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Abstract
Popular benchmarks (e.g., XNLI) used to eval-001
uate cross-lingual language understanding con-002
sist of parallel versions of English evaluation003
sets in multiple target languages created with004
the help of professional translators. When cre-005
ating such parallel data, it is critical to en-006
sure high-quality translations for all target lan-007
guages for an accurate characterization of cross-008
lingual transfer. In this work, we find that trans-009
lation inconsistencies do exist and interestingly010
they disproportionally impact low-resource lan-011
guages in XNLI. To identify such inconsisten-012
cies, we propose measuring the gap in perfor-013
mance between zero-shot evaluations on the014
human-translated and machine-translated tar-015
get text across multiple target languages; rel-016
atively large gaps are indicative of translation017
errors. We also corroborate that translation018
errors exist for two target languages, namely019
Hindi and Urdu, by doing a manual reannota-020
tion of human-translated test instances in these021
two languages and finding poor agreement with022
the original English labels these instances were023
supposed to inherit.024

1 Introduction025

Multilingual benchmarks, such as XNLI,026

XTREME, play a vital role in assessing the027

cross-lingual generalization of multilingual028

pretrained models ((Conneau et al., 2018b), (Hu029

et al., 2020)). A common strategy adopted in030

zero-shot multilingual benchmark creation is to031

translate development and test sets from English032

into various target languages with the help of033

professional human translators. However, such034

a translation process is susceptible to human035

errors and could lead to incorrect estimates036

of cross-lingual transfer to target languages.037

We find translation errors do emerge and they038

disproportionately affect translations in certain039

low-resource languages such as Hindi and Urdu.1040

1In the context of multilingual models, we refer to a lan-
guage as low (or high)-resource based on the proportion of
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Figure 1: XNLI performance gap by evaluating on trans-
lations of human-annotated data in target languages
versus paraphrases of the original English data via back-
translations pivoted on each target language.

Consider the well-known Cross-Lingual Natural 041

Language Inference (XNLI) benchmark (Conneau 042

et al., 2018a) that contains human translations of 043

English premise-hypothesis pairs (with the labels 044

reproduced from English) into 14 typologically- 045

diverse target languages. Prior work raised con- 046

cerns about whether the semantic relationships be- 047

tween premise and hypothesis are preserved in such 048

human translations, but did not probe into this is- 049

sue further (Artetxe et al., 2020a, 2023). We find 050

that there are indeed errors introduced in the hu- 051

man translations leading to label inconsistencies 052

and that this issue disproportionately affects low- 053

resource languages. 054

To visualize the impact of low-quality transla- 055

tions on low-resource languages, Figure 1 com- 056

pares zero-shot XNLI performance on all 14 target 057

languages using the XLMR model (Conneau et al., 058

2020) finetuned on English NLI with the following 059

two input types: 1. Human translations of the orig- 060

inal English NLI instances to the target language 061

from XNLI, translated back to English. 2. Machine 062

its data used in model pretraining. XLMR (Conneau et al.,
2020) is pretrained on the CC-100 corpus that includes roughly
50GB each of data from high-resource languages such as
French, Greek and Bulgarian, and only 20.2GB, 5.7GB and
1.6GB of data in low-resource languages such as Hindi, Urdu
and Swahili, respectively.
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translations of the original English NLI instances063

