
MSCGrapher: Learning Multi-Scale Dynamic Correlations for Multivariate
Time Series Forecasting

Xian Yang1 Zhenguo Zhang*1 Shihao Lu1

1Department of Computer Science and Technology, Yanbian University, 977 Gongyuan Road, Yanji, 133002, China

Abstract

Efficient learning intra-series and inter-series cor-
relations is essential for multivariate time series
forecasting (MTSF). However, in real-world sce-
narios, persistent and significant inter-series corre-
lations are challenging to be represented in a static
way and the strength of correlations varies across
different time scales. In this paper, we address this
challenge by modeling the complex inter-series re-
lationships through dynamical correlations, consid-
ering the varying strengths of correlations. We pro-
pose a novel MTSF model: MSCGrapher, which
leverages an adaptive correlation learning block
to uncover inter-series correlations across differ-
ent scales. Concretely, time series are first decom-
posed into different scales based on their period-
icities. The graph representation of MTS is then
constructed and an adaptive correlation learning
method is introduced to capture the inter-series cor-
relations across different scales. To quantify the
strength of these correlations, we compute correla-
tion scores based on the characteristics of the graph
edges and classify correlations as either Strong or
Weak. Finally, we employ a self-attention module
to capture intra-series correlations and then fuse
features from all scales to obtain the final repre-
sentation. Extensive experiments on 12 real-world
datasets show that MSCGrapher gains significant
forecasting performance, highlighting the critical
role of inter-series correlations in capturing im-
plicit patterns for MTS.

1 INTRODUCTION

MTSF involves predicting the future based on multiple in-
terrelated historical data, playing a significant role across

*Corresponding author.

Graph1 Graph2 Graph3 Graphm

…

Figure 1: The relationships between different series vary at
different time scales, resulting in different graph structures.

various industries. Examples include predicting the prices
of multiple assets in financial markets, multi-parameter
weather in meteorology, equipment operation status in indus-
trial manufacturing, and physiological indicators in health-
care [Chen et al., 2011, Wu et al., 2021, Fatima and Rahimi,
2024, Nguyen-Thai et al., 2024]. Due to its substantial appli-
cations, MTSF attracts widespread research interest. In the
last decade, various deep learning models, such as methods
based on CNNs [Zeng et al., 2023b, Wang et al., 2023],
MLPs [Challu et al., 2023, Vijay et al., 2023], and Trans-
formers [Zhou et al., 2021, Wu et al., 2021], have been
proposed to tackle the challenges of time series forecasting
and have achieved outstanding performance. Although these
methods have different architectures, they fundamentally
utilize neural networks to capture correlations: inter-series
correlations and intra-series correlations [Cai et al., 2024].

Early works primarily capture intra-series correlations but
overlook inter-series correlations. This oversight signifi-
cantly impacts the model’s ability to capture complex dy-
namic relationships and prediction accuracy. In recent years,
an increasing number of studies [Zhang and Yan, 2023,
Yue et al., 2022] have focused on modeling inter-series cor-
relations to reveal and leverage the complex interactions
within MTS. One promising approach uses graph learning
[Wu et al., 2020] to construct relationship graphs to model
these correlations. While these methods can capture inter-
series dependencies, they still have significant shortcomings
in fully addressing the dynamically changing correlations
across different time scales. Current MTSF method faces

mailto:2023050075@ybu.edu.cn
mailto:zgzhang@ybu.edu.cn
mailto:2023050070@ybu.edu.cn


three limitations: (1) Time Scale Insensitivity: Most works
primarily focus on single-scale correlation analysis, limit-
ing their ability to reveal correlations across time scales
and handle complex dynamic systems. For example, in cli-
mate science, climate change and extreme weather events
are influenced by a combination of factors that exhibit dif-
ferent correlations at different time scales. The long-term
global warming interacts with mid-term variations such as
El Niño and short-term fluctuations like sudden extreme
weather events (e.g., hurricanes, heavy rainfall) [Heede and
Fedorov, 2023]. Figure 1 illustrates an example where a
MTS is divided into three different time scales. Clearly, the
relationships between nodes change at these scales. At scale
f1, the orange and blue series exhibit consistency. However,
at scale f3, they diverge, with the orange series affecting the
green series, resulting in a different graph structure. From
the above example, we can clearly identify the limitations
of existing deep learning models in dynamic modeling of
relationships for MTS. (2) Dynamic Relationship Model-
ing: While graph-based approaches represent MTS as nodes
and their relationships as edges [Kipf and Welling, 2016],
current graph structure learning in GNNs often lacks the
adaptability needed to model dynamic inter-series correla-
tions, particularly when these relationships evolve across
different time scales. This rigidity limits their effectiveness
in capturing the temporal evolution of complex systems. (3)
Correlation Strength Variability: Another critical chal-
lenge lies in the scale-dependent variations in correlation
strength, which significantly impact model performance.
Existing methods often fail to account for these variations,
further restricting their ability to accurately model and pre-
dict MTS behavior. These raise the question: Can graph
learning accurately capture the correlations of MTS across
different time scales? If so, what adjustments are needed for
GNN’s architecture?

To address the above issues, we propose MSCGrapher,
which can effectively enhance graph learning’s ability to
capture dynamic varying correlations across various time
scales in MTS, and accurately characterize the strength and
weakness of correlations at different scales. First, MSCG-
rapher encodes the temporal variations of each series into
a high-dimensional space and represents them as nodes in
graph. For the multi-periodic characteristic of time series,
we use Fast Fourier Transform (FFT) to extract periodic
components at different frequencies, which reveals the un-
derlying patterns and trends. Next, we design an adaptive
correlation graph learning block that uses an adaptive GNN
to dynamically learn adjacency matrices for each time scale.
It computes relationship strength scores from edge features
and partitions the matrices based on these scores to identify
correlations and capture the complex dynamic changes in
the data. For intra-series relationships, a multi-head attention
module is employed to capture the dependencies at different
time points by computing correlations between time steps.
Finally, after multiple layers of feature aggregation, we gen-

erate the final prediction results. Our contributions include
the following key aspects:

• Overall Framework: We propose the MSCGrapher
framework, which effectively handles MTS and cap-
tures both multi-scale inter-series correlations and intra-
series temporal correlations.

• Effective Modules: Our research shows that using an
adaptive GNN can more accurately capture the com-
plex dynamic changes hidden in MTS.

• Performance: Extensive experiments on various real-
world datasets show that MSCGrapher outperforms
existing models. Additionally, we perform transferabil-
ity experiments with the correlation learning method,
verifying its generalization capability across different
datasets and models.

2 RELATED WORKS

2.1 TIME SERIES FORECASTING

Early time series forecasting are generally based on tra-
ditional statistical or machine learning methods. Recent
advancements in deep learning architectures have shown
significant advantages in time series forecasting [Miller
et al., 2024]. CNNs have succeeded in MTSF, as seen in
works like [Zeng et al., 2023b, Wang et al., 2023]. TCNs,
a type of CNN that prevents future value leakage, effec-
tively preserve the temporal order of time series [Bai et al.,
2018]. MLPs encode temporal dependencies into their lay-
ers using the MLP structure [Vijay et al., 2023, Challu et al.,
2023]. Transformers are used in MTSF due to their ability
to capture long-range dependencies. Crossformer [Zhang
and Yan, 2023] and Informer [Zhou et al., 2021] enhance
model performance by employing cross-attention mecha-
nisms and probabilistic sparse self-attention mechanisms
to capture temporal dependencies. However, these methods
fail to consider inter-series correlations at different time
scales in MTS. While some methods address periodicity as
a key factor in time series [Wu et al., 2022, Fan et al., 2022],
they still fall short in modeling complex correlations and
multi-scale dependencies.

2.2 CORRELATIONS LEARNING WITH GNNS

Graph Neural Networks (GNNs) demonstrate their impor-
tance in various fields by effectively modeling complex
interactions in graph-structured data. Initially, GNNs were
applied to tasks like traffic prediction [Wu et al., 2023] and
skeleton-based action recognition [Shi et al., 2019]. In recent
years, many studies start applying GNNs in MTS modeling
to capture the dependencies between variables. These meth-
ods [Yu et al., 2017, Li et al., 2017] often use fixed graph
structures to model inter-series correlations. For example,



in traffic prediction, a graph structure is constructed based
on the spatial distance between sensors, with sensors as
nodes and roads as edges connecting the nodes. However,
constructing a graph structure based on prior knowledge is
challenging in MTS modeling. To address this, researchers
propose learnable graph structures to dynamically model
relationships between series, offering new perspectives [Wu
et al., 2020]. Recently, some approaches attempt to use
dynamic or time-varying graph structures to model corre-
lations [Zheng et al., 2020, Chen et al., 2023, Cai et al.,
2024], but they overlook a key factor: as time progresses, the
inter-series correlations change dynamically across different
time scales, and the strength of these correlations fluctuates.
Failure to adequately consider the varying strength of inter-
series correlations leads to insufficient accuracy in capturing
these important dependencies.

3 PRELIMINARIES

3.1 PROBLEM DEFINITION

Given MTS Xt = {xt−L, . . . , xt−1} ∈ RN×L, where L
denotes the size of the historical review window and N is the
number of variables, the MTSF task is to predict the values
of N variables over the future T time steps. The future
values are denoted as Yt = {xt, . . . , xt+T−1} ∈ RN×T ,
where T denotes the size of the future prediction window.
Here, Xt,: ∈ RN denotes the time series collected at time
step t, and X:,n ∈ RL represents the entire times series of
each variable indexed by n.

3.2 GRAPH REPRESENTATION FOR MTS
INTER-SERIES CORRELATIONS

We use graphs to represent the inter-series correlations of
MTS at different scales, referred to as the strong correlation
graph and the weak correlation graph. The graph is de-
fined as G = (V,E), where V represents the set of nodes,
|V| = N and E is the set of edges. We consider the i-th
series as nodes vi, and the weighted edges representing rela-
tionships between different time series are denoted by Ei.
Strong correlation refers to variable pairs that exhibit consis-
tently similar trends at the same time scale, with correspond-
ing weights close to 1 in the learnable adjacency matrix.
Weak correlation refers to dissimilar or noise-influenced
trends, with weights close to 0. The strong correlation graph
is denoted as Gstrong, and the the weak correlation graph
is denoted as Gweak. Different time scales identified from
the MTS are represented as f = {f1, . . . , fk}, assuming
there are k different scales. The adjacency matrix corre-
sponding to each scale is denoted by {A1, . . . ,Ak}, where
Ak ∈ RN×N . Ak

strong and Ak
weak represent the adjacency

matrices of the strong correlation graph and weak correla-
tion graph at scale k.

