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Abstract

Differential privacy (DP) is a prominent method to protect information about individuals
during data analysis. Training neural networks with differentially private stochastic gradient
descent (DPSGD) influences the model’s learning dynamics and, consequently, its outputs.
This can affect the model’s performance and fairness. While the majority of studies on
the topic report a negative impact on fairness, it has recently been suggested that fairness
levels comparable to non-private models can be achieved by optimizing hyperparameters
for performance. In this work, we cast further light on the distinctions between various
performance and fairness metrics and clarify that disparate impacts on different metrics do
not necessarily co-occur. Moreover, we analyze the disparate impact of DPSGD over a wide
range of hyperparameter settings, providing new insights for training private and fair neural
networks. Finally, we extend our analyses to DPSGD-Global-Adapt, a variant of DPSGD
designed to mitigate the disparate impact on accuracy, and conclude that this alternative
is not a robust solution with respect to hyperparameter choice.

1 Introduction

The widespread presence of artificial intelligence (AI) and its concurrent influence on society has brought
increasing attention to the necessity to develop trustworthy AI systems (Kaur et al., 2022). Among the key
requirements are privacy-preservation and fairness (Smuha, 2019; Kaur et al., 2021; Li et al., 2023). While
both of these aspects are whole research fields on their own, increased effort is put towards understanding
their interrelations, synergies and trade-offs.

One prominent method for preserving the privacy of training data in ML models is differential privacy (DP)
(Dwork, 2006; Dwork et al., 2014) - a mathematical notion of privacy that makes it possible to learn patterns
from the data while protecting information on individuals. For neural networks, the most commonly used
method to implement DP is differentially private stochastic gradient descent (DPSGD) (Abadi et al., 2016).
It is well known that DPSGD, and DP in general, negatively influence the utility of the computation. While
this privacy-utility trade-off is inherent to DP, various techniques - from stringent privacy accounting (Abadi
et al., 2016) to machine learning best practices (including hyperparameter tuning) (Papernot et al., 2021) -
have been proposed to keep the utility loss acceptably small even for meaningful levels of privacy.

However, Bagdasaryan et al. (2019) have shown that DPSGD has a disparate impact on accuracy: the
accuracy decreases disproportionately across groups (e.g., women are affected more than men). Follow-up
studies (Farrand et al., 2020; Xu et al., 2021; Tran et al., 2021) confirmed this observation, showing that the
effect even occurs with balanced group representations and loose privacy guarantees. In contrast, de Oliveira
et al. (2023) demonstrated that DPSGD does not necessarily have a negative impact on fairness, as long as
the DP model’s hyperparameters are optimized for performance. They infer that the disparate impact of
DPSGD primarily occurs when hyperparameter settings that perform well for non-private models are re-used
for DP models without further tuning. While this finding would greatly benefit practitioners aiming to train
private and fair neural networks, our experimental outcomes suggest that it does not present the complete
picture. As opposed to previous works, de Oliveira et al. (2023) do not use accuracy but the area under the

1



Under review as submission to TMLR

ROC curve (AUC-ROC) to measure the models’ performance. For fairness, they use the AUC-ROC equality,
demographic parity, equalized odds, and predictive parity.

The question arises, therefore, if accuracy and AUC inequalities always coincide, and if their finding translates
to the disparate impact on accuracy. Moreover, we demonstrate that the role of hyperparameter choice on
the impact of DPSGD is more ambiguous than previously thought and, based on our in-depth analyses, we
formulate recommendations for training differentially private and fair neural networks.

To guide this research, we formulate three research questions that we investigate in this paper:

RQ1) How does DPSGD influence disparities in metrics beyond accuracy such as area under the curve,
precision, acceptance rate and error rate, and do these disparities co-occur?

RQ2) How dependent are these disparities on the choice of hyperparameters, and how effective and reliable
is hyperparameter tuning in developing private models with similar (or even better) performance
and fairness than non-private models?

RQ3) How does hyperparameter choice affect DPSGD-Global-Adapt, a variant of DPSGD specifically
designed to mitigate the disparate impact of DP?

To answer these three questions, we first give an overview of the relevant literature (Section 2), paying
particular attention to the usage of different performance and fairness metrics. Next, we describe the
methodologies employed for our analysis (Section 3) and empirically study the impact of DPSGD on various
fairness metrics on five datasets, including both tabular and image data (Section 4). We then investigate the
influence of the choice of hyperparameters on the impact of DPSGD on performance and fairness by analyzing
our results over a wide range of hyperparameter settings, including those optimized for performance (Section
5). Next, we extend our analyses to DPSGD-Global-Adapt, a variant of DPSGD designed to mitigate the
disparate impact on accuracy (Section 6). Finally, we address the limitations of our findings (Section 7),
and present our conclusions along with directions for future research (Section 8).

2 Preliminaries and related Work

2.1 Differential Privacy

Differential Privacy (DP) (Dwork, 2006; Dwork et al., 2014) is a mathematical definition of privacy for data
analysis with the goal of protecting information about individuals while allowing general learnings from their
combined data. A probabilistic algorithm M : D → R with domain D and range R is (ϵ, δ)-differentially
private if for any two datasets x, y ∈ D differing on at most one data point, and any subset of outputs S ⊆ R,
it holds that

Pr[M(x) ∈ S] ≤ eϵPr[M(y) ∈ S] + δ (1)
where ϵ is the privacy loss (also referred to as the privacy budget) and δ is the failure probability. The
lower ϵ, the stronger the privacy guarantee. δ is typically set to less than the inverse of the dataset size
(Ponomareva et al., 2023).

