2(gj ◦ φ)(x∗).

Each term expands as:

∇2(gj ◦ φ)(x∗) = ∇2φ(x∗)⊤∇gj(φ(x∗)) +∇φ(x∗)⊤∇2gj(φ(x
∗))∇φ(x∗).

Since∇φ(x∗) = 0, the second term vanishes, and we get:

∇2V(x∗) =
∑
j∈Ix

∇2φ(x∗)⊤∇gj(φ(x∗)).

Now observe that this expression is a weighted sum of the positive definite matrix ∇2φ(x∗) scaled
by the (possibly signed) vectors ∇gj(φ(x∗)). Unless all ∇gj(φ(x∗)) are positively aligned with
the curvature of φ, this sum may introduce directions of negative or zero curvature. In particular, if
the set {∇gj(φ(x∗))}j∈Ix spans directions that are not all strictly aligned with the eigenvectors of
∇2φ(x∗), then the resulting Hessian∇2V(x∗) will be indefinite. A sufficient condition for x∗ to not
be a local minimum of V is that there exists j ∈ Ix and a direction v ∈ Rn such that:

v⊤∇2φ(x∗)v > 0 and v⊤∇gj(φ(x∗)) < 0.

In this case, the term ∇2φ(x∗)⊤∇gj(φ(x∗)) contributes negative curvature along v. Therefore,527

unless all gradients∇gj(φ(x∗)) are strictly positive multiples of a single direction compatible with528

the curvature of φ, the composite Hessian ∇2V(x∗) will be indefinite, and x∗ will not be a local529

minimum of V .530

Perturbation Analysis. For a small perturbation δ, the gradient of φ becomes:

∇φ(x∗ + δ) = ∇2φ(x∗)δ + o(∥δ∥) ̸= 0,

since ∇2φ(x∗) ≻ 0. Also, by continuity:

∇gj(φ(x∗ + δ))→ ∇gj(φ(x∗)).

Hence,
∇V(x∗ + δ) =

∑
j∈Ix

∇φ(x∗ + δ)⊤∇gj(φ(x∗ + δ)) ̸= 0

for generic small δ.531

Escape from x∗. Since ∇V(x) ̸= 0 in a neighborhood around x∗, gradient descent will not be532

trapped at x∗. Any initialization near x∗ will result in descent away from the point.533

Remark 5 (Generic Nondegeneracy of Constraint Gradients and Curvature Alignment). Two structural534

assumptions play a key role in the analysis of convergence to feasibility:535

Nonvanishing gradients at violated constraints. The assumption in Theorem 1 that some active
constraint gj(φ(x∗)) > 0 satisfies ∇gj(φ(x∗)) ̸= 0 is generic. If each gj is real analytic or C1 and
non-constant, then the set

Zj := {x ∈ Rn : gj(x) > 0 and ∇gj(x) = 0}
has measure zero. Hence, the probability that a randomly initialized or dynamically reached point536

φ(x∗) lies in such a degenerate set is zero in the measure-theoretic sense. So the assumption holds537

almost surely.538

Misalignment of constraint gradients. The condition that all ∇gj(φ(x∗)) align with the curvature
of φ is highly non-generic. In practice, ∇gj typically vary independently across j, resulting in
misalignment. As a result, the composite Hessian

∇2V(x∗) =
∑
j∈Ix∗

∇2(gj ◦ φ)(x∗)
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is generically indefinite at x∗ ∈ D because the presence of even a single direction v ∈ Rn such that539

v⊤∇2φ(x∗)v > 0 and v⊤∇gj(φ(x∗)) < 0 causes the composite Hessian to be indefinite. Therefore,540

under mild and generic assumptions on g, any point x∗ that is a strict local minimum of φ and541

satisfies V(x∗) > 0 will not be a local minimum of V . This ensures that gradient descent will escape542

from such points.543

C.6 Exclusion of Degenerate Convergence Scenarios544

Remark 6 (Plateau Behavior and Subanalyticity). One may wonder whether the penalty function545

