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ABSTRACT

Reinforcement learning (RL) provides an effective means to capture users’ evolving
preferences, leading to improved recommendation performance over time. How-
ever, existing RL approaches primarily rely on standard exploration strategies,
which are less effective for a large item space with sparse reward signals given the
limited interactions for most users. Therefore, they may not be able to learn the
optimal policy that effectively captures user’s evolving preferences and achieves
the maximum expected reward over the long term. In this paper, we propose a novel
evidential conservative Q-learning framework (ECQL) that learns an effective and
conservative recommendation policy by integrating evidence-based uncertainty and
conservative learning. ECQL conducts evidence-aware explorations to discover
items that are located beyond current observations but reflect users’ long-term
interests. It offers an uncertainty-aware conservative view on policy evaluation to
discourage deviating too much from users’ current interests. Two central compo-
nents of ECQL include a uniquely designed sequential state encoder and a novel
conservative evidential-actor-critic (CEAC) module. The former generates the
current state of the environment by aggregating historical information and a sliding
window that contains the current user interactions as well as newly recommended
items from RL exploration that may represent short and long-term interests respec-
tively. The latter performs an evidence-based rating prediction by maximizing the
conservative evidential Q-value and leverages an uncertainty-aware ranking score
to explore the item space for a more diverse and valuable recommendation. Exper-
iments on multiple real-world dynamic datasets demonstrate the state-of-the-art
performance of ECQL and its capability to capture users’ long-term interests.

1 INTRODUCTION

Recommender systems (RS) have been widely used for providing personalized recommendations in
diverse fields, such as media, entertainment, and e-commerce by effectively improving user experience
(Su & Khoshgoftaar, 2009; Sun et al., 2014; Xie et al., 2018). Most existing RS methods model
recommendation as a static process, and therefore they cannot consider users’ evolving preferences.
Some efforts have been devoted to capturing users’ evolving preferences by shifting the latent user
preference over time (Koren, 2009; Charlin et al., 2015; Gultekin & Paisley, 2014). Similarly,
sequential recommendation methods (Kang & McAuley, 2018; Tang & Wang, 2018) attempt to
incorporate users’ dynamic behavior by leveraging previously interacted items. However, both the
above-mentioned static and dynamic recommendation methods primarily focus on maximizing the
immediate (i.e., short-term) reward when making recommendations. As a result, they fail to take
into account whether these recommended items will lead to long-term returns in the future, which is
essential to maintaining a stable user base for the system in the long run.

Several recent works have adapted reinforcement learning (RL) in the RS context (Chen et al., 2019;
Zhao et al., 2017). RL has gained huge success in diverse fields, such as robotics (Kober et al., 2013)
and games (Silver et al., 2017). The core idea of RL is to learn an optimal policy to maximize the total
expected reward in the long run. RL methods consider a recommendation procedure as sequential
interactions between users and RL agents to learn the optimal recommendation policies effectively.
Although RL approaches show promising results in RS (Chen et al., 2019; Zheng et al., 2018), they
primarily rely on standard exploration strategies (e.g., ϵ-greedy), which are less effective for a large
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item space with sparse reward signals given the limited interactions for most users. Therefore, they
may not be able to learn the optimal policy that effectively captures user’s evolving preferences and
achieves the maximum expected reward over the long term.
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Figure 1: Different recommendation behavior for
a representative test user with ϵ-greedy based ex-
ploration and our model ECQL with evidential
uncertainty (i.e., vacuity).

Figure 1 further illustrates the limitation of ex-
ploration using standard ϵ-greedy. In particu-
lar, we compare a RS model trained using ϵ-
greedy and one trained using evidential uncer-
tainty, which are denoted as ϵ-greedy and ECQL,
respectively. In each step, both models recom-
mend five items, and we identify if their ground-
truth ratings are actually positive or not, by com-
paring with a positive threshold. The count of
positive items in each step defines the Positive
Count. Also, we collect the genre type infor-
mation of these items across 12 steps. In the
end, we have 60 total items of different genres
and use them to generate the Genre Count plot.
As can be seen, the existing RL agent primarily
focuses on highly-rated items in early steps, as shown in Figure 1a. Most of these items come from a
narrower set of genres as shown in Figure 1b, where different genres are denoted as Adventure (A),
Drama (D), Comedy (C), Thriller (T), and Others (O). These only represent the user’s temporary inter-
est as in the later steps the positive count (See definition in Section 5) of the same genre is decreased.
Such a recommendation behavior leads to a lower test return (average rating of recommendation) in
the later steps. To further show the advantage of exploration with evidential uncertainty, we define
genres (bold) with top-5 average ground-truth ratings as user’s long-term interests. Then we capture
the last step’s recommended items from one test user to see if they match these genres representing
user’s long-term interests. As Table 1 shows, ϵ-greedy mostly focuses on Drama movies based on the
user’s short-term interests analyzed from the initial user profile. It only captures one novel genre (i.e.,
Musical, bold in the table) that matches the user’s long-term interest, while ECQL captures four items
with more diverse genres that reflect the user’s true interests. It clearly indicates that more systematic
exploration is essential to discover users’ long-term interests to maximize future return.

Table 1: Examples of recommended movies

Model Important Items (Movies) Movie Genre

ECQL

Sound of Music (1965) Musical
Casino (1995) Drama

Ben-Hur (1959) Action
The Bug’s Life (1998) Comedy

Babe (1995) Comedy

ϵ-greedy

Pocahontas (1995) Musical
Wizard of Oz (1939) Drama

Christmas Story (1983) Drama
Erin Brockovich (2000) Drama

Restoration (1995) Drama

To address the above key challenges, we con-
duct novel evidential conservative Q-learning
(ECQL) that utilizes a balanced exploitation
(with high predicted ratings) and exploration
(with evidential uncertainty) strategy for effec-
tive recommendations. We formulate an evi-
dential RL framework that augments the reward
based RL objective with evidential uncertainty
to facilitate the exploration of unknown items.
The evidential uncertainty formulation substan-
tially improves exploration and robustness by
acquiring diverse behaviors that are indicative
of a user’s long-term interest. As shown in Figure 1 (b), ECQL devotes a strong focus on more
diverse genres (i.e., ‘others’ in the figure), and many of these capture the long-term interest from
the user as verified by the detailed recommendation list in Table 1. Additionally, we encourage the
model to explore items that do not significantly deviate from users’ current interests given the sparse
interactions. Such gradual exploration is guided by a conservative evidential Q-value that prevents
recommending totally irrelevant items, causing user frustrations. We theoretically prove that the
conservative evidential Q-value provides an uncertainty-aware adjustment of optimism towards the
behavior policy that represents users’ current interests. Also, we demonstrate that such Q-value
estimation produces a lower bound on the actual value of the target policy, providing a conservative
view for safe recommendations. We further show that such a conservative view can be incorporated
into a policy learning procedure with theoretically guaranteed policy improvement.

The proposed ECQL seamlessly integrates two major components: a sequential state encoder and a
Conservative Evidential Actor-Critic (CEAC) module. The former primarily focuses on generating
the current state of the environment by aggregating the previous state, the current items captured
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by a sliding window, and the future items from the recommendation. It provides an effective means
of dynamic state representation for better future recommendations. The CEAC module leverages
evidential uncertainty to effectively explore the item space to recommend items that potentially align
with the user’s long-term interest. It encourages learning the optimal policy by maximizing a novel
conservative evidential Q-value to make more diverse recommendations that may reflect a long-term
interest while keeping a conservative view that does not deviate too much from current interests. The
main contribution of this paper is five-fold:

• a novel recommendation model that integrates reinforcement learning with evidential learning to
provide uncertainty-aware diverse recommendations that may reflect users’ long-term interests,

• evidential uncertainty guided exploitation to maximize information gain to inform model learning,
• conservative off-policy formulation to avoid over-estimation of policy value that leads to low-

quality recommendations due to overfitting to sparse training data from limited user interactions,
• a thorough theoretical analysis to justify the convergence behavior and avoid risky (or overly

optimistic) recommendations.
• seamless integration of a sequential encoder, an actor-critic network, and an evidence network to

provide an end-to-end integrated training process.

We conduct extensive experiments over four real-world datasets and compare with state-of-the-art
baselines to demonstrate the effectiveness of the proposed model.

