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Abstract

Efficient learning intra-series and inter-series cor-
relations is essential for multivariate time series
forecasting (MTSF). However, in real-world sce-
narios, persistent and significant inter-series corre-
lations are challenging to be represented in a static
way and the strength of correlations varies across
different time scales. In this paper, we address this
challenge by modeling the complex inter-series re-
lationships through dynamical correlations, consid-
ering the varying strengths of correlations. We pro-
pose a novel MTSF model: MSCGrapher, which
leverages an adaptive correlation learning block
to uncover inter-series correlations across differ-
ent scales. Concretely, time series are first decom-
posed into different scales based on their period-
icities. The graph representation of MTS is then
constructed and an adaptive correlation learning
method is introduced to capture the inter-series cor-
relations across different scales. To quantify the
strength of these correlations, we compute correla-
tion scores based on the characteristics of the graph
edges and classify correlations as either Strong or
Weak. Finally, we employ a self-attention module
to capture intra-series correlations and then fuse
features from all scales to obtain the final repre-
sentation. Extensive experiments on 12 real-world
datasets show that MSCGrapher gains significant
forecasting performance, highlighting the critical
role of inter-series correlations in capturing im-
plicit patterns for MTS.

1 INTRODUCTION

MTSF involves predicting the future based on multiple in-
terrelated historical data, playing a significant role across
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Figure 1: The relationships between different series vary at
different time scales, resulting in different graph structures.

various industries. Examples include predicting the prices
of multiple assets in financial markets, multi-parameter
weather in meteorology, equipment operation status in indus-
trial manufacturing, and physiological indicators in health-
care [Chen et al., 2011, 'Wu et al., 2021, [Fatima and Rahimi,
2024, |Nguyen-Thai et al.,|2024]. Due to its substantial appli-
cations, MTSF attracts widespread research interest. In the
last decade, various deep learning models, such as methods
based on CNNs [Zeng et al.l 2023bl Wang et al., [2023],
MLPs [Challu et al.;, 2023} |Vijay et al., |2023]], and Trans-
formers [Zhou et al., 2021, |Wu et al., 2021]], have been
proposed to tackle the challenges of time series forecasting
and have achieved outstanding performance. Although these
methods have different architectures, they fundamentally
utilize neural networks to capture correlations: inter-series
correlations and intra-series correlations [Cai et al., 2024].

Early works primarily capture intra-series correlations but
overlook inter-series correlations. This oversight signifi-
cantly impacts the model’s ability to capture complex dy-
namic relationships and prediction accuracy. In recent years,
an increasing number of studies [Zhang and Yan|, 2023|
Yue et al.|[2022]] have focused on modeling inter-series cor-
relations to reveal and leverage the complex interactions
within MTS. One promising approach uses graph learning
[Wu et al.l |2020]] to construct relationship graphs to model
these correlations. While these methods can capture inter-
series dependencies, they still have significant shortcomings
in fully addressing the dynamically changing correlations
across different time scales. Current MTSF method faces
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three limitations: (1) Time Scale Insensitivity: Most works
primarily focus on single-scale correlation analysis, limit-
ing their ability to reveal correlations across time scales
and handle complex dynamic systems. For example, in cli-
mate science, climate change and extreme weather events
are influenced by a combination of factors that exhibit dif-
ferent correlations at different time scales. The long-term
global warming interacts with mid-term variations such as
El Nifio and short-term fluctuations like sudden extreme
weather events (e.g., hurricanes, heavy rainfall) [Heede and
Fedorov, [2023]]. Figure |1|illustrates an example where a
MTS is divided into three different time scales. Clearly, the
relationships between nodes change at these scales. At scale
f1, the orange and blue series exhibit consistency. However,
at scale f3, they diverge, with the orange series affecting the
green series, resulting in a different graph structure. From
the above example, we can clearly identify the limitations
of existing deep learning models in dynamic modeling of
relationships for MTS. (2) Dynamic Relationship Model-
ing: While graph-based approaches represent MTS as nodes
and their relationships as edges [Kipf and Welling| [2016]],
current graph structure learning in GNNs often lacks the
adaptability needed to model dynamic inter-series correla-
tions, particularly when these relationships evolve across
different time scales. This rigidity limits their effectiveness
in capturing the temporal evolution of complex systems. (3)
Correlation Strength Variability: Another critical chal-
lenge lies in the scale-dependent variations in correlation
strength, which significantly impact model performance.
Existing methods often fail to account for these variations,
further restricting their ability to accurately model and pre-
dict MTS behavior. These raise the question: Can graph
learning accurately capture the correlations of MTS across
different time scales? If so, what adjustments are needed for
GNN’s architecture?

To address the above issues, we propose MSCGrapher,
which can effectively enhance graph learning’s ability to
capture dynamic varying correlations across various time
scales in MTS, and accurately characterize the strength and
weakness of correlations at different scales. First, MSCG-
rapher encodes the temporal variations of each series into
a high-dimensional space and represents them as nodes in
graph. For the multi-periodic characteristic of time series,
we use Fast Fourier Transform (FFT) to extract periodic
components at different frequencies, which reveals the un-
derlying patterns and trends. Next, we design an adaptive
correlation graph learning block that uses an adaptive GNN
to dynamically learn adjacency matrices for each time scale.
It computes relationship strength scores from edge features
and partitions the matrices based on these scores to identify
correlations and capture the complex dynamic changes in
the data. For intra-series relationships, a multi-head attention
module is employed to capture the dependencies at different
time points by computing correlations between time steps.
Finally, after multiple layers of feature aggregation, we gen-

erate the final prediction results. Our contributions include
the following key aspects:

* Overall Framework: We propose the MSCGrapher
framework, which effectively handles MTS and cap-
tures both multi-scale inter-series correlations and intra-
series temporal correlations.

Effective Modules: Our research shows that using an
adaptive GNN can more accurately capture the com-
plex dynamic changes hidden in MTS.

Performance: Extensive experiments on various real-
world datasets show that MSCGrapher outperforms
existing models. Additionally, we perform transferabil-
ity experiments with the correlation learning method,
verifying its generalization capability across different
datasets and models.

2 RELATED WORKS

2.1 TIME SERIES FORECASTING

Early time series forecasting are generally based on tra-
ditional statistical or machine learning methods. Recent
advancements in deep learning architectures have shown
significant advantages in time series forecasting [Miller
et al., [2024]]. CNNs have succeeded in MTSF, as seen in
works like [Zeng et al.|, [2023b, Wang et al., | 2023]]. TCNs,
a type of CNN that prevents future value leakage, effec-
tively preserve the temporal order of time series [Bai et al.,
2018]]. MLPs encode temporal dependencies into their lay-
ers using the MLP structure [[Vijay et al., 2023} |(Challu et al.|
2023|]. Transformers are used in MTSF due to their ability
to capture long-range dependencies. Crossformer [Zhang
and Yan, 2023]] and Informer [Zhou et al., [2021]] enhance
model performance by employing cross-attention mecha-
nisms and probabilistic sparse self-attention mechanisms
to capture temporal dependencies. However, these methods
fail to consider inter-series correlations at different time
scales in MTS. While some methods address periodicity as
a key factor in time series [Wu et al., 2022, [Fan et al.| [2022],
they still fall short in modeling complex correlations and
multi-scale dependencies.

2.2 CORRELATIONS LEARNING WITH GNNS

Graph Neural Networks (GNNs) demonstrate their impor-
tance in various fields by effectively modeling complex
interactions in graph-structured data. Initially, GNNs were
applied to tasks like traffic prediction [Wu et al., 2023]] and
skeleton-based action recognition [Shi et al.,[2019]. In recent
years, many studies start applying GNNs in MTS modeling
to capture the dependencies between variables. These meth-
ods [Yu et al., 2017, L1 et al., [2017] often use fixed graph
structures to model inter-series correlations. For example,



in traffic prediction, a graph structure is constructed based
on the spatial distance between sensors, with sensors as
nodes and roads as edges connecting the nodes. However,
constructing a graph structure based on prior knowledge is
challenging in MTS modeling. To address this, researchers
propose learnable graph structures to dynamically model
relationships between series, offering new perspectives [Wu
et al., 2020]. Recently, some approaches attempt to use
dynamic or time-varying graph structures to model corre-
lations [Zheng et al.| 2020, |Chen et al., [2023] |Cai et al.
2024], but they overlook a key factor: as time progresses, the
inter-series correlations change dynamically across different
time scales, and the strength of these correlations fluctuates.
Failure to adequately consider the varying strength of inter-
series correlations leads to insufficient accuracy in capturing
these important dependencies.