V(x) = ∑nc

j=1 max(0, gj(φ(x))) can exhibit plateau-like behavior, i.e., regions where V remains546

constant and positive, within the infeasible region D := {x : V(x) > 0}. We address two such547

scenarios below.548

Flat critical manifolds. A flat manifold is a set M ⊂ D where ∇V(x) = 0 and V(x) = c > 0 for549

all x ∈M . These sets could trap gradient descent if they existed with positive measure. However,550

because V is subanalytic and C1 on D, it satisfies the Kurdyka–Łojasiewicz (KL) inequality near all551

critical points [48]. This rules out the existence of non-isolated flat critical sets unless V is locally552

constant, which we now argue is also structurally implausible. Moreover, known convergence results553

for KL functions [49] imply that gradient descent cannot asymptotically converge to a non-isolated554

flat critical manifold unless it is initialized there. In typical smooth machine learning problems, such555

events occur with probability zero under random initialization. Therefore, the subanalyticity of V556

implies that flat critical manifolds are unstable under gradient descent.557

Constant regions. Suppose, for contradiction, that V(x) = c > 0 on an open subset U ⊂ D.558

Then each active term j ∈ Ix := {j : gj(φ(x)) > 0} must be constant over U , implying that the559

compositions gj◦φ are locally constant. This in turn forces their gradients to vanish: ∇(gj◦φ)(x) = 0560

for all x ∈ U . Unless gj ◦ φ is identically constant—a non-generic scenario—this condition fails on561

open sets.562

Implication. Together, subanalytic regularity and mild structural assumptions that gj ◦ φ are not563

constant functions ensure that V cannot be locally constant on any open subset of D. Therefore,564

genuine plateaus or flat manifolds that could trap gradient descent do not arise in typical settings.565

Remark 7 (Critical Points and Optimization Challenges). The penalty function V(x) =566 ∑nc

j=1 max(0, gj(φ(x))) is piecewise smooth and subanalytic on the infeasible region D := {x :567

V(x) > 0}. A natural question is whether gradient descent could become trapped at infeasible critical568

points. Two classes of critical points could, in principle, obstruct convergence.569

Non-degenerate local minima. Points x∗ ∈ D where ∇V(x∗) = 0, ∇2V(x∗) ≻ 0, and V(x) >
V(x∗) locally. These may arise if the active constraint set Ix∗ := {j : gj(φ(x∗)) > 0} is fixed and
the composite Hessian

∇2V(x∗) =
∑
j∈Ix∗

∇2(gj ◦ φ)(x∗)

is positive definite. However, such configurations require fine alignment between ∇gj and the570

curvature of φ, which is highly non-generic.571

Flat saddles. Isolated critical points where ∇V(x∗) = 0 and the Hessian is degenerate (e.g., zero572

eigenvalues). These may occur under degeneracy or saturation in φ, or when multiple ∇gj(φ(x))573

vanish. While subanalyticity rules out flat critical manifolds, it does not preclude such isolated574

saddles.575

C.6.1 Taxonomy of Feasibility Convergence576

Feasibility convergence is ensured by one of two assumptions:577

• Structural: If every x∗ ∈ D with V(x∗) > 0 has some active constraint gj(φ(x∗)) > 0578

with ∇gj(φ(x∗)) ̸= 0, then∇V(x∗) ̸= 0, so infeasible stationary points are excluded. This579

condition appears in Theorem 1 and rules out non-degenerate local minima.580

• Dynamical: Alternatively, assume that no infeasible stationary point x∗ ∈ D attracts nearby
trajectories under gradient descent:

x(k+1) = x(k) − η∇V(x(k)).
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That is, for every neighborhood Bρ(x
∗) := {x : ∥x − x∗∥ < ρ}, some x ∈ Bρ(x

∗) ∩ D581

generates a trajectory that does not converge to x∗. This allows such critical points to exist582

but ensures they do not trap iterates, especially relevant for flat saddles or degenerate cases583

not excluded structurally.584

Implication. Whether through gradient non-vanishing or non-attraction, infeasible critical points are585

generically avoided. Combined with the subanalytic geometry of V , these conditions help explain586

why gradient descent almost always escapes infeasible regions in practice. Moreover, stochastic587

methods and perturbation-based algorithms [50] have been shown to escape strict and flat saddles in588

polynomial time under mild conditions.589

Proposition 1 (Characterization of Critical Point Behavior). Let x∗ ∈ D := {x ∈ Rn : V(x) > 0}
be a stationary point of the ReLU-penalized objective

V(x) =
nc∑
j=1

max(0, gj(φ(x))).