While DP was initially developed for statistical analysis, it was subsequently adopted for training machine
learning models upon realizing that information about individual training data points can be inferred from the
model’s output (Fredrikson et al., 2015; Shokri et al., 2017; Carlini et al., 2019). The most prominent method
for training DP (deep) neural networks is Differentially Private Stochastic Gradient Descent (DPSGD). This
technique, a private variant of classical Stochastic Gradient Descent (SGD), ensured DP by clipping the per-
example gradients to bound the maximum influence one data point can have on the model and then adding
Gaussian noise to the gradients. These changes affect the model’s learning dynamics and, consequently,
properties such as its performance and fairness.

The privacy-utility trade-off is inherent to DP (due to the addition of noise), but various techniques can
help balance it. For DPSGD, the most important aspects are stringent privacy accounting methods (Abadi
et al., 2016) and hyperparameter optimization, including architecture choices such as the activation function
(Papernot et al., 2021).
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2.2 Measuring fairness

Fairness is among the key requirements of trustworthy AI (e.g., (Smuha, 2019; Kaur et al., 2022)). In order to
ensure this quality and promote fair treatment of all affected population groups, it requires the measurement
of fairness. This guides the development of equitable systems that do not disproportionately affect any
group, prioritizing those who have historically faced discrimination based on personal attributes such as
race, gender, age, or religion. However, the understanding of fairness in a societal context (with and without
AI) encompasses a variety of interpretations, with no consensus on when to apply which (Saxena, 2019).
The situation is further complicated by the fact that some notions of fairness are mutually exclusive (Verma
& Rubin, 2018). On a fundamental level, fairness and fairness metrics can be categorized as individual and
group fairness that relate to the legal concepts of disparate treatment and disparate impact, respectively
(Barocas & Selbst, 2016). Hereinafter, we will focus on the concept of group fairness. The following metrics
are commonly used to measure group fairness in machine learning1:

• Performance equality: The model exhibits equal performance (e.g., accuracy, AUC-ROC, or AUC-
PR) for both groups.

• Statistical/Demographic parity: The model predicts a positive outcome with equal probability for
both groups, i.e., both groups have the same acceptance rate.

• Predictive parity: The model shows an equal positive predictive value (= precision) for both groups,
i.e., the same percentage of positive predictions are correct.

• Predictive equality: The model’s false positive error rate, i.e., the percentage of negative examples
that are predicted positive, is equal for both groups.

• Equal opportunity: The model’s false negative error rate, i.e., the percentage of positive examples
are predicted negative, is equal for both groups.

• Equalized odds: This metric combines predictive equality and equal opportunity, i.e., both false
positive and false negative error rate are equal for both groups.

For further details, we point our readers to Verma & Rubin (2018), which provides an illustrative demon-
stration of these (and other) fairness definitions.

2.3 Fairness under differential privacy

The disparate impact of DPSGD on model accuracy was first shown by Bagdasaryan et al. (2019). They
demonstrated the effect for different use-cases, e.g., gender and age classification of face images and sen-
timent analysis of tweets. They identified group imbalance as a main driver for the effect, showing that
underrepresented groups produce larger gradients, which in turn leads to being impacted more by the gra-
dient clipping. In a follow-up study, Farrand et al. (2020) demonstrated that also small group imbalances in
the training data can exhibit a disparate impact of DPSGD on accuracy, and Xu et al. (2021) showed that
even overrepresented groups can disproportionately be affected if they have larger average gradient norms
(e.g., resulting from a higher complexity of the data distribution). The Farrand et al. (2020) also studied
a wider range of privacy budgets and concluded that even loose privacy guarantees can lead to a disparate
impact on accuracy. Tighter privacy guarantees can increase fairness as the model becomes more random,
i.e., at the cost of overall accuracy. They also reported a disparate impact of DPSGD on equal opportunity
and (in some settings) on demographic parity for the CelebA dataset (Liu et al., 2015). The Hansen et al.
(2022) confirmed a disparate impact of DPSGD on accuracy for CelebA, and showed a disparate impact on
F1 scores for two text datasets, and on MSE for an audio dataset.

Complementary to those experimental works, Tran et al. (2021) conducted a theoretical study on the dis-
parate impact of DPSGD. They investigated its causes and concluded that the primary factors include both
data and model properties, such as input norms, distance to the decision boundary, clipping bound and
privacy budget. While some of their analyses only hold for convex loss functions, they empirically validated
their conclusions for non-convex cases. As a fairness measure, they relied on excessive risk (i.e., the difference

1We explain the metrics based on binary groups here, given that our work is limited to such; however, metrics can be
extended to multiple groups.
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between private and non-private expected loss). Along similar lines, Esipova et al. (2022) identified gradient
misalignment (i.e., changes of the gradient direction rather than the magnitude) as the main cause for the
disparate impact of DPSGD.

The role performance-based hyperparameter tuning has on the impact of DPSGD on fairness was first studied
by de Oliveira et al. (2023). They pointed out that previous studies re-used hyperparameters that performed
well for the non-private model, rather than tuning them specifically for DP.2 By comparing tuned non-
private models (trained with SGD) with both their DP counterparts trained with the same hyperparameters
and a separately tuned DP model, de Oliveira et al. (2023) concluded that when specifically optimizing
the hyperparameters for DP, DPSGD does not necessarily exhibit a disparate impact. In contrast to most
previous works, however, they did not look at overall accuracy and accuracy equality but overall AUC-ROC,
and AUC-ROC equality, demographic parity, equalized odds, and predictive parity. This work is the one most
closely related to ours, although we deliberately made distinct experimental design decisions such as using
binary groups instead of more fine-grained combinations of race and sex, adapting the tuned hyperparameters
(see Section 3), and using the same privacy budget ϵ = 5 for the untuned and tuned DPSGD models. We
also replaced two of the tabular datasets with image datasets to diversify our experiments.

Apart from advancing the understanding of the disparate impact of DPSGD, several works developed miti-
gation strategies. The Xu et al. (2021) proposed to compute group-specific clipping norms, Tran et al. (2021)
added fairness constraints to the empirical risk minimizer, and Zhang et al. (2021) suggested using early
stopping to find the optimal trade-off between accuracy, fairness, and privacy. Based on their finding that
gradient misalignment is the main cause of the disparate impact, Esipova et al. (2022) developed a variant
of DPSGD that alleviates gradient direction changes by scaling the per-example gradients.