3 PRELIMINARIES
3.1 PROBLEM DEFINITION

Given MTS X; = {x;_r,...,z¢_1} € RV*L, where L
denotes the size of the historical review window and [V is the
number of variables, the MTSF task is to predict the values
of N variables over the future T' time steps. The future
values are denoted as Y; = {z¢,...,zei7_1} € RVXT,
where T' denotes the size of the future prediction window.
Here, X; . € RY denotes the time series collected at time
step ¢, and X. ,, € RL represents the entire times series of
each variable indexed by n.

3.2 GRAPH REPRESENTATION FOR MTS
INTER-SERIES CORRELATIONS

We use graphs to represent the inter-series correlations of
MTS at different scales, referred to as the strong correlation
graph and the weak correlation graph. The graph is de-
fined as G = (V, E), where V represents the set of nodes,
|V| = N and E is the set of edges. We consider the i-th
series as nodes v;, and the weighted edges representing rela-
tionships between different time series are denoted by F;.
Strong correlation refers to variable pairs that exhibit consis-
tently similar trends at the same time scale, with correspond-
ing weights close to 1 in the learnable adjacency matrix.
Weak correlation refers to dissimilar or noise-influenced
trends, with weights close to 0. The strong correlation graph
is denoted as Girong, and the the weak correlation graph
is denoted as G yeax. Different time scales identified from
the MTS are represented as f = {fi,..., fx}, assuming
there are k different scales. The adjacency matrix corre-
sponding to each scale is denoted by {A!, ..., A*}, where
Ak ¢ RNXN, Aftrong and A¥ . represent the adjacency
matrices of the strong correlation graph and weak correla-
tion graph at scale k.

4 MSCGRAPHER

Our MSCGrapher, with residual connections, consists of an
Embedding Layer, Multi-scale Correlation Learning Block
(MSCL), Multi-head Attention Layer (MAL), Multi-scale
Aggregation Layer, and Projection Layer. The Embedding
Layer processes time series into suitable representations,
MSCL and MAL capture inter-series correlations and intra-
series dependencies. Finally, the multi-scale aggregation
layer integrates features, and the projection layer outputs
the final representation required for downstream tasks. The
overall framework is illustrated in Figure[2]

4.1 TIME SERIES EMBEDDING
REPRESENTATION

For each series of MTS, we treat it as a node of graph. The
first step is to integrate the temporal dynamics of each series
into a proper embedding representation.

Local features in time series reflect short-term changes
and behaviors. We use 1D convolution to transform the
input MTS into high-dimensional embedded representa-
tions: embroken = Convyg(Xs, W), where embroken €
Reaim*L . s the feature dimension and W is the weight
matrix. Additionally, temporal features often contain impor-
tant information that explains periodicity, trends, and other
time-related patterns. We employ an embedding operation
to enhance temporal context information: embremporal =
E,+Eq+E,+E;+E;, where Eie{m,d,w,h,t} € Redim L
represents embeddings for month, day, week, hour, and
minute. In the forecasting scenario, position features are also
crucial. Therefore, positional information is added in the
series through position encoding: embpgsition = PE(L, 7),
where ¢ € {0, c4im — 1} represents the index of the dimen-
sion in the embedding vector. In summary, Embedding layer
of MSCGrapher consists of three main parts:

Hepp, = embrogen + embTemoporal + embpggition (1)

4.2 MULTI-SCALE INTER-SERIES
CORRELATIONS LEARNING

To effectively capture the correlations of MTS at different
time scales, we design a Multi-scale Correlation Learning
Block (named MSCL), which consists of Multi-scale Seg-
mentation Layer and Adaptive Correlation Graph Learning
Layer. The former divides time series into different time
scales based on their periodic characteristics while the latter
learns the dependencies between time series at the corre-
sponding scales to capture correlations. k parallel blocks
are used to learn correlations of k time scales.
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Figure 2: The overall framework of MSCGrapher. The core is the Multi-scale Correlation Learning Block, which includes
the Multi-scale Segmentation Layer and Adaptive Correlation Graph Learning Layer.

4.2.1 Multi-scale Segmentation of MTS

Generally, different scales uncover various patterns. For
example, in financial markets, short-term price fluctuations
may be influenced by news events and trading behaviors,
while long-term trends may be driven by economic cycles
and policy. To identify periodicities of time series as time
scales, we transform the representation of MTS to frequency

domain by using Fast Fourier Transform (FFT). The process
is as follows:

Xy =FFT(Hemp), F = Avg(Amp(Xy)),

argTopk (F)={f1,...,fx}, pi= % 2)

feellon])

where FFT() and Amp() represent FFT and amplitude cal-
culations, p; is the period corresponding to different scales.
We first extract the & most significant frequency compo-
nents {f1,..., fx}, and compute their corresponding period
{p1,.-.,pr}. Then, we reshape the original input Xi,put
based on the extracted period p; and frequency f;:

= Reshapepi i (Padding(Xinput)), 3)

where Padding() extends the time series with zero padding
along the time dimension to fit Reshape, , (), i €
{1,...,k}. Note that X* € Raim*P: X/ represents the i-th
reshaped time series for time scale .

4.2.2 Adaptive Correlation Graph Learning

Two trainable matrices, E} € R**Y and E}, € RV*¢, are

employed to learn the adaptive adjacency matrix at time
scale [:

A! = SoftMax (ReLU (E} (E4)7)) , @)

i.e., we learn a new adjacency matrix at each time scale to
capture differences in correlations across different scales.
After obtaining the [-th time scale adjacency matrices A,
we can generate new adjacency matrices Among and Al
based on the changes in correlation strength. The process is
illustrated in Figure 3]

We first construct the edge index matrix E!

index and edge
attribute matrix A’ , based on Al:

edge

E!, 4ex = Transpose(Nonzero(Al)),

Aedge = Reshape,(A'(A' #0)),

Then, we obtain graph representation by two parameters:

X = Reshapey, ... (Xinput), ©)
Gdata - Data(X E A

index> “*edge’ )

where B! is a zero-filled batch tensor, Data() is used to
create a graph object.

Next, we apply convolution and non-linear transformations
on the node features in Gy, to extract the start and end

node indices, denoted as r and c, respectively, from E! ;.
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Figure 3: An overview of the Adaptive Correlation Graph Learning Layer. It utilizes a correlation graph learning method to

obtain the strong and weak correlations between time series.

where r corresponds to the source node and c to the target
node. We then obtain representations for each edge and
compute edge scores using an MLP:

G auta = Convz(ReLU(Convl(Gdam)))

Elndcx [0 ] Elndcx[l ]a (7)
Erep = concat(fqr], X[c]), Sedge = MLP(E,ep).

We concatenate the node features corresponding to the start
and end node indices to obtain E,, and use MLP() t
compute edge scores Scyge. After obtaining the score for
each edge, a higher score indicates a stronger relationship
between the two nodes. Specifically, a higher score means
that the edge is more important in the graph structure, and
the correlations between two nodes is stronger. We partition
the edges of the graph into strong correlation graph Gtrong
and weak correlation graph Geax based on the edge scores
and a ratio.

Then, we relabel the nodes of Girong and Gyeax to obtain
new node features:

1 .. .