Then, the behavior of gradient descent near x∗ depends on the type of critical point as follows:590

Critical Point Type Addressed in GD Converges? Feasibility
Strict local minimum of φ Thm 5 No Yes
Strict saddle of V Thm 4 No (almost surely) Yes
Non-isolated saddle of V Thm 4 No (generically) Yes
Flat critical manifold, V(x) > 0 Rem. 6 No (subanalytic) Yes
Locally constant region of V Rem. 6 No (subanalytic) Yes
Non-degenerate saddle of V Thm 4 No (stable under perturbation) Yes
Non-degenerate local minimum of V Rem. 7 Yes (if present but very unlikely) No
Flat saddle of V Rem. 7 Unclear Open
Degenerate saddle of V Rem. 7 Unclear Open

591

In summary:592

• Feasibility convergence justification. Infeasible critical points are either excluded struc-593

turally (via gradient non-vanishing; see Theorem 1) or are assumed to be non-attracting594

(see Remark 7). These complementary perspectives explain why convergence to feasibility595

occurs in practice.596

• Strict local minima of φ are ruled out as attractors by Theorem 5, since they are not minima597

of V .598

• Strict saddles, non-isolated saddles, flat manifolds, and locally constant regions are599

generically avoided due to the subanalytic structure of V , which guarantees the Łojasiewicz600

(KL) property and precludes convergence to non-isolated critical sets, see Theorem 4, and601

Remark 6.602

• Non-degenerate saddles are generically escaped by gradient descent due to instability in603

directions of negative curvature.604

• Non-degenerate local minima of V with V(x∗) > 0 may exist but are structurally rare and605

require unlikely gradient-curvature alignment, see Remark 7.606

• Degenerate or flat saddles are not ruled out by subanalyticity alone. While rare in practice,607

they remain an open challenge. Their avoidance may require additional randomness or608

second-order mechanisms, see Remark 7.609

D MINLP Problem Setup and Parameter Sampling610

D.1 Integer Quadratic Problems611

The integer quadratic problems (IQPs) used in our experiments are formulated as follows:

min
x∈Zn

1

2
x⊺Qx+ p⊺x subject to Ax ≤ b
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where the coefficients Q ∈ Rn×n, p ∈ Rn, and A ∈ Rm×n were fixed, while b ∈ Rm were612

treated as treated as a parametric input, varying between instances to represent different optimization613

scenarios.614

To ensure convexity, Q ∈ Rn×n is a diagonal matrix with entries sampled uniformly from [0, 0.01].615

The linear coefficient vector p ∈ Rn has entries drawn from a uniform distribution over [0, 0.1],616

while the constraint matrix A ∈ Rm×n is generated from a normal distribution with a mean of 0 and617

a standard deviation of 0.1. The parameter b ∈ Rm, representing the right-hand side of the inequality618

constraints, is sampled uniformly from [−1, 1]. These variations in b across instances ensure the619

parametric nature of the problem.620

Compared to the original setup in Donti et al. [17], which focused on continuous optimization, we in-621

troduced integer constraints on all decision variables. Additionally, equality constraints were removed622

to ensure that generated instances remain feasible, as such constraints could lead to infeasibilities in623

the discrete space. These modifications preserve the fundamental structure of the original problems624

while ensuring compatibility with our proposed framework.625

D.2 Integer Non-convex Problems626

The integer non-convex problem (INPs) used in the experiments is derived by modifying the IQPs
from Appendix D.1 as follows:

min
x∈Zn

1

2
x⊺Qx+ p⊺ sin (x) subject to Ax ≤ b

where the sine function is applied element-wise to the decision variables x. This introduces non-627

convexity into the problem, making it more challenging compared to the convex case. For the integer628

non-convex problems, the coefficients Q, p, A, and b are generated in the same way as in the629

quadratic formulation. However, an additional parameter d ∈ Rm is introduced, with each element630

independently sampled from a uniform distribution over [−0.5, 0.5]. The parameter d modifies631

the constraint matrix A by adding d to its first column and subtracting d from its second column.632