For a more detailed review of fairness under differential privacy, see Fioretto et al. (2022), which covers both
decision and learning tasks, and also includes an overview of mitigation techniques.

3 Methods

We chose five datasets that were previously used by similar studies (Farrand et al., 2020; Xu et al., 2021;
Bagdasaryan et al., 2019; Tran et al., 2021; Esipova et al., 2022; de Oliveira et al., 2023): three tabular
datasets (Adult (Becker & Kohavi, 1996), LSAC (Wightman, 1998) and Compas (Angwin et al., 2016))
and two image datasets (CelebA (Liu et al., 2015) and MNIST (LeCun)). For all tabular datasets, the
protected attribute is sex (as a binary attribute, i.e., male or female). For the Adult dataset, the task
is income prediction (either ≤ 50k or > 50k). For LSAC, it is the prediction of bar exam results (either
fail/not attempted or pass). For Compas, it is re-arrest prediction (yes or no). CelebA consists of images of
faces for which we followed Esipova et al. (2022) and performed gender classification (male or female) while
wearing eyeglasses (yes or no) is defined as the protected attribute. For MNIST, an image dataset for digit
classification (digits 0 to 9), we followed Esipova et al. (2022) and reduced the samples for class 8 by around
90%. We then compared classes 2 and 8 with each other. A detailed description of the datasets can be found
in the Appendix (see Section A.1).

Following Esipova et al. (2022), we trained a neural network with 3 linear layers, where the hidden layer has
256 units, for the tabular datasets. For the image datasets, we chose a CNN with 2 convolutional layers with
3x3 kernels and 32 and 16 channels, respectively. All models were trained with 5-fold cross-validation, where
hyperparameter selections were based on the mean performance on the validation folds, and final results
are reported on the hold-out test set. For performance, we consider accuracy, AUC-ROC, and AUC-PR.
For fairness, we use the notions introduced in Section 2.2 and report the difference of the corresponding
measure between the two groups, i.e., accuracy/AUC-ROC/AUC-PR difference for evaluating performance
equality, acceptance rate difference for evaluating demographic parity, precision difference for predictive
parity, maximum of false positive and false negative error rate difference for equalized odds.

2While this is quite common practice, Papernot & Steinke (2021) showed that hyperparameters can leak private information
and therefore undermine the DP guarantee.
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Unless otherwise specified, our experiments were conducted with a privacy budget of ϵ = 5 and δ = 1e − 5
and δ = 1e − 6 for tabular and image datasets respectively3. We also tested different ϵ ∈ {0.5, 1, 10} for the
three tabular datasets, but observed no unexpected deviations. In the case of hyperparameter tuning, we
performed either grid search or random search over the following hyperparameter values4:

• Learning rate: [0.0001, 0.001, 0.01, 0.1]
• Batch size: [256, 512]
• Number of epochs: [5, 10, 20, 40]

• Activation function: [tanh, relu]
• Optimizer: [SGD, Adam]
• Clipping norm (for DPSGD): [0.01, 0.1, 1]

We performed grid search for the tabular datasets (which results in 128 settings for non-DP, and 384 settings
for DPSGD and DPSGD-Global-Adapt), and random search for the image datasets (with 50 samples for
non-DP, and the corresponding 150 samples for DP). Our source code is based on Esipova et al. (2022)
and is available via GitHub at https://anonymous.4open.science/r/Paper_DisparateImpactOfDP-C2D8.
Whenever we report negative or positive influences (i.e., for all tables and heatmaps in the main part of the
paper), we used Welch’s t-tests to assess the significance of the differences between the models (see Appendix
A.2 for more details).

In addition to standard DPSGD, we also investigated DPSGD-Global-Adapt. We chose this particular
method for mitigating the disparate impact of DPSGD because, similar to performance-based hyperparam-
eter optimization, it is not necessary to know group information during training. Moreover, the method
is simple to apply thanks to the openly accessible code, and showed better results compared to Xu et al.
(2021) and Tran et al. (2021) (which both need access to the protected attribute during training). We also
did not consider the early stopping method by Zhang et al. (2021) as it would require a public, non-private
validation set.

4 Beyond DPSGD’s disparate impact on accuracy

As outlined in Section 2.3, most works studying the impact of DPSGD on fairness refer to its disparate impact
on accuracy (Bagdasaryan et al., 2019; Farrand et al., 2020; Xu et al., 2021; Esipova et al., 2022; Tran et al.,
2021)5. The Farrand et al. (2020) additionally investigate demographic parity and equal opportunity. The
work from de Oliveira et al. (2023) is the first to refrain from using accuracy difference, investigating AUC-
ROC difference, demographic parity, predictive parity, and equalized odds instead. They presumed that
DPSGD has a disparate impact on these fairness metrics (without hyperparameter tuning) even though
their experiments could not unambiguously verify this. Out of five datasets, only two exhibit significantly
larger AUC-ROC differences for the untuned DP model compared to the non-private model. The results for
acceptance rate difference, equalized odds difference, and precision difference are similarly ambiguous (see
Table 1 in (de Oliveira et al., 2023) or our analysis of their results in Table 5 in the Appendix A.3).

With the objective of enhancing clarity in this matter, we conducted our own experiments (see detailed
explanations in Section 3). Table 1 shows a concise overview of our results regarding the impact of DPSGD
on a wider range of metrics than previously considered6. As expected, our results show a negative impact
of DP on performance across all three performance metrics. They also demonstrate a disparate impact
on performance metrics, although not for all datasets consistently. Notably, a disparate impact on one
performance metric does not necessarily imply a disparate impact on another, e.g., for the Adult dataset,
DPSGD has a negative effect on the accuracy difference but not on the AUC differences, and for the LSAC
dataset, only the AUC-PR difference is negatively impacted. For the other fairness metrics (acceptance rate
difference, equalized odds difference, and precision difference), we also do not observe a consistent negative

3These values were chosen as the image datasets are larger, therefore a lower δ is needed to follow the convention of choosing
a δ smaller than the inverse of the dataset size.