Gitrong: Gweak = Divide(Sedge, ratio), ®
l
Astrong7 Aweak - Rela‘bel(Gstronga Gweak)

where Relabel() represents the function for relabeling node
features. After that, we assign corresponding weights to the
strong and weak adjacency matrices, perform a weighted
sum, and fuse the two graphs to generate a new representa-
tion A%

Al =W- A (1 - W) Aweak7 (9)

strong
where W is a weighting parameter used to control the fusion
ratio of Al . and AL, . We assign a higher weight to the
Aitmng to direct the model’s attention toward strong corre-
lation information, thereby capturing key node relationships

more effectively while avoiding noise interference caused

by weak correlation information. Finally, we use the Mix-
hop graph convolution method [|Abu-El-Haija et al.,|[2019]
to capture the dependencies in the Fusion graph between
time series:

X =0 < I (Alf)jX’) . (10)

jeP

where, X . is the output after fusion at scale i. The hyper-
parameter P is a set of integers representing the powers of
the adjacency matrix. (Alf)j denotes the j-th power of the
learned Fusion adjacency matrix Alf, and || concatenates
the intermediate results generated in each iteration along the
column direction. F1na11y, we use an MLP to project X
into a 3D tensor Xgut € Redimxpixfi,

out

4.3 EXTRACTION OF INTRA-SERIES
CORRELATIONS

A multi-head attention based module is proposed to cap-
ture the intra-series correlations within time series at differ-
ent time scales. Specifically, we project the input series
X . through a linear layer into different spaces to ob-
tain queries(Q), keys(K), and values(V). They are then
projected onto multiple attention heads, where each head
learns different temporal dependencies. Finally, we com-
bine the outputs of different heads and extract local features
through Convy4 to generate a comprehensive representation
Héut € RBfixcam>Piwhere B is the batch size:

O = Linear (Concat (heady, ..., heady)),

(1)

Xattn = LayerNorm (Xout + Dropout(O )
Y = Dropout (Convld (Convld I )

H’ ut = LayerNorm (X +Y) .



44 MULTI-SCALE AGGREGATOR AND
PROJECTION

After handling k scales, we obtain the representations PAIfmt
for each scale. To generate predictions through node re-
gression, we need to aggregate the tensors from the £ dif-
ferent scales. Each tensor is first reshaped to obtain new
H! , € Ream*L and then k scales based on their respec-
tive amplitudes are aggregated:

12)

out?

k
)Aiout = Z Softmax(W)ﬁi
i=1

W € RBX¥ is the learnable scale weight matrix composed
of amplitudes from each time scale, which represents the
relative importance. Thus, we can adaptively integrate the in-
formation from different scales based on the learned weights.
The final prediction is completed by a regression process:

Y; = WiXouW; +b. (13)
where W; € RN*cam gnd W, € RLXT are learnable
weights. W; and W, perform linear mapping on the vari-
able dimension and time dimension, respectively.

S EXPERIMENTS

We conduct a comprehensive experiments of MSCGrapher
on MTSF across multiple real-world datasets to validate its
generalization ability in various scenarios. We also explore
the potential of integrating correlation learning block into
other models to assess their transferability and performance.

5.1 EXPERIMENT SETUP
5.1.1 Datasets and Baselines

12 real-world MTS datasets are employed, includ-
ing Flight, ETT(hl,h2,m1,m2)[Wu et all [2022],
Weather, Electricity, Exchange-Rate[Lai et al., [2018]]
and PEMS(03,04,07,08)[Liu et al. [2022a]. 13 well-
established forecasting models are selected as baselines,
including (1) Transformer-based models: Informer [[Zhou
et al., [2021]], Autoformer [Wu et al., 2021], Pyraformer
[Liu et al., 2021]], FEDformer [Zhou et al.l [2022], and
Stationary [Liu et al.l [2022b]); (2) Linear methods: TiDE
[Das et al., 2023] and Dlinear [Zeng et al., 2023a]; (3)
TCN-based methods: TimesNet [Wu et al., [2022] and
MSGNet [Cai et al., 2024]; (4) GNN-based methods:
MSHyper [Shang and Chen, 2024], CrossGNN [Huang
et al., 2023]], StemGNN [Cao et al.| 2020] and FourierGNN
['Y1 et al., [2024]).

5.1.2 Implementation details

All experiments are conducted on an NVIDIA GeForce
RTX 4090 24GB GPU. We use the Adam optimizer with
a learning rate set to 10~* and a batch size of 32. The loss
function is MSE. We set the historical review window L to
96 and the forecasting window 71" to {96, 192, 336, 720} or
{12, 24, 48, 96}.

5.2 FORECASTING RESULTS AND ANALYSIS

We present the forecasting results in Table [T} which com-
pare the MSE and MAE across all output lengths with 9 non
GNN-based baselines. The best results are highlighted in red
bold and the second best results are underlined in blue. Com-
pared to other models, MSCGrapher wins 13 times across
various frequencies, numbers of variables, and real-world
scenarios, while the second baselines only win 7 times. To
assess the model’s generalization ability, we also calculate
the average rank, where MSCGrapher gains 1.50 and consis-
tently outperforms other models. Compared to Transformer-
based methods, MSCGrapher has a significant performance
improvement, which demonstrate that inter-series relation-
ships cannot be ignored for MTS. Although linear methods
are advantageous for long-term forecasting, MSCGrapher
still achieved performance improvement on most datasets.
Compared to the latest SOTA model (MSGNet), which also
leverages multi-scale information, MSCGrapher achieves
superior performance across all datasets. For example, on
the Flight dataset, MSCGrapher reduces the MSE by 3.4%;
on the ETTh datasets, the MSE drops by 4.8% and 2.2%, re-
spectively; and on the PEMS dataset, the improvements are
1.5% and 7.3%. The Flight dataset contains highly volatile
air traffic data with frequent short-term fluctuations and
certain periodic patterns. By integrating both strong and
weak correlations, MSCGrapher enhances forecasting ac-
curacy. The ETTh dataset exhibits clear seasonal trends
and periodic fluctuations—strong correlations capture the
inertial behavior of power loads, while weak correlations
reflect contextual factors such as ambient temperature and
temporal cycles. MSCGrapher effectively distinguishes and
adaptively fuses correlations of different strengths, resulting
in lower forecasting errors. In the PEMS datasets, traffic
flow is characterized by spatial heterogeneity and abrupt
temporal changes, making inter-node relationships particu-
larly complex. MSCGrapher demonstrates its advantage by
modeling the correlations of dynamic variations.

Additionally, we compare MSCGrapher with GNN-based
methods using datasets consistent with the baselines. The de-
tailed results are shown in Table 2land 3l As shown in Table
MSCGrapher significantly outperforms GNN-based meth-
ods across five datasets from different domains, especially
on three traffic-related datasets, where the average MSE
decreases by 18.6%, 30.38%, and 23.87%, respectively. Ta-



Table 1: The forecasting results of our MSCGrpaher and baselines. Complete results are referred to Supplements.