4 MSCGRAPHER

Our MSCGrapher, with residual connections, consists of an
Embedding Layer, Multi-scale Correlation Learning Block
(MSCL), Multi-head Attention Layer (MAL), Multi-scale
Aggregation Layer, and Projection Layer. The Embedding
Layer processes time series into suitable representations,
MSCL and MAL capture inter-series correlations and intra-
series dependencies. Finally, the multi-scale aggregation
layer integrates features, and the projection layer outputs
the final representation required for downstream tasks. The
overall framework is illustrated in Figure 2.

4.1 TIME SERIES EMBEDDING
REPRESENTATION

For each series of MTS, we treat it as a node of graph. The
first step is to integrate the temporal dynamics of each series
into a proper embedding representation.

Local features in time series reflect short-term changes
and behaviors. We use 1D convolution to transform the
input MTS into high-dimensional embedded representa-
tions: embToken = Conv1d(Xt,W), where embToken ∈
Rcdim×L, cdim is the feature dimension and W is the weight
matrix. Additionally, temporal features often contain impor-
tant information that explains periodicity, trends, and other
time-related patterns. We employ an embedding operation
to enhance temporal context information: embTemporal =
Em+Ed+Ew+Eh+Et, where Ei∈{m,d,w,h,t} ∈ Rcdim×L

represents embeddings for month, day, week, hour, and
minute. In the forecasting scenario, position features are also
crucial. Therefore, positional information is added in the
series through position encoding: embPosition = PE(L, i),
where i ∈ {0, cdim − 1} represents the index of the dimen-
sion in the embedding vector. In summary, Embedding layer
of MSCGrapher consists of three main parts:

Hemb = embToken + embTemoporal + embPosition (1)

4.2 MULTI-SCALE INTER-SERIES
CORRELATIONS LEARNING

To effectively capture the correlations of MTS at different
time scales, we design a Multi-scale Correlation Learning
Block (named MSCL), which consists of Multi-scale Seg-
mentation Layer and Adaptive Correlation Graph Learning
Layer. The former divides time series into different time
scales based on their periodic characteristics while the latter
learns the dependencies between time series at the corre-
sponding scales to capture correlations. k parallel blocks
are used to learn correlations of k time scales.



Multi-scale segmentation
layer

Adaptive correlation graph
learning layer

Embedding

Multi-head Attention Layer

Multi-scale Correlation Learning
Block

Multi-scale Aggregator

+

Projection

… Output

+

+

+

Predicted T'-step Time Series Tensor  

k k

Input Multivariate Time Series

Position Embedding

Token Embedding

Temporal Embedding
Month Weekday Day Hour Minute

+

+

Time

Value

 Time Series X1D

Frequency

A
m

plitude

… …

Scale1 Scale2 Scalek…

FFT

nodevec1

nodevec2

Original Graph

Strong Correlation Graph

Weak Correlation Graph

Correlation Graph

Multi-scale segmentation layer

Adaptive correlation graph learning layer

Normaliza-
tion Layer ConvKey

Vaule

Query

+

Variate

Normaliza-
tion Layer

Figure 2: The overall framework of MSCGrapher. The core is the Multi-scale Correlation Learning Block, which includes
the Multi-scale Segmentation Layer and Adaptive Correlation Graph Learning Layer.

4.2.1 Multi-scale Segmentation of MTS

Generally, different scales uncover various patterns. For
example, in financial markets, short-term price fluctuations
may be influenced by news events and trading behaviors,
while long-term trends may be driven by economic cycles
and policy. To identify periodicities of time series as time
scales, we transform the representation of MTS to frequency
domain by using Fast Fourier Transform (FFT). The process
is as follows:

Xf = FFT(Hemb), F = Avg(Amp(Xf )),

argTopk
f∗∈{1,...,[L2 ]}

(F) = {f1, . . . , fk}, pi =
L

fi
. (2)

where FFT() and Amp() represent FFT and amplitude cal-
culations, pi is the period corresponding to different scales.
We first extract the k most significant frequency compo-
nents {f1, . . . , fk}, and compute their corresponding period
{p1, . . . , pk}. Then, we reshape the original input Xinput

based on the extracted period pi and frequency fi:

Xi = Reshapepi,fi(Padding(Xinput)), (3)

where Padding() extends the time series with zero padding
along the time dimension to fit Reshapepi,fi(), i ∈
{1, . . . , k}. Note that Xi ∈ Rcdim×pi×fi represents the i-th
reshaped time series for time scale i.

4.2.2 Adaptive Correlation Graph Learning

Two trainable matrices, El
1 ∈ Rc×N and El

2 ∈ RN×c, are
employed to learn the adaptive adjacency matrix at time
scale l:

Al = SoftMax
(
ReLU

(
El

1(E
l
2)

T
))

, (4)

i.e., we learn a new adjacency matrix at each time scale to
capture differences in correlations across different scales.
After obtaining the l-th time scale adjacency matrices Al,
we can generate new adjacency matrices Al

strong and Al
weak

based on the changes in correlation strength. The process is
illustrated in Figure 3.

We first construct the edge index matrix El
index and edge

attribute matrix Al
edge based on Al:

El
index = Transpose(Nonzero(Al)),

Al
edge = Reshapec(A

l(Al ̸= 0)),
(5)

Then, we obtain graph representation by two parameters:

X̂ = ReshapeL,cdim
(Xinput),

Gdata = Data(X̂,El
index,A

l
edge,B

l).
(6)

where Bl is a zero-filled batch tensor, Data() is used to
create a graph object.

Next, we apply convolution and non-linear transformations
on the node features in Gdata to extract the start and end
node indices, denoted as r and c, respectively, from El

index,



Edge Attribute 

Edge Index

Node Features

Node Batch Index

Graph  Data

Source Nodes

Destination Nodes

Conv

MLP

Gstrong

Gweak

Index
Feature

Batch
Features

Index
Feature

Batch
Features

Fusion Graph

Graph
Convolution

Correlation Graph

relabel

relabel

Figure 3: An overview of the Adaptive Correlation Graph Learning Layer. It utilizes a correlation graph learning method to
obtain the strong and weak correlations between time series.

where r corresponds to the source node and c to the target
node. We then obtain representations for each edge and
compute edge scores using an MLP:

Ĝdata = Conv2(ReLU(Conv1(Gdata))),

r = El
index[0, :], c = El

index[1, :],

Erep = concat(X̂[r], X̂[c]),Sedge = MLP(Erep).

(7)

We concatenate the node features corresponding to the start
and end node indices to obtain Erep and use MLP() to
compute edge scores Sedge. After obtaining the score for
each edge, a higher score indicates a stronger relationship
between the two nodes. Specifically, a higher score means
that the edge is more important in the graph structure, and
the correlations between two nodes is stronger. We partition
the edges of the graph into strong correlation graph Gstrong

and weak correlation graph Gweak based on the edge scores
and a ratio.

Then, we relabel the nodes of Gstrong and Gweak to obtain
new node features:

Gl
strong,G

l
weak = Divide(Sedge, ratio),

Al
strong,A

l
weak = Relabel(Gl

strong,G
l
weak),

(8)

where Relabel() represents the function for relabeling node
features. After that, we assign corresponding weights to the
strong and weak adjacency matrices, perform a weighted
sum, and fuse the two graphs to generate a new representa-
tion Al

f .

Al
f = W ·Al

strong + (1−W ) ·Al
weak, (9)

where W is a weighting parameter used to control the fusion
ratio of Al

strong and Al
weak. We assign a higher weight to the

Al
strong to direct the model’s attention toward strong corre-

lation information, thereby capturing key node relationships
more effectively while avoiding noise interference caused

by weak correlation information. Finally, we use the Mix-
hop graph convolution method [Abu-El-Haija et al., 2019]
to capture the dependencies in the Fusion graph between
time series:

Xi
out = σ

( ∥∥
j∈P

(Al
f )

jXi

)
. (10)

where, Xi
out is the output after fusion at scale i. The hyper-

parameter P is a set of integers representing the powers of
the adjacency matrix. (Al

f )
j denotes the j-th power of the

learned Fusion adjacency matrix Al
f , and ∥ concatenates

the intermediate results generated in each iteration along the
column direction. Finally, we use an MLP to project Xi

out

into a 3D tensor X̂i
out ∈ Rcdim×pi×fi .

4.3 EXTRACTION OF INTRA-SERIES
CORRELATIONS

A multi-head attention based module is proposed to cap-
ture the intra-series correlations within time series at differ-
ent time scales. Specifically, we project the input series
X̂i

out through a linear layer into different spaces to ob-
tain queries(Q), keys(K), and values(V). They are then
projected onto multiple attention heads, where each head
learns different temporal dependencies. Finally, we com-
bine the outputs of different heads and extract local features
through Conv1d to generate a comprehensive representation
Ĥi

out ∈ RBfi×cdim×pi , where B is the batch size:

O = Linear (Concat (head1, . . . ,headH)) ,

Xattn = LayerNorm
(
X̂i

out +Dropout(O)
)
,

Y = Dropout
(
Conv1d

(
Conv1d(X

T
attn)

T
)T)

,

Ĥi
out = LayerNorm (Xattn +Y) .

(11)



4.4 MULTI-SCALE AGGREGATOR AND
PROJECTION

After handling k scales, we obtain the representations Ĥi
out

for each scale. To generate predictions through node re-
gression, we need to aggregate the tensors from the k dif-
ferent scales. Each tensor is first reshaped to obtain new
Ĥi

out ∈ Rcdim×L, and then k scales based on their respec-
tive amplitudes are aggregated:

X̂out =

k∑
i=1

Softmax(W)Ĥi
out, (12)

W ∈ RB×k is the learnable scale weight matrix composed
of amplitudes from each time scale, which represents the
relative importance. Thus, we can adaptively integrate the in-
formation from different scales based on the learned weights.
The final prediction is completed by a regression process:

Yt = WlX̂outWt + b. (13)

where Wl ∈ RN×cdim and Wt ∈ RL×T are learnable
weights. Wl and Wt perform linear mapping on the vari-
able dimension and time dimension, respectively.

5 EXPERIMENTS

We conduct a comprehensive experiments of MSCGrapher
on MTSF across multiple real-world datasets to validate its
generalization ability in various scenarios. We also explore
the potential of integrating correlation learning block into
other models to assess their transferability and performance.