4We adopted the hyperparameter values from de Oliveira et al. (2023) with the only difference that we keep model depth
constant, do not include dropout, but additionally tune the number of epochs.

5For practical reasons, the theoretical analyses of Tran et al. (2021) and Esipova et al. (2022) look at excessive risk (i.e.,
the difference between private and non-private risk functions or, in other words, the expected loss differences) but they both
motivate it via accuracy and Esipova et al. (2022) additionally uses accuracy difference as a metric in their experiments.

6The table shows the results for the clipping norm that achieves the best overall performance (measured by accuracy, AUC-
ROC, and AUC-PR, respectively). The conclusions, however, do not change even if the worst clipping norms are considered
(see Table 7 in the Appendix). You can also find tables containing our full results in the Appendix A.6.
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Table 1: Negative impact of DPSGD on the respective metrics. The checkmarks indicate significantly worse
outcomes of the DPSGD model compared to the tuned SGD model, using the same hyperparameters and
the clipping norm with the best overall performance. Acceptance rate and equalized odds are not applicable
(N/A) metrics for MNIST, as the comparison is made between classes rather than groups. The precision
difference is not defined (n.d.) when a model only predicts the negative class.

Adult LSAC Compas CelebA MNIST
Overall accuracy ✓ ✓ ✓ ✓ ✓

Accuracy difference ✓ - ✓ ✓ ✓
Acceptance rate difference ✓ - - - N/A
Equalized odds difference ✓ - - ✓ N/A

Precision difference - - n.d. - ✓
Overall AUC-ROC ✓ ✓ ✓ ✓ ✓

AUC-ROC difference - - ✓ ✓ ✓
Acceptance rate difference - - ✓ - N/A
Equalized odds difference - - ✓ ✓ N/A

Precision difference - - - - ✓
Overall AUC-PR ✓ ✓ ✓ ✓ ✓

AUC-PR difference - ✓ ✓ ✓ ✓
Acceptance rate difference - - - - N/A
Equalized odds difference - - - ✓ N/A

Precision difference - - - - ✓

impact. The influence of DPSGD on different fairness metrics appears to be highly dependent on the specific
dataset used.

Takeaways (RQ1)
The impact of DPSGD highly depends on the dataset and the used performance and fairness metric. DPSGD
primarily has a disparate impact on performance, but in some cases also negatively influences demographic
parity, equalized odds and predictive parity. A negative impact on one fairness metric does not automatically
imply a negative impact on another.

5 The role of hyperparameter choice

After establishing that metric choice plays a significant role on DPSGD’s potential disparate impact, we now
revisit the role hyperparameters play. de Oliveira et al. (2023) argued that DPSGD does not necessarily
exhibit a disparate impact when specifically optimizing the hyperparameters for DP. Re-analyzing their
results (see Table 6 in the Appendix), we show that while it is true that in some cases (e.g., for the ACS
Inc. dataset) hyperparameter tuning mitigates the disparate impact of DPSGD, it does not seem to hold in
general. For example, the disparate impact on AUC-ROC in the case of the Adult dataset is not improved
by hyperparameter tuning. Thus, there is still the need for a deeper analysis of hyperparameter tuning in
the context of the disparate impact of DPSGD.

As a prefatory remark, it has been shown that the clipping norm is an important factor in the disparate
impact of DPSGD (Bagdasaryan et al., 2019; Tran et al., 2021). This could lead one to the conclusion that
tuning the clipping norm alone might already mitigate the disparate impact of DPSGD. de Oliveira et al.
(2023) used a fixed clipping norm for their untuned DPSGD models. In contrast, we report the untuned
DPSGD model with their respective best-performing clipping norm. The results for the worst-performing
clipping norms can be found in Appendix Section A.5. We observed that only tuning the clipping norm does
not considerably and consistently improve the negative impact of DPSGD, and, most importantly, it does
not change our conclusions.

Table 2 shows our results on whether hyperparameter tuning improves the impact of DPSGD on performance
and fairness. While performance-based hyperparameter tuning significantly improves the performance of
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Table 2: Improvements on the impact of DPSGD on the respective metrics through performance-based
hyperparameter tuning. The checkmarks indicate significant improvements over the untuned DPSGD model
(using the clipping norm with the best overall performance). The stars mark results where the tuned DPSGD
eliminates the disparate impact of DPSGD, i.e., the tuned DPSGD model performs similar or better than
the tuned SGD model, while the untuned does not. Acceptance rate and equalized odds are not applicable
(N/A) metrics for MNIST, as the comparison is made between classes rather than groups. The precision
difference is not defined (n.d.) when a model only predicts the negative class.

Adult LSAC Compas CelebA MNIST
Overall accuracy ✓ ✓ ✓ ✓ ✓

Accuracy difference ✓ ✓ ✓⋆ - -
Acceptance rate difference ✓⋆ - - - N/A
Equalized odds difference ✓⋆ - - - N/A

Precision difference - ✓ n.d. - -
Overall AUC-ROC ✓ ✓ ✓⋆ ✓ ✓

AUC-ROC difference - - ✓⋆ ✓ -
Acceptance rate difference - - ✓⋆ - N/A
Equalized odds difference - - ✓⋆ - N/A

Precision difference - - - - -
Overall AUC-PR ✓ ✓ ✓⋆ ✓ ✓

AUC-PR difference - ✓⋆ ✓⋆ ✓ ✓
Acceptance rate difference ✓ - - - N/A
Equalized odds difference ✓ - - - N/A

Precision difference ✓ - - - ✓⋆

DPSGD in all cases, the results are less clear for fairness. However, more often than not, hyperparameter
tuning mitigates disparities introduced by DP, in several cases even eliminating the negative impact of DP.