2 RELATED WORK

Sequential recommendation models. Recently developed sequential recommendation models utilize
historical interactions to capture users’ preferences over time through various deep architectures,
including CNN (Tang & Wang, 2018), transformer (Kang & McAuley, 2018), and bidirectional
encoder (Sun et al., 2019). S3-Rec (Zhou et al., 2020) considers the intrinsic data correlation with
mutual information maximization to derive a self-supervised signal to enhance the data representation.
CL4SRec (Xie et al., 2022) employs contrastive learning to learn the self-supervised signal from
the user behavioral data, which helps to extract more meaningful patterns for user representation.
However, sequential models are inadequate to capture the users’ long-term preferences. The proposed
ECQL model aims to fill this critical gap by performing evidence-guided exploration to maximize the
total expected reward over the long run.

RL-based models. RL-based RS models aim to learn an effective policy to capture a user’s latent
preference. The on-policy learning with contextual bandit (Li et al., 2010b) and Markov Decision
Process (MDP) (Zheng et al., 2018) exploits by interacting with real customers in an online en-
vironment. A collaborative contextual bandit algorithm called CoLin (Wu et al., 2016) utilizes a
graph structure in a collaborative manner. On the other hand, off-policy RL utilizes Monte Carlo
(MC) and temporal-difference (TD) methods to achieve stable and efficient learning with users’
history (Farajtabar et al., 2018). A Q-network with a hierarchical LSTM has been developed to
optimize long-term user engagement (Zou et al., 2019). Similarly, model-based RL models user-agent
interactions via a generative adversarial network (Bai et al., 2019). Pseudo Dyna-Q further integrates
both direct and indirect RL approaches in a single unified framework without requiring real customer
interactions (Zou et al., 2020). More recently, SAR leverages an actor-critic network, where the
action is generated as an adaptive sequence length to better represent the user’s sequential (preference)
pattern (Antaris & Rafailidis, 2021). ResAct utilizes a residual actor network to reconstruct a policy
that is close to but more efficient than online policy in sequential recommendations (Xue et al., 2022).
However, most existing RL based models rely on random exploration strategies, which are less
effective at capturing users’ long-term preferences, especially from a large item space with sparse
user interactions. In contrast, our ECQL utilizes evidence-based uncertainty to systematically explore
the item space to maximize the long-term reward.

3 PRELIMINARIES

Recommendation Formulation with RL. We formulate recommendation tasks in an RL setting,
where an RL agent interacts with the environment (i.e., users and items) to recommend the next
items to a user. We design this problem as an MDP, which includes a sequence of states, actions, and
rewards, denoted as (S,A,P,R). A state st = SSE(·|st−1,ut) ∈ S is generated by a sequential
state encoder that utilizes previous state st−1 and current user embedding ut generated from the
concatenation of N items provided by a sliding window and an RL-agent. An action at ∈ A is a
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Figure 2: Overview of the ECQL framework

vector that represents the user’s current and potential preferences that is used to recommend top-N
items for a user given the current state st. The transition probability P(st+1|st,at) quantifies the
probability from state st to st+1 with an action at. The RS environment provides a reward rt ∈ R
based on the recommendation quality in the current time step.

Uncertainty and Evidential Theory. Subjective Logic (SL) is a probabilistic logic that is built
upon probability theory and belief theory (Jsang, 2016). It represents uncertainty by introducing
vacuity of evidence in its opinion, which is a multinomial random variable y in a K-simplex domain
Y. This opinion can be equivalently represented by a K-dimensional Dirichlet distribution Dir(p|α)
where α is a strength vector over K classes and p = (p1, ..., pK)⊤ governs a categorical distribution
over Y. The evidence e = (e1, · · · , eK)⊤ measures the number of supportive observations from data
for each class. It has a fixed relationship ek = αk − 1 with the Dirichlet strength α given a non-
informative prior. Let ek be the evidence for a class k. SL measures different types of second-order
uncertainty through evidence, including vacuity, dissonance, and a few others (Josang et al., 2018).
In particular, vacuity corresponds to the uncertainty mass of a subjective opinion ω:

vac(ω) = U(·|e) = K

S
, S =

K∑
k=1

(ek + 1) (1)

Since vacuity measures lack of evidence (knowledge), it provides a natural means for exploration.

4 EVIDENTIAL CONSERVATIVE Q-LEARNING

Overview. We propose an Evidential Conservative Q-learning RS model to perform dynamic
recommendations as shown in Figure 2. The model includes a sequential state encoder (SSE) to
maintain a dynamic state space with a sliding window Wt which moves along the user’s interaction
historyHu over time to input new data into the SSE, and a conservative evidential-actor-critic (CEAC)
module which functions as an RL agent to explore the item space by introducing the evidence-based
uncertainty (i.e., vacuity) into a new off-policy evidential RL setting. By incorporating previous state
information, recent items captured by a sliding window, and the recommended items from the RL
agent, the sequential encoder generates the current state st. This state is further passed to the action
network that predicts the mean and variance to form a Gaussian policy distribution. We sample a
current action at from the policy distribution that corresponds to the latent preference of the user that
simultaneously captures the past (via a previous state), current (through a sliding window) and future
interest (through RL exploration). By leveraging the current action and total item embeddings from
the Item Pool (I), the evidence network provides the evidence that can be used to form the rating
prediction for exploitation while estimating the uncertainty for better exploration. The Q-network
(critic) generates a conservative evidential Q-value for conservative policy updates of the action
network. Table 6 in Appendix A summarizes the major notations.

4.1 ENVIRONMENT SETUP

We start by describing the environment of the proposed evidential RL agent. The environment
consists of a buffer containing all the user-interacted item embeddings with ground-truth ratings (i.e.,
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the user’s interaction history Hu), total item embeddings (i.e., item pool I), a sliding window Wt that
moves along the interaction history to generate new data input each time into the SSE for dynamic
state maintenance, and a recommendation mechanism that specifies a score function to rank items and
select top-N of them to recommend. The score function encourages a balance between exploitation
(based on predicted ratings) and exploration (based on evidence-based uncertainty) and is defined as:

scoreu,i = r̂atingu,i +
λ

log(hi −Wt + 1)
Uπ(·|ei) (2)

where i ∈ Hu, hi > Wt with hi being the original appearance position of a recommended item
i in the user’s interaction history and Wt indexes the observation, i.e., the last experienced item
appearance position reached by the current sliding window, which separates the observed items from
the unknown ones. Parameter λ ∈ (0, 1) gradually balances the rating and the uncertainty along
the training epochs and the test steps. r̂atingu,i is the predicted rating for exploitation. Given K
possible rating classes, the evidence network (introduced later in this section) outputs an evidence
vector ei = (ei1, ..., eiK)⊤ for each item i. This will allow us to evaluate r̂atingu,i as

∑K
k=1 pik × k

where pik is rating probability. Meanwhile, vacuity Uπ(i|ei) for item i can be evaluated through (1)
for exploration. We aim to recommend unknown items that reflect the user’s future interests while
avoiding too risky recommendations far ahead of the current observation. To this end, we consider
the original appearance position hi and down-weight the information value (captured by vacuity
Uπ(i|ei)) of items that are interacted deep into the future. During testing, no down-weight is applied
as Hu, hi are unavailable. Based on the ranking score, an RL agent will choose the top-N items to
form a list Nu and recommend them to the user. As feedback to the agent, the user provides the
actual rating for each recommended item. Consequently, the evidential reward is

reπ(st,at) =
1

N

∑
i∈Nu

(ratingu,i − τ)︸ ︷︷ ︸
r

+λ
1

N

∑
i∈Nu

Uπ(·|ei)︸ ︷︷ ︸
R

. (3)

where ratingu,i is the user assigned rating, τ is the threshold to identify if a user provided rating
is positive. Evidential reward aggregates the recommended items’ rating as a traditional reward r
balanced with their vacuity predictions as a measure of information gain, denoted as an uncertainty
regularizerR. During testing, for item i′ not appearing in user u’s interaction history Hu, a neutral
rating ratingu,i′ = τ will be assigned to give neutral feedback.