to the target language, translated back to English.064

We see a clear differential trend with larger gaps065

between the (scores over the) two input types for066

low-resource languages such as Swahili, Urdu and067

Turkish (appearing on the right) and smaller gaps068

for high-resource languages such as Spanish, Ger-069

man and French (appearing on the left). We also070

observe that the cross-lingual transfer gap when071

comparing the performance of human-translations072

for each target language with that of English (the073

latter shown as a dotted line) is largely overesti-074

mated for low-resource languages.075

To summarize, our main contributions are:076

1 We highlight the problem of translation er-077

rors in XNLI disproportionately affecting low-078

resource languages, and propose a practical079

way of identifying low-quality human trans-080

lations by comparing their performance with081

machine translations derived from the original082

English sentences.083

2 We find the translation errors persist under084

various train/test settings, including training085

data derived from machine-translations and086

paraphrases via backtranslations.087

3 For two low-resource languages Hindi and088

Urdu, we manually annotate a subset of NLI089

data and find large discrepancies in the newly090

annotated labels when compared to the labels091

projected from the original English sentences.092

2 Experimental Setup093

2.1 Tasks and Models094

Our main focus is on the popular XNLI (Conneau095

et al., 2018b) benchmark, which is a three-way clas-096

sification task to check whether a premise entails,097

contradicts or is neutral to a hypothesis. Parallel098

to English NLI ((Bowman et al., 2015), (Williams099

et al., 2018)), XNLI consists of development sets100

(2490 instances) and test sets (5010 instances) in101

14 typologically-diverse languages2 Translation-102

based gap analysis on two other multilingual tasks103

(MLQA and PAWSX) is included in Appendix A.104

We use XLM-Roberta (XLMR) (Conneau et al.,105

2020) as the pretrained multilingual model in all106

2Languages include French (fr), Spanish (es), German
(de), Greek (el), Bulgarian (bg), Russian (ru), Turkish (tr),
Arabic (ar), Vietnamese (vi), Thai (th), Chinese (zh), Hindi
(hi), Swahili (sw) and Urdu (ur).

our experiments. (Appendix B reports scores using 107

mBERT (Devlin et al., 2019) for XNLI that follow 108

the same trends.) 109

2.2 Training and Test Variants 110

(Artetxe et al., 2020a) showed that using machine- 111

translated data to finetune the pretrained model 112

helps it generalize better to both machine and 113

human-translated test data. Motivated by this find- 114

ing, we construct the following training variants: 115

1 ORIG: Original English training data. 116

2 Backtranslated-train (B-TRAIN): English 117

paraphrases of the original English data via 118

backtranslations, with Spanish as a pivot. 119

B-TRAIN is a training variant introduced 120

in (Artetxe et al., 2020a) that we adopt in our work. 121

122

We also evaluate on the following four variants of 123

test data: 124

1 Zero-shot (ZS): Human-translated dev/test 125

sets in the target languages. 126

2 Translate-test (TT): Machine translations of 127

target language dev/test sets to English. 128

3 Translate-from-English (TE): Machine trans- 129

lations of original English to the target lan- 130

guages. 131

4 Backtranslation-via-target (BT): Machine 132

translations of original English to the target 133

language and back to English. 134

We use two translation systems to create the 135

above variants: 1) A state-of-the-art open-source 136

multilingual translation model from the No Lan- 137

guage Left Behind (NLLB) project (NLLB Team 138

et al., 2022), and 2) Google’s Cloud Translate API.3 139

Due to the prohibitive cost of the latter for the cre- 140

ation of training data, we use NLLB to create all our 141

training variants (unless specified otherwise).4 Test 142

variants were created using both translation sys- 143

tems. More implementation details and translation- 144

related details are provided in Appendix C and 145

Appendix D. Some of the types of translation er- 146

rors in the human-translated dev/test sets in ZS and 147

TT are illustrated in Appendix E. 148

3https://cloud.google.com/translate
4We found NLLB to be poor in quality when translating

from English to Chinese. We used the M2M translation sys-
tem (Fan et al., 2020) for English-to-Chinese that was far
superior.
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test en fr es de el bg ru tr ar vi th zh hi sw ur avg
ZS 89.3 83.5 84.8 83.4 82.4 83.7 80.5 79.4 79.2 79.9 78.3 79.4 77.2 72.7 74.0 79.9

TT-n - 82.1 83.1 80.7 82.3 82.6 79.3 75.9 78.0 78.7 73.8 77.6 77.7 70.5 71.3 78.1

TT-g - 83.7 84.4 83.0 83.4 84.2 80.9 75.8 80.5 80.6 77.9 80.6 79.2 71.9 73.6 79.9

BT-n - 84.5 84.9 83.5 82.9 82.7 82.3 81.1 81.4 82.4 76.4 79.6 82.9 79.4 80.8 81.8

TE-n - 84.4 85.5 83.9 83.6 83.9 83.4 81.7 81.5 81.9 78.7 81.0 82.1 77.0 80.3 82.1

TE-g - 85.3 85.9 85.9 84.8 86.1 84.9 83.8 82.7 84.0 82.0 84.3 82.1 77.3 81.8 83.6

BT-g - 86.6 86.8 86.5 85.9 86.7 85.8 85.4 85.1 85.4 82.7 84.9 85.1 83.6 84.8 85.4
∆-g 2.9 2 3.1 2.5 2.5 4.9 6 4.6 4.8 4.4 4.3 5.9 10.9 10.8 4.9

Table 1: Results of ORIG (model trained on original English data) evaluated on different test set variants described
in Section 2.2. -n refers to using NLLB as the translator, -g refers to using Google-translate as the translator. Highest
scores in each column are shown in bold and next highest is underlined.