Alongside d, the right-hand side vector b remains a dynamic parameter in the problem. The problem633

scale and experimental setup remain consistent with IQPs.634

D.3 Mixed-integer Ronsenbrock Problems635

The mixed-integer Rosenbrock problem (MIRBs) used in this study is defined as:636

min
x∈Rn,y∈Zn

∥a− x∥22 + 50∥y − x2∥22

subject to ∥x∥22 ≤ nb, 1⊺y ≥ nb

2
, p⊺x ≤ 0, Q⊺y ≤ 0,

where x ∈ Rn are continuous decision variables and y ∈ Zn are integer decision variables. The637

vectors p ∈ Rn and Q ∈ Rn are fixed for each instance, while the parameters b and a vary. In detail,638

the vectors p ∈ Rn and Q ∈ Rn are generated from a standard normal distribution. The parameter b639

is uniformly distributed over [1, 8] for each instance, and the parameter a ∈ Rn represents a vector640

where elements drawn independently from a uniform distribution over [0.5, 4.5]. The parameters b641

and a influence the shape of the feasible region and the landscape of the objective function, serving642

as input features to the neural network.643

E Computational Setup644

E.1 Computational Environment.645

All experiments were conducted on a workstation equipped with two Intel Silver 4216 Cascade Lake646

CPUs (2.1GHz), 64GB RAM, and four NVIDIA V100 GPUs. Our models were implemented in647

Python 3.10.13 using PyTorch 2.5.0+cu122 [51] for deep learning models, and NeuroMANCER648

1.5.2 [52] for modeling parametric constrained optimization problems.649

To benchmark against traditional optimization solvers, we used Gurobi 11.0.1 [53] for convex650

problems such as IQPs and MILPs and SCIP 9.0.0 [54] was employed, coupled with Ipopt 3.14.14 [55]651

for those more general mixed-integer non-convex problems such as INP and MIRB.652
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E.2 Neural Network Architecture and Training.653

The solution mapping πΘ1
used across all learning-based methods—RC, LT, and ablation stud-654

ies—consists of five fully connected layers with ReLU activations. The rounding correction network655

φΘ2
for RC and LT is composed of four fully connected layers, also with ReLU activations, and656

incorporates Batch Normalization and Dropout with a rate of 0.2 to prevent overfitting. For feasibility657

projection, we set a maximum iteration limit of 1000 for computational efficiency.658

To accommodate varying problem complexities, hidden layer widths were scaled proportionally to659

the problem size:660

– For the IQPs and INPs, the hidden layer width used in the learning-based methods was661

scaled accordingly, increasing from 64, 128 up to 2048 for the corresponding problem sizes.662

Smaller problems, such as 20× 20, used smaller hidden layers 64, while larger problems,663

such as 1000 × 1000, used hidden layers with widths up to 2048 to accommodate the664

complexity.665

– For the MIRBs, the hidden layer width was scaled based on the number of variables: a width666

of 4 was used for problems with 2 variables, 16 for problems with 20 variables, and up to667

1024 for problems with 10, 000 variables.668

All networks were trained using the AdamW optimizer with learning rate 10−3, batch size 64 and 200669

epochs, with early stopping based on validation performance. The constraint penalty weight λ was670

set to 100 for all benchmark problems. For the feasibility projection step, we used a fixed step size671

of η = 0.01 and a maximum iteration limit of 1000 to ensure both convergence and computational672

efficiency.673

F Additional Experimental Analyses674

F.1 Constraints Violations675

This section examines constraint violations across three benchmark problems, focusing on both their676

frequency and magnitude. To aid understanding, the results are presented using heatmaps, where677

each heatmap (Figure 7, Figure 8, and Figure 9) displays rows as 100 test instances and columns as678

individual constraints, reflecting the solutions before the application of the projection step.679
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Figure 7: Illustration of Constraint Violation Heatmap of RC method (Top) and LT method (bottom)
for 500×500 mixed-integer QP on 100 test instances: Each row represents an instance in the test set,
while each column corresponds to a specific constraint. Color intensity indicates the magnitude of
constraint violation, with lighter shades representing larger violations.