Models MSCGrpaher MSGNet(2024) Dlinear(2023) TimesNet(2023)  TiDE(2023)  Stationary(2022) FEDformer(2022) Pyraformer(2022) Autoformer(2021) Informer(2021)
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
Flight | 0201 0315 0208 0321 0233 0345 0265 0372 0239 0350 0560 0542 0418 0485 0448 0496 0238 0344 0391 0439
ETThl | 0450 0452 0472 0477 0456 0452 0458 0452 0518 0517 0570 0537 0498 0484 0827 0703 0496 0487 1040 0.820
ETTh2 | 0393 0415 0402 0431 0559 0515 0414 0427 0387 0419 0526 0516 0437 0449 0826 0703 0450 0459 4431 1729
ETTml | 0400 0412 0400 0412 0403 0407 0400 0406 0413 0415 0471 0456 0448 0452 0618 0607 058 0517 0961 0.734
ETTm2 | 0287 0329 0290 0331 0350 0401 0291 0333 0293 0338 0306 0347 0305 0349 1498 0869 0327 0371 1410 0810
weather | 0255 0283 0257 0284 0265 0317 0259 0287 0271 0320 0288 0314 0309 0360 0815 0717 0338 0382 0634 0548
electricity | 0.196 0302 0.196 0.303 0212 0300 0.193 0295 0209 0295 0.193 0296 0214 0327 0382 0445 0227 0338 0336 0397
exchange | 0.396 0429 0403 0432 0354 0414 0416 0443 0400 0431 0461 0454 0519 0500 1377 1018 0613 0539 1550 0998
PEMSO3 | 0.136 0241 0.138 0243 0278 0375 0147 0248 0326 0420 0147 0249 0213 0327 0360 0414 0667 0601 0201 0300
PEMSO8 | 0.192 0276 0206 0323 0379 0416 0193 0271 0441 0464 0201 0276 0286 0358 0269 0292 0814 0659 0313 0325
1st Count 13 0 2 4 0 0 0 0 0
Avg Rank 150 260 4.95 2.90 5.30 5.60 6.25 8.85 7.35 875
Table 2: Forecasting results compared with GNN methods. with 5 baselines on Figured] The significant prediction devi-
ations are marked with circles and yellow shaded areas. As
Datasets | Plectricity  Weather PEMS03 PEMSO04 PEMS08 observed, MSCGrapher fits nearly all key change regions
Metic | MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE well, whereas other baselines struggle in scenarios involving
MSCGrpaher | 0.196 0302 0255 0283 0.136 0241 0137 0255 0192 0.276 drastic changes. Specifically, MSCGrapher demonstrates
FourierGNN | 0.228 0325 0.249 0302 0.151 0267 0.180 0295 0216 0313 better visualization of prediction results than MSGNet in
SemGNN | 0.197 0300 0268 0321 0187 0302 0217 0333 0303 0351 the low-value range of 20—100. Moreover, within the peak

Table 3: GNN methods results on PEMS datasets.

Dataset PEMS03 PEMS04 PEMS07 PEMS08

Metric

MSE

MAE

MSE

MAE

MSE

MAE

MSE

MAE

MSCGrpaher

24
48

0.078
0.103
0.151

0.184
0214
0.257

0.092
0.109
0.144

0.207
0.228
0.265

0.070
0.093
0.125

0.175
0.195
0.234

0.116
0.149
0.189

0.223
0.255
0.275

MSHyper

12
24
48

0.106
0.126
0.138

0.207
0.207
0.265

0.103
0.148
0.191

0.197
0.148
0.308

0.137
0.245
0.137

0.256
0.225
0.221

0.113
0.230
0.317

0.209
0.248
0.324

CrossGNN

24
48

0.094
0.131
0.242

0.208
0.248
0.343

0.158
0.231
0.468

0.270
0.322
0.475

0.085
0.185
0.340

0.198
0.293
0.414

0.148
0.277
0.336

0.262
0.363
0.407

FourierGNN

12
24
48

0.087
0.120
0.177

0.202
0.240
0.294

0.112
0.153
0.209

0.231
0.272
0.321

0.073
0.100
0.140

0.182
0.215
0.258

0.143
0.210
0.216

0.263
0.320
0.311

ble [3| further compares MSCGrapher with state-of-the-art
GNN methods on the PEMS datasets, where MSCGrapher
achieves superior performance on most metrics. Due to
the pronounced spatial heterogeneity and temporal abrupt
changes in traffic flow within the PEMS datasets, the rela-
tionships among nodes are highly complex and dynamic.
This fully demonstrates that the inter-series correlations in
multivariate time series evolve over time, and our multi-
scale correlation learning method effectively captures and
handles these dynamic features.

To more clearly show the capability of MSCGrapher in mod-
eling the inter-series correlations of MTS, we illustrate the
forecasting results of a single-variate series on flight dataset

range of 20-40, MSCGrapher more accurately captures the
dynamic trends of the true value curve. MSCGrapher also
outperforms DLinear in predicting certain extreme points,
producing results closer to the true values. In contrast, DLin-
ear tends to exhibit lag or smoothing effects when handling
sharp fluctuations, making it difficult to precisely capture
sudden changes. Furthermore, MSCGrapher surpasses TiDE
in predicting extreme points and fitting trends within the
30—40 and 50-60 intervals, demonstrating higher fitting
accuracy and improved dynamic consistency. Pyraformer
performs poorly during peak periods and in regions with sig-
nificant fluctuations, failing to accurately track pronounced
changes in the data. Autoformer underperforms in low-value
regions, struggling to capture subtle variations and resulting
in significant deviations between predicted and true values.
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Figure 4: Visualization of the prediction results on the flight
dataset with an output length of 96.



5.3 ABLATION STUDY

To investigate the impact of different modules in MSCGra-
pher, we design the following variants:

1. w/o-ACLayer: Adaptive correlation learning layer is
instead by convolutions.

2. wlo-CorGraph: The process of correlation graph learn-
ing does not have a strong or weak degree division.

3. w/o-MSLayer: It removes the multi-scale modeling
part.

4. w/o-Attention: The Multi-Head self-Attention Layer is
removed.

We do the ablation study on 5 datasets which are from dif-
ferent domain. Table (4| shows the average results of these
variants across output lengths. From Table [d] we can find
theses variants all have a increase in MSE and MAE. When
removing the adaptive correlation learning layer, the per-
formance is most affected on all datasets. On Flight and
PEMSO08, MSE drops by 35.33% and 24.41%, and MAE by
19.30% and 22.76%, which demonstrate that the inter-series
correlations is a key factor for MTSF task. Furthermore,
the results of variant 2 also indicate that manipulating the
strength of the inter-series correlations in different ways
can more accurately capture the implicit information. When
using a single scale instead of multi-scale partitioning, MSC-
Grapher has a significant performance degradation, where
MSE drops by 12.02% and MAE by 8.07% on the Flight
dataset. It proves that the periodicity is a core characteris-
tic and multi-scale helps to extract the complex periodic
patterns hidden in MTS. The results of variant 4 show that
intra-series correlations are also a crucial factor.

Table 4: Results of the ablation study.

Datasets Flight ETTh1 Exchange ‘Weather PEMS08

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
MSCGrapher ~ 0.201 0315 0.450 0.452 0.393 0429 0.255 0283 0.192 0.276
w/o-ACLayer  0.317 0.413 0.500 0478 0430 0448 0.265 0292 0254 0.342
w/o-CorGraph  0.208 0.320 0.465 0.460 0417 0442 0.257 0284 0204 0.277
w/o-MSLayer  0.233  0.347 0.467 0461 0399 0429 0256 0284 0.198 0.283
w/o-Attention  0.206  0.320 0.455 0.455 0412 0436 0.257 0.284 0.198 0.281

5, which indicates that MTS can be represented well from
several period in most cases. Similar to k, ¢y, also presents
the same trend. Concerning the ratio, although increasing the
ratio helps capture more potential strong correlations, it also
raises the risk of misinterpreting weak correlations as strong
correlations, which may affect the overall performance of
the model.
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Figure 5: Sensitivity tests for k, c4im, and ratio.

5.5 LEARNED CORRELATION GRAPH
VISUALIZATION

To clearly exhibit the learned correlations, we visualize a
subset of the correlation adjacency matrices from the Flight
dataset in Figure[q

Specifically, we choose three different time scales: 24h, 12h,
and 6h, and compare the different correlation adjacency
matrices for each time scale. As shown in Figure [6] the
correlation adjacency matrices are sparse on all time scales,
which says that our method can effectively find the intrin-
sic relationships hidden in MTS. At different time scales,
we observe that the strength of correlations changes. For
example, the correlation between nodes 3 and 6 (marked
in red boxes) is strong at 24h and 6h. However, at a 12h
time scale, the correlation becomes weak. This suggests
that the variation in correlations across different time scales
reveals the complex dynamic evolution of the system. If we
can focus more on the strong correlations and reduce the
influence of weak correlations during the evolution process,
we can more effectively capture the core dynamics and key
changes of the system. By increasing the weight of strong
correlations, we can direct the model’s attention to relation-
ships that remain consistently stable across multiple time
scales, rather than being distracted by weak correlations that
only exist briefly at specific time scales.