test en fr es de el bg ru tr ar vi th zh hi sw ur avg
ZS 89.2 84.5 85.9 84.6 84.3 85.5 82.9 81.0 81.8 82.6 79.8 80.9 79.6 74.7 75.6 81.7

TT-n - 84.0 85.7 82.4 84.4 84.4 81.8 78.9 81.0 80.9 77.4 80.5 80.5 73.6 74.4 80.7

TT-g - 84.8 86.5 84.1 85.1 85.9 82.7 78.9 83.1 82.7 80.4 82.6 81.4 74.9 76.9 82.1

BT-n - 85.9 86.8 85.1 84.8 84.6 84.3 82.8 83.5 84.2 79.3 81.4 84.8 81.9 82.5 83.7

TE-n - 85.8 86.8 85.2 84.9 85.2 84.6 83.0 83.5 83.6 80.6 82.0 83.4 79.1 81.4 83.5

TE-g - 86.6 87.0 86.9 85.5 86.4 86.4 84.3 84.6 84.9 83.3 84.6 83.5 78.9 82.9 84.7

BT-g - 88.0 87.7 87.6 86.7 87.5 87.1 85.9 86.4 86.2 84.2 85.9 85.9 85.4 86.1 86.5
∆-g 3.2 1.2 2.5 1.6 1.6 4.2 4.9 3.3 3.5 3.8 3.3 4.5 10.5 9.2 4.3

Table 2: Results of B-TRAIN on different test set variants described in Section 2.2.

3 Cross-lingual Transfer Gap in XNLI149

3.1 Using Original English NLI Train Set150

Table 1 presents XNLI F1 scores for all four test151

variants using ORIG training data. Test translations152

are generated using both NLLB (-n) and Google153

Translate (-g). ∆-g in Table 1 refers to the perfor-154

mance gap when using human vs. machine transla-155

tions. It is the difference between the F1 for BT-g156

(machine-translated target language text) and the157

best F1 among ZS and TT-g (human-translated158

target language text). It is striking that ∆-g values159

for low-resource languages like Urdu and Swahili160

are as high as 10.8 and 10.9, respectively, and as161

low as 2.9 and 2 for high-resource languages like162

French and Spanish, respectively.163

3.2 Using Translated Train Sets164

Table 2 shows test accuracies using an XLMR165

model finetuned on B-TRAIN. Across all target166

languages and all test set variants, we see consis-167

tent improvements in performance compared to168

ORIG in Table 1. This is consistent with the ob-169

servation in (Artetxe et al., 2020a) that finetuning170

on backtranslation-driven paraphrases helps gener-171

alize better to both human and machine translated172

test sets. Interestingly, even with the overall im- 173

provements using B-TRAIN, the large performance 174

gap between ZS and TE (and TT and BT) for low- 175

resource languages like Urdu and Swahili persists. 176

Overestimated Cross-lingual Gap. Based 177

on (Hu et al., 2020), we compute cross-lingual 178

transfer gap as the difference between English 179

F1 and the average of F1 scores across all other 180

languages. From Table 2, the previously reported 181

cross-lingual gap was 7 using ZS, which reduces to 182

2.7 using BT-g. The largest gaps for an individual 183

language were previously 14.5 and 13.6 for 184

Swahili and Urdu and have now reduced to 3.8 185

and 3.1 with BT-g, respectively. This suggests 186

a quick recipe for a quality check of human 187

translations. For target languages supported by 188

machine-translation systems, the performance gap 189

between either ZS and TE or between TT and BT 190

could be a quick way to check whether the human 191

translations might have issues during the data 192

collection phase (thus yielding large gap values). 193

4 Human Evaluation 194

For two low-resource languages Hindi and Urdu, 195

we reannotate a subset of the human-translations 196
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with NLI labels and check how well they match197