Remark: The novel use of vacuity, which is an evidence-based second-order uncertainty, for
exploration in RL, can effectively identify uncertain and informative items (from a large item space),
indicative of users’ long-term interest. In particular, the proposed evidential reward encourages
the RL agent to recommend items that the model has the least knowledge (as indicated by a high
vacuity). After collecting the user feedback, the RL agent can most effectively gain knowledge of the
user preference to make better recommendations in the long run. It should be noted that maximum
entropy-based exploration, such as soft-actor-critic (SAC) (Haarnoja et al., 2018), may not reach
an optimum policy. It has been shown that a high entropy may imply either high vacuity (lack of
evidence) or high dissonance (conflict of strong evidence) (Shi et al., 2020). However, dissonance is
not effective for exploration in RS due to its focus on confusing items mostly derived based on the
users’ current interests. We have also empirically shown this in a qualitative study by demonstrating
better recommendation performance than SAC-based exploration in the experiments.

4.2 SEQUENTIAL STATE ENCODER

A specially designed sequential state encoder (SSE) is used to maintain the state space of a dynamic
RS environment. A state st is generated by aggregating the previous state st−1, items newly interacted
by the user as the sliding window moves, and newly recommended items. By aggregating all this
information, the current state can evolve from the previous state by a concatenated user embedding
ut, which effectively captures the past preference and future predicted preference of the user. In
particular, a sliding window Wt of length 2N starts from the beginning of the user’s interaction
history (Hu) at time step 0, then it moves forward along the interaction history N items each time as
the newly observed items. The first N already observed items in the moved window Wt+1 will be
replaced by the top-N recommendation list at last time step t, the rest will be the newly observed
items in time step t+ 1. Here, an item means an embedding vector that is generated by a pre-trained
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Word2Vec network to encode item information from raw text descriptions. Then, st is formed by

st = SSE(st−1,ut). (4)

We train the SSE by optimizing action at to maximize the conservative evidential Q-value in the
critic network, which gives Equation (5), where Jπ(ϕ, ω) is the loss objective of the action network.

∇ωJSSE(ω) = ∇ωJπ(ϕ, ω) (5)

4.3 CONSERVATIVE EVIDENTIAL ACTOR CRITIC (CEAC)

CEAC performs conservative off-policy training using three key networks: action network, critic
network, and evidence network, which will be detailed next.

Conservative off-policy formulation. RS models aim to leverage offline interactions to predict
users’ future interests. Since the interaction data is inherently sparse, it may train a RL model that
overfits the limited training data, leading to overestimated Q-values of previously unseen interactions.
To address the data scarcity and sparse rewards in a typical RS environment, we apply an off-policy
learning scheme to promote the reuse of previously collected data and stabilize the training. To further
prevent overestimation of the policy value, we extend the conservative Q-learning strategy developed
for off-line RL settings (Kumar et al., 2020) and leverage it to penalize the target updated policy π’s
Q-value estimation to avoid over-optimistic predictions on unknown items’ ratings and information
value as defined in (3). Meanwhile, we increase the Q-value estimate of the behavior policy πβ
that encodes the current knowledge of user interests to avoid the target policy from deviating too
much from previous knowledge. These conservative regularizers are balanced with the traditional
Bellman training objective using a hyper-parameter α. In particular, we run the behavior policy in the
RS environment T time steps for one user u as one RL episode. In each time step t, the RL model
collects training tuples (st, at, reπ,t, st+1) into a replay buffer D. We iterate M such RL episodes
and then conduct a conservative evidential Q-value Qe

c evaluation of the currently learned policy by
minimizing its Q-value while maximizing the Q value of the behavior policy, as given in (6), where θ
is the parameter of critic network to minimize the loss objective JQe

c
:

JQe
c
(θ) = E(st,at,reπ,t,st+1)∼D

[
1

2
(Q(st,at)− B̂πQ(st,at))

2

]
+ α

(
Est∼D,at∼π(·|st)[Q(st,at)]

− Est∼D,at∼πβ(·|st)[Q(st,at)]
)

(6)

After conservative policy evaluation, we conduct a conservative policy improvement by optimizing
the policy towards the optimal conservative evidential Q-value Qe

c objective as detailed in the action
network. After policy improvement, we get a newly learned policy πk+1 and again alternate between
the policy evaluation and improvement steps until convergence. Once we get a converged policy, we
update the previous behavior policy πβ with the newly learned stable policy and begin the next M
RL episodes by collecting new training tuples into the replay buffer with the updated behavior policy.
After iterating among all users in the training set, we call it an RL epoch. The detailed conservative
off-policy formulation is shown in Algorithm 1 of Appendix D.

Action network. The action network (or policy network) utilizes the current state st from the
offline replay buffer and outputs a policy distribution π(·|st), which is modeled as a Gaussian. From
this distribution, we sample an action at that is used in the evidence and the critic networks to provide
recommendations or direct the policy update. According to our off-policy formulation, we use two
separate action networks to represent the currently updated policy and previous behavior policy,
respectively. The training of action network is given by

∇ϕJπ(ϕ) = (−∇atQ
e
c(st,at))×∇ϕπ(at|st, ϕ) (7)

where ϕ is the parameter of the action network to minimize the loss objective Jπ(ϕ).

Critic network. The critic network is designed to approximate the conservative evidential Q-value
by utilizing the current state st and action at in a fully connected neural network Qθ(st,at). This
Q-value judges whether the agent-generated actions match our training requirements. We derive
an update formulation (6) for the critic network following the double DQN (Hasselt, 2010) that
utilizes two critic networks to stabilize the training process, achieve faster convergence, and provide
a better Q-value. Furthermore, the Q-network is optimized with stochastic gradient descent which
back-propagates to the action network as well as the sequential encoder in an end-to-end fashion.
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Evidence network. The evidence network predicts a Dirichlet distribution of class probabilities,
which can be considered as an evidence-collection process. The learned evidence ei = (ei1, ..., eiK)⊤

is informative to quantify the predictive uncertainty of recommended items. The network takes action
at from the replay buffer and item pool I to provide class-level evidence. Then, the probability of
rating k is pik = (eik + 1)/Si. To train the evidence network, we define a standard evidential loss
(8) by utilizing the MSE loss between rating class probability pik and the one-hot ground truth label
yi, in which yik = 1 if k is the correct rating, otherwise yik = 0:

JEvi(ψ) =
∑
i∈Hu

K∑
k=1

(yik − pik)2 +
pik(1− pik)
Si + 1

(8)

We update the network by back-propagating the evidential loss JEvi(ψ) with its parameters ψ.

4.4 CONSERVATIVE EVIDENTIAL POLICY ITERATION

We first highlight some important concept differences resulting from our novel evidential conservative
setting: 1) π is actually an evidential policy governed by an evidential reward reπ, and 2) πβ is the
true behavior policy directly available from the off-policy setting without any simulation from offline
data. Resulting of these two key symbol differences, the empirical Bellman operator B̂π should also
be an evidential Bellman operator, where π is an updated evidential policy. However, to leverage
the existing theorems in relevant RL literature which are derived under the traditional RL concepts,
we make the evidential terms explicit by restoring: 1) the evidential reward reπ to r +R, whereR
is the vacuity term in our case, and 2) evidential policy π to non-evidential target policy π̄. As a
result, the empirical Bellman operator returns to its non-evidential version B̂π̄ and πβ return back to
non-evidence guided behavior policy π̄β . Based on these newly defined concepts, we first prove a
conservative evidential policy evaluation with Q-value updated in (6). In Appendix C.2, we further
show that such policy evaluation leads to a ζ-safe policy improvement over the behavior policy. Then,
we disclose its intrinsic relationship with an uncertainty-aware adjustment of optimism towards the
previous behavior policy.
Lemma 1 (Conservative Evidential Policy Evaluation). Given a policy π̄ and its conservative
evidential Q value estimation Qe

c updated using (6), the expected conservative state value estimation
V̂ π̄(s) lower-bounds the actual state value V π̄(s) for any state s when the balancing factor

α ≥ Cr,T,δRmax

1− γ
·max
s∈D

1√
|D(s)|

[∑
a

(π̄(a|s)− π̄β(a|s))2

π̄β(a|s)

]−1

(9)