5.1 EXPERIMENT SETUP

5.1.1 Datasets and Baselines

12 real-world MTS datasets are employed, includ-
ing Flight, ETT(h1,h2,m1,m2)[Wu et al., 2022],
Weather, Electricity, Exchange-Rate[Lai et al., 2018]
and PEMS(03,04,07,08)[Liu et al., 2022a]. 13 well-
established forecasting models are selected as baselines,
including (1) Transformer-based models: Informer [Zhou
et al., 2021], Autoformer [Wu et al., 2021], Pyraformer
[Liu et al., 2021], FEDformer [Zhou et al., 2022], and
Stationary [Liu et al., 2022b]; (2) Linear methods: TiDE
[Das et al., 2023] and Dlinear [Zeng et al., 2023a]; (3)
TCN-based methods: TimesNet [Wu et al., 2022] and
MSGNet [Cai et al., 2024]; (4) GNN-based methods:
MSHyper [Shang and Chen, 2024], CrossGNN [Huang
et al., 2023], StemGNN [Cao et al., 2020] and FourierGNN
[Yi et al., 2024].

5.1.2 Implementation details

All experiments are conducted on an NVIDIA GeForce
RTX 4090 24GB GPU. We use the Adam optimizer with
a learning rate set to 10−4 and a batch size of 32. The loss
function is MSE. We set the historical review window L to
96 and the forecasting window T to {96, 192, 336, 720} or
{12, 24, 48, 96}.

5.2 FORECASTING RESULTS AND ANALYSIS

We present the forecasting results in Table 1, which com-
pare the MSE and MAE across all output lengths with 9 non
GNN-based baselines. The best results are highlighted in red
bold and the second best results are underlined in blue. Com-
pared to other models, MSCGrapher wins 13 times across
various frequencies, numbers of variables, and real-world
scenarios, while the second baselines only win 7 times. To
assess the model’s generalization ability, we also calculate
the average rank, where MSCGrapher gains 1.50 and consis-
tently outperforms other models. Compared to Transformer-
based methods, MSCGrapher has a significant performance
improvement, which demonstrate that inter-series relation-
ships cannot be ignored for MTS. Although linear methods
are advantageous for long-term forecasting, MSCGrapher
still achieved performance improvement on most datasets.
Compared to the latest SOTA model (MSGNet), which also
leverages multi-scale information, MSCGrapher achieves
superior performance across all datasets. For example, on
the Flight dataset, MSCGrapher reduces the MSE by 3.4%;
on the ETTh datasets, the MSE drops by 4.8% and 2.2%, re-
spectively; and on the PEMS dataset, the improvements are
1.5% and 7.3%. The Flight dataset contains highly volatile
air traffic data with frequent short-term fluctuations and
certain periodic patterns. By integrating both strong and
weak correlations, MSCGrapher enhances forecasting ac-
curacy. The ETTh dataset exhibits clear seasonal trends
and periodic fluctuations—strong correlations capture the
inertial behavior of power loads, while weak correlations
reflect contextual factors such as ambient temperature and
temporal cycles. MSCGrapher effectively distinguishes and
adaptively fuses correlations of different strengths, resulting
in lower forecasting errors. In the PEMS datasets, traffic
flow is characterized by spatial heterogeneity and abrupt
temporal changes, making inter-node relationships particu-
larly complex. MSCGrapher demonstrates its advantage by
modeling the correlations of dynamic variations.

Additionally, we compare MSCGrapher with GNN-based
methods using datasets consistent with the baselines. The de-
tailed results are shown in Table 2 and 3. As shown in Table
2, MSCGrapher significantly outperforms GNN-based meth-
ods across five datasets from different domains, especially
on three traffic-related datasets, where the average MSE
decreases by 18.6%, 30.38%, and 23.87%, respectively. Ta-



Table 1: The forecasting results of our MSCGrpaher and baselines. Complete results are referred to Supplements.

Models MSCGrpaher MSGNet(2024) Dlinear(2023) TimesNet(2023) TiDE(2023) Stationary(2022) FEDformer(2022) Pyraformer(2022) Autoformer(2021) Informer(2021)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Flight 0.201 0.315 0.208 0.321 0.233 0.345 0.265 0.372 0.239 0.350 0.560 0.542 0.418 0.485 0.448 0.496 0.238 0.344 0.391 0.439

ETTh1 0.450 0.452 0.472 0.477 0.456 0.452 0.458 0.452 0.518 0.517 0.570 0.537 0.498 0.484 0.827 0.703 0.496 0.487 1.040 0.820

ETTh2 0.393 0.415 0.402 0.431 0.559 0.515 0.414 0.427 0.387 0.419 0.526 0.516 0.437 0.449 0.826 0.703 0.450 0.459 4.431 1.729

ETTm1 0.400 0.412 0.400 0.412 0.403 0.407 0.400 0.406 0.413 0.415 0.471 0.456 0.448 0.452 0.618 0.607 0.588 0.517 0.961 0.734

ETTm2 0.287 0.329 0.290 0.331 0.350 0.401 0.291 0.333 0.293 0.338 0.306 0.347 0.305 0.349 1.498 0.869 0.327 0.371 1.410 0.810

weather 0.255 0.283 0.257 0.284 0.265 0.317 0.259 0.287 0.271 0.320 0.288 0.314 0.309 0.360 0.815 0.717 0.338 0.382 0.634 0.548

electricity 0.196 0.302 0.196 0.303 0.212 0.300 0.193 0.295 0.209 0.295 0.193 0.296 0.214 0.327 0.382 0.445 0.227 0.338 0.336 0.397

exchange 0.396 0.429 0.403 0.432 0.354 0.414 0.416 0.443 0.400 0.431 0.461 0.454 0.519 0.500 1.377 1.018 0.613 0.539 1.550 0.998

PEMS03 0.136 0.241 0.138 0.243 0.278 0.375 0.147 0.248 0.326 0.420 0.147 0.249 0.213 0.327 0.360 0.414 0.667 0.601 0.201 0.300

PEMS08 0.192 0.276 0.206 0.323 0.379 0.416 0.193 0.271 0.441 0.464 0.201 0.276 0.286 0.358 0.269 0.292 0.814 0.659 0.313 0.325

1st Count 13 0 2 4 1 0 0 0 0 0

Avg Rank 1.50 2.60 4.95 2.90 5.30 5.60 6.25 8.85 7.35 8.75

Table 2: Forecasting results compared with GNN methods.

Datasets Electricity Weather PEMS03 PEMS04 PEMS08

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

MSCGrpaher 0.196 0.302 0.255 0.283 0.136 0.241 0.137 0.255 0.192 0.276

FourierGNN 0.228 0.325 0.249 0.302 0.151 0.267 0.180 0.295 0.216 0.313

StemGNN 0.197 0.300 0.268 0.321 0.187 0.302 0.217 0.333 0.303 0.351

Table 3: GNN methods results on PEMS datasets.

Dataset PEMS03 PEMS04 PEMS07 PEMS08

Metric MSE MAE MSE MAE MSE MAE MSE MAE

MSCGrpaher
12 0.078 0.184 0.092 0.207 0.070 0.175 0.116 0.223
24 0.103 0.214 0.109 0.228 0.093 0.195 0.149 0.255
48 0.151 0.257 0.144 0.265 0.125 0.234 0.189 0.275

MSHyper
12 0.106 0.207 0.103 0.197 0.137 0.256 0.113 0.209

24 0.126 0.207 0.148 0.148 0.245 0.225 0.230 0.248

48 0.138 0.265 0.191 0.308 0.137 0.221 0.317 0.324

CrossGNN
12 0.094 0.208 0.158 0.270 0.085 0.198 0.148 0.262

24 0.131 0.248 0.231 0.322 0.185 0.293 0.277 0.363

48 0.242 0.343 0.468 0.475 0.340 0.414 0.336 0.407

FourierGNN
12 0.087 0.202 0.112 0.231 0.073 0.182 0.143 0.263

24 0.120 0.240 0.153 0.272 0.100 0.215 0.210 0.320

48 0.177 0.294 0.209 0.321 0.140 0.258 0.216 0.311

ble 3 further compares MSCGrapher with state-of-the-art
GNN methods on the PEMS datasets, where MSCGrapher
achieves superior performance on most metrics. Due to
the pronounced spatial heterogeneity and temporal abrupt
changes in traffic flow within the PEMS datasets, the rela-
tionships among nodes are highly complex and dynamic.
This fully demonstrates that the inter-series correlations in
multivariate time series evolve over time, and our multi-
scale correlation learning method effectively captures and
handles these dynamic features.

To more clearly show the capability of MSCGrapher in mod-
eling the inter-series correlations of MTS, we illustrate the
forecasting results of a single-variate series on flight dataset

with 5 baselines on Figure 4. The significant prediction devi-
ations are marked with circles and yellow shaded areas. As
observed, MSCGrapher fits nearly all key change regions
well, whereas other baselines struggle in scenarios involving
drastic changes. Specifically, MSCGrapher demonstrates
better visualization of prediction results than MSGNet in
the low-value range of 20–100. Moreover, within the peak
range of 20–40, MSCGrapher more accurately captures the
dynamic trends of the true value curve. MSCGrapher also
outperforms DLinear in predicting certain extreme points,
producing results closer to the true values. In contrast, DLin-
ear tends to exhibit lag or smoothing effects when handling
sharp fluctuations, making it difficult to precisely capture
sudden changes. Furthermore, MSCGrapher surpasses TiDE
in predicting extreme points and fitting trends within the
30–40 and 50–60 intervals, demonstrating higher fitting
accuracy and improved dynamic consistency. Pyraformer
performs poorly during peak periods and in regions with sig-
nificant fluctuations, failing to accurately track pronounced
changes in the data. Autoformer underperforms in low-value
regions, struggling to capture subtle variations and resulting
in significant deviations between predicted and true values.

0.5
0.0
0.5
1.0

1.0

MSCGrapher

0 20 40 60 80

True Values
Predicted Values

(a)

0.5
0.0

1.0

0.5
1.0

MSGNet

0 20 40 60 80

True Values
Predicted Values

(b)

0.5
0.0

1.0

1.0

0.5

DLinear

0 20 40 60 80

True Values
Predicted Values

(c)

0.5

0.5
0.0

1.0

1.0

TiDE

0 20 40 60 80

True Values
Predicted Values

(d)

0.5

1.0
0.5
0.0

1.0

Pyraformer

0 20 40 60 80

True Values
Predicted Values

(e)

0.5

1.0

0.0
0.5

1.0

Autoformer

0 20 40 60 80

True Values
Predicted Values

(f)

Figure 4: Visualization of the prediction results on the flight
dataset with an output length of 96.



