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Abstract
We propose continual instance learning - a method
that applies the concept of continual learning to
the task of distinguishing instances of the same
object category. We specifically focus on the car
object, and incrementally learn to distinguish car
instances from each other with metric learning.
We begin our paper by evaluating current tech-
niques. Establishing that catastrophic forgetting is
evident in existing methods, we then propose two
remedies. Firstly, we regularise metric learning
via Normalised Cross-Entropy. Secondly, we aug-
ment existing models with synthetic data transfer.
Our extensive experiments on three large-scale
datasets, using two different architectures for five
different continual learning methods, reveal that
Normalised cross-entropy and synthetic transfer
leads to less forgetting in existing techniques.

1. Introduction
Most computer vision tasks assume access to a full, static
dataset. Regularly, researchers train and test their algorithms
on well-established benchmarks (Krizhevsky et al., 2012;
Everingham et al., 2010; Lin et al.). Although beneficial
from a benchmarking point of view, this setup neglects the
dynamic, ever-changing nature of the visual world. The
world does not present itself as a static set of objects that
remain similar through time. Humans evolved to be life-long
learners (Mcclelland et al., 1995) and update their visual
model of the world with sensory data. Therefore, continual
learning (CL) is proposed to mimic learning about novel
object categories (Li & Hoiem, 2016; Jung et al., 2016;
Kirkpatrick et al., 2017).

A common task for CL is to learn about a new object (e.g.
chair) while retaining performance on the previously seen
(e.g. car, table, bicycle). In this work, we focus on contin-
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Figure 1. Two cases for continual learning of object instances.
(Top) Retail companies receive thousands of novel car instances
daily. However, these are not always accessible due to privacy
reasons. (Bottom) Surveillance companies receive long streams
of car records, therefore training from scratch becomes inefficient.
In this paper, we propose continual learning of object instances to
tackle such issues of privacy and inefficiency.

uously learning to distinguish between different instances
of the same object category, in our case, cars. Continual in-
stance learning (CIL) is an approach that applies the concept
of CL to the task of distinguishing intra-category instances
through metric learning (Kuma et al., 2019; Schroff et al.,
2015; Chopra et al., 2005).

A continuous stream of car objects is evident in the visual
world, especially for cases of retail and surveillance, con-
sider Figure 1. For instance, an online car retail company
receives numerous new car advertisements daily. Ideally,
a company would continuously learn from the incoming
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source of car images, for applications such as identifying
duplicate ads (Zhang et al., 2018). However, due to pri-
vacy reasons, companies may need to delete historical user
records, which affects model (re-)training (Goodfellow et al.,
2013; Lomonaco & Maltoni, 2017). Likewise, a surveillance
company may aim to learn to re-identify a query vehicle
within the city. However, learning vehicle re-identification
from scratch is not optimal, since the amount of car images
is ever-increasing. We address such scenarios with continual
instance learning.

Our contributions are as follows:

1. We introduce the problem of continual instance learn-
ing by evaluating existing continual learning methods
under the metric learning setup. We show that existing
techniques suffer from catastrophic forgetting.

2. We propose to utilise Normalised Cross-Entropy
(NCE) (Chen et al., 2020), to reduce the effects of
catastrophic forgetting by mitigating the sensitivity to
outliers under regression losses (Hermans et al., 2017;
Schroff et al., 2015).

3. We augment existing techniques with synthetic visual
data transfer, showing improvements on three bench-
mark datasets over two backbone architectures.

2. Related Work
2.1. Continual Learning

Under different training scenarios, neural networks suffer
from catastrophic forgetting (McCloskey & Cohen, 1989;
Goodfellow et al., 2013; Lomonaco & Maltoni, 2017). This
pitfall has inspired the research community to reestablish
neural networks as a system that is not only put on hold once
trained but as one that can improve through time. This has
given rise to continual learning, also known as incremental
learning, formally introduced in (Lomonaco & Maltoni,
2017). In continual learning, one does not have access to
previously seen data.