the labels inherited from the original English text.198

We pick random, non-overlapping sets of 200 in-199

stances each in English, Hindi and Urdu and get200

them relabelled by native speakers. (Appendix F201

provides more annotation details.) The new labels202

matched the original labels 90.5%, 66.5% and 60%203

of the time for English, Hindi and Urdu, respec-204

tively. This clearly highlights the large drop in205

label agreement for Hindi and Urdu compared to206

English, with relative reductions of 24% and 30.5%207

for Hindi and Urdu, respectively. In (Conneau208

et al., 2018a), the same experiment was conducted209

using English and French and the original labels210

were recovered 85% and 83% of the time, respec-211

tively. The authors concluded there was no loss212

of information in the translations. However, we213

find there to be a significant loss of information in214

translations for languages such as Hindi and Urdu.215

To verify if machine translations (TE), rather216

than XNLI’s human translations (ORIG), align bet-217

ter with the labels from the original English, we re-218

label 200 instances translated from English to Hindi219

and Urdu (via Google Translate). The annotators220

recovered the ground-truth labels 80% and 71%221

of the time for Hindi and Urdu, respectively, high-222

lighting that label inconsistencies in Hindi/Urdu223

human translations (ORIG) are significantly worse224

than with machine translations (TE).225

5 Attention-based Analysis226

We assess how the attention distributions learned227

for XNLI over the English test instances correlate228

with the attention distributions learned for human-229

annotated Hindi/Urdu/Swahili test instances and230

Google-translated (English to) Hindi/Urdu/Swahili231

test instances. For each correctly predicted En-232

glish instance, we consider both human-translated233

(HT) and machine-translated (MT) target language234

translations and compute word alignments between235

English and these translations using awesome-236

align (Dou and Neubig, 2021a). Aligned words237

whose attention score is greater than the mean at-238

tention score for the sequence are counted and nor-239

malized by the total number of such words in a240

sequence. Finally, we compute an average over241

all these overlap fractions across instances in the242

dataset. These mean overlap scores shown in Ta-243

ble 3 are computed separately using the human244

translations (HT) and machine translations (MT).245

For all three languages, we find the overlap fraction246

text/lang ur hi sw
HT 0.75 0.78 0.79

MT 0.86 0.84 0.84

Table 3: Aggregate attention scores over aligned words
in Human Translated (HT) and Machine Translated
(MT) XNLI test instances with parallel English data.

to be higher for the Google-translated sentences 247

compared to the human-translated sentences. This 248

suggests that MT aligns better with the original 249

English text compared to HT. 250

6 Related Work 251

There is growing interest in building multilin- 252

gual benchmarks for the evaluation of cross- 253

lingual transfer. E.g., XTREME (Conneau et al., 254

2019) covering a wide range of languages and 255

tasks including XNLI (Conneau et al., 2018a), 256

XQuAD (Artetxe et al., 2020b), PAWS-X (Yang 257

et al., 2019) and MLQA (Lewis et al., 2019). 258

Recently, many extensions of XTREME: IndX- 259

TREME (Doddapaneni et al., 2022) focusing on 260

18 Indian languages, XTREME-R (Ruder et al., 261

2021) and XTREME-UP (Ruder et al., 2023) have 262

also been released. Translation artifacts have only 263

been studied in select prior works. Mohammad 264

et al. (2016) study how translations can alter sen- 265

timent labels in Arabic text. In very recent work, 266

Artetxe et al. (2023) advocate for the use of English- 267

only finetuning using machine-translation systems. 268

However, this relies on high-quality human trans- 269

lations in the target languages which we highlight 270

needs to be carefully examined especially for low- 271

resource languages. 272

7 Conclusions 273

This work studies the problem of translation irreg- 274

ularities in evaluation sets of multilingual bench- 275

marks like XNLI that are created by translating 276

English into multiple target languages. We find 277

that the translation sets of low-resource languages 278

like Urdu, Swahili exhibit most number of incon- 279

sistencies while translations of high-resource lan- 280

guages like French, German are more immune to 281

this problem. We suggest an effective way to check 282

the quality of human translations by comparing 283

performance with machine translations, and show 284

how the cross-lingual transfer estimates can signifi- 285

cantly vary with improved translations. 286
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8 Limitations287

For tasks that have output labels directly corre-288

sponding to the input text (e.g., sequence labeling289

tasks like POS-tagging, question answering, etc.), it290

would be trickier to use our technique since transla-291

tions could change the word order and subsequently292

affect the output labels as well.293

We highlight the problem of the cross-lingual294

transfer gap for low-resource languages being mis-295

characterized due to poor performance on these296

languages stemming from poor-quality translations297

and not necessarily because the model has difficulty298

with the given target languages. We do not offer a299

solution to deal with translation errors. Rather, we300

ask for additional checks when collecting transla-301

tions for low-resource languages.302

We identify that the existing translation datasets303

for low-resource languages in XNLI have incon-304

sistencies. While we did not create manually-305

corrected versions of these translation sets, we will306

be releasing the machine-translated text from En-307

glish to these target languages upon publication.308

Ethics Statement309

We would like to emphasize our commitment to310

upholding ethical practices throughout this work.311

We aimed to ensure that human annotators received312

a fair compensation for their annotation efforts and313

was commensurate with the time and effort invested314

in their work. For translations using Google Trans-315

late, we used the paid Cloud API service in accor-316

dance with the terms and conditions of usage.317
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Instructions
Given premise and hypothesis, label each pair as "entail-
ment", "contradiction" or "neutral" as follows:

1. if hypothesis is entailed by the premise, it’s an "entail-
ment" ,

2. if the hypothesis contradicts the premise (hypothesis
cannot be True given the premise), it’s a "contradiction",

3. if the hypothesis is independent of the premise (hy-
pothesis may or may not be True given the premise), it’s
a "neutral" relationship.

Table 5: Task description shared with the annotators
for the NLI task

introduce semantic inconsistencies during transla-485

tion for MLQA. In general, classification tasks like486

XNLI appear to be more susceptible to translation487

inconsistencies since the annotators are not made488

aware of the ground-truth labels during translation489

and are only asked to independently translate the490

premise/hypothesis pairs.491

PAWS-X. Table 6 shows the results of the dif-492

ferent settings ZS, TE, TT, and BT for the six493

languages. The model used for inference is xlm-494

roberta-large trained on the English train set. TE495

is better than ZS mainly for Korean (by 4.9% in496

test set) and Chinese (4.9% in dev set) and is nearly497

equal for other languages. BT is better than TT498

again for Korean and Chinese and nearly equal for499

other languages. This indicates the presence of500

human translation inconsistency for the two lan-501

guages.502

B Comparing the Performance of mBert503

and XLMR504

As can be seen in Table 7, XLMR outperforms505

mBert by a huge margin on every language. Thus,506

we used XLMR for evaluating all our experiments.507

C Details of Model Training508

The models mBert and XLMR were trained using509

the same setting as mentioned in the XTREME510

repository.5511

XNLI. mBert is trained for 2 epochs with a learn-512

ing rate of 2e-5, with a batch size of 8 and gradient513

accumulation of 4(i.e an effective batch size of 32).514

XLMR is trained for 2 epochs with a learning rate515

of 5e-6, batch size of 5 and gradient accumulation516

steps of 6 (i.e effective batch size of 30). The final517

model is selected from the best checkpoint, which518

5https://github.com/google-research/xtreme

is based on the model’s performance on the English 519

dev set. For training the different variants of the 520

model (ORIG, T-TRAIN, B-TRAIN, BT-enes, MT- 521

hi-g, MT-hi-n) we use the same hyperparameter 522

setting as mentioned above. 523

We use xlm-roberta-large for all our experiments. 524

Model training was done on a single Nvidia 525

Geforce GTX 1080 Ti GPU, which has a RAM 526

of 12GB. It took us around one day to train a sin- 527

gle model for 2 epochs. For data translation using 528

NLLB(3.3B parameter model), we made use of the 529

NVIDIA A100-SXM4-80GB gpu for faster pro- 530

cessing. Translating the test sets took couple of 531

hours(1-1.5). 532

MLQA. To evaluate the performance on MLQA 533

dataset, we trained XLMR on the SQUAD 534

dataset (Rajpurkar et al. (2016)). The model is 535

trained for 3 epochs with a learning rate of 3e-5, 536

batch size of 1 and gradient accumulation of 32 (i.e 537

an effective batch size of 32). 538

PAWS-X. We trained xlm-roberta-large model 539

on the English train set. The model is trained for 5 540

epochs with a learning rate of 2e-5, batch size of 541

2 and gradient accumulation of 16 (i.e an effective 542

batch size of 32). 543

D Details of Train and Test Translations 544

To train the model on back-translated (using Span- 545

ish as the pivot) and machine-translated(translated 546

to Hindi and Spanish) data, we made use of the 547

open-source 3.3B parameter NLLB model hosted 548

on Hugging-Face6. We found that the English to 549

Chinese translation using NLLB is of lower qual- 550

ity, so we tried the open source 1.2B parameter 551

M2M ((Fan et al., 2020)) model 7and it performed 552

better compared to the NLLB translator. 553

E Examples of Translation Errors 554

Table 8 highlights a few examples of premise- 555

hypothesis pairs in Hindi and Urdu that are no 556

longer semantically consistent with the original la- 557

bels (copied from English) after translation. These 558

examples would be marked as errors in predictions, 559

when in fact the predictions are reasonable given 560

the semantic deviations in the human-translated 561

Hindi/Urdu sentences from the original English 562

sentences. 563

6https://huggingface.co/facebook/nllb-200-3.3B
7https://huggingface.co/facebook/m2m100_1.2B
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dev/test en de es fr ja ko zh avg
sents (2000/2000) (2000/2000) (2000/2000) (2000/2000) (2000/2000) (2000/2000) (2000/2000) -
ZS 95/95.9 89/90.9 90.4/90.4 91.4/91.6 82.9/80.5 83.6/80.8 83.9/84.2 86.9/86.4