5.3 ABLATION STUDY

To investigate the impact of different modules in MSCGra-
pher, we design the following variants:

1. w/o-ACLayer: Adaptive correlation learning layer is
instead by convolutions.

2. w/o-CorGraph: The process of correlation graph learn-
ing does not have a strong or weak degree division.

3. w/o-MSLayer: It removes the multi-scale modeling
part.

4. w/o-Attention: The Multi-Head self-Attention Layer is
removed.

We do the ablation study on 5 datasets which are from dif-
ferent domain. Table 4 shows the average results of these
variants across output lengths. From Table 4, we can find
theses variants all have a increase in MSE and MAE. When
removing the adaptive correlation learning layer, the per-
formance is most affected on all datasets. On Flight and
PEMS08, MSE drops by 35.33% and 24.41%, and MAE by
19.30% and 22.76%, which demonstrate that the inter-series
correlations is a key factor for MTSF task. Furthermore,
the results of variant 2 also indicate that manipulating the
strength of the inter-series correlations in different ways
can more accurately capture the implicit information. When
using a single scale instead of multi-scale partitioning, MSC-
Grapher has a significant performance degradation, where
MSE drops by 12.02% and MAE by 8.07% on the Flight
dataset. It proves that the periodicity is a core characteris-
tic and multi-scale helps to extract the complex periodic
patterns hidden in MTS. The results of variant 4 show that
intra-series correlations are also a crucial factor.

Table 4: Results of the ablation study.

Datasets Flight ETTh1 Exchange Weather PEMS08

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

MSCGrapher 0.201 0.315 0.450 0.452 0.393 0.429 0.255 0.283 0.192 0.276

w/o-ACLayer 0.317 0.413 0.500 0.478 0.430 0.448 0.265 0.292 0.254 0.342

w/o-CorGraph 0.208 0.320 0.465 0.460 0.417 0.442 0.257 0.284 0.204 0.277

w/o-MSLayer 0.233 0.347 0.467 0.461 0.399 0.429 0.256 0.284 0.198 0.283

w/o-Attention 0.206 0.320 0.455 0.455 0.412 0.436 0.257 0.284 0.198 0.281

5.4 SENSITIVITY TO HYPERPARAMETERS

We evaluate the impact of following hyperparameters on
different datasets: scale k, embedding dimension cdim and
ratio. In this experiments, the length of historical review
window and the prediction length are set to 96. The results
are presented in Figure 5. For k, we can find the MSE
gradually decreases on all datasets as k increases. When
k increases to a certain extent, the performance begins to
decline. For these datasets, the best choice of k is 3 or

5, which indicates that MTS can be represented well from
several period in most cases. Similar to k, cdim also presents
the same trend. Concerning the ratio, although increasing the
ratio helps capture more potential strong correlations, it also
raises the risk of misinterpreting weak correlations as strong
correlations, which may affect the overall performance of
the model.

0.150

0.200

0.250

0.300

0.350

0.400

0.450

1 2 3 4 5

(a) k

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

16 32 64 128 256 512

(b) cdim

0.150

0.200

0.250

0.300

0.350

0.400

0.05 0.25 0.45 0.65 0.85

Flight
ETTh1
ETTh2
ETTm1
ETTm2

(c) ratio

Figure 5: Sensitivity tests for k, cdim, and ratio.

5.5 LEARNED CORRELATION GRAPH
VISUALIZATION

To clearly exhibit the learned correlations, we visualize a
subset of the correlation adjacency matrices from the Flight
dataset in Figure 6.

Specifically, we choose three different time scales: 24h, 12h,
and 6h, and compare the different correlation adjacency
matrices for each time scale. As shown in Figure 6, the
correlation adjacency matrices are sparse on all time scales,
which says that our method can effectively find the intrin-
sic relationships hidden in MTS. At different time scales,
we observe that the strength of correlations changes. For
example, the correlation between nodes 3 and 6 (marked
in red boxes) is strong at 24h and 6h. However, at a 12h
time scale, the correlation becomes weak. This suggests
that the variation in correlations across different time scales
reveals the complex dynamic evolution of the system. If we
can focus more on the strong correlations and reduce the
influence of weak correlations during the evolution process,
we can more effectively capture the core dynamics and key
changes of the system. By increasing the weight of strong
correlations, we can direct the model’s attention to relation-
ships that remain consistently stable across multiple time
scales, rather than being distracted by weak correlations that
only exist briefly at specific time scales.

0 1 2 3 4 5 6

0
1
2
3
4
5
6 0.0

0.2

0.4

0.6

0.8

(a) 24h

0 1 2 3 4 5 6

0
1
2
3
4
5
6

0.2

0.4

0.6

0.8

(b) 12h

0 1 2 3 4 5 6

0
1
2
3
4
5
6

0.2

0.4

0.6

0.8

(c) 6h

Figure 6: Visualization of the first layer correlation adja-
cency matrix on Flight dataset for different time scales: (a)
24h, (b) 12h, and (c) 6h.



Table 5: Comparative results of integrating our correlation learning methods into MTGNN and TEGNN.

Datasets Solar-Energy Traffic Electricity Exchange-Rate

Model Metric 3(30min) 6(60min) 12(120min) 24(240min) 3(3h) 6(6h) 12(12h) 24(24h) 3(3h) 6(6h) 12(12h) 24(24h) 3(3d) 6(6d) 12(12d) 24(24d)

MTGNN

RSE 0.1778 0.2348 0.3109 0.4270 0.4162 0.4754 0.4461 0.4535 0.0745 0.0878 0.0916 0.0953 0.0194 0.0259 0.0349 0.0456

RSE(Cor) 0.1782 0.2362 0.3102 0.4230 0.4237 0.4688 0.4531 0.4531 0.0744 0.0856 0.0911 0.0950 0.0192 0.0258 0.0344 0.0446

CORR 0.9852 0.9726 0.9509 0.9031 0.8963 0.8667 0.8794 0.8810 0.9474 0.9316 0.9278 0.9234 0.9786 0.9708 0.9551 0.9372

CORR(Cor) 0.9851 0.9723 0.9512 0.9058 0.8934 0.8670 0.8764 0.8818 0.9475 0.9327 0.9273 0.9237 0.9789 0.9705 0.9533 0.9362

TEGNN

RSE 0.1824 0.2612 0.3289 0.4733 0.4421 0.4433 0.4508 0.4692 0.0774 0.0862 0.0948 0.0985 0.0178 0.0245 0.0363 0.0449

RSE(Cor) 0.1739 0.2298 0.2943 0.3942 0.4178 0.4505 0.4414 0.4495 0.0748 0.0862 0.0938 0.0965 0.0177 0.0255 0.0348 0.0507

CORR 0.9847 0.9676 0.9379 0.8854 0.8853 0.8820 0.8743 0.8671 0.9418 0.9310 0.9225 0.9182 0.9815 0.9732 0.9566 0.9352

CORR(Cor) 0.9856 0.9742 0.9572 0.9183 0.8978 0.8792 0.8830 0.8781 0.9460 0.9531 0.9250 0.9201 0.9817 0.9732 0.9588 0.9385

Table 6: Model efficiency comparison on Electricity with
input length 96 and output length 96.

Models Pred Length GPU Memory (GB) Training Time (ms/iter) MSE Rank

MSCGrapher 96 6.48 404 ms 1

MSGNet 96 6.55 281 ms 4

TimesNet 96 5.81 532 ms 3

DLinear 96 1.38 15 ms 5

FourierGNN 96 21.57 434 ms 6

StemGNN 96 7.25 186 ms 2

5.6 TRANSFERABILITY OF CORRELATION
LEARNING

In this section, we integrate the correlation learning method
into GNN-based models: MTGNN [Wu et al., 2020] and
TEGNN [Duan et al., 2022], to validate its transferabil-
ity. For ease of comparison, experiments are conducted on
same MTS datasets: Solar-Energy, Traffic, Electricity, and
Exchange-Rate. Relative Squared Error (RSE) and Empiri-
cal Correlation Coefficient (CORR) are used for evaluation.

Table 5 shows the comparative results before and after in-
tegrating our correlation learning method into MTGNN
and TEGNN. (Cor) indicates the incorporation of our pro-
posed correlation learning method into the respective mod-
els. From Table 5, it is evident that both models gain perfor-
mance improvements in the majority of scenarios, especially
for TEGNN on Solar-Energy and Electricity datasets. After
replacing the original correlation learning, MTGNN shows
slight improvements across all horizons on the smaller
datasets, Electricity and Exchange. However, in the other
two larger datasets, the performance improvement is more
noticeable for long-series predictions. TEGNN exhibits sig-
nificant improvements in the first three datasets, which is
likely because these datasets are collected on an hourly or
minute basis, containing more time series information. With
the replace of correlation learning, TEGNN has better ability
to capture the complex inter-series relationships. This indi-
cates that our correlation learning method can effectively

extract inter-series dynamic correlations from MTS.

5.7 COMPUTATIONAL EFFICIENCY

For efficiency evaluation, we select the more complex Elec-
tricity dataset to conduct a comprehensive comparison of
GPU memory usage, running speed, and MSE ranking
across different models under the prediction length of 96.
This approach allows us to systematically assess the trade-
off between accuracy and computational efficiency. To en-
sure fairness, all models were tested under the same condi-
tions. The detailed results are presented in Table 6.

In Table 6, although MSCGrapher is not the best among
all models in terms of training speed and GPU memory
usage, it strikes a good balance between overall efficiency
and performance. Specifically, MSCGrapher maintains a
controllable level of resource consumption while achieving
significantly better prediction accuracy than models such
as FourierGNN, demonstrating strong modeling capability.
Although TimesNet shows advantages in memory usage, its
noticeably slower training speed hampers overall training
efficiency. Considering both accuracy and computational
cost, MSCGrapher exhibits stable and superior performance.