The heatmaps for the IQPs (Figure 7) and the INPs (Figure 8) reveal a sparse distribution of constraint680

violations, primarily concentrated in a few constraints across instances. This indicates that the681
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Figure 8: Illustration of Constraint Violation Heatmap of RC method (Top) and LT method (bottom)
for 500×500 INPs on 100 test instances: Each row represents an instance in the test set, while each
column corresponds to a specific constraint. Color intensity indicates the magnitude of constraint
violation, with lighter shades representing larger violations.

majority of constraints are consistently satisfied, with violations being limited to isolated instances.682

Overall, the magnitude and frequency of these violations are nearly negligible. Thus, our feasibility683

projection effectively corrects them. In contrast, an unexpected observation is that when these near-684

feasible solutions are provided as warm-starting points to Gurobi or SCIP, the solvers consistently685

fail to recover a feasible solution, despite the minimal constraint violations.686
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Figure 9: Illustration of Constraint Violation Heatmap of RC method (Top) and LT method (bottom)
for 20000×4 MIRBs on 100 test instances: Each row represents an instance in the test set, while each
column corresponds to a specific constraint. Color intensity indicates the magnitude of constraint
violation, with lighter shades representing larger violations.

Figure 9 reveals a significantly denser distribution of constraint violations in the high-dimensional687

MIRBs, highlighting the increased complexity of this large-scale MINLP. Given the scale and688

difficulty of this problem, even state-of-the-art solvers fail to produce feasible solutions, and both689

RC and LT exhibit a high proportion of constraint violations, with magnitudes reaching the order of690

103. Remarkably, despite these substantial violations, Table 4 shows that the feasibility projection691

in RC-P and LT-P successfully restores feasibility across all 100 test instances, albeit at the cost of692

increased objective values.693
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F.2 Training Time694

This section presents the training times for the RC and LT methods across various problem sizes.695

All training runs were conducted using datasets of 9,000 instances for each problem, with 1,000696

instances reserved for validation per epoch. While the training process was set for 200 epochs, an697

early stopping strategy was applied, allowing the training to terminate earlier when performance698

plateaued. Note that RC-P and LT-P are not included in the training time comparison, as feasibility699

projection is applied only as a post-processing step and does not impact the training duration.700

Table 5: Training Times (in seconds) for RC and LT methods across different problem sizes for the
IQPs. Each method was set to train 9,000 instances for each problem for 200 epochs, with 1,000
instances reserved for validation per epoch and early stopping applied.

Method 20×20 50×50 100×100 200×200 500×500 1000×1000

RC 153.98 237.11 141.15 149.43 606.23 727.32
LT 154.33 158.61 128.86 139.17 458.62 462.41

Table 6: Training Times (in seconds) for RC and LT methods across different problem sizes for the
INPs. Each method was set to train 9,000 instances for each problem for 200 epochs, with 1,000
instances reserved for validation per epoch and early stopping applied.

Method 20×20 50×50 100×100 200×200 500×500 1000×1000

RC 173.02 138.53 136.01 104.05 116.01 156.85
LT 104.35 88.41 111.38 89.24 230.52 195.67

Table 7: Training Times (in seconds) for RC and LT methods across different problem sizes for the
MIRBs. Each method was set to train 9,000 instances for each problem for 200 epochs, with 1,000
instances reserved for validation per epoch and early stopping applied.

Method 2×4 20×4 200×4 2000×4 20000×4

RC 230.68 112.35 75.49 106.76 5227.05
LT 126.60 125.11 86.43 84.61 6508.41

Table 5, Table 6, and Table 7 summarize the training times (in seconds) required by each method for701

problems of different scales. These results highlight the computational efficiency of our methods702

during training, with training times for most problem instances remaining within a few hundred703

seconds. Even for large-scale problems, such as the 20000×4 MIRBs, RC and LT required only a few704

hours of training—much shorter than the time exact solvers take to find just a single feasible solution705

for an instance.706

G Additional Experiments707

G.1 Ablation Study708

To evaluate the contribution of the correction layers φΘ2 , we perform an ablation study using two709

baseline methods:710

• Rounding after Learning (RL): This baseline trains only the first neural network πΘ1
,711

which predicts relaxed solutions. Rounding to the nearest integer is applied post-training,712

meaning that the rounding step does not participate in the training process. This isolates the713

effect of excluding the corrective adjustments provided by φΘ2 . This baseline highlights714

the limitations of naively rounding relaxed predictions. Such rounding often leads to715

significant deviations in the objectives and severe violations in the constraints, emphasizing716

the importance of end-to-end learning where updates are guided by the ultimate loss function.717