TT-n - 88.9/89.9 89.8/91 90.4/91.6 83/79 82.2/80.4 81.6/80.9 86.0/85.5

TE-n - 91.2/92.3 92.1/92.3 90.9/91.2 83.7/83.4 86.8/85.7 88.8/88.6 88.9/88.9

BT-n - 90.6/91.5 91.6/92.2 90.8/90.8 81.9/80.6 84/84.4 89/88.2 88.0/88.0

Table 6: Results on ZS, TE, TT, and BT PAWS-X.

dev en fr es de el bg ru tr ar vi th zh hi sw ur avg
XLMR 89.9 84.2 85.0 84.3 81.8 83.2 79.7 79.9 79.2 81.6 78.0 80.0 78.3 72.1 74.6 80.8

mBert 83.0 74.9 74.8 72.2 67.8 68.2 68.4 63.4 65.4 69.8 54.8 70.6 61.5 52.4 53.3 66.7

Table 7: Zero shot performance of ORIG mBert and XLMR models on the XNLI target dev sets.

F Details of Human Annotations564

Each task (set of random 200 sentences) is anno-565

tated independently by two annotators. The task566

description shared with the annotators is included567

in Table 5. The sentences in agreement between the568

two annotators are reviewed and approved for the569

dataset by the final annotator. If there is a mismatch,570

it is sent to the two annotators for review and pos-571

sible corrections. If the mismatch persists, a third572

annotator performs a fresh annotation. The final an-573

notator reviews the 3 answers and submits the final574

answer for the dataset. We also computed the Co-575

hen’s Kappa score between the two annotators and576

found them to be: 0.64 for English sentences, 0.43577

for Hindi sentences, and 0.37 for Urdu sentences.578

G Tools and Libraries579

We made use of awesome-align ((Dou and Neubig,580

2021b)) to align words between English and any581

target language. The model used by awesome-align582

was bert-base-multilingual-cased. We used the Py-583

torch framework8 and Hugging-face library9 for584

all our model training and inferencing tasks. To585

integrate Labse ((Feng et al., 2020)), we made use586

of the Sentence-transformers library10. To convert587

the transliterated sentences to the original scripts,588

we made use of both google-translate and Indic-589

trans(Bhat et al. (2015)) (for Indian languages).590

We made use of the google-cloud-translate api to591

use the google-translate services.592

8https://pytorch.org/
9https://huggingface.co/

10https://www.sbert.net/

H More Trained Models 593

We trained a few more models in different settings 594

to check their impact on the cross-lingual perfor- 595

mance despite presence of semantic irregularities. 596

The additional models we trained include: 597

1. T-TRAIN is the model trained on English train 598

set machine translated to Spanish. (See Ta- 599

ble 9.) 600

2. BT-enes, i.e train the model on backtranslated 601

english (using Spanish as a pivot) + the origi- 602

nal English. 603

3. MT-hi-g, i.e train the model on machine- 604

translated train set where the train set is trans- 605

lated to Hindi using google-translate. Here 606

we used only 1/3rd of training data to train the 607

model(to incur low costs of translation). 608

4. MT-hi-n, this is the same as above, except 609

that the translation is performed using NLLB 610

translator. 611

Using T-TRAIN is more effective in improving test 612

performance across all target languages compared 613

to using ORIG 614

Tables 10, 11, 12 shows the results of the trained 615

models across different test settings (test sets 616

translated using NLLB). The figures highlight the 617

potential semantic gap that exists between BT 618

and TT (also ZS and TE) across all the models 619

which increases more towards the low resource 620

languages. 621

In Table 13 and 14, we compare the zero shot 622

and translate-test results of all the trained models 623

across different languages. B-TRAIN and BT-enes 624

performs the best across majority of the languages. 625
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Premise Hypothesis En-Premise En-
Hypothesis

Label Pred Comment

Aise hi choti
si baatein
bhane mera
karm par ek
bada antar
bana diya

Mei kuch
hasil karne ki
koshish kar
raha tha.