Our work follows more closely the New Instances (NI)
setting (Lomonaco & Maltoni, 2017) - new training data
of the same classes become available with new poses and
conditions. We differentiate ourselves by presenting new
instances of only a single class object and learn to better
distinguish these. We focus on regularisation approaches
since these have shown to have adequate performances with
a low level of complexity (Jung et al., 2016; Li & Hoiem,
2016; Kirkpatrick et al., 2017). Early attempts regularise the
loss function by maintaining the output of the network as
unchanged as possible while shifting the internal feature rep-
resentation, namely Less Forgetting Learning (LFL) (Jung
et al., 2016) and Learning without Forgetting (LwF) (Li &

Hoiem, 2016). In Elastic Weight Consolidation (EWC) im-
portance is defined for each model parameter via a Bayesian
approach (Kirkpatrick et al., 2017). This research is closely
related to (Lomonaco & Maltoni, 2017) and (Stojanov et al.,
2019) where we differentiate ourselves from the classifica-
tion setup and introduce metric learning to continual learn-
ing.

2.2. Instance Learning

In metric learning one directly learns a distance function
between objects in a D-dimensional space. Applications
in this domain extend to image retrieval tasks, specifically,
face verification (Chopra et al., 2005), person and vehicle
re-identification (ReID) (Schroff et al., 2015; Kuma et al.,
2019). In this work, we focus on the vehicle re-identification
problem. Common vehicle ReID learning approaches resort
to Siamese CNN (Bromley et al., 1993) with contrastive
(Hadsell et al., 2006) or triplet losses (Schroff et al., 2015;
Kuma et al., 2019). These introduce an effective method of
separating objects in the embedding space.

Directly translating CL approaches to metric learning is not
possible due to the different problem formulation - these
approaches build upon regularising classification outputs,
whereas metric learning directly attempts to learn a mani-
fold. This approach is susceptible to outliers (Schroff et al.,
2015) due to the unbounded nature of the gradients. To this
end, we propose Normalised Cross-Entropy (Chen et al.,
2020) as a solution. More specifically, we treat metric learn-
ing as a classification task, where given a query image, we
solve a binary task to estimate whether a retrieved car image
belongs to the same query under a different viewpoint.

2.3. Transfer Learning from Synthetic Data

The successful effect of using synthetic data for improv-
ing machine learning systems has been reported in (Gaidon
et al., 2018). It reduces the need for labels (Paetzold et al.,
2019) and has shown to help in different visual tasks (Ro-
gez & Schmid, 2018; Sakaridis et al., 2017). To reduce
forgetting, we evaluate the effect of pre-training a model on
object-specific discriminant features. For this, we propose
to utilise synthetic transfer learning for CIL.

3. Approach
3.1. Continual Learning

Regularisation CL approaches are easily adapted to systems
in production. These do not rely on historical samples and
do not increase the number of model parameters. In our
experiments, we focus on Less Forgetting Learning (Jung
et al., 2016), Learning without Forgetting (Li & Hoiem,
2016) and Elastic Weight Consolidation (Kirkpatrick et al.,
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2017). The first two approaches focus on keeping the deci-
sion boundary as unchanged as possible, whereas the latter
targets updating internal representations. For comparison,
we also run our experiments on baseline CL approaches,
specifically, Naı̈ve and Fine-tuning.

We define Xo and Yo as the input and targets of an old
dataset that is no longer available. Similarly, for a new
dataset, we define Xn and Yn. Additionally, the parameters
of a previously trained model and the new model are defined
as θo and θn respectively.

Naı̈ve: The benchmark approach for continual learning is to
simply re-train a model on Xn and Yn given θo. This train-
ing procedure does not require any additional parameters
and by definition, it yields θn.

Fine-Tuning (FT): One simple approach to bypass catas-
trophic forgetting is to first train a model on Xo and Yo,
and once we obtain access to Xn and Yn, train a model by
fine-tuning discriminant layers (Li & Hoiem, 2016).