5.4 SENSITIVITY TO HYPERPARAMETERS

We evaluate the impact of following hyperparameters on
different datasets: scale k, embedding dimension cgjy, and
ratio. In this experiments, the length of historical review
window and the prediction length are set to 96. The results
are presented in Figure [5} For k, we can find the MSE
gradually decreases on all datasets as k increases. When
k increases to a certain extent, the performance begins to
decline. For these datasets, the best choice of k£ is 3 or
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1 0.8 1 || 0.8 1 | 0.8
N 06 2 06 2 [ | 0.6
3 3 3 |

2 04, | 04, 0.4
5 02 5 02 5 0.2
6 6 6
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(a) 24h

01234586

(b) 12h

0123456

(c) 6h

Figure 6: Visualization of the first layer correlation adja-
cency matrix on Flight dataset for different time scales: (a)
24h, (b) 12h, and (c) 6h.



Table 5: Comparative results of integrating our correlation learning methods into MTGNN and TEGNN.

Datasets Solar-Energy Traffic Electricity Exchange-Rate
Model Metric 3(30min)  6(60min) 12(120min)  24(240min) | 3(3h)  6(6h)  12(12h) 24(24h) | 3(3h)  6(6h)  12(12h) 24(24h) | 3(3d)  6(6d) 12(12d) 24(24d)
RSE 0.1778 0.2348 0.3109 0.4270 04162 04754 0.4461  0.4535 | 0.0745 0.0878 0.0916  0.0953 | 0.0194 0.0259 0.0349  0.0456
MTGNN RSE(Cor) 0.1782 0.2362 0.3102 0.4230 0.4237 0.4688 0.4531  0.4531 | 0.0744 0.0856 0.0911  0.0950 | 0.0192 0.0258 0.0344  0.0446
CORR 0.9852 0.9726 0.9509 0.9031 0.8963 0.8667 0.8794  0.8810 | 0.9474 009316 0.9278  0.9234 | 0.9786 09708 0.9551  0.9372
CORR(Cor) 0.9851 0.9723 0.9512 0.9058 0.8934 0.8670 0.8764  0.8818 | 0.9475 0.9327 0.9273 0.9237 | 0.9789 09705 0.9533  0.9362
RSE 0.1824 0.2612 0.3289 0.4733 0.4421 04433 04508  0.4692 | 0.0774 0.0862 0.0948  0.0985 | 0.0178 0.0245 0.0363  0.0449
TEGNN RSE(Cor) 0.1739 0.2298 0.2943 0.3942 0.4178 04505 0.4414  0.4495 | 0.0748 0.0862 0.0938  0.0965 | 0.0177 0.0255 0.0348  0.0507
CORR 0.9847 0.9676 0.9379 0.8854 0.8853 0.8820 0.8743  0.8671 | 0.9418 0.9310 0.9225 09182 | 0.9815 09732 0.9566  0.9352
CORR(Cor) | 0.9856 0.9742 0.9572 0.9183 0.8978 0.8792 0.8830  0.8781 | 0.9460 0.9531 0.9250  0.9201 | 0.9817 0.9732 0.9588  0.9385

Table 6: Model efficiency comparison on Electricity with
input length 96 and output length 96.

Models Pred Length  GPU Memory (GB)  Training Time (ms/iter) MSE Rank
MSCGrapher 96 6.48 404 ms 1
MSGNet 96 6.55 281 ms 4
TimesNet 96 5.81 532 ms 3
DLinear 96 1.38 15 ms 5
FourierGNN 96 21.57 434 ms 6
StemGNN 96 725 186 ms 2

5.6 TRANSFERABILITY OF CORRELATION
LEARNING

In this section, we integrate the correlation learning method
into GNN-based models: MTGNN [Wu et al., 2020] and
TEGNN [Duan et al.l 2022], to validate its transferabil-
ity. For ease of comparison, experiments are conducted on
same MTS datasets: Solar-Energy, Traffic, Electricity, and
Exchange-Rate. Relative Squared Error (RSE) and Empiri-
cal Correlation Coefficient (CORR) are used for evaluation.

Table [5] shows the comparative results before and after in-
tegrating our correlation learning method into MTGNN
and TEGNN. (Cor) indicates the incorporation of our pro-
posed correlation learning method into the respective mod-
els. From Table 3] it is evident that both models gain perfor-
mance improvements in the majority of scenarios, especially
for TEGNN on Solar-Energy and Electricity datasets. After
replacing the original correlation learning, MTGNN shows
slight improvements across all horizons on the smaller
datasets, Electricity and Exchange. However, in the other
two larger datasets, the performance improvement is more
noticeable for long-series predictions. TEGNN exhibits sig-
nificant improvements in the first three datasets, which is
likely because these datasets are collected on an hourly or
minute basis, containing more time series information. With
the replace of correlation learning, TEGNN has better ability
to capture the complex inter-series relationships. This indi-
cates that our correlation learning method can effectively

extract inter-series dynamic correlations from MTS.

5.7 COMPUTATIONAL EFFICIENCY

For efficiency evaluation, we select the more complex Elec-
tricity dataset to conduct a comprehensive comparison of
GPU memory usage, running speed, and MSE ranking
across different models under the prediction length of 96.
This approach allows us to systematically assess the trade-
off between accuracy and computational efficiency. To en-
sure fairness, all models were tested under the same condi-
tions. The detailed results are presented in Table[6]

In Table [6] although MSCGrapher is not the best among
all models in terms of training speed and GPU memory
usage, it strikes a good balance between overall efficiency
and performance. Specifically, MSCGrapher maintains a
controllable level of resource consumption while achieving
significantly better prediction accuracy than models such
as FourierGNN, demonstrating strong modeling capability.
Although TimesNet shows advantages in memory usage, its
noticeably slower training speed hampers overall training
efficiency. Considering both accuracy and computational
cost, MSCGrapher exhibits stable and superior performance.

6 CONCLUSION

In this study, we propose a novel MTSF model, MSCGra-
pher, which starts from the premise that different relation-
ships exist in MTS at various scales. MSCGrapher effec-
tively captures both inter-series correlations with varying
strengths and intra-series temporal correlations at different
time scales by combining multi-scale correlation learning
block with multi-head self-attention. Extensive experiments
on real-world datasets shows that MSCGrapher outperforms
existing models. When introduced our adaptive correlation
learning method, two GNN-based methods also gain bet-
ter performance, which proves that modeling the dynamic
varying correlations is helpful for MTSF task.
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A DESCRIPTIONS OF NOTATIONS

To facilitate understanding of the symbols used in this paper, a detailed summary of the key notations is provided in Table[7]

B DETAILS OF IMPLEMENTING MULTIVARIATE TIME SERIES FORECASTING

In this section, we summarize the detailed information on datasets, baselines, evaluation metrics, and hyperparameter
settings. The code is available: https://github.com/sopphia2001/MSCGrapher.

B.1 DATASETS

We use a total of 12 real-world datasets to evaluate MSCGrapher, covering various domains such as weather, electricity, and
traffic. The specific information of the datasets is as follows:

* Flight[Cai et al., 2024]: Contains flight data variations for seven major airports in Europe from January 2019 to
December 2021, including flight data particularly related to COVID-19 (post-2020), with important information such
as flight numbers, departure and destination airports, departure times, and landing times.

e ETT[Zhou et al.} 2021]]: Includes seven factors of electric transformers from July 2016 to July 2018. There are four
subsets: ETTh1 and ETTh?2 are recorded hourly, while ETTm1 and ETTm? are recorded every 15 minutes.

* Weather[Wu et al.,[2021]]: Includes 21 meteorological factors collected every 10 minutes from 1990 to 2016.

¢ Electricity[Wu et al 2021]]: This dataset contains electricity consumption data from the UCI Machine Learning
Repository, which summarizes hourly electricity consumption of 321 customers from 2012 to 2014.

» Exchange-Rate[Wu et al.,|2021]]: Collects panel data of daily exchange rates for eight countries from 1990 to 2016.

* PEMS: Contains data from the California public transportation network collected in 5-minute windows. We use the
same two public subsets (PEMS03, PEMS04, PEMS07 and PEMS08) adopted in SCINet[Liu et al., 2022al.