• Rounding with STE (RS): In this baseline, continuous values predicted by πΘ1
are rounded718

during training using the STE, as shown in Algorithm 3. This approach allows gradients to719
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flow through the rounding operator, facilitating optimization of the loss function even with720

integer constraints.This allows gradients to pass through the rounding operator, enabling721

optimization of the loss function in the presence of integer constraints. However, the722

rounding mechanism relies solely on fixed nearest-integer corrections, which are determined723

independently of the problem parameters or the relaxed predictions. Consequently, it lacks724

the refinement provided by learnable correction layers, limiting its ability to adjust the725

rounding to improve objective values and feasibility.726

Algorithm 3 Rounding with STE: Forward Pass.

1: Training instance ξi and neural networks πΘ1
(·)

2: Predict a continuously relaxed solution x̄i ← πΘ1
(ξi)

3: Round integer variables down: x̂i
z ← ⌊x̄i

z⌋
4: Compute fractions vi ← x̄i

z − x̂i
z

5: Compute rounding directions bi ← I
(
vi > 0.5

)
6: Update integer variables: x̂i

z ← x̂i
z + bi

7: Output: x̂i

Results and Insights. The results of the ablation experiments, summarized in Table 8, Table 9 and727

Table 10, demonstrate the importance of the correction layers φΘ2
in improving both solution quality728

and feasibility. The experimental setup and model parameters used are consistent with those in the729

main text, ensuring the results are directly comparable. RL shows a significant drop in feasibility730

rates, highlighting the importance of incorporating differentiable rounding during training to guide731

outputs. Similarly, while RS benefits from differentiability via STE, the lack of learnable layers for732

rounding limits its performance compared to RC and LT.733

Table 8: Ablation Study for IQPs. See the caption of Table 2 for details.

Method Metric 20×20 50×50 100×100 200×200 500×500 1000×1000

RL

Obj Mean −4.726 −14.52 −17.22 −37.14 −89.81 −176.6
Obj Median −4.716 −14.52 −17.27 −37.15 −89.81 −176.6
Feasible 64% 42% 23% 10% 0% 0%
Time (Sec) 0.0004 0.0004 0.0005 0.0005 0.0005 0.0011

RS

Obj Mean −3.929 −11.93 −10.58 −24.72 −54.93 −110.7
Obj Median −3.963 −11.96 −10.58 −24.72 −54.93 −110.6
Feasible 100% 100% 100% 100% 100% 100%
Time (Sec) 0.0010 0.0011 0.0013 0.0012 0.0016 0.0031

Table 9: Ablation Study for INPs. See the caption of Table 3 for details.

Method Metric 20×20 50×50 100×100 200×200 500×500 1000×1000

RL

Obj Mean −0.138 −0.629 −1.581 −4.196 −11.531 −23.64
Obj Median −0.148 −0.655 −1.554 −4.196 −11.531 −23.64
Feasible 87% 51% 15% 0% 0% 0%
Time (Sec) 0.0005 0.0005 0.0006 0.0006 0.0006 0.0013

RS

Obj Mean 0.292 1.734 2.849 4.921 9.511 25.36
Obj Median 0.284 1.736 2.841 4.907 9.511 25.36
Feasible 100% 100% 100% 100% 100% 100%
Time (Sec) 0.0012 0.0011 0.0012 0.0013 0.0018 0.0031

G.2 Experiments with Varying Penalty Weights734

To complement the findings in the main text, we extend our analysis to the 1000×1000 IQPs and the735

2000×4 MIRBs. Figure 10 shows that these problems exhibit similar trends: higher penalty weights736

improve feasibility at the cost of increased objective values, while feasibility projection effectively737

corrects solutions obtained with smaller penalty weights, preserving their lower objective values.738

Additionally, we evaluate smaller-scale instances against exact solvers where exact solvers (EX) can739

find feasible solutions within the 1000-second time limit for all test instances. Figure 11 presents740
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Table 10: Ablation Study for MIRBs. See the caption of Table 4 for details.