6 CONCLUSION

In this study, we propose a novel MTSF model, MSCGra-
pher, which starts from the premise that different relation-
ships exist in MTS at various scales. MSCGrapher effec-
tively captures both inter-series correlations with varying
strengths and intra-series temporal correlations at different
time scales by combining multi-scale correlation learning
block with multi-head self-attention. Extensive experiments
on real-world datasets shows that MSCGrapher outperforms
existing models. When introduced our adaptive correlation
learning method, two GNN-based methods also gain bet-
ter performance, which proves that modeling the dynamic
varying correlations is helpful for MTSF task.



ACKNOWLEDGEMENT

This work is supported by the National Natural Science
Foundation of China [grant number 62162062] and the Sci-
ence and Technology Development Plan Project of Jilin
Province [20220203127SF] .

References

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin
Alipourfard, Kristina Lerman, Hrayr Harutyunyan, Greg
Ver Steeg, and Aram Galstyan. Mixhop: Higher-order
graph convolutional architectures via sparsified neigh-
borhood mixing. In international conference on machine
learning, pages 21–29. PMLR, 2019.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An em-
pirical evaluation of generic convolutional and recurrent
networks for sequence modeling. arxiv. arXiv preprint
arXiv:1803.01271, 10, 2018.

Wanlin Cai, Yuxuan Liang, Xianggen Liu, Jianshuai Feng,
and Yuankai Wu. Msgnet: Learning multi-scale inter-
series correlations for multivariate time series forecasting.
In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 11141–11149, 2024.

Defu Cao, Yujing Wang, Juanyong Duan, Ce Zhang, Xia
Zhu, Congrui Huang, Yunhai Tong, Bixiong Xu, Jing Bai,
Jie Tong, et al. Spectral temporal graph neural network for
multivariate time-series forecasting. Advances in neural
information processing systems, 33:17766–17778, 2020.

Cristian Challu, Kin G Olivares, Boris N Oreshkin, Fed-
erico Garza Ramirez, Max Mergenthaler Canseco, and
Artur Dubrawski. Nhits: Neural hierarchical interpolation
for time series forecasting. In Proceedings of the AAAI
conference on artificial intelligence, pages 6989–6997,
2023.

Cathy W. S. Chen, Richard Gerlach, Wcw Lee, and Edward
M. H. Lin. Bayesian forecasting for financial risk man-
agement, pre and post the global financial crisis. Working
Papers, 31(8):661–687, 2011.

Ling Chen, Donghui Chen, Zongjiang Shang, Binqing Wu,
Cen Zheng, Bo Wen, and Wei Zhang. Multi-scale adap-
tive graph neural network for multivariate time series
forecasting. IEEE Transactions on Knowledge and Data
Engineering, 35(10):10748–10761, 2023.

Abhimanyu Das, Weihao Kong, Andrew Leach, Shaan
Mathur, Rajat Sen, and Rose Yu. Long-term forecast-
ing with tide: Time-series dense encoder. arXiv preprint
arXiv:2304.08424, 2023.

Ziheng Duan, Haoyan Xu, Yida Huang, Jie Feng, and
Yueyang Wang. Multivariate time series forecasting

with transfer entropy graph. Tsinghua Science and
Technology, 28(1):141–149, 2022.

Wei Fan, Shun Zheng, Xiaohan Yi, Wei Cao, Yanjie Fu,
Jiang Bian, and Tie-Yan Liu. Depts: Deep expansion
learning for periodic time series forecasting. arXiv
preprint arXiv:2203.07681, 2022.

Syeda Sitara Wishal Fatima and Afshin Rahimi. A review
of time-series forecasting algorithms for industrial manu-
facturing systems. Machines, 12(6):380, 2024.

Ulla K Heede and Alexey V Fedorov. Towards understand-
ing the robust strengthening of enso and more frequent
extreme el niño events in cmip6 global warming simula-
tions. Climate Dynamics, 61(5):3047–3060, 2023.

Qihe Huang, Lei Shen, Ruixin Zhang, Shouhong Ding,
Binwu Wang, Zhengyang Zhou, and Yang Wang. Cross-
gnn: Confronting noisy multivariate time series via cross
interaction refinement. Advances in Neural Information
Processing Systems, 36:46885–46902, 2023.

Thomas N Kipf and Max Welling. Semi-supervised classifi-
cation with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao
Liu. Modeling long-and short-term temporal patterns
with deep neural networks. In The 41st international
ACM SIGIR conference on research & development in
information retrieval, pages 95–104, 2018.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffu-
sion convolutional recurrent neural network: Data-driven
traffic forecasting. arXiv preprint arXiv:1707.01926,
2017.

Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia
Lai, Lingna Ma, and Qiang Xu. Scinet: Time series
modeling and forecasting with sample convolution and
interaction. Advances in Neural Information Processing
Systems, 35:5816–5828, 2022a.

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin,
Alex X Liu, and Schahram Dustdar. Pyraformer: Low-
complexity pyramidal attention for long-range time series
modeling and forecasting. In International conference on
learning representations, 2021.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long.
Non-stationary transformers: Exploring the stationarity in
time series forecasting. Advances in Neural Information
Processing Systems, 35:9881–9893, 2022b.

John A Miller, Mohammed Aldosari, Farah Saeed,
Nasid Habib Barna, Subas Rana, I Budak Arpinar, and
Ninghao Liu. A survey of deep learning and founda-
tion models for time series forecasting. arXiv preprint
arXiv:2401.13912, 2024.



Binh Nguyen-Thai, Vuong Le, Ngoc-Dung T Tieu, Truyen
Tran, Svetha Venkatesh, and Naeem Ramzan. Learning
evolving relations for multivariate time series forecasting.
Applied Intelligence, 54(5):3918–3932, 2024.

Zongjiang Shang and Ling Chen. Mshyper: Multi-scale
hypergraph transformer for long-range time series fore-
casting. arXiv preprint arXiv:2401.09261, 2024.

Lei Shi, Yifan Zhang, Jian Cheng, and Hanqing Lu.
Skeleton-based action recognition with directed graph
neural networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 7912–7921, 2019.

E Vijay, Arindam Jati, Nam Nguyen, Gift Sinthong, and
Jayant Kalagnanam. Tsmixer: Lightweight mlp-mixer
model for multivariate time series forecasting. In
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2023.

Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Jun-
hui Chen, and Yifei Xiao. Micn: Multi-scale local and
global context modeling for long-term series forecast-
ing. In The eleventh international conference on learning
representations, 2023.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long.
Autoformer: Decomposition transformers with auto-
correlation for long-term series forecasting. Advances in
neural information processing systems, 34:22419–22430,
2021.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin
Wang, and Mingsheng Long. Timesnet: Temporal 2d-
variation modeling for general time series analysis. arXiv
preprint arXiv:2210.02186, 2022.

Yuankai Wu, Hongyu Yang, Yi Lin, and Hong Liu. Spa-
tiotemporal propagation learning for network-wide flight
delay prediction. IEEE Transactions on Knowledge and
Data Engineering, 36(1):386–400, 2023.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xi-
aojun Chang, and Chengqi Zhang. Connecting the dots:
Multivariate time series forecasting with graph neural
networks. In Proceedings of the 26th ACM SIGKDD
international conference on knowledge discovery & data
mining, pages 753–763, 2020.

Kun Yi, Qi Zhang, Wei Fan, Hui He, Liang Hu, Pengyang
Wang, Ning An, Longbing Cao, and Zhendong Niu. Fouri-
ergnn: Rethinking multivariate time series forecasting
from a pure graph perspective. Advances in Neural
Information Processing Systems, 36, 2024.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-
temporal graph convolutional networks: A deep learn-
ing framework for traffic forecasting. arXiv preprint
arXiv:1709.04875, 2017.

Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng
Yang, Congrui Huang, Yunhai Tong, and Bixiong Xu.
Ts2vec: Towards universal representation of time series.
In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 8980–8987, 2022.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu.
Are transformers effective for time series forecasting?
In Proceedings of the AAAI conference on artificial
intelligence, pages 11121–11128, 2023a.

Zhen Zeng, Rachneet Kaur, Suchetha Siddagangappa, Saba
Rahimi, Tucker Balch, and Manuela Veloso. Financial
time series forecasting using cnn and transformer. arXiv
preprint arXiv:2304.04912, 2023b.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer
utilizing cross-dimension dependency for multivariate
time series forecasting. In The eleventh international
conference on learning representations, 2023.

Chuanpan Zheng, Xiaoliang Fan, Cheng Wang, and
Jianzhong Qi. Gman: A graph multi-attention network
for traffic prediction. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pages
1234–1241, 2020.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang,
Jianxin Li, Hui Xiong, and Wancai Zhang. Informer: Be-
yond efficient transformer for long sequence time-series
forecasting. In Proceedings of the AAAI conference on
artificial intelligence, pages 11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang
Sun, and Rong Jin. Fedformer: Frequency enhanced
decomposed transformer for long-term series forecasting.
In International conference on machine learning, pages
27268–27286. PMLR, 2022.



MSCGrapher: Learning Multi-Scale Dynamic Correlations for Multivariate
Time Series Forecasting

(Supplementary Material)

Xian Yang1 Zhenguo Zhang*1 Shihao Lu1

1Department of Computer Science and Technology, Yanbian University, 977 Gongyuan Road, Yanji, 133002, China

A DESCRIPTIONS OF NOTATIONS

To facilitate understanding of the symbols used in this paper, a detailed summary of the key notations is provided in Table 7.

B DETAILS OF IMPLEMENTING MULTIVARIATE TIME SERIES FORECASTING

In this section, we summarize the detailed information on datasets, baselines, evaluation metrics, and hyperparameter
settings. The code is available: https://github.com/sopphia2001/MSCGrapher.

B.1 DATASETS

We use a total of 12 real-world datasets to evaluate MSCGrapher, covering various domains such as weather, electricity, and
traffic. The specific information of the datasets is as follows:

• Flight[Cai et al., 2024]: Contains flight data variations for seven major airports in Europe from January 2019 to
December 2021, including flight data particularly related to COVID-19 (post-2020), with important information such
as flight numbers, departure and destination airports, departure times, and landing times.

• ETT[Zhou et al., 2021]: Includes seven factors of electric transformers from July 2016 to July 2018. There are four
subsets: ETTh1 and ETTh2 are recorded hourly, while ETTm1 and ETTm2 are recorded every 15 minutes.

• Weather[Wu et al., 2021]: Includes 21 meteorological factors collected every 10 minutes from 1990 to 2016.

• Electricity[Wu et al., 2021]: This dataset contains electricity consumption data from the UCI Machine Learning
Repository, which summarizes hourly electricity consumption of 321 customers from 2012 to 2014.