For the multivariate time series forecasting, we set the input length to 96. The output length for the PEMS datasets is set to
{12, 24, 36, 96}, while for other datasets, the output length is set to {96, 192, 336, 720}. TableB]lists the detailed information
of the datasets, which is crucial for understanding the characteristics of the datasets.

*Corresponding author.
*Corresponding author.
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Table 7: Description of the key notations.

Notation Descriptions

X Original input series

Y, Target output series

N Number of variables in the series

L Length of the historical window

T Length of the prediction window

X, Time series collected at time step ¢
X.n Entire time series of of each variable indexed by n
G=(V,E) Graph with node set V' and edge set £
Gistrong Strong correlation graph
Gyeak Weak correlation graph
f={f1,---, fx} Multi-scale representations in MTS
Agtmng Adjacency matrix of the strong correlation graph at scale &k
AF Adjacency matrix of the weak correlation graph at scale k
Eicim,dw,n,t} Embeddings for month, day, week, hour, and minute
H..p Embedding of the original input series

Xy Fast Fourier Transform of He,,1,

F Overall amplitude measure

Di Period corresponding to different scales

Xi The i-th reshaped time series for time scale ¢
E|, E, Learnable parameters at layer [ for source and target node embeddings

Al Adjacency matrices at layer [

Al ong Alear Strong and Weak correlation matrices at layer [

b dox Edge index matrix at layer [ indicating connections
Aédge Edge attribute matrix at layer [ describing edge features
Gaata Contains node and edge features

B! All-zero batch tensor

r Source node of an edge

c Target node of an edge
Eep Node features from source and target node indices
Secdge Computed edge scores

Alf Fused adjacency matrix at layer
X The output after fusion at scale 4

B.2 BASELINES

We compare MSCGrapher with 13 baselines to validate its forecasting performance. We select outstanding time series

forecasting models from 2021 to 2024. The specific model codes are as follows:

e Informer: https://github.com/zhouhaoyi/Informer2020

e Autoformer: https://github.com/thuml/Autoformer

¢ Pyraformer: https://github.com/ant-research/Pyraformer

e FEDformer: https://github.com/MAZiging/FEDformer

e Stationary: https://github.com/thuml/Nonstationary_Transformers

e TiDE: https://github.com/google-research/google—research/tree/master/tide

e TimesNet: https://github.com/thuml/Time—-Series—Library

e DLinear: https://github.com/honeywell2l/DLinear
e MSGNet: https://github.com/YoZhibo/MSGNet

e MSHyper: https://github.com/shangzongjiang/Ada-MSHyper
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Table 8: Detailed Information of Datasets. The frequency indicates the sampling interval of the time points.

Datasets Nodes  Prediction Length Train/Valid/Test Size ~ Split Ratio  Frequency
Flight 7 {96, 192, 336, 720} (18221, 2537, 5165) 7:1:2 Hourly
ETTh1 7 {96, 192, 336, 720} (8545, 2881, 2881) 6:2:2 Hourly
ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) 6:2:2 Hourly
ETTml 7 {96, 192, 336, 720} (34465, 11521, 11521) 6:2:2 15 min
ETTm?2 7 {96, 192, 336, 720} (34465, 11521, 11521) 6:2:2 15 min

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 7:1:2 10 min

Electricity 321 {96, 192, 336, 720} (18317, 2633, 5261) 7:1:2 Hourly
Exchange-Rate 8 {96, 192, 336, 720} (5120, 665, 1422) 7:1:2 Daily

PEMSO03 358 {12,24, 48,96} (15629, 5147, 5147) 6:2:2 5 min

PEMS04 307 {12,24, 48, 96} (10100, 3303, 3304) 6:2:2 5 min

PEMSO07 883 {12,24, 48,96} (16839, 5550, 5550) 6:2:2 5 min

PEMSO08 170 {12, 24, 48, 96} (10618, 3476, 3477) 6:2:2 5 min

¢ CrossGNN: https://github.com/hgh0728/CrossGNN
¢ StemGNN: https://github.com/microsoft/StemGNN
e FourierGNN: https://github.com/aikunyi/FourierGNN

B.3 EVALUATION METRICS

In the experiments, we use Mean Squared Error (MSE) and Mean Absolute Error (MAE) as evaluation metrics. For
multivariate time series, given the true value Yy = {xy,..., 24471} € RNVXT at time step ¢ and the predicted values
?t ={z4,...,xp47-1} € RN XT for N variables over the next 7' time steps, the definitions of the metrics are as follows,
where z;; € Y, ;5 € ?t:

N T
1 B~ 2
MSE = ——— ;; (wij — Tij) (14)
1 N T
MAE = T Z;; |zs; — By (15)

B.4 SETUP AND HYPERPARAMETERS

All experiments are conducted on an RTX 4090 24GB GPU using the PyTorch framework. We use the Adam optimizer with
a learning rate of 10~% and a batch size of 32. The default loss function is MSE, with the number of training epochs set to
10 and early stopping applied where appropriate. The embedding dimension cg;yy, is set within the range {16, 32, 64, 128,
512, 1024}, k is set within the range {3, 5}, and the number of graph convolution layers is set to 2. All comparison baseline
models are implemented based on the benchmarks from the TimesNet[Wu et al., [2022]] repository, which builds upon the
configurations provided in the original papers or official code of each model. Specific hyperparameters for different datasets
are provided in Table [9]

C IMPLEMENTATION DETAILS FOR VALIDATING THE TRANSFERABILITY OF
CORREALTION LEARNING METHODS

In this section, we summarize the detailed information on datasets, baselines, evaluation metrics, and hyperparameter
settings.


https://github.com/hqh0728/CrossGNN
https://github.com/microsoft/StemGNN
https://github.com/aikunyi/FourierGNN

Table 9: Hyperparameter settings for different datasets.

Datasets Flight ETThl

ETTh2 ETTml

ETTm2 Weather Electricity Exchange PEMS03 PEMSO0S

Epochs 10

Batch size 32

Loss MSE

Optimizer Adam

Learning rate le-4

k s | 3 | s ] 3 5

Claim 32 64 | 512 64 | 512
Ratio 0.25

Dropout | 0.05 | 0.1 | 0.05 | 03 | 0.05 02 | 0.05
DimofE | 100 10 | 100 10
Heads 8

C.1 DATASETS

We use four datasets for validation. In addition to Electricity and Exchange-Rate, we also use the Solar-Energy and Traffic
datasets. The specific information is as follows:

» Solar-Energy: This dataset contains solar energy data collected by the National Renewable Energy Laboratory in 2007,
sampled every 10 minutes from 137 photovoltaic stations in Alabama.

* Traffic: This dataset includes road occupancy data (ranging between 0 and 1) from the California Department of
Transportation. The data is aggregated hourly from 862 sensors in the San Francisco Bay Area from 2015 to 2016.

According to the original paper, the four datasets are split chronologically into training (60%), validation (20%), and test
sets (20%). For validating the transferability of correaltion learning methods, we set the input window to 168, and the output
horizons to {3, 6, 12, 24}. Specifically, the prediction horizons for the Solar-Energy dataset range from 30 to 240 minutes,
for Traffic and Electricity datasets range from 3 to 24 hours, and for the Exchange-Rate dataset range from 3 to 24 days.
Table 10| lists the detailed information of the datasets, which is crucial for understanding their characteristics.

Table 10: Detailed Information of Datasets. The frequency indicates the sampling interval of the time points.