Little things
like that made
a big differ-
ence in what I
was trying to
do.

I was trying
to accomplish
something.

E N Incorrect translation of premise
changes the relationship be-
tween the label and the premise-
hypothesis pair.

Mei tumhe ek
ghante mei
wapas phone
karta hoo, ve
kehte hai.

Usne kaha ki
ve bol rahe
the.

I’ll call you
back in about
an hour, he
says.

He said they
were done
speaking.

C E Hypothesis is incorrectly trans-
lated leading to a change in
meaning (i.e "they were done
speaking" is translated to "they
were speaking").

Wo qaed
nahin rehna
chahte they

Unhe kuch
mawaqe par
pakda ja sakta
tha lekin wo
is se bachna
chahte they

They didn’t
want to stay
captive.

They had
been captured
at some point
but wanted to
escape.

N C Tense is incorrect in the trans-
lation of the hypothesis. The
premise implies that they have
already been captured while the
incorrect translation implies that
they did not want to get caught,
hence predicting a contradic-
tion.

Ye tha, ye ek
khoobsoorat
din tha

Aj ek aram-
dah din tha

That was, that
was a pretty
scary day.

It was a relax-
ing day.

C N Tense is incorrectly altered to
present and "pretty scary" is
translated to simply "khoob-
soorat"(pretty), thus inverting
the overall sentiment.

Table 8: Semantically incorrect examples of premise-hypothesis pairs in Hindi (first two) and Urdu (latter two). E,
N and C implies entailment, neutral and contradiction labels.

test en fr es de el bg ru tr ar vi th zh hi sw ur avg
ZS 88.9 84.8 85.7 84.8 84.4 85.0 82.9 80.9 81.2 81.9 78.9 80.7 79.6 74.9 75.9 81.7

TT-n - 83.2 84.5 82.4 83.9 84.1 81.3 78.4 80.6 80.7 76.6 79.7 80.1 73.1 74.2 80.2

TT-g - 84.3 85.9 84.2 84.8 85.2 82.8 77.8 82.5 81.9 79.9 82.2 81.1 74.3 76.0 81.6

BT-n - 85.2 86.2 84.6 84.8 84.2 83.9 82.3 83.3 83.9 79.2 81.6 84.4 81.4 81.9 83.4

TE-n - 85.3 86.3 85.1 84.4 84.9 84.7 82.5 83.1 83.9 79.9 81.8 83.0 79.0 81.4 83.2

TE-g - 86.2 86.6 86.5 85.1 86.8 86.0 83.9 84.1 85.0 82.7 84.5 83.4 79.4 82.8 84.5

BT-g - 87.0 87.3 87.3 86.7 87.0 86.7 85.7 86.0 86.1 83.8 85.5 85.8 84.6 85.5 86.1
∆-g 2.2 1.4 2.5 1.9 1.8 3.8 4.8 3.5 4.2 4.1 3.3 4.7 9.7 9.5 4.1

Table 9: Results of T-TRAIN on different test set variants described in Section 2.2.

Table 15, 16 compares the zero-shot and translate-626

test results of the MT-hi models, it can be seen627

that both the models perform equally across the628

languages, also because of training on less amount629

of data, their zero-shot performance is very slightly630

inferior to the ORIG model.631

632
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test en fr es de el bg ru tr ar vi th zh hi sw ur avg
ZS 89.8 85.1 86.2 84.6 84.1 85.2 82.4 81.3 81.2 81.9 79.3 80.9 78.6 74.9 76.0 82.1

TT-n - 84.2 85.2 82.6 84.8 84.8 81.9 78.8 81.7 81.1 78.2 80.3 80.7 73.8 75.1 80.9

BT-n - 85.9 86.6 85.0 85.0 85.2 84.2 83.2 83.6 84.8 79.4 81.9 85.2 82.1 82.8 83.9
TE-n - 85.9 87.0 85.2 84.5 85.3 84.6 83.1 83.6 84.2 80.1 82.7 82.9 78.7 80.8 83.5

Table 10: Results of BT-enes (model trained on back-translated(en→es→ en) + original English train set) on
different test set data settings 2.2, -n refers to using NLLB translator.

test en fr es de el bg ru tr ar vi th zh hi sw ur avg
ZS 87.4 82.9 84.2 82.7 83.4 83.4 81.1 80.8 79.9 80.4 78.1 79.9 78.8 74.1 75.3 80.8