We have to keep in mind, however, that when we look at only the best-performing hyperparameter setting,
we ignore the fact that similarly performing hyperparameter settings can exhibit considerably different
(un)fairness levels (see Fig. 7 in the Appendix for an illustrative example of this circumstance). Thus, in the
following, we will present the results of our experiments over the full range of tested hyperparameters. For
those results, we will exclusively report accuracy and accuracy differences, given that the disparate impact
on accuracy is the most consistently observed effect of DPSGD on fairness. However, similar conclusions can
be drawn for the other fairness notions.

Figs. 1-5A show accuracy and accuracy difference over the different hyperparameter settings. The solid blue
line represents the tuned SGD models plotted over the hyperparameter settings sorted by accuracy. The
dash-dot green line depicts the corresponding DPSGD models using the same hyperparameter settings as the
SGD model. The dashed orange line shows the tuned DPSGD models over the hyperparameters, sorted by
their accuracy. This means that for one position on the x-axis, the solid blue and dash-dot green line share
the same hyperparameter setting, while the dashed orange one does not. The heatmaps 1-5B summarize
how often DPSGD achieves better/similar/worse performance and is fairer/similarly fair/unfairer than the
SGD model with the same hyperparameters (i.e., it compares the solid blue and dash-dot green lines).

The first thing we can observe is that DPSGD does not have a negative impact on performance and/or fairness
for all hyperparameter settings. While for most datasets, the percentage of settings for which DPSGD leads
to worse and unfairer results constitutes the largest part, a considerable number of hyperparameter settings
elicit DPSGD models that achieve similar or, in rare cases, even better results for at least one of the two
measures.

By comparing the SGD models with their corresponding DPSGD version (i.e., the solid blue with the dash-
dot green line), we can see that hyperparameter settings that achieve high accuracy for the SGD model may
or may not perform well for the DPSGD model. That is to say, the dash-dot green line sometimes reaches
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Figure 1: Results over all hyperparameter settings for the Adult dataset. A) shows accuracy and accuracy
difference over all tested hyperparameter settings for the SGD and DPSGD models. The results for the SGD
model, represented by the solid blue line, are ordered by its accuracy. The dash-dot green line illustrates
the DPSGD model with the same hyperparameters as the SGD model. The dashed orange line shows the
results for the DPSGD model ordered by its own accuracy. B) summarizes how often DPSGD achieves
better/similar/worse performance and is fairer/similarly fair/unfairer than the SGD model with the same
hyperparameters.

Figure 2: Results over all hyperparameter settings for the LSAC dataset (details explained in Fig. 1).

high accuracy (for some datasets even similar values to the non-DP model) but exhibits strong fluctuations
in the unfavorable direction.

Moreover, we can observe that, for accuracy difference, the dashed orange curve is smoother than the dash-
dot green one, in particular for higher accuracy settings, and except for LSAC, where the two lines are more
similar. This means that DP models with similar accuracy exhibit lower variations in accuracy differences
than DP models where the non-DP counterparts achieve similar accuracy, leading to the conclusion that
performance-based hyperparameter tuning of the DP model produces more reliable results than re-using
well-performing hyperparameters from the non-private model. However, this does not mean that DPSGD
achieves competitive performance and fairness compared to the non-DP model: For one, the DP model
often does not reach non-DP performance (see Compas, LSAC, CelebA, MNIST). Secondly, high-performing
DP models sometimes do not reach non-DP fairness levels (see CelebA and MNIST). Interestingly, our
experiments suggest that multi-objective hyperparameter tuning that takes both performance and fairness
into account (for example along the line of Cruz et al. (2021))7 would not be able to considerably improve

7Unlike for performance-based hyperparameter tuning, multi-objective hyperparameter tuning would require that the pro-
tected groups are known during training.
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Figure 3: Results over all hyperparameter settings for the Compas dataset (details explained in Fig. 1).

Figure 4: Results over all hyperparameter settings for the CelebA dataset (details explained in Fig. 1).

the performance-fairness trade-off. While there are remaining fluctuations in the dashed orange line, they
are small for high accuracy settings.

Takeaways (RQ2)
DPSGD does not have a disparate impact on accuracy across all hyperparameter settings. Hyperparameter
tuning of the DP model does not reliably result in competitive accuracy and accuracy difference compared
to the tuned non-DP model, but yields more reliable results alongside higher accuracies than re-using the
hyperparameters from the tuned non-DP model. Therefore, when training models with DPSGD, it is still
beneficial to do hyperparameter tuning from a fairness point of view. Multi-objective hyperparameter opti-
mization offers limited potential to improve the performance-fairness trade-off further.

6 DPSGD-Global-Adapt and hyperparameter choice

The DPSGD variant DPSGD-Global-Adapt (Esipova et al., 2022) showed improved accuracy and accuracy
differences on four datasets compared to DPSGD (and other mitigation methods). However, the authors
only tested a fixed setting of hyperparameters, and did not perform separate hyperparameter optimization.
We thus expand their analysis to answer the following questions: 1) Does DPSGD-Global-Adapt outperform
DPSGD also over a wide range of hyperparameters? 2) If performance-based hyperparameter tuning is
performed, does DPSGD-Global-Adapt outperform DPSGD?