Datasets Nodes Horizon Train/Valid/Test Size  Split Size  Frequency

Solar-Energy 137  {3,6,12,24} (31536,10512,10512) 6:2:2 10 minutes
Traffic 862  {3,6,12,24}  (10526,3509,3509) 6:2:2 Hourly
Electricity 321 {3,6,12,24}  (15782,5261,5261) 6:2:2 Hourly
Exchange-Rate 8 {3,6,12,24} (4553,1518,1517) 6:2:2 Daily

C.2 BASELINES

We integrate the correlation method into two different baseline models to validate the effectiveness and transferability of the
proposed correlation learning methods through comparisons of accuracy before and after integration. The specific baseline

model codes are as follows:

¢ MTGNN: https://github.com/nnzhan/MTGNN

e TEGNN:|https://github.com/RRRussell/MTHetGNN


https://github.com/nnzhan/MTGNN
https://github.com/RRRussell/MTHetGNN

C.3 EVALUATION METRICS

In the experiments, we use Relative Squared Error (RSE) and Empirical Correlation Coefficient (CORR) as evaluation
metrics. For multivariate time series, given the true value Yy = {z4,..., 2471} € RVXT at time step t and the predicted
values ?t ={z¢,...,Ty7-1} € RNXT for N variables over the next 7" time steps, the definitions of the metrics are as
follows, where ;; € Yy, Tj; € ?t:

\/ZiTzl Y (@i — T)?

RSE =
VEL ZN, (i — mean(2)?

(16)

N T ~ ~
1 3 i1 (Tij — mean(z.;)) (Zi; — mean(Z.;))

i=1 \/ZiT=1 (2ij — mean(z.;))* S, (B — mean(3.;))*

A7)

C.4 SETUP AND HYPERPARAMETERS

All experiments are conducted on an RTX 4090 24GB GPU using the PyTorch framework. We use the Adam optimizer for
fine-tuning and optimize all trainable parameters through backpropagation. The learning rate is set to 103, and we choose
L1Loss as the loss function with 30 training epochs. We integrate correlation learning methods into the baseline models with
aratio of 0.25, using the same hyperparameters as in the original papers. For detailed parameters of each baseline, please
refer to [Wu et al., 2020, |Duan et al., 2022].

D REVIEW WINDOW EXPERIMENTS

To better highlight our model’s performance on long series, we extend the input length to increase the historical information
available to the model, evaluating its performance in handling longer temporal dependencies. We conducte experiments on
five datasets with input lengths of {48, 96, 192, 226, 512, 720} and an output length of 96, using MSE as the evaluation
metric. The results are shown in Figure

The figure shows that as input length increases, MSCGrapher’s overall predictive performance declines, highlighting its
strength in capturing long-term trends and complex dependencies. We believe that multi-scale operations in MSCGrapher are
crucial to this process. These operations divide long time series into sub-series of different scales, shortening series length,
improving processing efficiency, and capturing dependencies across various time scales. This method effectively overcomes
the performance fluctuations and instability issues that traditional Transformer models face with long series. Additionally,
multi-scale operations enable MSCGrapher to flexibly model across different time scales, providing a comprehensive
understanding of complex patterns and trends. By applying the Transformer mechanism to each sub-series, MSCGrapher
can make fine-grained and coarse-grained predictions, improving overall accuracy.

In general, the size of the historical review window influences the dependencies that the model learns from historical
information. To assess MSCGrapher’s effectiveness with extended historical windows, we compare it with well-performing
models on the ETTm1 dataset. The results are presented in Figure We observe that as the historical review window
increases, MSCGrapher decreases and eventually stabilizes, which indicates that it can effectively handle large amounts of
historical data and extract helpful information. This is due to MSCGrapher’s capability to identify different time scales and
learn corresponding relationship graphs allows it to capture long-series time dependencies effectively. TimesNet shows a
similar overall trend to MSCGrapher but performs poorly; DLinear performs relatively well in long-term forecasting but is
unsatisfactory for short-term predictions; Other methods exhibit significant fluctuations as the historical review window
lengthens.

E MORE LEARNED GRAPH VISUALIZATION

To illustrate the specific role of the information obtained from the correlation graph, we provide additional visualization
examples to demonstrate its advantages, as shown in Figures [§] and 0] Taking the PEMS dataset as an example, which
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Figure 7: Review window experiments with diffident datasets(a) and models(b).
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Figure 8: Visualization of the adjacency matrix for the top 50 nodes in the PEMSO0S8 dataset, showcasing the learnable
adjacency matrices at different scales in the first layer and the preset static adjacency matrix. The preset static adjacency
matrix fails to capture the correlations between time series with strong similarities.
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Figure 9: Visualization of the adjacency matrix for the top 50 nodes in the PEMSO03 dataset, showcasing the learnable
adjacency matrices at different scales in the first layer and the preset static adjacency matrix. The preset static adjacency
matrix fails to capture the correlations between time series with strong similarities.



includes an adjacency matrix based on predefined distances, we compare it with the correlation matrix learned by our model
to further validate the effectiveness of the correlation information.

Specifically, as seen in Figures[8and[J] the learned correlation matrix is much sparser, indicating that MSCGrapher relies on
a more concise set of inter-series relationships during prediction. At the same time, the learned adjacency matrix captures
connections between nodes that are physically distant but exhibit high similarity in their time series behavior, as highlighted
by the red box in the figures. To deepen the understanding of the model’s learning mechanism, we also visualize the time
series corresponding to node pairs with high weights in the adjacency matrix, as shown in Figure [I0}

PEMSO03 Series of Variate 2 and 18

) 50 100 150 200 250 300 350

Figure 10: Visualization of time series for node pairs with higher values in the learnable adjacency matrix of the PEMSO03.

F MORE FORECASTING RESULTS VISUALIZATION

To more intuitively demonstrate MSCGrapher’s outstanding performance, we present additional visual results in the figures.
Figure [TT] shows the forecasting results for the Flight dataset with an input length of 96 and output lengths of {96, 192,
336, 720}. Figures[12)and [[3] display the forecasting results for different models on the Exchange and Weather datasets,
with an input length of 96 and output length of 96. It can be observed that, across these two datasets, the overall prediction
accuracy of all models does not reach an ideal level. However, MSCGrapher maintains relatively high accuracy within the
0-100 prediction interval and demonstrates a more stable forecasting trend than other models in subsequent time periods,
indicating its strong capability to model sequence dependencies even when faced with highly volatile data.

G ALL FORECASTING RESULTS

In this section, we present the complete results of multivariate time series forecasting. We use 10 datasets and compare them
with 12 deep learning models. The best results are highlighted in red bold and the second best results are underlined in blue.
From Table 12} MSCGrapher demonstrates outstanding performance in MTSF task. Specifically, MSCGrapher achieves the
best performance 46 times throughout the forecasting results, far surpassing other models. Additionally, compared to GNN
models in Table [T} MSCGrapher also achieves more advanced performance.
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Figure 11: Visualization of the prediction results for the Flight dataset. The input length is 96.
Table 11: The best results for MSCGrapher compared to GNN models are highlighted in red bold.
Dataset Electricity Weather PEMSO03 PEMS04 PEMSO08
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
9 0.165 0.274 0.165 0.214 0.078 0.184 0.092 0.207 0.116 0.223
ours 192 0.187 0.294 0.215 0.257 0.103 0.214 0.109 0.228 0.149 0.255
" 336 0.198 0307 0.275 0301 0.151 0.257 0.144 0.265 0.189 0.275
720 0.232 0333 0363 0.359 0.213 0.309 0.201 0.319 0.313 0.350
9 0211 0307 0.177 0240 0.087 0.202 0.112 0.231 0.143 0.263
FourierGNN 192 0214 0312 0.218 0.279 0.120 0.240 0.153 0.272 0.210 0.320
urt 336 0.227 0325 0.265 0.318 0.177 0.294 0.209 0321 0.216 0.311
720 0.260 0.354 0.336 0370 0.218 0.333 0.247 0354 0.294 0.356
96 0.165 0.267 0.181 0.250 0.119 0.244 0.144 0276 0.246 0.319
StemGNN 192 0.180 0.283 0.226 0.289 0.179 0305 0.188 0.317 0.281 0.337
336 0.200 0.306 0.287 0.338 0.191 0.303 0.234 0342 0.305 0.356
720 0.243 0.345 0379 0406 0.258 0.355 0.303 039 0.380 0.393
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Figure 12: Visualization of forecasting results for exchange dataset with an input length of 96 and output length of 96.
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Figure 13: Visualization of forecasting results for weather dataset with an input length of 96 and output length of 96.