Remark: Due to the interaction between the evidence-based uncertainty in the evidential reward
defined in (2), it leads to a more strict constraint (through the balancing parameter α) in conservative
policy evaluation to avoid risky recommendations when performing evidence based exploration. This
is one critical difference from standard conservative Q-learning (Kumar et al., 2020), which does not
consider evidential exploration. The detailed notation definition and proof are in Appendix C.1.
Theorem 2 (Uncertainty Aware Optimism Adjustment). The conservative evidential Q-value update
in (6) has an intrinsic relationship with an uncertainty-aware adjustment of optimism towards the
behavior policy by representing the evidential reward reπ with a traditional reward r added by an
uncertainty regularizerR, thus leading to a normal conservative Q-value update:

Q̂k+1 ← min
Q̂k

1

2
Es,a,r,s′∼D

[(
Q̂k(a, s)− B̂π̄Q̂k(a, s)

)2
]

(10)

+ α
[
Es∼D,a∼π̄(·|s)[Q̂

k(a, s)] −
(
Es∼D,a∼π̄β(·|s)(1 +R)[Q̂k(a, s)]

)]
+ const

Remark: The theorem manifests another novel interplay between the evidential uncertainty and the
conservative policy update. From (10), we observe that the uncertainty regularizer R serves as an
importance weight for the Q-value estimation of the behavior policy π̄β . This observation provides
us with an elegant interpretation of the proposed ECQL algorithm: by adding the evidence-based
uncertainty measure, we are actually adjusting the optimism of the previously learned behavior policy
π̄β according to the information gain (quantified by the vacuity) of a chosen action. If an action
generated by a behavior policy leads to low information gain in the recommendation list (i.e., low
average vacuity), then the importance weight for the Q-value of such behavior policy is lower and the
ECQL algorithm will discourage the RL agent to keep imitating the behavior policy. We leave the
detailed derivation in Appendix C.3.
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Table 2: Recommendation performance comparison (average precision P@N, discounted cumulative
gain nDCG@N and test return R@T)

Category Model MovieLens-1M MovieLens-100K Netflix Yahoo! Music
P@5 nDCG@5 R@16 P@5 nDCG@5 R@10 P@5 nDCG@5 R@16 P@5 nDCG@5 R@10

Sequential

CASER 0.5762 0.4613 N/A 0.5434 0.4428 N/A 0.5633 0.4532 N/A 0.5745 0.4315 N/A
SASRec 0.6058 0.4862 N/A 0.5624 0.4515 N/A 0.5958 0.4621 N/A 0.5826 0.4422 N/A
ADFM 0.5749 0.4642 N/A 0.5387 0.4407 N/A 0.5695 0.4412 N/A 0.5541 0.4218 N/A
SDIM 0.5877 0.4658 N/A 0.5471 0.4463 N/A 0.5739 0.4498 N/A 0.5638 0.4314 N/A
HPMN 0.5962 0.4745 N/A 0.5589 0.4502 N/A 0.5862 0.4574 N/A 0.5755 0.4394 N/A

BERT4Rec 0.6122 0.4957 N/A 0.5834 0.4855 N/A 0.5996 0.4667 N/A 0.5901 0.4522 N/A
Seq2Seq 0.5818 0.4752 N/A 0.5579 0.4614 N/A 0.5648 0.4554 N/A 0.5762 0.4332 N/A
S3-Rec 0.6108 0.4926 N/A 0.5792 0.4767 N/A 0.5884 0.4602 N/A 0.5786 0.4358 N/A

CL4SRec 0.6135 0.4952 N/A 0.5813 0.4781 N/A 0.5902 0.4688 N/A 0.5841 0.4423 N/A

Dynamic timeSVD++ 0.5341 0.4328 N/A 0.5034 0.4145 N/A 0.4938 0.4082 N/A 0.4838 0.3874 N/A
CKF 0.5567 0.4481 N/A 0.5285 0.4322 N/A 0.5144 0.4280 N/A 0.5078 0.4155 N/A

Deep Learning DeepFM 0.5647 0.4625 N/A 0.5428 0.4514 N/A 0.5315 0.4434 N/A 0.5217 0.4324 N/A
DCNv2 0.6152 0.5187 N/A 0.6158 0.5166 N/A 0.5784 0.4905 N/A 0.5715 0.4799 N/A

Bandit
Lin 0.6191 0.5205 58.26 0.6174 0.5271 35.12 0.5842 0.5082 57.15 0.5849 0.4876 33.81

HLin 0.6088 0.5205 58.25 0.6172 0.5270 35.08 0.5819 0.5047 57.09 0.5813 0.4855 33.62
CoLin 0.6212 0.5236 58.87 0.6227 0.5295 35.49 0.5875 0.5096 58.13 0.5875 0.4894 34.25

Reinforce

ϵ-greedy 0.5977 0.4834 55.15 0.5580 0.4556 32.74 0.5850 0.4765 55.64 0.5909 0.4812 31.57
SAC 0.6105 0.5215 61.63 0.6208 0.5277 35.78 0.5942 0.4839 57.82 0.6074 0.5075 35.44
DRN 0.6057 0.5199 55.26 0.6154 0.5268 32.78 0.5826 0.4720 57.58 0.6085 0.5121 33.15
LIRD 0.6238 0.5332 61.85 0.6137 0.5222 35.88 0.6134 0.5214 63.59 0.6193 0.5238 38.19
SAR 0.5938 0.4956 60.95 0.5957 0.4968 35.05 0.5892 0.5026 62.84 0.5952 0.5014 37.26

REINforCE 0.6160 0.5285 62.24 0.6104 0.5138 37.66 0.6134 0.5294 64.25 0.6174 0.5238 39.76
ResAct 0.6188 0.5215 62.34 0.6195 0.5234 38.96 0.6175 0.5319 64.67 0.6215 0.5288 39.94
HAC 0.5989 0.5005 61.28 0.6021 0.5098 38.55 0.5966 0.5138 63.14 0.6009 0.5054 38.18

SAS-SQN 0.5682 0.4755 57.69 0.5711 0.4795 34.89 0.5704 0.4852 60.32 0.5765 0.4735 34.96
ECQL 0.6313 0.5365 68.54 0.6379 0.5386 42.31 0.6336 0.5372 70.19 0.6232 0.5330 43.59

5 EXPERIMENTS

We conduct experiments on multiple real-world datasets: Movielens-1M, Movielens-100K, Netflix,
and Yahoo! Music. For baselines, we use dynamic models: timeSVD++ (Koren, 2009), CKF
(Gultekin & Paisley, 2014); sequential models: CASER (Tang & Wang, 2018), SASRec (Kang
& McAuley, 2018), ADFM (Li et al., 2022),SDIM (Cao et al., 2022),HPMN (Ren et al., 2019),
BERT4Rec (Sun et al., 2019), Seq2Seq (Ma et al., 2020), S3-Rec (Zhou et al., 2020), CL4SRec (Xie
et al., 2022); Deep Learning models: DeepFM (Guo et al., 2017), DCNv2 (Wang et al., 2021);
Bandit models: Lin (Li et al., 2010a), HLin (Wang et al., 2016), CoLin (Wu et al., 2016); and
RL-based models: ϵ-greedy (Zhao et al., 2013), SAC (Haarnoja et al., 2018), DRN (Zheng et al.,
2018), LIRD (Zhao et al., 2017), SAR (Antaris & Rafailidis, 2021), REINforCE (Chen et al., 2019),
ResAct (Xue et al., 2022), HAC (Liu et al., 2023), SAS-SQN (Silva et al., 2024). Further details
about datasets, metrics, settings, and baselines are in Appendix E.

5.1 EVALUATION METRICS

We use three standard metrics: Precision@N and nDCG@N to measure the average recommendation
performance across all time steps. We also use test return R@T as the sum of the average rating of all
recommended items until time step T for the RL-based methods comparison. For any particular test
user, Positive Count, and Genre Count are directly applied to measure the qualitative performance.
We also consider a standard offline evaluation metric Normalized Capped Importance Sampling
(NCIS) (Swaminathan & Joachims, 2015) for RL comparison.

• Precision@N: It is the fraction of the top-N items recommended in each step of the episode that
are positive (i.e., rating > τ ) to the user. We average overall test users as the final precision.

• nDCG@N: Normalized Discounted Cumulative Gain (nDCG@N) measures ranking quality,
considering the top-N recommended items’ information gain normalized by top-N items of the
ideal ranking list based on the ordered ground truth rating in each step of the RL episode. We
average overall test users as the final precision.