• Exchange-Rate[Wu et al., 2021]: Collects panel data of daily exchange rates for eight countries from 1990 to 2016.

• PEMS: Contains data from the California public transportation network collected in 5-minute windows. We use the
same two public subsets (PEMS03, PEMS04, PEMS07 and PEMS08) adopted in SCINet[Liu et al., 2022a].

For the multivariate time series forecasting, we set the input length to 96. The output length for the PEMS datasets is set to
{12, 24, 36, 96}, while for other datasets, the output length is set to {96, 192, 336, 720}. Table 8 lists the detailed information
of the datasets, which is crucial for understanding the characteristics of the datasets.

*Corresponding author.
*Corresponding author.

mailto:2023050075@ybu.edu.cn
mailto:zgzhang@ybu.edu.cn
mailto:2023050070@ybu.edu.cn


Table 7: Description of the key notations.

Notation Descriptions

Xt Original input series
Yt Target output series
N Number of variables in the series
L Length of the historical window
T Length of the prediction window
Xt,: Time series collected at time step t
X:,n Entire time series of of each variable indexed by n

G = (V,E) Graph with node set V and edge set E
Gstrong Strong correlation graph
Gweak Weak correlation graph

f = {f1, . . . , fk} Multi-scale representations in MTS
Ak

strong Adjacency matrix of the strong correlation graph at scale k
Ak

weak Adjacency matrix of the weak correlation graph at scale k
Ei∈{m,d,w,h,t} Embeddings for month, day, week, hour, and minute

Hemb Embedding of the original input series
Xf Fast Fourier Transform of Hemb

F Overall amplitude measure
pi Period corresponding to different scales
Xi The i-th reshaped time series for time scale i

El
1,E

l
2 Learnable parameters at layer l for source and target node embeddings

Al Adjacency matrices at layer l
Al

strong,A
l
weak Strong and Weak correlation matrices at layer l

El
index Edge index matrix at layer l indicating connections

Al
edge Edge attribute matrix at layer l describing edge features

Gdata Contains node and edge features
Bl All-zero batch tensor
r Source node of an edge
c Target node of an edge

Erep Node features from source and target node indices
Sedge Computed edge scores
Al

f Fused adjacency matrix at layer l
Xi

out The output after fusion at scale i

B.2 BASELINES

We compare MSCGrapher with 13 baselines to validate its forecasting performance. We select outstanding time series
forecasting models from 2021 to 2024. The specific model codes are as follows:

• Informer: https://github.com/zhouhaoyi/Informer2020

• Autoformer: https://github.com/thuml/Autoformer

• Pyraformer: https://github.com/ant-research/Pyraformer

• FEDformer: https://github.com/MAZiqing/FEDformer

• Stationary: https://github.com/thuml/Nonstationary_Transformers

• TiDE: https://github.com/google-research/google-research/tree/master/tide

• TimesNet: https://github.com/thuml/Time-Series-Library

• DLinear: https://github.com/honeywell21/DLinear

• MSGNet: https://github.com/YoZhibo/MSGNet

• MSHyper: https://github.com/shangzongjiang/Ada-MSHyper

https://github.com/zhouhaoyi/Informer2020
https://github.com/thuml/Autoformer
https://github.com/ant-research/Pyraformer
https://github.com/MAZiqing/FEDformer
https://github.com/thuml/Nonstationary_Transformers
https://github.com/google-research/google-research/tree/master/tide
https://github.com/thuml/Time-Series-Library
https://github.com/honeywell21/DLinear
https://github.com/YoZhibo/MSGNet
https://github.com/shangzongjiang/Ada-MSHyper


Table 8: Detailed Information of Datasets. The frequency indicates the sampling interval of the time points.

Datasets Nodes Prediction Length Train/Valid/Test Size Split Ratio Frequency
Flight 7 {96, 192, 336, 720} (18221, 2537, 5165) 7:1:2 Hourly
ETTh1 7 {96, 192, 336, 720} (8545, 2881, 2881) 6:2:2 Hourly
ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) 6:2:2 Hourly
ETTm1 7 {96, 192, 336, 720} (34465, 11521, 11521) 6:2:2 15 min
ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 6:2:2 15 min
Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 7:1:2 10 min

Electricity 321 {96, 192, 336, 720} (18317, 2633, 5261) 7:1:2 Hourly
Exchange-Rate 8 {96, 192, 336, 720} (5120, 665, 1422) 7:1:2 Daily

PEMS03 358 {12, 24, 48, 96} (15629, 5147, 5147) 6:2:2 5 min
PEMS04 307 {12, 24, 48, 96} (10100, 3303, 3304) 6:2:2 5 min
PEMS07 883 {12, 24, 48, 96} (16839, 5550, 5550) 6:2:2 5 min
PEMS08 170 {12, 24, 48, 96} (10618, 3476, 3477) 6:2:2 5 min

• CrossGNN: https://github.com/hqh0728/CrossGNN

• StemGNN: https://github.com/microsoft/StemGNN

• FourierGNN: https://github.com/aikunyi/FourierGNN

B.3 EVALUATION METRICS

In the experiments, we use Mean Squared Error (MSE) and Mean Absolute Error (MAE) as evaluation metrics. For
multivariate time series, given the true value Yt = {xt, . . . , xt+T−1} ∈ RN×T at time step t and the predicted values
Ŷt = {xt, . . . , xt+T−1} ∈ RN×T for N variables over the next T time steps, the definitions of the metrics are as follows,
where xij ∈ Yt, x̂ij ∈ Ŷt:

MSE =
1

N × T

N∑
i=1

T∑
j=1

(xij − x̂ij)
2 (14)

MAE =
1

N × T

N∑
i=1

T∑
j=1

|xij − x̂ij | (15)

B.4 SETUP AND HYPERPARAMETERS

All experiments are conducted on an RTX 4090 24GB GPU using the PyTorch framework. We use the Adam optimizer with
a learning rate of 10−4 and a batch size of 32. The default loss function is MSE, with the number of training epochs set to
10 and early stopping applied where appropriate. The embedding dimension cdim is set within the range {16, 32, 64, 128,
512, 1024}, k is set within the range {3, 5}, and the number of graph convolution layers is set to 2. All comparison baseline
models are implemented based on the benchmarks from the TimesNet[Wu et al., 2022] repository, which builds upon the
configurations provided in the original papers or official code of each model. Specific hyperparameters for different datasets
are provided in Table 9.

C IMPLEMENTATION DETAILS FOR VALIDATING THE TRANSFERABILITY OF
CORREALTION LEARNING METHODS

In this section, we summarize the detailed information on datasets, baselines, evaluation metrics, and hyperparameter
settings.

https://github.com/hqh0728/CrossGNN
https://github.com/microsoft/StemGNN
https://github.com/aikunyi/FourierGNN


Table 9: Hyperparameter settings for different datasets.

Datasets Flight ETTh1 ETTh2 ETTm1 ETTm2 Weather Electricity Exchange PEMS03 PEMS08

Epochs 10

Batch size 32

Loss MSE

Optimizer Adam

Learning rate 1e-4

k 5 3 5 3 5

Cdim 32 64 512 64 512

Ratio 0.25

Dropout 0.05 0.1 0.05 0.3 0.05 0.2 0.05

Dim of E 100 10 100 10

Heads 8

C.1 DATASETS

We use four datasets for validation. In addition to Electricity and Exchange-Rate, we also use the Solar-Energy and Traffic
datasets. The specific information is as follows:

• Solar-Energy: This dataset contains solar energy data collected by the National Renewable Energy Laboratory in 2007,
sampled every 10 minutes from 137 photovoltaic stations in Alabama.

• Traffic: This dataset includes road occupancy data (ranging between 0 and 1) from the California Department of
Transportation. The data is aggregated hourly from 862 sensors in the San Francisco Bay Area from 2015 to 2016.

According to the original paper, the four datasets are split chronologically into training (60%), validation (20%), and test
sets (20%). For validating the transferability of correaltion learning methods, we set the input window to 168, and the output
horizons to {3, 6, 12, 24}. Specifically, the prediction horizons for the Solar-Energy dataset range from 30 to 240 minutes,
for Traffic and Electricity datasets range from 3 to 24 hours, and for the Exchange-Rate dataset range from 3 to 24 days.
Table 10 lists the detailed information of the datasets, which is crucial for understanding their characteristics.

Table 10: Detailed Information of Datasets. The frequency indicates the sampling interval of the time points.

Datasets Nodes Horizon Train/Valid/Test Size Split Size Frequency
Solar-Energy 137 {3,6,12,24} (31536,10512,10512) 6:2:2 10 minutes

Traffic 862 {3,6,12,24} (10526,3509,3509) 6:2:2 Hourly
Electricity 321 {3,6,12,24} (15782,5261,5261) 6:2:2 Hourly

Exchange-Rate 8 {3,6,12,24} (4553,1518,1517) 6:2:2 Daily

C.2 BASELINES

We integrate the correlation method into two different baseline models to validate the effectiveness and transferability of the
proposed correlation learning methods through comparisons of accuracy before and after integration. The specific baseline
model codes are as follows:

• MTGNN: https://github.com/nnzhan/MTGNN

• TEGNN: https://github.com/RRRussell/MTHetGNN

https://github.com/nnzhan/MTGNN
https://github.com/RRRussell/MTHetGNN


C.3 EVALUATION METRICS

In the experiments, we use Relative Squared Error (RSE) and Empirical Correlation Coefficient (CORR) as evaluation
metrics. For multivariate time series, given the true value Yt = {xt, . . . , xt+T−1} ∈ RN×T at time step t and the predicted
values Ŷt = {xt, . . . , xt+T−1} ∈ RN×T for N variables over the next T time steps, the definitions of the metrics are as
follows, where xij ∈ Yt, x̂ij ∈ Ŷt:

RSE =

√∑T
i=1

∑N
j=1 (xij − x̂ij)

2√∑T
i=1

∑N
j=1 (xij −mean(x))

2
(16)

CORR =
1

T

N∑
j=1

∑T
i=1 (xij −mean(x∗j)) (x̂ij −mean(x̂∗j))√∑T

i=1 (xij −mean(x∗j))
2∑T

i=1 (x̂ij −mean(x̂∗j))
2

(17)

C.4 SETUP AND HYPERPARAMETERS

All experiments are conducted on an RTX 4090 24GB GPU using the PyTorch framework. We use the Adam optimizer for
fine-tuning and optimize all trainable parameters through backpropagation. The learning rate is set to 10−3, and we choose
L1Loss as the loss function with 30 training epochs. We integrate correlation learning methods into the baseline models with
a ratio of 0.25, using the same hyperparameters as in the original papers. For detailed parameters of each baseline, please
refer to [Wu et al., 2020, Duan et al., 2022].