Table 12: The complete results of multivariate time series forecasting. For the PEMS dataset, the output lengths are {12, 24,
36, 48}, and for other datasets, the output lengths are {96, 192, 336, 720}.

Models OURS MSGNet(2024) Dlinear(2023) TimesNet(2023)  TiDE(2023)  Stationary(2022) FEDformer(2022) Pyraformer(2022) Autoformer(2021) Informer(2021)

Datasets Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.178 0.294 0.183 0.300 0.221 0.337 0237 0350 0224 0340 0.386 0461  0.360 0.452 0.436 0.496 0.204 0.319 0.333  0.405

192 0.183 0.301 0.189 0306 0220 0.336 0.224 0337 0227 0342 0422 0478  0.397 0.474 0.437 0.492 0.200 0314 0358  0.421

e 336 0.201 0315 0.207 0.320  0.229 0.342 0.289 0394 0234 0346 0.544 0533 0492 0.527 0.444 0.494 0.201 0.318 0.398  0.446
720 0.243  0.351 0.252 0.358 0.263 0366 0.310 0408 0270 0.371 0890 0.697 0424 0.488 0.476 0.504 0.345 0.426 0.476  0.484

96 0393 0410 0423 0440 0.386 0.400 0.384 0402 0427 0450 0513  0.491 0.395 0.424 0.664 0.612 0.449 0.459 0.865 0.713

ETThI 192 0439 0443 0445 0469 0437 0432 0436 0429 0472 0486 0.534 0504 0469 0.470 0.790 0.681 0.500 0.482 1.008  0.792
336 0480 0468 0481 0473 0481 0459 0491 0475 0527 0527 0.58  0.535 0.530 0.499 0.891 0.738 0.521 0.496 1.107  0.809

720 0.488 0.485 0.540 0.524 0519 0516 0521 0500 0.644 0.605 0.643  0.616  0.598 0.544 0.963 0.782 0.514 0.512 1.181  0.965

96 0.326  0.370 0.348 0.399 0333 0.387 0340 0374  0.304 0359 0476 0458 0358 0.397 0.645 0.597 0.346 0.388 3755 1.525

— 192 0407 0.413 0404 0431 0477 0476 0402 0414 0394 0422 0512 0493 0429 0.439 0.788 0.683 0.456 0.452 5.602  1.931
336 0422 0434 0435 0443 0594 0541 0452 0452 0385 0421 0552 0551 0.496 0.487 0.907 0.747 0.482 0.486 4721  1.835

720 0.416 0.441 0421 0451 0831 0.657 0462 0468 0463 0475 0562 0.560  0.463 0.474 0.963 0.783 0.515 0.511 3.647  1.625

96 0.323  0.368 0.326 0.371 0.345 0372 0338 0375 0356 0.381 038 0398 0379 0.419 0.543 0.510 0.505 0.475 0.672  0.571

ETTmi 192 0374 039 0376 0397 0380 0.389 0.374 0.387 0.391 0399 0459 0444 0426 0.441 0.557 0.537 0.553 0.496 0.795  0.669
336 0421 0426 0417 0421 0413 0413 0410 0411 0424 0423 0495 0464 0445 0.459 0.745 0.655 0.621 0.537 1.212 0.871

720 0483 0461 0482 0459 0474 0453 0478 0450 0480 0456 0543 0516 0543 0.490 0.908 0.724 0.671 0.561 1.166  0.823

96 0.178  0.260 0.184 0267 0.193 0.292 0.187 0267 0.182 0264 0.192 0274  0.203 0.287 0.435 0.507 0.255 0.339 0.365 0.453

— 192 0.248 0.307 0248 0307 0284 0.362 0249 0309 0256 0323 0280 0.339 0269 0.328 0.730 0.673 0.281 0.340 0.533  0.563
336 0311 0345 0312 0346 0369 0427 0321 0351 0313 0354 0334 0361  0.325 0.366 1.201 0.845 0.339 0.372 1.363  0.887

720 0410 0402 0414 0404 0554 0522 0.408 0403 0419 0410 0417 0413 0421 0.415 3.625 1.451 0.433 0.432 3379 1338

96 0.165 0.214 0.165 0214 0.196 0.255 0.172 0220 0202 0261 0.173 0223 0217 0.296 0.896 0.556 0.266 0.336 0.300 0.384

0 192 0215 0.257 0215 0258 0.237 029 0219 0261 0242 0298 0245 0285 0.276 0.336 0.622 0.624 0.307 0.367 0.598  0.544
e 336 0.275 0301 0.276 0.301 0.283 0.335 0.280 0.306 0.287 0.335 0.321 0338 0.339 0.380 0.739 0.753 0.359 0.395 0.578  0.523
720 0363 0.359 0371 0362 0.345 0.381 0365 0359 0351 0386 0414 0410 0403 0.428 1.004 0.934 0.419 0.428 1.059  0.741

96 0.165 0274 0.169 0279 0.197 0282 0.168 0.272 0.194 0277 0.169 0274  0.193 0.308 0.386 0.449 0.201 0.317 0.274  0.368

clectricity 192 0.187 0294 0.18 0296 0.196 0285 0.184 0289 0.193 0.280 0.182 0.286  0.201 0.315 0.386 0.443 0.222 0.334 0.396  0.386
336 0.198 0307 0.199 0.307 0209 0301 0.198 0300 0.206 0.296 0.200 0304 0.214 0.329 0.378 0.443 0.231 0.338 0.300 0.394

720 0232 0.333 0227 0330 0245 0333 0220 0320 0242 0328 0222 0321 0246 0.355 0.376 0.445 0.254 0.361 0373 0.439

96 0.099 0.227 0.105 0231 0.088 0.218 0.107 0.234 0.107 0233 0.111 0237 0.148 0.278 1.093 0.884 0.197 0.323 0.847  0.752

N 192 0.193 0315 0.196 0318 0.176 0315 0226 0344 0201 0.323 0219 0335 0271 0.380 1.085 0.976 0.300 0.369 1204 0.895
e 336 0369 0442 0370 0442 0313 0.427 0367 0448 0351 0432 0421 0.476  0.460 0.500 1.597 1.090 0.509 0.524 1.672  1.036
720 0923 0.730 0.940 0.738 0.839 0.695 0964 0.746 0940 0.735 1.092  0.769 1.195 0.841 1.735 1.124 1.447 0.941 2478 1.310

12 0.078 0.184 0.079 0.186 0.122 0.243 0.085 0.192 0.178 0.305 0.081 0.188  0.126 0.251 0.152 0.253 0.272 0.385 0.183  0.284

PEMS03 24 0.103 0.214 0.104 0215 0201 0317 0.118 0.223 0257 0371 0.105 0214  0.149 0.275 0.186 0.290 0.334 0.440 0.193  0.293
36 0.151 0.257 0.151 0257 0333 0425 0.155 0260 0379 0463 0.154 0257 0.227 0.348 0.520 0.526 1.032 0.782 0202 0.304

48 0.213  0.309 0.218 0.313 0457 0515 0228 0317 0490 0.539 0247 0336  0.348 0.434 0.584 0.590 1.031 0.796 0225  0.319

12 0.116 0.223 0.116 0224 0.154 0276 0.112 0.212 0227 0.343 0.109 0.207  0.173 0.273 0.216 0.246 0.436 0.485 0.297  0.313

PEMSO08 24 0.149 0255 0.149 0255 0.248 0353 0.141 0238 0318 0409 0.140 0236  0.210 0.301 0.249 0.267 0.467 0.502 0.321  0.317

36 0.189  0.275 0.196 0.285 0.440 0470 0.198 0.283 0497 0510 0.211 0294  0.320 0.394 0.288 0.297 0.966 0.733 0.308  0.311

48 0.313  0.350 0.361 0527 0.674 0.565 0.320 0351 0.721 0.592 0.345 0367 0442 0.465 0.324 0.359 1.385 0.915 0327 0.361

1st Count 46 0 11 11 7 5 0 0 0 0
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