• Test Return: We evaluate test rewards based on the average ground-truth ratings of top-N
recommended items in each step within an RL episode. Test Return considers the sum of the test
rewards before any step within an RL episode and averages across all test users.

• Positive Count: It is the total count of the top-N items recommended in each step of the episode
that are positive (i.e., rating > τ ) to a particular test user.

• Genre Count: It is the total genre count of the top-N items recommended in each step of the
episode to a particular test user.

• NCIS: It is a variant of average cumulative reward, weighted by the normalized capped importance
sampling score based on the policy probability, formulated in E.
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Figure 3: Test return for ECQL and other RL-baselines across different time steps
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Figure 4: Genre and Positive Count comparisons with RL models using bandit-based (CoLin) and
entropy-based (SAC) explorations (a-b) as well as EQL without conservative learning (c-d)

5.2 RECOMMENDATION PERFORMANCE COMPARISON

Table 2 summarizes the recommendation performance from all models. The proposed model benefits
from both the sequential state encoder and CEAC module so that it provides better results in all
datasets. Sequential models achieve less ideal performance due to their focus on short-term user
preference, which is less effective in capturing long-term interest. RL methods have shown a clear
advantage due to their focus on maximizing expected long-term rewards. By leveraging the vacuity
guided exploration, ECQL achieves the best performance among all RL based models.

Table 3: RL comparison on offline evaluation metric Normalized
Capped Importance Sampling (NCIS).

Model MovieLens-1M MovieLens-100K Netflix Yahoo! Music
ϵ-greedy 3.088 3.029 3.154 3.135

SAC 3.248 3.165 3.324 3.258
DRN 3.035 2.983 3.102 3.084
LIRD 3.545 3.478 3.629 3.569
SAR 3.835 3.765 3.928 3.843

REINforCE 3.926 3.845 4.024 3.939
ResAct 4.035 3.980 4.126 4.083
HAC 3.852 3.784 3.946 3.891

SAS-SQN 3.659 3.598 3.754 3.690
ECQL 4.124 4.112 4.223 4.178

To further demonstrate ECQL’s
superior performance, we con-
duct an RL baseline comparison
on an offline evaluation metric
NCIS, which measures the nor-
malized capped importance sam-
pling score weighted cumulative
reward along the whole trajec-
tory across all test users. As Ta-
ble 3 shows, ECQL achieves sig-
nificant better performance, i.e.,
higher normalized average cumu-
lative reward than all the RL competitors. As can be seen, the test return for ECQL and the RL-based
baselines, including DRN, LIDR, and CoLin (other models will be discussed in the ablation study),
are quite close in the initial steps. But in later steps, ECQL clearly outperforms the other baselines.
This is because the model is able to explore more effectively during the training process to enhance the
knowledge of the model. The effectiveness of vacuity guided exploration will be further investigated
in our ablation study as detailed next.

5.3 ABLATION STUDY

We first investigate the effect of exploration of ECQL by comparing with two alternative designs: (1)
w/o vacuity (denoted as Epsilon) and (2) w/o conservative learning guided exploration (denoted as
EQL). We also compare exploration using the first-order uncertainty, employed by soft-actor-critic
(SAC). Figure 3 shows that without uncertainty-guided exploration, Epsilon collects the least test
return in the long run. SAC utilizes entropy-based exploration and achieves better test return than
without uncertainty-guided exploration, almost equal to the performance of strongest reinforced
baselines LIRD, REINforCE, and ResAct, across four different data sets. This provides evidence
that the role of the exploration is crucial in RL-based recommendations. However, its performance
is worse than the vacuity-based ECQL method. This is because vacuity-guided exploration allows
our model to explore the most informative items so that it can gain the most knowledge to form an
optimal policy. However, given the sparse rewards, it is essential that the recommendation does not

9
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Table 4: Recommended movies for an example user
Model Movies Movie Genre Vacuity

ECQL

Kids of the Round Table (1995) Adventure,Fantasy 0.12
Postino, Il (The Postman) (1994) Adventure, Romance 0.11

How to Make an American Quilt (1995) Drama 0.14
Pocahontas (1995) Musical 0.12

Three Lives and Only One Death (1996) Comedy 0.22

SAC

Karate Kid, Part II, The (1986) Fantasy 0.07
Return of the Pink Panther, The (1974) Comedy 0.12

Lawnmower Man 2: Beyond Cyberspace (1996) Sci-Fi,Thriller 0.09
Young Sherlock Holmes (1985) Adventure 0.11

Love in Bloom (1935) Romance 0.09

EQL

Ruling Class, The (1972) Tragedy 0.14
Private Benjamin (1980) Comedy 0.13
Mighty Joe Young (1998) Adventure 0.08
Christmas Vacation (1989) Action 0.14

Father of the Bride Part II (1995) Sci-Fi 0.14

deviate too much from user’s interest. As shown, EQL performs worse than ECQL by a clear margin,
especially in the later steps when the model gets richer knowledge about the user through interactions.

Table 5: Impact of each module

SSE CEAC P@5 nDCG@5
✓ ✗ 0.4899 0.4175
✗ ✓ 0.6044 0.5108
✓ ✓ 0.6313 0.5365

We further evaluate the impact of the two key modules of
ECQL: SSE and CEAC. We report P@5 and nDCG@5
on Movielens-1M in Table 5. The integration of the two
modules significantly outperforms each individual module.
Additional ablation studies are presented in the Appendix.

5.4 QUALITATIVE STUDY

Impact of vacuity for exploration. We conduct a qualitative analysis to show the advantage of
using evidence-based uncertainty (i.e., vacuity) for RL exploration when compared with other two
competitive baselines: entropy-guided exploration as in the soft actor-critic (SAC) and a contextual
bandit algorithm (CoLin). We select a random test user from the Movielens-1M dataset and show
the genre counts and positive counts of recommended items in Figure 4 (a) and (b). At the initial
few steps, SAC has more positive counts but is less effective in exploration. The proposed ECQL is
able to explore more informative items (evidenced by more diverse genres). In later steps, ECQL
consistently outperforms both SAC and CoLin in positive counts due to the better utilization of
evidence-based uncertainty to discover more informative future items that could reflect the user’s
long-term preference, as shown in Figure 4 (b). Table 4 shows the predicted vacuity for each
recommended item in step 10. The overall higher vacuity scores indicate that ECQL recommends
more items that are currently unknown to the users, which is instrumental in exploring their long-term
interests. ECQL also explores more diverse genres and identifies four out of five important items
(genre types in bold) that are positive in ground-truth ratings. Benefiting from better exploration,
ECQL eventually achieves a much better test return compared to SAC and CoLin as shown in
Figure 3. More detailed discussions about how to control the exploration through hyper-parameter λ
are included in Appendix E.4.

Impact of conservative learning. The last two plots in Figure 4 show that comparing to EQL,
which lacks a conservative constraint, our proposed model achieves much higher positive counts
across different steps while exploring diverse genres. Because of the sparse reward space and limited
training data, making reasonable and safer recommendations based on current confirmed knowledge
is important to maintain a user base. As shown in Table 4, EQL explores a wide range of different
types of movies, but only one of them is positive reflecting user’s true interest.

6 CONCLUSION

In this paper, we propose a novel evidential conservative Q-learning framework for dynamic recom-
mendations. The proposed ECQL framework learns an effective and safe recommendation policy
by integrating both the evidence-based exploration and conservative learning. ECQL integrates a
customized SSE to generate the current state that accurately captures user interest and a conservative
evidential-actor-critic module which functions as an RL agent to perform evidence-based exploration
and trained through conservative evidential Q-learning in an off-policy formulation. We theoretically
prove that the conservative evidential Q-value provides an uncertainty-aware adjustment of optimism
towards the behavior policy and lower-bounds the actual value of the target policy.
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Organization of Appendix. In this Appendix, we first summarize the major mathematical notations
in Appendix A. We give an overview of representative static recommendation models in Appendix B.
We then present the proofs of lemmas and theorems in Appendix C. We show the detailed ECQL
algorithm in Appendix D. We present the details of the datasets, experimental setting and baseline
models in Appendix E. Further, we include some additional comparison results in Appendix E.3 and
conduct an ablation study as well as a qualitative analysis in Appendix E.4 and E.5. Limitation and
future extension of our work are discussed in Appendix F. The link to the source code is given in
Appendix G.