The heatmaps in Fig. 6 illustrate the comparison between DPSGD and DPSGD-Global-Adapt across ac-
curacy and accuracy difference, with each cell representing whether DPSGD-Global-Adapt performs worse,
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Figure 5: Results over all hyperparameter settings for the MNIST dataset (details explained in Fig. 1).

similar, or better than DPSGD for the respective metrics. Again, the results vary across datasets. For Adult
and CelebA, DPSGD-Global-Adapt outperforms standard DPSGD for the majority of hyperparameter set-
tings. For LSAC, the distribution is less positively skewed but still includes a few hyperparameter settings
where DPSGD-Global-Adapt negatively impacts either performance or fairness compared to DPSGD. For
Compas, DPSGD-Global-Adapt mainly performs similarly to DPSGD, sometimes decreasing performance.
For MNIST, DPSGD-Global-Adapt mainly results in similar or improved performance but occasionally de-
teriorates fairness. We conclude that while DPSGD-Global-Adapt is not robustly superior to DPSGD over
a wide range of hyperparameter settings, more often than not, it improves or at least does not worsen
performance and fairness.

In Table 3 we report the cases in which DPSGD-Global-Adapt improves on all considered metrics compared
to DPSGD, for both the untuned and tuned setting. The results do not allow a definitive answer to the
question of whether DPSGD-Global-Adapt outperforms DPSGD. For some datasets and metrics, it does,
but for most, it does not. There is also no consistency between untuned and tuned settings in terms of for
which datasets and metrics DPSGD-Global-Adapt performs better. This weakens the usefulness of DPSGD-
Global-Adapt. However, in most cases, DPSGD-Global-Adapt also does not negatively impact the results
which still makes it eligible to be a reasonable alternative to DPSGD.

Takeaways (RQ3)
Considering different hyperparameter settings, DPSGD-Global-Adapt does not robustly achieve better fair-
ness than standard DPSGD. The same conclusion is reached when hyperparameters are optimized for per-
formance. Considering that DPSGD-Global-Adapt seldom compromises performance and fairness compared
to DPSGD, it remains a viable alternative. However, it does not sufficiently address the adverse effects of
DP on fairness.

7 Limitations and discussion

Following the line of previous studies, this paper draws a comparison across models to isolate the algorith-
mic influence of DP. However, our results show that even in this setting, the data dependence cannot be
disregarded, as data and algorithmic properties interrelate. Moreover, we emphasize that while ensuring
the implementation of privacy-preserving technologies does not inadvertently increase unfairness is a crucial
first step, the ultimate goal is to train private models that uphold fairness overall. Thus, we consider it
imperative to examine the broader context of fairness, even though the cross-model comparison approach
can yield valuable insights.

Our results show that the impact of DPSGD highly depends on the used fairness metric, and that a negative
impact on one metric does not necessarily result in a negative impact of another metric. That fairness
metrics capture diverse fairness notions and, thus, lead to substantially different outcomes is a well-known
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Figure 6: DPSGD-Global-Adapt compared to DPSGD over all hyperparameter. The heatmaps illustrate how
often DPSGD-Global-Adapt achieves better/similar/worse performance and is fairer/similarly fair/unfairer
than the standard DPSGD model with the same hyperparameters.

challenge in fairness research (see e.g., Verma & Rubin (2018)). Our work shows that these challenges extend
to privacy-fairness trade-offs, where different fairness metrics are affected differently by DPSGD. Moreover,
our results demonstrate that the algorithmic influence of DPSGD (as well as DPSGD-Global-Adapt) is
interdependent with the influence of hyperparameters. This aligns with previous observations that using
DPSGD instead of standard SGD necessitates different architecture and hyperparameter choices to achieve
high utility Papernot et al. (2021), and shows that these findings extend to fairness.

As already briefly mentioned in Section 2.3, Papernot & Steinke (2021) have drawn attention to the potential
information leakage that setting hyperparameters based on non-private training can cause. Tuning hyper-
parameters on differentially private models - as done in this study - intuitively reduces the potential privacy
leakage and avoids utility losses that may arise due to differences in model behavior between non-private
and private training Papernot et al. (2021). However, to ensure a theoretically sound privacy guarantee that
both minimizes and accounts for the privacy loss elicited by hyperparameter tuning, it would be necessary
to apply differentially private hyperparameter tuning (e.g., private random search (Liu & Talwar, 2019; Pa-
pernot & Steinke, 2021)). Differentially private hyperparameter tuning is still "in its infancy" (Ponomareva
et al., 2023) and additional effort is needed to develop methods that are compatible with standard machine
learning practices such as cross-validation. Moreover, empirical analyses of the privacy leakage through
hyperparameter tuning suggest a significantly lower privacy cost than the current theoretical bounds, and
hardly any leakage in practical settings, where the adversary does not have control over, e.g., the validation
process (Xiang et al., 2024). We also show that similarly performing hyperparameter settings for DP models
result in similar fairness levels. Therefore, even if we had used private hyperparameter tuning, which reduces
the chance of finding the best setting, we would still expect our results to remain similar.
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Table 3: Improvements of DPSGD-Global-Adapt on the respective metrics compared to DPSGD for both
the untuned and tuned setting. The checkmarks indicate significant improvements over standard DPSGD,
using the respective clipping norm with the best overall performance. Acceptance rate and equalized odds
are not applicable (N/A) metrics for MNIST, as the comparison is made between classes rather than groups.
The precision difference is not defined (n.d.) when a model only predicts the negative class.