Method Metric 2×4 20×4 200×4 2000×4 20000×4

RL

Obj Mean 58.34 63.70 605.9 6222 68364
Obj Median 58.00 61.95 609.0 5950 69087
Feasible 14% 64% 56% 72% 69%
Time (Sec) 0.0006 0.0005 0.0005 0.0008 0.0014

RS

Obj Mean 25.095 69.36 684.7 6852 72910
Obj Median 25.353 68.58 663.1 6509 68904
Feasible 100% 97% 100% 99% 61%
Time (Sec) 0.0010 0.0010 0.0012 0.0019 0.0103
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Figure 10: Illustration of the Proportion of feasible solutions (Top) and objective values (Bottom)
for smaller-scale problems. For these instances, EX finds feasible solutions within 1000 seconds
(leftmost values on the bottom), serving as a benchmark. Our approach, with properly tuned penalty
weights, achieves comparable or even better objective values.

results for these instances, illustrating the proportion of feasible solutions and objective values across741

different penalty weights. These results further confirm that the appropriate choice of penalty weight,742

when combined with feasibility projection, can yield high-quality, feasible solutions. Thus, our743

method achieves comparable or even superior objective values to EX while solving instances orders744

of magnitude faster.745
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Figure 11: Illustration of the Proportion of feasible solutions (Top) and objective values (Bottom) for
smaller problems. For these instances, EX can find feasible solutions within 1000 seconds (leftmost
values on the bottom), serving as a benchmark. Our approach, with properly tuned penalty weights,
achieves comparable or even better objective values.

G.3 Experiments with Varying Training Sample Size746

To evaluate the effect of training sample size, we trained the model on datasets containing 800, 8,000,747

and 80,000 instances. Training epochs were adjusted to 2,000, 200, and 20 (with early stopping748
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enabled) to ensure a comparable number of optimization iterations across experiments. All other749

hyperparameters were kept consistent to isolate the effect of sample size.750
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Figure 12: Illustration of the objective value (Left) and proportion of infeasible solutions (Right)
of 20000×4 MIRBs on the test set. As the training sample size increases, the fraction of infeasible
solutions decreases while the objective value generally deteriorates, as expected.

The result demonstrates that increasing the sample size yields significant improvements in both751

objective values and feasibility. For instance, training with 80,000 samples reduced the infeasibility752

rate to 5% on the test set, compared to much higher rates with smaller datasets. This emphasizes the753

critical role of sufficient sample size and demonstrates the scalability advantage of our self-supervised754

framework.755

G.4 Experiments on Binary Linear Programs756

Dataset. The ‘Obj Series 1’ dataset from the MIP Workshop 2023 Computational Competition [56]757

is conducted To evaluate the performance of our methods on MILPs. This dataset comprises 50 related758

MILP instances derived from a shared mathematical formulation. The instances differ in 120 of the759

360 objective function coefficients, while all other components, including the constraints, remain760

consistent. Each instance includes 360 binary variables and 55 constraints, offering a structured761

benchmark for optimization methods.762

Model Configuration. The neural network architecture and hyperparameters were consistent with763

those used in the main experiments. Specifically for the MILP problem in this study, the input764

dimension of the neural network was set to 120, corresponding to the number of varying objective765

function coefficients, and the output dimension was set to 360, representing the decision variables.766

The hidden layer consisted of 256 neurons.767

Table 11: Comparison of Optimization Methods on the MILP. See the caption of Table 2 for details.

Method Obj Mean Obj Median Feasible Time (Sec)

RC 9745.90 9763.00 100% 0.04
LT 14149.00 14149.00 100% 0.04
EX 8756.80 8747.00 100% 28.91
N1 11901.10 11933.00 100% 0.01

Results. Table 11 summarizes the performance of various optimization methods on the MILP768

benchmark: Both learning-based methods (RC and LT) demonstrate the ability to generate high-769

quality feasible solutions efficiently, with RC even surpassing the heuristic-based method N1 in770

terms of objective value. However, N1 is the fastest method overall, showcasing the robustness and771

efficiency of the heuristic in the MILP solver. EX achieved the best objective values but required772

significantly more computation time. Notably, the training time for the learning-based models is773

approximately 120 seconds, making them well-suited for applications requiring repeated problem-774

solving.775
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