A SUMMARY OF NOTATIONS

Table 6: Summary of notations

Symbol Group Notation Description

ECQL

T,M step size or length of episode and episode size for ECQL
training

u, i, hi user (episode), item and item’s position indices
ut user u’s embedding at time step t
st, at state and action at time t
eik, pik evidence and evidence-based probability on rating class

k for item i
yi one-hot rating label on item i
ϕ, ψ parameters of action and evidence networks
θ, ω parameters of critic and SSE networks
π,Q(st,at) recommendation policy or action network, Q value func-

tion or critic network
r̂atingu,i, ratingu,i predicted and actual rating for user u on item i
scoreu,i evidential score for user u on item i
τ, λ rating threshold and balance hyper-parameter for ex-

ploitation and exploration
γ RL discount factor for test return
Uπ(·|ei) item i’s evidence-based uncertainty
reπ(st,at), Q

e(st,at) evidential reward and Q value

Environment

P(s′|s,a) state transition probability
K the number of rating class
W l, N the number of interacted items in the sliding window

and recommended items in the recommendation list in
each time step

Nu top-N recommended items list for user u
Hu, I user u’s interaction history and item pool

Theoretical Results

Cr,T,δ, Cr,δ, CT,δ constants dependent on the concentration properties
(variance) of evidential reward reπ(a, s) and/or state tran-
sition matrix T (s′|s,a)

α, δ, ζ hyper-parameters controlling conservatism, high proba-
bility and safe policy improvement guarantee.

J(π̄, M̂), J(π̄,M) discounted return of a policy π̄ in the empirical MDP,
M̂ and actual MDP, M.

|D|, |A|, dπ̄
M̂

magnitude of state and action space, state distribution
from empirical MDP M̂ (offline dataset)

DECQL(π̄, π̄β) ECQL regularizer detailed in C.1.

B ADDITIONAL RELATED WORK

To provide a complete review of the existing literature on recommender systems, this section gives
an overview of representative static and dynamic recommendation models that complement the
sequential and RL-based models discussed in the main paper. We also discuss some other RL
exploration strategies and use of uncertainty in recommender systems.
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Static recommendation models. Matrix Factorization (MF) leverages user and item latent factors
to infer user preferences (Koren et al., 2009; Funk, 2006; Koren, 2008). MF is further extended
with Bayesian Personalized Ranking (BPR) (Rendle et al., 2012) and Factorization Machine (FM)
(Rendle, 2010). Recently, deep learning-based recommender systems (Cheng et al., 2016; Guo et al.,
2017) have achieved impressive performance. DeepFM (Guo et al., 2017) integrates traditional FM
and deep learning to learn low- and high-order feature interactions. The wide and deep networks are
jointly trained in (Cheng et al., 2016) for better memorization and generalization. In graph-based
methods (Berg et al., 2017), users and items are represented as a bipartite graph and links are predicted
to provide recommendations. Similarly, Neural Graph Collaborative Filtering (Wang et al., 2019)
explicitly encodes the collaborative signal via high-order connectivities in the user-item bipartite
graph via embedding propagation.

Dynamic recommendation models. Dynamic recommendation models shift users’ latent preferences
over time to incorporate temporal information. TimeSVD++ (Koren, 2009) considers time-specific fac-
tors, which uses additive bias to model user and item-related temporal changes. Gaussian state-space
models have been used to introduce time-evolving factors with a one-way Kalman filter (Gultekin
& Paisley, 2014). Hidden Markov model (Sahoo et al., 2012) and Poisson emission (Charlin et al.,
2015) have also been leveraged to model temporal dependencies. However, these models primarily
capture users’ evolving preferences from the past that are less effective to predict future interactions.

Additional RL exploration strategy. ICM Pathak et al. (2017) and RND Burda et al. (2018) are
designed for complex deep reinforcement learning (DRL) environments (e.g., Atari games) with
sparse reward signals, where exploring novel states is critical to uncover rare rewards, penalizing
events, or turning points. ICM uses curiosity to facilitate exploration, measured by the error in
predicting the next state from the current state-action pair, leveraging a forward dynamic model
trained on prior interactions. Additionally, it employs an inverse dynamic model to filter out irrelevant
state representations. Similarly, RND employs a fixed, randomly initialized network (random
distillation network) as a reference model. A predictor neural network is trained to replicate the
outputs of the reference model, and the prediction error for any new state serves as a novelty score.
However, directly applying these exploration strategies to dynamic recommendation settings may be
less effective, as they are primarily designed for high-dimensional DRL environments, such as Atari
games. These methods are not tailored to accurately quantify rating prediction uncertainty, which is
crucial for encouraging the exploration of novel items in recommendation systems.

Use of uncertainty in recommendation models. Quantifying the uncertainty of a recommender
system (RS) Cleger-Tamayo et al. (2013); McNee et al. (2003) is important because it helps to
reveal which rating predictions or recommended items are likely to be wrong Bobadilla et al. (2018).
Uncertainty estimates can improve an RS in three main ways:

1. Convey recommendation confidence Cleger-Tamayo et al. (2013); McNee et al. (2003). Display-
ing uncertainty alongside recommendations can enhance the trustworthiness and credibility of a
RS. For instance, when the RS is uncertain about a recommendation, providing an explanation
can help users understand the rationale behind the suggestion. This approach reduces the risk of
confusing or untrustworthy recommendations and improves the overall user experience.

2. Guide which items to recommend Mazurowski (2013); Ortega et al. (2021); Bouneffouf et al.
(2013). Typically, a recommender system (RS) suggests items it predicts to be most relevant to the
user. By incorporating uncertainty estimates, the RS can avoid recommending items with high
predicted relevance but significant uncertainty, thereby reducing the risk of poor recommendations.
Alternatively, the RS could strategically include uncertain recommendations to encourage user
discovery of new items and gather valuable feedback for improving future predictions.

3. Optimize recommendation process Burke (2002); da Costa et al. (2018). Uncertainty can also
assist a recommender system (RS) in optimizing its internal processes. For example, the CoRec
system leverages uncertainty to determine which predictions to include in its training data. More
broadly, uncertainty estimates can guide the RS in selecting between different models or strategies.
They are also valuable in active learning scenarios, where the system solicits user feedback on
items it is uncertain about, thereby improving the quality of future recommendations.
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C PROOFS OF THEORETICAL RESULTS

In this section, we provide detailed proofs of Lemma 1, Theorem 2, and ζ-safe policy improvement
guarantees over behavior policy by iterating conservative policy evaluation (6) and update (7).

C.1 PROOF OF LEMMA 1

Proof overview. We first introduce some important notations that will be used in the proof of
the Lemma. Our proof shows that conservative Q-value estimation updated step by step using (12)
leads to a lower-bounded state-marginal value estimation compared to its previous iterate. Then, we
compute the fixed point of such iteration to conclude that the converged state value estimation V̂ π̄(s)
lower-bounds the actual state value V π̄(s). We first conduct the whole derivation in tabular Q-learning
setting where state transition is finite and precise (Auer & Ortner, 2006), then we incorporate the
sampling error to make it a complete RL process.

Notations. Let k ∈ N denote an Q-iteration of policy evaluation. In an iteration k, the objective
in (6) is optimized using the Bellman backup (i.e., B̂π̄Q̂k−1) as the target value which is given as
Equation (11) by following a double DQN training fashion, where R is the evidential regularizer,
γ is the discounted factor, Q̃ is the target Q-network representing a stable evaluation and Q̂ is
the Q-network representing the current learned policy’s Q-value. Let Qk denote the true, tabular
Q-function iterate in the actual MDP M , and Qk is estimated using the empirical Bellman operator B̂
as: Qk ← B̂π̄Q̂k (for policy evaluation). We redefine Qe

c in the main paper as Qk when k →∞ (i.e.,
the k-th Q-function iterate reaches convergence). We emphasize that π̄β is the actual behavior policy
directly available from last policy update, α is the hyper-parameter to guarantee conservatism, and
V̂ k denotes the state value estimation, which is the expectation of corresponding Q-value under a
given policy π̄: V̂ k := Ea∼π̄(a|s)[Q̂

k(a, s)].