Adult LSAC Compas CelebA MNIST
Tuned no yes no yes no yes no yes no yes

Overall accuracy - ✓ - - - - ✓ ✓ - ✓
Accuracy difference ✓ - - - - - ✓ ✓ - ✓

Acceptance rate difference - - - - - - - - N/A N/A
Equalized odds difference - - - - - - ✓ - N/A N/A

Precision difference - - - - n.d. - - ✓ - ✓
Overall AUC-ROC ✓ ✓ ✓ - - - ✓ ✓ ✓ -

AUC-ROC difference - - ✓ - - - ✓ - - ✓
Acceptance rate difference - - - - - - - - N/A N/A
Equalized odds difference - - - - - - - - N/A N/A

Precision difference - - - - - - - - - ✓
Overall AUC-PR ✓ ✓ ✓ ✓ - - ✓ ✓ - -

AUC-PR difference - - ✓ - - ✓ ✓ - - -
Acceptance rate difference - - - - - ✓ - - N/A N/A
Equalized odds difference - - - - - ✓ - - N/A N/A

Precision difference - - - - - - - - - -

8 Conclusions and outlook

In this study, we investigated the role of metric and hyperparameter choice on the performance and fairness of
DPSGD. Our findings reveal that disparate impacts on different metrics do not necessarily co-occur, and that
the impact of DPSGD is not consistent across a wide range of hyperparameter settings. We also show that
performance-based hyperparameter tuning is not a reliable method to achieve performance and fairness levels
similar to non-private models, but it is more reliable than re-using well-performing hyperparameter settings
from non-private models. Moreover, DPSGD-Global-Adapt, a variant of DPSGD proposed to mitigate
its disparate impact on accuracy, does not demonstrate significant improvements in fairness compared to
standard DPSGD when hyperparameters are varied or tuned. This suggests that while hyperparameter
tuning is a crucial part of training private and fair neural networks, we still need better methods to reliably
achieve good performance-fairness trade-offs.

In future studies, it would be advisable to give careful consideration to the choice of metrics and exercise
caution when generalizing findings from one metric to another. Moreover, more research is needed on data
properties and their effect on fairness, also in studies that investigate the interplays between fairness and
privacy.
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A Appendix

A.1 Details about datasets

Table 4 shows the class and group distributions for all five datasets. MNIST is the only dataset where the
class distributions in the test set differ from those in the training set (i.e., classes in the test set are (more
or less) equally distributed). For preprocessing the tabular datasets, we one-hot encoded the categorical
features and standardized all features.
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Table 4: Dataset class and group distributions. For all tabular datasets, group 1 refers to female, group 0
to male. For the Adult dataset, class 1 are incomes > 50k; for the LSAC dataset, class 1 are passed exams;
for the Compas dataset, class 1 are re-arrests. For the CelebA dataset, class 1 is male, class 0 is female, and
group 1 refers to individuals wearing eyeglasses. For MNIST, the digits 2 and 8 are compared.

Dataset Class imbalance Group imbalance Class imbalance Class imbalance
in group 1 in group 0

Adult (1:0) 25% : 75% 32% : 68% 12% : 88% 31% : 69%
LSAC (1:0) 80% : 20% 44% : 56% 80% : 20% 80% : 20%

Compas (1:0) 48% : 52% 18% : 81% 29% : 61% 50% : 50%
CelebA (1:0) 42% : 58% 7% : 93% 80% : 20% 39% : 61%
MNIST (2:8) 11% : 0.9% 11% : 0.9% - -

A.2 Significance test

To compare two models, we use 2-sample one-sided Welch’s t-tests, with means µ1 and µ2, standard devia-
tions s1 and s2 and sample sizes n1 and n2 (both 5 in our experiments).

The t-statistic is computed with
t = µ1 − µ2

s
(2)

where

s =

√
s2

1
n1

+ s2
2

n1
(3)

The degrees of freedom (d.f.) are calculated using the following formula:

d.f. =
( s2

1
n1

+ s2
2

n2
)2

(
s2

1
n1

)2

n1−1 + (
s2

2
n2

)2

n2−1

(4)

We reject our null hypotheses H0: µ1 ≥ µ2 or H0: µ1 ≤ µ2 if the p-value is below 0.05 and the t-statistic is
negative or positive, respectively.

A.3 Analysis of de Oliveira et al. (2023)

Table 5 and 6 show our analyses of Table 1 in (de Oliveira et al., 2023). As with our own tables, we used
Welch’s t-tests to determine if the influences are significant.

Table 5: Analysis of Table 1 in (de Oliveira et al., 2023): Checkmarks indicate a negative impact of DPSGD
on the respective metrics.

ACS Emp. ACS Inc. LSAC Adult Compas
Overall AUC-ROC ✓ ✓ ✓ ✓ ✓

AUC-ROC difference - ✓ - ✓ -
Acceptance rate difference - ✓ - ✓ -
Equalized odds difference - ✓ - - -

Precision difference - ✓ ✓ - -
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Table 6: Analysis of Table 1 in (de Oliveira et al., 2023): Checkmarks indicate improvements through
hyperparameter tuning on the respective metrics. Stars indicate instances, where the hyperparameter tuning
eliminates the negative impact of DPSGD, i.e., the tuned DPSGD model performs similar or better than
the tuned SGD model, while the untuned does not.

ACS Emp. ACS Inc. LSAC Adult Compas
Overall AUC-ROC ✓ ✓ ✓ ✓ ✓⋆

AUC-ROC difference ✓ ✓⋆ - - ✓
Acceptance rate difference ✓ ✓⋆ - ✓⋆ -
Equalized odds difference ✓ ✓⋆ ✓ - -

Precision difference ✓ ✓⋆ - - -

A.4 Example of fairness variations between similarly performing hyperparameter settings

Fig. 7 shows the SGD and DPSGD models for the hyperparameter settings achieving the 5% best accuracies,
and the untuned DPSGD models using the same hyperparameters as the 5% best SGD models. One can
see, that similarly performing hyperparameter settings can exhibit considerably different (un)fairness levels.

Figure 7: An example of the variations between hyperparameter settings based on the Compas dataset. It
shows the SGD and DPSGD models with respective 5% best hyperparameter settings, and untuned DPSGD
models using the same hyperparameters as the 5% best SGD models.

A.5 Results for worst clipping norm

Tables 7, 8 and 9 show the equivalent to Tables 1, 2 and 3 but with the DPSGD model with the worst
performing clipping norm instead of the best. Similarly, Figs. 8-12 show the equivalent of Figs. 1-5, and
Fig. 13 the equivalent of Fig. 6.