Less Forgetting Learning (LFL) (Jung et al., 2016): One
important characteristic in CL is to ensure that we get similar
predictions Ŷ for Xn under θo and θn. To this end, in (Jung
et al., 2016) the authors propose to improve the re-training
process by initialising a model with θn = θo. Additionally,
it is proposed to freeze the softmax layer so that the decision
boundaries of the model remain similar. The authors train
such a model with the following loss function:

LLFL(xn; θo; θn) = λcLc(xn; θn) + λeLe(xn; θo; θn),
(1)

where Lc and Le are the cross-entropy and the Euclidean
loss functions. The authors constrain feature changes with
the Euclidean loss between the predictions of Xo under θn
and Xo under θo.

Learning without Forgetting (LwF) (Li & Hoiem, 2016):
Similarly, in LwF (Li & Hoiem, 2016), the authors encour-
age the network to keep its features as unchanged as possi-
ble by using the Knowledge Distillation loss (Hinton et al.,
2014) as opposed to the Euclidean loss in Equation 1. How-
ever, in this approach, θn is randomly initialised and there
is no explicit network freezing.

Elastic Weight Consolidation (EWC) (Kirkpatrick
et al., 2017): Restricting feature extraction capabilities is
not optimal since we want a model to learn from new in-
stances and incrementally improve its object representation.
Therefore, in (Kirkpatrick et al., 2017) the model parame-
ters θ take a probabilistic form with the Fisher Information
matrix, Fi, reflecting weight importance. Under CL, the
model is regularised with the following loss function:

LEWC = Ln +
∑
i

λ

2
Fi(θn,i − θo,i), (2)

where Ln is the loss function for the new task, and λ is the
previous task importance.

3.2. Regression-based Metric Learning

We train the vehicle ReID datasets using a siamese network
and the triplet loss (Schroff et al., 2015). We distance dissim-
ilar vehicles and cluster similar ones in the manifold space.
Specifically, we define an anchor (xai ), a positive (xpi ) and a
negative sample (xni ). The loss function is defined as:

N∑
i

[
‖f (xai )− f (x

p
i )‖

2
2 − ‖f (x

a
i )− f (xni )‖

2
2 + α

]
+
,

(3)
where α is defined as the margin which, similar to (Hermans
et al., 2017), is set to 1. Mining hard negative pairs is
highly important to obtain discriminant features i.e., we
want to emphasise training of instances which are harder to
distinguish, such as two different cars of similar colour and
pose, as opposed to trivially distinct cars.

4. Continual Instance Learning
4.1. Continuous Batches

We define three data streaming approaches for accessing
object instances under CIL, where one time-step, or a new
training set, is a continuous batch. Each approach presents
different restrictions and is suitable for different applica-
tions.

1. Random: Upon acquiring new data, the particular ob-
ject instances in the set are not known a priori. There-
fore, this approach assumes that in each continuous
batch there can be different instances and each of them
can have a different number of data-points. Under the
triplet loss, we do not know the number of negative
instances, or how hard these are to learn from.

2. Balanced: Some tasks can also acquire new instance
data in a balanced fashion i.e., the same number of data-
points are collected in each time step for all instances.
If this is the case, we hypothesize that it is easier to
mine for hard negatives, since we have access to more
negative instances.

3. Incremental: On the other hand, some applications
acquire only some instances at a time i.e., every contin-
uous batch is restricted to only a few instances. This
approach has limited access to negative instances and
is, therefore, the most challenging.

In our experiments, we assume the most challenging sce-
nario, incremental continuous batches, which is also most
closely related to the examples portrayed in section 1.
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4.2. Adapting current approaches

We adapt CL approaches to CIL for bench-marking pur-
poses. To achieve this, we propose the following changes:

• For the Naı̈ve and Fine-Tuning approaches, we directly
replace the cross-entropy loss (Li & Hoiem, 2016) with
the triplet loss.

• For LFL and EWC we propose the same approach by
replacing Lc from Equation 1 and Ln from Equation 2
with the triplet loss.