B̂π̄Q̂k−1(st,at) =Est,at,st+1∼D,at+1∼π̄[(r(st,at)

+ γ ×min{Q̃k−1(st+1,at+1), Q̂
k−1(st+1,at+1)}]. (11)

Assumptions. Following (Osband et al., 2016; O' Donoghue, 2021; Auer et al., 2008), we use
concentration properties of B̂π̄ to control the sampling error. Formally, for all s,a ∈ D, with
probability≥ 1−δ, there exists a constantCr,T,δ dependent on the concentration properties (variance)
of reward r(s,a) and state transition matrix T (s′|s,a) that satisfies |B̂π̄ − Bπ̄|(s,a) ≤ Cr,T,δ

|
√

D(s,a)|
,

where δ ∈ (0, 1). 1

|
√

D(s,a)|
denotes a vector of size |S||A| containing square root inverse counts

for each state-action pair, except when D(s,a) = 0, in which case the corresponding entry is a very
large but finite value δ ≥ 2Rmax

1−γ .

Proof. In the tabular setting, we can set the derivative of the modified objective in (6) to 0,
and compute the Q-function update induced in the exact, tabular setting, thus giving (12) as one
optimization step (this assumes B̂π̄ = Bπ̄).

∀s,a Q̂k(a, s) = Bπ̄Q̂k−1(a, s) + R̃ − α
[
π̄(a|s)
π̄β(a|s)

− 1

]
. (12)

Where R̃ is the expectation of the evidential regularizer under the off-policy state-action distribution
D. Note that for state-action pairs (a, s) such that, π̄(a|s) < π̄β(a|s), we are in fact adding a positive
quantity, 1− π̄(a|s)

π̄β(a|s) . To the Q-function obtained, a point-wise lower bound is not guaranteed, i.e.,

∀s,a, s.t.Q̂k(a, s) ≤ Q̂k−1(a, s). However, we show that on the other hand the expected state value
of the estimated Q-function, i.e., V̂ k always lower-bounds its previous iterate, since:

V̂ k(s) := Ea∼π̄(a|s)

[
Q̂k(a, s)

]
= Bπ̄V̂ k−1(s)− αEa∼π̄(a|s)

[
π̄(a|s)
π̄β(a|s)

− (1 +
R̃
α
)

]
. (13)
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The value of the policy V̂ k is underestimated comparing to V̂ k−1, since we can show that the evi-
dential term DECQL(s) :=

∑
a π̄(a|s)

[
π̄(a|s)
π̄β(a|s) − (1 + R̃

α )
]

is always positive under the condition

that α ≥ [
∑

a
(π̄(a|s)−π̄β(a|s))2

π̄β(a|s) ]−1, which is the evidential constraint on conservative parameter α to
guarantee underestimation in each value update. To note this, we present the following derivation:

DECQL(s) :=
∑
a

π̄(a|s)

[
π̄(a|s)
π̄β(a|s)

− (1 +
R̃
α
)

]

=
∑
a

(π̄(a|s)− π̄β(a|s) + π̄β(a|s))

[
π̄(a|s)
π̄β(a|s)

− (1 +
R̃
α
)

]

=
∑
a

(π̄(a|s)− π̄β(a|s))
[
π̄(a|s)− π̄β(a|s)

π̄β(a|s)

]
+

∑
a

π̄β(a|s)

[
π̄(a|s)
π̄β(a|s)

− (1 +
R̃
α
)

]

=
∑
a

[
(π̄(a|s)− π̄β(a|s))2

π̄β(a|s)

]
︸ ︷︷ ︸

≥0

−R̃
α
≥ 0, (R is an uncertainty regularity between 0 to 1)

which requires α ≥ 1[∑
a

(π̄(a|s)−π̄β(a|s))2
π̄β(a|s)

] ≥ R̃[∑
a

(π̄(a|s)−π̄β(a|s))2
π̄β(a|s)

] . (14)

The above derivation implies that each value iterate incurs some underestimation V̂ k(s) ≤ V̂ k−1(s)
when conservative hyper-parameter α satisfies some constraints. Now we compute the fixed point of
value iteration (13) as the equivalency to V̂ k(s) when k →∞ and get the following estimated policy
value V̂ π̄(s) which shows a clear lower bound to actual state value function V π̄(s), given that the
simulation error

[
(I − γT π̄)−1Eπ̄

π̂β

π̄β

]
can be avoided because of our off-policy setting:

V̂ π̄(s) = V π̄(s)− α

[
Eπ̄

[
π̄

π̄β
− (1 +

R̃
α
)

]]
. (15)

Then, by further incorporating the sampling error
[
(I − γT π̄)−1Cr,T,δRmax

1−γ
√

|D|

]
(s), we get the follow-

ing full evidential constraint for α, which is a more strict constraint compared to CQL:

α ≥ Cr,T,δRmax

1− γ
·max
s∈D

1√
|D(s)|

[∑
a

(π̄(a|s)− π̄β(a|s))2

π̄β(a|s)

]−1

.

C.2 PROOF OF CONSERVATIVE POLICY IMPROVEMENT

Lemma 3 (Conservative Policy Improvement). Given an optimal policy π∗ that is the fixed point
under action optimization using Equation (7), then the policy π∗(a|s) is a ζ-safe policy improvement
over behavior policy πβ in the actual MDP M . The expected discounted return attained by a policy
π∗ in the actual underlying MDP M , i.e., J(π∗,M), is guaranteed to be higher than that attained by
its behavior policy πβ with a lowest ζ bound. Formally, we represent it as J(π∗,M) ≥ J(πβ ,M)−ζ
with a high probability 1− δ where ζ is given as:

ζ = 2

(
Cr,δ

1− γ
+
γRmaxCT,δ

(1− γ)2

)
Es∼dπ

M̂
(s)

[ √
|A|√
|D(s)|

√
DECQL(π̄, π̄β)(s) + 1

]

− α 1

1− γ
Es∼dπ∗

M̂
(s)[DECQL(π

∗, π̄β)(s)].

where δ is a high probability control related to ζ, dπ
M̂

is the state distribution from the empirical

MDP M̂ . |A|, |D| is the magnitude (norm) of action and state spaces. Cr,δ and CT,δ are constants
dependent on the concentration properties (variance) of evidential reward reπ(a, s) and state transition
matrix T (s′|s,a), respectively. γ is the discounted factor. DECQL is an evidential conservative factor
ensuring the conservatism in policy evaluation.
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Proof. In this section, we first show that this policy improvement procedure defined in Equation (7)
actually optimizes a penalized RL objective J(π, M̂) − α 1

1−γEs∼dπ
M̂

(s)[DECQL(π̄, π̄β)(s)] using

Lemma D.3.1 following (Kumar et al., 2020), where J(π, M̂) is the empirical discounted return of
policy π in empirical MDP M̂ , DECQL is the conservatism term given in (14), and then we relate the
performance of π∗(a|s) updated with this penalized RL objective, to the performance of itself and its
behavior policy π̄β in the actual MDP M under the non-evidential settings so that we can leverage
existing Theorem D.4 proposed by Kumar et al. (Kumar et al., 2020), thus gives:

J(π∗,M) ≥ J(π̄β ,M)− 2

(
Cr,δ

1− γ
+
γRmaxCT,δ

(1− γ)2

)
Es∼dπ∗

M̂
(s)

[√
|A|√
|D|

√
DECQL(π∗, π̄β)(s) + 1

]

+ α
1

1− γ
Es∼dπ∗

M̂
(s)[DECQL(π

∗, π̄β)(s)].

(16)
Note that all symbols here are in their non-evidential definitions which follow the same constraint
on conservatism hyper-parameter α defined in (14). The explicitly expressed evidential term
is contained in DECQL(π

∗, π̄β)(s). The proof for this statement is divided into two parts. The
first part involves relating the return of π∗ in the empirical MDP M̂ with the return of π̄β in M̂ .
Since, π∗(a|s) optimizes the penalized RL objective, it is the best policy under empirical MDP
M̂ , and is guaranteed to behave better than the behavior policy π̄β in a lowest bound governed
by α 1

1−γEs∼dπ∗
M̂

(s)[DECQL(π
∗, π̄β)(s)] as shown in the last term in Equation (16). The next step

involves using concentration inequalities to upper and lower bound J(π∗, M̂) and J(π∗,M) and the
corresponding difference for the behavior policy. According to Kumar et al.(Kumar et al., 2020), they
apply Lemma D.4.1 to control such difference with γ, Rmax, and CT,δ, Cr,δ .