A.6 Full results

Tables 10-14 show the detailed results on which Tables 1, 2 and 3 (as well as their counterparts with worst
clipping norms) are based on.
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Table 7: Negative impact of DPSGD on the respective metrics. The checkmarks indicate significantly worse
outcomes of the DPSGD model compared to the tuned SGD model, using the same hyperparameters and the
clipping norm with the worst overall performance. Acceptance rate and equalized odds are not applicable
(N/A) metrics for MNIST, as the comparison is made between classes rather than groups. The precision
difference is not defined (n.d.) when a model only predicts the negative class.

Adult LSAC Compas CelebA MNIST
Overall accuracy ✓ ✓ ✓ ✓ ✓

Accuracy difference ✓ - ✓ ✓ ✓
Acceptance rate difference - - - - N/A
Equalized odds difference - - - ✓ N/A

Precision difference - - n.d. - ✓
Overall AUC-ROC ✓ ✓ ✓ ✓ ✓

AUC-ROC difference - ✓ ✓ ✓ ✓
Acceptance rate difference - - - - N/A
Equalized odds difference - - - ✓ N/A

Precision difference n.d. - ✓ - ✓
Overall AUC-PR ✓ ✓ ✓ ✓ ✓

AUC-PR difference - ✓ - ✓ ✓
Acceptance rate difference - - - - N/A
Equalized odds difference - - - ✓ N/A

Precision difference - - ✓ - ✓

Table 8: Improvements on the impact of DPSGD on the respective metrics through performance-based
hyperparameter tuning. The checkmarks indicate significant improvements over the untuned DPSGD model
(using the clipping norm with the worst overall performance). The stars mark results where the tuned
DPSGD eliminates the disparate impact of DPSGD, i.e., the tuned DPSGD model performs similar or
better than the tuned SGD model, while the untuned does not. Acceptance rate and equalized odds are not
applicable (N/A) metrics for MNIST, as the comparison is made between classes rather than groups. The
precision difference is not defined (n.d.) when a model only predicts the negative class.

Adult LSAC Compas CelebA MNIST
Overall accuracy ✓ ✓ ✓ ✓ ✓

Accuracy difference ✓ - ✓⋆ - -
Acceptance rate difference - - - - N/A
Equalized odds difference - - - - N/A

Precision difference ✓ - n.d. - -
Overall AUC-ROC ✓ ✓ ✓⋆ ✓ ✓

AUC-ROC difference - - ✓⋆ ✓ -
Acceptance rate difference - - - N/A
Equalized odds difference - - - - N/A

Precision difference n.d. - ✓⋆ - -
Overall AUC-PR ✓ ✓ ✓⋆ ✓ ✓

AUC-PR difference - ✓⋆ ✓ ✓
Acceptance rate difference - - - N/A
Equalized odds difference ✓ - - - N/A

Precision difference ✓ - - - ✓⋆
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Figure 8: Results over all hyperparameter settings for the Adult dataset, using the clipping norms with the
worst accuracy. A) shows accuracy and accuracy difference over all tested hyperparameter settings. For
the "tuned SGD" and "untuned DPSGD" models, the hyperparameter settings are ordered based on the
accuracy of the SGD model. For the "tuned DPSGD" model, the hyperparameter settings are ordered based
on the accuracy of the DPSGD model. B) summarizes how often DPSGD achieves better/similar/worse
performance and is fairer/similarly fair/unfairer than the SGD model with the same hyperparameters.

Figure 9: Results over all hyperparameter settings for the LSAC dataset, using the clipping norms with the
worst accuracy (details explained in Fig. 8).

Figure 10: Results over all hyperparameter settings for the Compas dataset, using the clipping norms with
the worst accuracy (details explained in Fig. 8).
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Figure 11: Results over all hyperparameter settings for the CelebA dataset, using the clipping norms with
the worst accuracy (details explained in Fig. 8).

Figure 12: Results over all hyperparameter settings for the MNIST dataset, using the clipping norms with
the worst accuracy (details explained in Fig. 8).
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Figure 13: DPSGD-Global-Adapt compared to DPSGD over all hyperparameter, using the clipping
norms with the worst accuracy. The heatmaps illustrate how often DPSGD-Global-Adapt achieves bet-
ter/similar/worse performance and is fairer/similarly fair/unfairer than the standard DPSGD model with
the same hyperparameters.
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Table 9: Improvements of DPSGD-Global-Adapt on the respective metrics compared to DPSGD for both
the untuned and tuned setting. The checkmarks indicate significant improvements over standard DPSGD,
using the respective clipping norm with the worst overall performance. Acceptance rate and equalized odds
are not applicable (N/A) metrics for MNIST, as the comparison is made between classes rather than groups.
The precision difference is not defined (n.d.) when a model only predicts the negative class.

Adult LSAC Compas CelebA MNIST
Tuned no yes no yes no yes no yes no yes

Overall accuracy ✓ ✓ ✓ - ✓ - ✓ ✓ - ✓
Accuracy difference ✓ - - - - - ✓ ✓ - ✓

Acceptance rate difference - - - - - - - - N/A N/A
Equalized odds difference - - - - - - - - N/A N/A

Precision difference ✓ - - - n.d. - - ✓ - ✓
Overall AUC-ROC ✓ ✓ ✓ - - - ✓ ✓ ✓ -

AUC-ROC difference - - ✓ - ✓ - ✓ - - ✓
Acceptance rate difference - - - - ✓ - - - N/A N/A
Equalized odds difference - - - - ✓ - - - N/A N/A

Precision difference n.d. - - - - - - - - ✓
Overall AUC-PR ✓ ✓ ✓ ✓ - - ✓ ✓ - -

AUC-PR difference - - ✓ - - ✓ ✓ - - -
Acceptance rate difference - - - - - ✓ - - N/A N/A
Equalized odds difference - - - - - ✓ - - N/A N/A

Precision difference ✓ - - - - - - - - -
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