• In the LwF scenario, the authors make use of the knowl-
edge distillation loss, which encourages probabilities
of one network to approximate the output of another
network. Since in the regression-based triplet loss we
are not dealing with probabilities, we are therefore not
able to adapt this approach.

4.3. Normalised Cross-Entropy Loss (NCE)

Two unwanted features in continual instance learning are,
1) dealing with a regression setup which is not robust to
outliers and 2) not being able to build upon current CL
approaches, like LwF.

Having an outliers-robust approach allows us to have in-
stances that are extremely different from all others and still
restrict its gradients. This can be a fairly common scenario
in incremental continuous batches. To this end, the triplet
loss is adapted to make use of the normalised cross-entropy
loss (Chen et al., 2020),

`(zi) = − log
exp(zi/τ)∑K
j=1 exp(zj/τ)

for i = 1, . . . ,K+1 (4)

where,

z =
(
xa>xp, xa>xn1 . . . , x

a>xnK

)
. (5)

We set the temperature, τ = 1 for simplicity. We do not
resort to offline or online negative mining since we are con-
strained by the number of hard negative samples. However,
we allow for the loss function to include more than one neg-
ative sample at a time (Sohn, 2016). We define the target
of z as 1 for the index corresponding to the dot product
between the anchor and the positive pair and 0 for all other
pairs

4.4. Synthetic Visual Data Transfer

We first train a model on synthetic instances of the same
object as the real object of interest. We then apply CIL

under new real instances. We motivate this approach to
ensure that the model first fully learns fine-grained visual
representations from the synthetic data before training on
continuous batches, which may be of skewed distributions.

5. Experimental Setup

Figure 2. Example images from the three datasets, namely Cars3D
(top), MVCD (middle) and CompCars (bottom). Cars3D is syn-
thetic and other two datasets are real datasets.

5.1. Datasets

We use three publicly available datasets throughout our
experiments. For each dataset, we split the training data in a
continuous incremental batch fashion. We do not make use
of any dataset-specific procedure (i.e., augmentation) in our
experiments.

Cars3D (Reed et al., 2015) Consists of 183 car models, for
each model we render 96 data points generated from 24
equally spaced azimuth directions and 4 elevations. We
use 100 car models for training. For evaluating, we use
83 car models. From each, we randomly select 10 images
for the query set and 86 images for the gallery set. In
total, the training set consists of 9600 images, split into 10
incremental batches. The query and gallery set consist of
830 and 6972 images respectively.

Multi-View Car Dataset (Ozuysal et al., 2009) (MVCD)
Consists of a sequence of images from 20 different car mod-
els on a rotating platform. An image was taken every 3 to 4
degrees. For training, we select 15 car models, comprising
of 1737 images split into 5 incremental batches. From the
remaining 5 car models, we select 10 images for the query
set and the remaining for the gallery set.
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Table 1. Benchmarking existing techniques.

LeNet ResNet

Dataset Approach Ref(%) mAP(%↑) Forget(%↓) Ref(%) mAP(%↑) Forget(%↓)
Cars3D Naı̈ve 68.69 46.28 32.89 70.82 50.01 29.38

FT 68.69 49.36 28.43 70.82 44.98 36.49
LFL 68.69 33.05 52.08 70.82 33.96 52.05
LwF 68.69 − − 70.82 − −
EWC 68.69 46.19 33.02 70.82 50.91 28.11

MVCD Naı̈ve 83.22 62.31 25.13 94.99 83.77 11.81
FT 83.22 60.65 27.13 94.99 72.75 23.41

LFL 83.22 62.86 24.47 94.99 66.24 30.27
LwF 83.22 − − 94.99 − −
EwC 83.22 61.44 26.18 94.99 81.44 14.26

CompCars Naı̈ve 29.83 18.25 38.82 54.41 38.60 29.06
FT 29.83 12.51 58.06 54.41 22.63 58.41

LFL 29.83 11.18 62.52 54.41 25.24 53.61
LwF 29.83 − − 54.41 − −
EWC 29.83 17.19 42.37 54.41 37.43 31.21

CompCars (Yang et al., 2015) We use the surveillance-
nature subset which contains 50,000 car images, captured
only from the frontal view. In total, there are 281 different
car models. The number of images for each model ranges
from 50 to 500 different captures. We use 240 car models
for our training set, a total of 36737 images split into 10
incremental batches. For the query set, we randomly select
20 images of the unseen cars and use the remaining images
as the gallery set.