D REVIEW WINDOW EXPERIMENTS

To better highlight our model’s performance on long series, we extend the input length to increase the historical information
available to the model, evaluating its performance in handling longer temporal dependencies. We conducte experiments on
five datasets with input lengths of {48, 96, 192, 226, 512, 720} and an output length of 96, using MSE as the evaluation
metric. The results are shown in Figure 7a.

The figure shows that as input length increases, MSCGrapher’s overall predictive performance declines, highlighting its
strength in capturing long-term trends and complex dependencies. We believe that multi-scale operations in MSCGrapher are
crucial to this process. These operations divide long time series into sub-series of different scales, shortening series length,
improving processing efficiency, and capturing dependencies across various time scales. This method effectively overcomes
the performance fluctuations and instability issues that traditional Transformer models face with long series. Additionally,
multi-scale operations enable MSCGrapher to flexibly model across different time scales, providing a comprehensive
understanding of complex patterns and trends. By applying the Transformer mechanism to each sub-series, MSCGrapher
can make fine-grained and coarse-grained predictions, improving overall accuracy.

In general, the size of the historical review window influences the dependencies that the model learns from historical
information. To assess MSCGrapher’s effectiveness with extended historical windows, we compare it with well-performing
models on the ETTm1 dataset. The results are presented in Figure 7b. We observe that as the historical review window
increases, MSCGrapher decreases and eventually stabilizes, which indicates that it can effectively handle large amounts of
historical data and extract helpful information. This is due to MSCGrapher’s capability to identify different time scales and
learn corresponding relationship graphs allows it to capture long-series time dependencies effectively. TimesNet shows a
similar overall trend to MSCGrapher but performs poorly; DLinear performs relatively well in long-term forecasting but is
unsatisfactory for short-term predictions; Other methods exhibit significant fluctuations as the historical review window
lengthens.

E MORE LEARNED GRAPH VISUALIZATION

To illustrate the specific role of the information obtained from the correlation graph, we provide additional visualization
examples to demonstrate its advantages, as shown in Figures 8 and 9. Taking the PEMS dataset as an example, which



0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

0.500

48 96 192 336 512 720

Flight
ETTh1
Weather
ETTm1
ETTm2

(a) Forecasting results for different datasets with output length 96
and input lengths in {48, 96, 192, 336, 512}.

0.250
0.300
0.350
0.400
0.450
0.500
0.550
0.600
0.650
0.700

48 96 192 336 512 720

MSCGrapher DLinear TimesNet

Stationary Pyraformer Autoformer

(b) Forecasting results for different models on ETTm1 with output
length 96 and input lengths in {48, 96, 192, 336, 512}.

Figure 7: Review window experiments with diffident datasets(a) and models(b).

0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

PEMS08 Static Adjacency Matrix

0.0

0.2

0.4

0.6

0.8

1.0

(a) Static

0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

PEMS08 Correlation Adjacency Matrix

0.0

0.2

0.4

0.6

0.8

1.0

(b) 6h

0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

PEMS08 Correlation Adjacency Matrix

0.0

0.2

0.4

0.6

0.8

1.0

(c) 12h

0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

PEMS08 Correlation Adjacency Matrix

0.0

0.2

0.4

0.6

0.8

1.0

(d) 24h

Figure 8: Visualization of the adjacency matrix for the top 50 nodes in the PEMS08 dataset, showcasing the learnable
adjacency matrices at different scales in the first layer and the preset static adjacency matrix. The preset static adjacency
matrix fails to capture the correlations between time series with strong similarities.

0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

PEMS03 Static Adjacency Matrix

0.0

0.2

0.4

0.6

0.8

1.0

(a) Static

0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

PEMS03 Correlation Adjacency Matrix

0.0

0.2

0.4

0.6

0.8

1.0

(b) 6h

0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

PEMS03 Correlation Adjacency Matrix

0.0

0.2

0.4

0.6

0.8

1.0

(c) 12h

0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

PEMS03 Correlation Adjacency Matrix

0.0

0.2

0.4

0.6

0.8

1.0

(d) 24h

Figure 9: Visualization of the adjacency matrix for the top 50 nodes in the PEMS03 dataset, showcasing the learnable
adjacency matrices at different scales in the first layer and the preset static adjacency matrix. The preset static adjacency
matrix fails to capture the correlations between time series with strong similarities.



includes an adjacency matrix based on predefined distances, we compare it with the correlation matrix learned by our model
to further validate the effectiveness of the correlation information.

Specifically, as seen in Figures 8 and 9, the learned correlation matrix is much sparser, indicating that MSCGrapher relies on
a more concise set of inter-series relationships during prediction. At the same time, the learned adjacency matrix captures
connections between nodes that are physically distant but exhibit high similarity in their time series behavior, as highlighted
by the red box in the figures. To deepen the understanding of the model’s learning mechanism, we also visualize the time
series corresponding to node pairs with high weights in the adjacency matrix, as shown in Figure 10.

0 50 100 150 200 250 300 350
Time Step

2

1

0

1

2

3
Va

lu
e

PEMS03 Series of Variate 2 and 18
Series 20
Series 40

0 50 100 150 200 250 300 350
Time Step

1

0

1

2

3

Va
lu

e

PEMS03 Series of Variate 20 and 40
Series 20
Series 40

0 50 100 150 200 250 300 350
Time Step

1

0

1

2

3

Va
lu

e

PEMS03 Series of Variate 3 and 33
Series 3
Series 33

Figure 10: Visualization of time series for node pairs with higher values in the learnable adjacency matrix of the PEMS03.

F MORE FORECASTING RESULTS VISUALIZATION

To more intuitively demonstrate MSCGrapher’s outstanding performance, we present additional visual results in the figures.
Figure 11 shows the forecasting results for the Flight dataset with an input length of 96 and output lengths of {96, 192,
336, 720}. Figures 12 and 13 display the forecasting results for different models on the Exchange and Weather datasets,
with an input length of 96 and output length of 96. It can be observed that, across these two datasets, the overall prediction
accuracy of all models does not reach an ideal level. However, MSCGrapher maintains relatively high accuracy within the
0–100 prediction interval and demonstrates a more stable forecasting trend than other models in subsequent time periods,
indicating its strong capability to model sequence dependencies even when faced with highly volatile data.

G ALL FORECASTING RESULTS

In this section, we present the complete results of multivariate time series forecasting. We use 10 datasets and compare them
with 12 deep learning models. The best results are highlighted in red bold and the second best results are underlined in blue.
From Table 12, MSCGrapher demonstrates outstanding performance in MTSF task. Specifically, MSCGrapher achieves the
best performance 46 times throughout the forecasting results, far surpassing other models. Additionally, compared to GNN
models in Table 11, MSCGrapher also achieves more advanced performance.



0 20 40 60 80
Time Step

1.0

0.5

0.0

0.5

1.0

Va
lu

es

MSCGrapher
True Values
Predicted Values

(a) Prediction Length T = 96

0 25 50 75 100 125 150 175 200
Time Step

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Va
lu

es

MSCGrapher
True Values
Predicted Values

(b) Prediction Length T = 192

0 50 100 150 200 250 300 350
Time Step

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Va
lu

es

MSCGrapher
True Values
Predicted Values

(c) Prediction Length T = 336

0 100 200 300 400 500 600 700
Time Step

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Va

lu
es

MSCGrapher
True Values
Predicted Values

(d) Prediction Length T = 720

Figure 11: Visualization of the prediction results for the Flight dataset. The input length is 96.

Table 11: The best results for MSCGrapher compared to GNN models are highlighted in red bold.

Dataset Electricity Weather PEMS03 PEMS04 PEMS08
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ours

96 0.165 0.274 0.165 0.214 0.078 0.184 0.092 0.207 0.116 0.223
192 0.187 0.294 0.215 0.257 0.103 0.214 0.109 0.228 0.149 0.255
336 0.198 0.307 0.275 0.301 0.151 0.257 0.144 0.265 0.189 0.275
720 0.232 0.333 0.363 0.359 0.213 0.309 0.201 0.319 0.313 0.350

FourierGNN

96 0.211 0.307 0.177 0.240 0.087 0.202 0.112 0.231 0.143 0.263
192 0.214 0.312 0.218 0.279 0.120 0.240 0.153 0.272 0.210 0.320
336 0.227 0.325 0.265 0.318 0.177 0.294 0.209 0.321 0.216 0.311
720 0.260 0.354 0.336 0.370 0.218 0.333 0.247 0.354 0.294 0.356

StemGNN

96 0.165 0.267 0.181 0.250 0.119 0.244 0.144 0.276 0.246 0.319
192 0.180 0.283 0.226 0.289 0.179 0.305 0.188 0.317 0.281 0.337
336 0.200 0.306 0.287 0.338 0.191 0.303 0.234 0.342 0.305 0.356
720 0.243 0.345 0.379 0.406 0.258 0.355 0.303 0.396 0.380 0.393



0 25 50 75 100 125 150 175 200

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3
GroundTruth
Prediction

(a) MSCGrapher

0 25 50 75 100 125 150 175 200

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3
GroundTruth
Prediction

(b) MSGNet

0 25 50 75 100 125 150 175 200

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3
GroundTruth
Prediction

(c) DLinear

0 25 50 75 100 125 150 175 200

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3
GroundTruth
Prediction

(d) TiDE

0 25 50 75 100 125 150 175 200
0.4

0.6

0.8

1.0

1.2

GroundTruth
Prediction

(e) Pyraformer

0 25 50 75 100 125 150 175 200

0.6

0.8

1.0

1.2

GroundTruth
Prediction

(f) Autoformer

Figure 12: Visualization of forecasting results for exchange dataset with an input length of 96 and output length of 96.