TT-n - 81.7 82.6 80.1 82.2 82.3 80.3 76.2 79.4 79.3 75.8 77.9 78.5 72.2 72.5 78.6

BT-n - 83.9 84.4 83.4 82.7 81.8 82.3 80.1 81.5 82.2 77.5 80.0 83.3 79.9 81.0 81.7
TE-n - 83.7 84.9 83.6 83.0 83.5 82.8 81.5 82.0 82.3 79.4 81.1 82.7 78.2 81.4 82.1

Table 11: Results of MT-hi-g (model trained on data translated to Hindi (en→hi) using google-translate) on different
test set data settings 2.2.

test en fr es de el bg ru tr ar vi th zh hi sw ur avg
ZS 87.2 83.4 83.6 82.9 82.7 83.4 81.8 79.9 79.9 80.1 78.7 80.6 78.4 73.6 74.9 80.7

TT-n - 82.2 83.6 80.6 82.6 82.6 80.38 76.4 79.6 79.5 76.9 78.8 79.4 72.73 73.2 79.2

BT-n - 83.7 84.7 83.4 83.0 82.7 82.3 80.6 81.9 82.9 78.2 80.7 83.4 80.2 81.6 82.1
TE-n - 83.8 84.8 83.5 82.9 83.7 82.6 81.2 82.1 81.9 79.2 81.3 82.6 78.1 80.9 82.0

Table 12: Results of MT-hi-n (model trained on data translated to Hindi (en→hi) using NLLB-translate) using
different data settings 2.2.

test en fr es de el bg ru tr ar vi th zh hi sw ur avg
ORIG 89.3 83.5 84.8 83.4 82.4 83.7 80.5 79.4 79.2 79.9 78.3 79.4 77.2 72.7 74.0 80.5

B-train 89.2 84.5 85.9 84.6 84.3 85.6 82.9 81.0 81.8 82.6 79.8 80.9 79.6 74.7 75.6 82.2
BT-enes 89.8 85.1 86.2 84.6 84.1 85.2 82.4 81.3 81.2 81.9 79.3 80.9 78.6 74.9 76.1 82.1

T-TRAIN 88.9 84.8 85.7 84.8 84.4 85.0 82.2 80.9 81.2 81.9 78.9 80.7 79.6 74.9 75.9 81.9

Table 13: Comparing zero-shot test set results of different trained models (translations performed using NLLB).

test en fr es de el bg ru tr ar vi th zh hi sw ur avg
ORIG - 82.1 83.1 80.7 82.3 82.6 79.3 75.9 78.0 78.7 73.8 77.6 77.7 70.5 71.3 78.1

B-TRAIN - 84.0 85.7 82.4 84.4 84.4 81.8 78.9 81.0 80.9 77.4 80.5 80.5 73.6 74.4 80.7

BT-enes - 84.2 85.2 82.6 84.8 84.8 81.9 78.8 81.7 81.1 78.2 80.3 80.7 73.8 75.1 80.9
T-TRAIN - 83.2 84.5 82.4 83.9 84.1 81.3 78.4 80.6 80.7 76.6 79.7 80.1 73.1 74.2 80.2

Table 14: Comparing translate-test (using NLLB translator) test set results of different trained models.

test en fr es de el bg ru tr ar vi th zh hi sw ur avg
MT-hi-g 87.4 82.9 84.2 82.7 83.4 83.4 81.1 80.8 79.9 80.4 78.1 79.9 78.8 74.1 75.3 80.8
MT-hi-n 87.2 83.4 83.6 82.9 82.7 83.4 81.8 79.9 79.9 80.1 78.7 81.2 78.4 73.6 74.9 80.7

Table 15: Comparing zero-shot test set results of models trained on machine-translated Hindi (1/3rd of training
data), hi-g implies using google translator and hi-n implies using NLLB translator.

test en fr es de el bg ru tr ar vi th zh hi sw ur avg
MT-hi-g - 81.7 82.6 80.1 82.2 82.3 80.3 76.2 79.4 79.3 77.9 76.5 78.5 72.2 72.5 78.7

MT-hi-n - 82.2 83.6 80.6 82.6 82.6 80.4 76.4 79.6 79.5 76.9 78.8 79.4 72.7 73.2 79.2

Table 16: Comparing translate-test (using NLLB translator) test set results of models trained on machine-translated
Hindi(1/3rd of training data), hig implies using google translator and hin implies using NLLB translator.
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