5.2. Backbone Architectures

We use two different backbone architectures - both trained
from scratch. All models are trained until convergence. We
first train a model with the first continuous batch and then
re-train the same model with subsequent continuous batches
and a continual instance learning approach. We repeat this
process until all instances are trained.

Unless specifically stated, we use the same training proce-
dure across all experiments and datasets. We implement our
experiments using the PyTorch framework (Paszke et al.,
2017). We use the Adam optimizer (Kingma & Ba, 2014)
with β1 = 0.9, β2 = 0.999, ε = 10−3 for the LeNet experi-
ments and ε = 10−4 for the ResNet experiments.

LeNet - We use a LeNet-5 (LeCun et al., 1998) like archi-
tecture with 3 convolutional layers and 3 fully connected
layers. We apply batch normalisation (Ioffe & Szegedy,
2015), ReLU non-linearities and 2 x 2 max-poolings with
stride 2. All layers are initialised with Xavier uniform (Glo-

rot & Bengio, 2010). For all datasets, we train the network
with the 32 x 32 RGB images and define the last fully con-
nected layer with D-dimension 32.

ResNet - We employ the ResNet-18 (He et al., 2016) with
64 x 64 RGB images for the Cars3D (Reed et al., 2015) and
the Multi-View Car Dataset (Ozuysal et al., 2009), and 128
x 128 RGB images for the CompCars dataset (Yang et al.,
2015). We use the last fully connected layer as the metric
extractor with dimension 128.

5.3. Evaluation.

In the re-identification evaluation setup, we have a query set
and a gallery set. For each vehicle in the query set, we aim
to retrieve the same vehicle instances from the gallery set.
We use mean-average-precision (mAP) for evaluating and
comparing our approaches. The mAP is computed as the
Average Precision (AP) across all queries.

Under the continual learning framework, we employ a simi-
lar approach as (Lomonaco & Maltoni, 2017) and compare
the relative mAP w.r.t. the corresponding cumulative ap-
proach - training with all instances - which is hereby referred
to as Forget. Our metrics on a Full Test Set: the query and
gallery sets remain fixed throughout the continuous batches.

6. Experiments
Our experiments aim at answering the following questions
Q1) What is the performance of existing continual instance
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Table 2. Contribution of Normalised Cross Entropy (NCE) to Continual Instance Learning - Forget ratio.

LeNet ResNet

Dataset Approach Regression(%↓) w/ NCE(%↓) Regression(%↓) w/ NCE(%↓)
Cars3D Naı̈ve 32.89 25.64 29.38 30.61

FT 28.43 24.02 36.49 33.71
LFL 52.08 33.50 52.05 43.10
LwF − 18.29 − 30.19
EWC 33.02 23.66 28.11 19.87

MVCD Naı̈ve 25.13 22.80 11.81 16.10
FT 27.13 20.37 23.41 24.16

LFL 24.47 20.76 30.27 27.11
LwF − 21.36 − 14.59
EWC 26.18 28.44 14.26 13.92

CompCars Naı̈ve 38.82 35.13 29.06 39.77
FT 58.06 51.66 58.41 52.38

LFL 62.52 58.26 53.61 54.47
LwF − 49.55 − 60.37
EWC 42.37 32.28 31.21 29.13

learning methods for object instance recognition? Q2) Can
Normalised Cross-Entropy improve CIL? Q3) Can synthetic
transfer learning improve CIL?

6.1. Q1: Performance of Existing Techniques

In Table 1, we evaluate the different continual learning ap-
proaches under the CIL setup. Additionally, we provide the
cumulative mAP as an offline reference. Similar to the con-
tinual classification task, CIL also suffers from catastrophic
forgetting.