0 25 50 75 100 125 150 175 200

0.00

0.02

0.04

0.06

0.08

0.10

0.12 GroundTruth
Prediction

(a) MSCGrapher

0 25 50 75 100 125 150 175 200

0.00

0.02

0.04

0.06

0.08

0.10

0.12 GroundTruth
Prediction

(b) MSGNet

0 25 50 75 100 125 150 175 200

0.00

0.02

0.04

0.06

0.08

0.10

0.12 GroundTruth
Prediction

(c) DLinear

0 25 50 75 100 125 150 175 200

0.00

0.02

0.04

0.06

0.08

0.10

0.12 GroundTruth
Prediction

(d) TiDE

0 25 50 75 100 125 150 175 200

0.1

0.0

0.1

0.2

GroundTruth
Prediction

(e) Pyraformer

0 25 50 75 100 125 150 175 200

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175 GroundTruth
Prediction

(f) Autoformer

Figure 13: Visualization of forecasting results for weather dataset with an input length of 96 and output length of 96.



Table 12: The complete results of multivariate time series forecasting. For the PEMS dataset, the output lengths are {12, 24,
36, 48}, and for other datasets, the output lengths are {96, 192, 336, 720}.

Models OURS MSGNet(2024) Dlinear(2023) TimesNet(2023) TiDE(2023) Stationary(2022) FEDformer(2022) Pyraformer(2022) Autoformer(2021) Informer(2021)

Datasets Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.178 0.294 0.183 0.300 0.221 0.337 0.237 0.350 0.224 0.340 0.386 0.461 0.360 0.452 0.436 0.496 0.204 0.319 0.333 0.405

192 0.183 0.301 0.189 0.306 0.220 0.336 0.224 0.337 0.227 0.342 0.422 0.478 0.397 0.474 0.437 0.492 0.200 0.314 0.358 0.421

336 0.201 0.315 0.207 0.320 0.229 0.342 0.289 0.394 0.234 0.346 0.544 0.533 0.492 0.527 0.444 0.494 0.201 0.318 0.398 0.446
Flight

720 0.243 0.351 0.252 0.358 0.263 0.366 0.310 0.408 0.270 0.371 0.890 0.697 0.424 0.488 0.476 0.504 0.345 0.426 0.476 0.484

96 0.393 0.410 0.423 0.440 0.386 0.400 0.384 0.402 0.427 0.450 0.513 0.491 0.395 0.424 0.664 0.612 0.449 0.459 0.865 0.713

192 0.439 0.443 0.445 0.469 0.437 0.432 0.436 0.429 0.472 0.486 0.534 0.504 0.469 0.470 0.790 0.681 0.500 0.482 1.008 0.792

336 0.480 0.468 0.481 0.473 0.481 0.459 0.491 0.475 0.527 0.527 0.588 0.535 0.530 0.499 0.891 0.738 0.521 0.496 1.107 0.809
ETTh1

720 0.488 0.485 0.540 0.524 0.519 0.516 0.521 0.500 0.644 0.605 0.643 0.616 0.598 0.544 0.963 0.782 0.514 0.512 1.181 0.965

96 0.326 0.370 0.348 0.399 0.333 0.387 0.340 0.374 0.304 0.359 0.476 0.458 0.358 0.397 0.645 0.597 0.346 0.388 3.755 1.525

192 0.407 0.413 0.404 0.431 0.477 0.476 0.402 0.414 0.394 0.422 0.512 0.493 0.429 0.439 0.788 0.683 0.456 0.452 5.602 1.931

336 0.422 0.434 0.435 0.443 0.594 0.541 0.452 0.452 0.385 0.421 0.552 0.551 0.496 0.487 0.907 0.747 0.482 0.486 4.721 1.835
ETTh2

720 0.416 0.441 0.421 0.451 0.831 0.657 0.462 0.468 0.463 0.475 0.562 0.560 0.463 0.474 0.963 0.783 0.515 0.511 3.647 1.625

96 0.323 0.368 0.326 0.371 0.345 0.372 0.338 0.375 0.356 0.381 0.386 0.398 0.379 0.419 0.543 0.510 0.505 0.475 0.672 0.571

192 0.374 0.396 0.376 0.397 0.380 0.389 0.374 0.387 0.391 0.399 0.459 0.444 0.426 0.441 0.557 0.537 0.553 0.496 0.795 0.669

336 0.421 0.426 0.417 0.421 0.413 0.413 0.410 0.411 0.424 0.423 0.495 0.464 0.445 0.459 0.745 0.655 0.621 0.537 1.212 0.871
ETTm1

720 0.483 0.461 0.482 0.459 0.474 0.453 0.478 0.450 0.480 0.456 0.543 0.516 0.543 0.490 0.908 0.724 0.671 0.561 1.166 0.823

96 0.178 0.260 0.184 0.267 0.193 0.292 0.187 0.267 0.182 0.264 0.192 0.274 0.203 0.287 0.435 0.507 0.255 0.339 0.365 0.453

192 0.248 0.307 0.248 0.307 0.284 0.362 0.249 0.309 0.256 0.323 0.280 0.339 0.269 0.328 0.730 0.673 0.281 0.340 0.533 0.563

336 0.311 0.345 0.312 0.346 0.369 0.427 0.321 0.351 0.313 0.354 0.334 0.361 0.325 0.366 1.201 0.845 0.339 0.372 1.363 0.887
ETTm2

720 0.410 0.402 0.414 0.404 0.554 0.522 0.408 0.403 0.419 0.410 0.417 0.413 0.421 0.415 3.625 1.451 0.433 0.432 3.379 1.338

96 0.165 0.214 0.165 0.214 0.196 0.255 0.172 0.220 0.202 0.261 0.173 0.223 0.217 0.296 0.896 0.556 0.266 0.336 0.300 0.384

192 0.215 0.257 0.215 0.258 0.237 0.296 0.219 0.261 0.242 0.298 0.245 0.285 0.276 0.336 0.622 0.624 0.307 0.367 0.598 0.544

336 0.275 0.301 0.276 0.301 0.283 0.335 0.280 0.306 0.287 0.335 0.321 0.338 0.339 0.380 0.739 0.753 0.359 0.395 0.578 0.523
weather

720 0.363 0.359 0.371 0.362 0.345 0.381 0.365 0.359 0.351 0.386 0.414 0.410 0.403 0.428 1.004 0.934 0.419 0.428 1.059 0.741

96 0.165 0.274 0.169 0.279 0.197 0.282 0.168 0.272 0.194 0.277 0.169 0.274 0.193 0.308 0.386 0.449 0.201 0.317 0.274 0.368

192 0.187 0.294 0.188 0.296 0.196 0.285 0.184 0.289 0.193 0.280 0.182 0.286 0.201 0.315 0.386 0.443 0.222 0.334 0.396 0.386

336 0.198 0.307 0.199 0.307 0.209 0.301 0.198 0.300 0.206 0.296 0.200 0.304 0.214 0.329 0.378 0.443 0.231 0.338 0.300 0.394
electricity

720 0.232 0.333 0.227 0.330 0.245 0.333 0.220 0.320 0.242 0.328 0.222 0.321 0.246 0.355 0.376 0.445 0.254 0.361 0.373 0.439

96 0.099 0.227 0.105 0.231 0.088 0.218 0.107 0.234 0.107 0.233 0.111 0.237 0.148 0.278 1.093 0.884 0.197 0.323 0.847 0.752

192 0.193 0.315 0.196 0.318 0.176 0.315 0.226 0.344 0.201 0.323 0.219 0.335 0.271 0.380 1.085 0.976 0.300 0.369 1.204 0.895

336 0.369 0.442 0.370 0.442 0.313 0.427 0.367 0.448 0.351 0.432 0.421 0.476 0.460 0.500 1.597 1.090 0.509 0.524 1.672 1.036
exchange

720 0.923 0.730 0.940 0.738 0.839 0.695 0.964 0.746 0.940 0.735 1.092 0.769 1.195 0.841 1.735 1.124 1.447 0.941 2.478 1.310

12 0.078 0.184 0.079 0.186 0.122 0.243 0.085 0.192 0.178 0.305 0.081 0.188 0.126 0.251 0.152 0.253 0.272 0.385 0.183 0.284

24 0.103 0.214 0.104 0.215 0.201 0.317 0.118 0.223 0.257 0.371 0.105 0.214 0.149 0.275 0.186 0.290 0.334 0.440 0.193 0.293

36 0.151 0.257 0.151 0.257 0.333 0.425 0.155 0.260 0.379 0.463 0.154 0.257 0.227 0.348 0.520 0.526 1.032 0.782 0.202 0.304
PEMS03

48 0.213 0.309 0.218 0.313 0.457 0.515 0.228 0.317 0.490 0.539 0.247 0.336 0.348 0.434 0.584 0.590 1.031 0.796 0.225 0.319

12 0.116 0.223 0.116 0.224 0.154 0.276 0.112 0.212 0.227 0.343 0.109 0.207 0.173 0.273 0.216 0.246 0.436 0.485 0.297 0.313

24 0.149 0.255 0.149 0.255 0.248 0.353 0.141 0.238 0.318 0.409 0.140 0.236 0.210 0.301 0.249 0.267 0.467 0.502 0.321 0.317

36 0.189 0.275 0.196 0.285 0.440 0.470 0.198 0.283 0.497 0.510 0.211 0.294 0.320 0.394 0.288 0.297 0.966 0.733 0.308 0.311
PEMS08

48 0.313 0.350 0.361 0.527 0.674 0.565 0.320 0.351 0.721 0.592 0.345 0.367 0.442 0.465 0.324 0.359 1.385 0.915 0.327 0.361

1st Count 46 0 11 11 7 5 0 0 0 0


	Introduction
	RELATED WORKS
	Time Series Forecasting
	Correlations Learning with GNNs

	Preliminaries
	Problem Definition
	Graph Representation for MTS Inter-series Correlations

	MSCGrapher
	Time Series Embedding representation
	Multi-scale Inter-series Correlations Learning
	Multi-scale Segmentation of MTS
	Adaptive Correlation Graph Learning

	Extraction of Intra-series Correlations
	Multi-Scale Aggregator and Projection

	Experiments
	Experiment Setup
	Datasets and Baselines
	Implementation details

	Forecasting Results And Analysis
	Ablation Study
	Sensitivity to Hyperparameters
	Learned Correlation Graph Visualization
	Transferability of Correlation Learning
	Computational Efficiency

	Conclusion
	Descriptions of Notations
	Details of Implementing Multivariate Time Series Forecasting
	Datasets
	Baselines
	Evaluation Metrics
	Setup and Hyperparameters

	Implementation Details for Validating the Transferability of Correaltion Learning Methods
	Datasets
	Baselines
	Evaluation Metrics
	Setup and Hyperparameters

	Review Window Experiments 
	More Learned Graph Visualization
	More Forecasting Results Visualization
	All Forecasting Results