In general, the Naı̈ve approach outperforms others. Ad-
ditionally, EWC approach also has good performance. In
both approaches, the network is allowed to fully improve
its decision boundary and its feature extraction capacity.
The LFL approach has, in general, the lowest performance.
We hypothesize that keeping the embedding unchanged is
not desirable when we aim to learn the embedding itself.
The ResNet-18 model performs better under the cumulative
approach and suffers from less forgetting when compared
to the LeNet model. The CompCars dataset is the most
challenging set under offline and CIL, whereas the MVCD
is the easiest.

In this experiment, we conclude that Continual Instance
Learning is a challenging problem for current CL ap-
proaches, and the existing methods perform comparably
or inferior to the Naı̈ve approach.

6.2. Q2: Contribution of NCE

In our second experiment, we investigate the effect of NCE,
Table 2. In all experiments, we notice that the more nega-
tives samples we add, the better the results. We restrict to
nine negative samples.

We identify that most methods benefit from NCE. This
is particularly true for EWC, where the feature extracting
layers benefit the most from bounding the gradients. Overall,
both architectures gain from NCE. This is more visible in the
LeNet model which is more prone to over-fitting and more
highly impacted by regression outliers. Integrating NCE to
CIL is straightforward and beneficial to most approaches.

6.3. Q3: Contribution of Synthetic Transfer

In Table 3, we investigate the effects of pre-training a net-
work on synthetic data on CIL approaches. Synthetic object
instances can be found in publicly available datasets (Chang
et al., 2015; Xiang et al., 2016). Specifically, in our exper-
iments, we pre-train a model on the entire Cars3D dataset
and perform continuous batch training on MVCD and Com-
pCars. We reduced the learning rate to 10−4 for all continual
experiments and froze the convolutional layers.

All methods, under both architectures, benefit from our
method. Particularly, Naı̈ve and EWC. This is more evident
in MVCD. The gains are not as visible in CompCars. This
is likely due to the differences in the data distributions. The
synthetic dataset consists of car images in different azimuths
and elevations. Conversely, CompCars has only frontal view
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Table 3. Contribution of Synthetic Transfer to Continual Instance Learning - Forget ratio.

LeNet ResNet

Dataset Approach Regression(% ↓) w/ NCE+Transfer(%↓) Regression(% ↓) w/ NCE+Transfer(%↓)
MVCD Naı̈ve 25.13 9.84 11.81 0.48

FT 27.13 10.15 23.41 19.23
LFL 24.47 14.25 30.27 13.16
LwF − 3.08 − 12.12
EWC 26.18 9.22 14.26 2.29

CompCars Naı̈ve 38.82 37.85 29.06 33.82
FT 58.06 71.74 58.41 70.99

LFL 62.52 61.28 53.61 50.01
LwF − 60.44 − 41.15
EWC 42.37 39.73 31.21 31.35

images. This restricts the visual cues to features, which are
limited in Cars3D, such as the brand, the frontal grill, and
the headlamps. Overall, the ResNet model benefits the most
from synthetic transfer. Having a relevant distributed syn-
thetic dataset can reduce forgetting in CIL in combination
with NCE.

7. Conclusion
In this paper, we studied continual learning of object in-
stances. Firstly, we verified that existing techniques suffer
from catastrophic forgetting while learning object instances.
We show that the simple Naı̈ve approach performs competi-
tively to other continual learning techniques. This indicates
that existing methods are unsuitable for continual instance
learning, calling for specific techniques. To that end, we
incorporated normalised cross-entropy along with synthetic
visual transfer to existing techniques to circumvent forget-
ting. We observed that indeed cross-entropy regulates the
learning, and synthetic visual data is beneficial, especially
when it is similar to the target data. From our observations,
we foresee two plausible directions for future research. In
this paper, we solely build upon regularisation approaches,
however, replay-based techniques could be promising for
continual instance learning. Secondly, our paper focused on
car instances, and we leave the exploration of other rigid ob-
ject instances, such as household objects, or nonrigid object
instances such as humans or human faces as future work.
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