C.3 PROOF OF THEOREM 2

We introduce the detailed derivative of Theorem 2 as given below:

JQe
c
(θ) = min

Q
α
(
Es∼D,a∼π(a|s)[Q(a, s)]− Es∼D,a∼πβ(·|s)[Q(a, s)]

)
+

1

2
Es,a,s′∼D

[(
Q(a, s)− B̂πQ̂k(a, s)

)2
]

= min
Q

α
(
Es∼D,a∼π(a|s)[Q(a, s)]− Es∼D,a∼πβ(·|s)[Q(a, s)]

)
+

1

2
Es,a,reπ,s

′∼D,a∗∼π(·|s′)

[(
Q(a, s)−

(
reπ(s,a) + γ ×min{Q̃k(s′,a∗), Q̂k(s′,a∗)}

))2
]

= min
Q

α
(
Es∼D,a∼π(a|s)[Q(a, s)]− Es∼D,a∼πβ(·|s)[Q(a, s)]

)
+

1

2
Es,a,reπ,s

′∼D,a∗∼π(·|s′)Q(a, s)−

 1

N

∑
i∈Nu

ratingu,i︸ ︷︷ ︸
r

+λ
1

N

∑
i∈Nu

Uπ(·|ei)︸ ︷︷ ︸
R

+γ ×min{Q̃k(s′,a∗), Q̂k(s′,a∗)}




2

= min
Q

α
(
Es∼D,a∼π(a|s)[Q(a, s)]− Es∼D,a∼πβ(·|s)[Q(a, s)]

)
+

1

2
Es,a,reπ,s

′∼D,a∗∼π(·|s′)

[((
Q(a, s)− r− γ ×min{Q̃k(s′,a∗), Q̂k(s′,a∗)}

)
−R

)2
]
.

We use B̂π̄Q̂k(a, s) to replace r + γ × min{Q̃k(s′,a∗), Q̂k(s′,a∗)} and by some mathematical
reshaping, we get:

JQe
c
(θ) = min

Q̂k

1

2
Es,a,r,s′∼D

[(
Q̂k(a, s)− B̂π̄Q̂k(a, s)

)2
]
+ αEs∼D,a∼π̄(·|s)[Q̂

k(a, s)]

− α
(
Es∼D,a∼π̄β(·|s)(1 +R)[Q̂k(a, s)]

)
+ (R2 +R · B̂π̄Q̂k(a, s)︸ ︷︷ ︸

C

). (17)

where C is a constant not relating to the Q-value iterate.
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D EVIDENTIAL CONSERVATIVE Q-LEARNING ALGORITHM

We provided detail training procedure for the ECQL method in Algorithm 1.

Algorithm 1 Evidential Conservative Q-Learning

Require: Hyperparameters: α, λ, τ , episode size M and step size T
1: Initialize SSE: ω, action network: ϕ, evidence network: ψ, and critic network: θ , initial state:

s0 and initial user embedding: u0 with W l = 2N items in sliding window W0 from interaction
history Hu, and Item Pool I

2: for each epoch do
3: for each user as an episode do
4: for t ∈ T do
5: Compute state: st with (4).
6: Compute action: at ∼ πθ(.|st)
7: Compute evidential score using (2)
8: Recommend top-N items based on computed evidential score to form a recommen-

dation list Nu.
9: Compute rewards based on recommendation list Nu utilizing (3).

10: Add (st,at, r
e
π(st,at), st+1, done) into replay buffer

11: Move sliding window and take W l

2 newly interacted items from Hu and replace the
other W l

2 items with the top-N items from the recommendation list Nu.
12: end for
13: if episode index number reaches M then
14: Sample batched data from replay buffer and forward into the networks.
15: repeat
16: Update critic network with (6)
17: Update action network with (7)
18: Update SSE network with (5)
19: Update evidence network with (8)
20: until converged
21: end if
22: end for
23: end for

E DETAILED EXPERIMENTAL SETUP AND ADDITIONAL RESULTS

In this section, we provide additional details on the experiments, including datasets, setting, evaluation
metrics, and comparison baselines. We also report more results, including comparison with additional
baselines on two larger scale datasets, ablation study and qualitative analysis.

E.1 DETAILED EXPERIMENTAL SETUP

Description of datasets. Besides the four dynamic recommendation datasets as introduced in the
main paper, we include one additional dataset Movielens-10M to evaluate how ECQL performs on
large-scale recommendation problems. Details of all the datasets are summarized below:

• Movielens-1M1: This dataset includes 1M ratings provided by 6,040 anonymous users on 3,900
distinct movies from 04/2000 to 02/2003.

• Movielens-100K2: This dataset contains 100,000 ratings from 943 users on 1,682 movies. Each
user at least rated 20 movies from September 19, 1997 through April 22, 1998.

• Netflix (Bennett et al., 2007): This dataset has around 100 million interactions, 480,000 users,
and nearly 18,000 movies rated between 1998 to 2005. We pre-processed the dataset and selected
6,042 users with user-item interactions from 01/2002 to 12/2005.

1https://grouplens.org/datasets/movielens/1M/
2https://grouplens.org/datasets/movielens/100k/
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• Yahoo! Music rating (Dror et al., 2012): The dataset includes approximately 300,000 user-
supplied ratings, and exactly 54,000 ratings for randomly selected songs. The ratings for randomly
selected songs were collected between August 22, 2006 and September 7, 2006.

• Movielens-10M 3: This dataset contains 10,000,054 ratings applied to 10,681 movies by 71,567
users, which was released in January 2009. All users selected had rated at least 20 movies.

E.2 TRAINING AND TEST SETTING

For training, given a user interaction history Hu, we continuously capture most recent N items after
current time step into a sliding window Wt, which starts from the beginning of the interaction history.
Then, we input the currently interacted N items into the model along with the recommended N items.
These top-N newly recommended items are selected from the item pool I by their predicted ranking
score given by (2). Note that the ranking score masks out all non-interacted, previously interacted
or recommended items to avoid lack of reward supervision or potential data leakage. Given above
training setting, we further clarify how we conduct our testing. First, we split the user set into training
and test users. Training users are used to train our ECQL model with their interaction history. In
testing, for each test user, we assume no prior knowledge of interaction history and run ECQL on
each user directly for different step size based on the minimum session length limit in each dataset. In
each step, the user embedding is updated through the agent recommended items only. Then, we report
the average recommendation performance with three metrics Precision@N, nDCG@N and Test
Return. As the agent continues to collect more user interactions, the recommendation performance
will continue to improve as shown in Figure 5.

E.2.1 EXPERIMENTAL SETTING

We consider each user an episode for the RL setting and split users into 70% as training users and
30% as test users. For each user, we select the first W l = 10 interacted items from history Hu to
represent an initial state s0. In the next state, we utilize previous state representation and concatenate
with five item embeddings from the sliding window and the other five item embeddings from RL
based recommendation to generate current state st by passing through the SSE module. Then, the
action network generates mean and covariance for a Gaussian policy from which an action is sampled.
This action is further passed to the evidence network, which utilizes the item embeddings of all user
interacted items (Item Pool I) to produce corresponding evidence for each item. We use the setting
of classification, where explicit ground-truth ratings are used as class labels. With that evidence, we
compute the evidential score by evaluating evidence-based rating and uncertainty to rank those items,
which provides a list of top-N (N = 5) final recommendations. We then evaluate the evidential
reward based on their ground-truth ratings and information gain, functioning as the trade-off between
exploitation and exploration. We set discounted factor γ = 1 and set τ = 3 as a threshold to identify
if an item is positive, i.e., whether its ground-truth rating is larger than or equal to the threshold
(ratingu,i ≥ τ ). In testing, the agent may recommend items not interacted by the user. In such
cases, we assign a neutral rating τ for those non-interacted items, where we set τ = 3. For training,
we conduct 5 RL epochs, each with full training of all training users (episodes). Each epoch is
equipped with an annealing λ ranging from 1 to 0.1 to adjust the emphasis from exploration to
exploitation as the knowledge of training users increases. For testing, we conduct only one RL epoch
containing all test users, and we use an annealing λ ranging from 0.5 to 0.1 across variable step sizes
in four different (minimum session length) data sets. We report the corresponding recommendation
performance step-wise averaged over all test users. We implement the experiments based on the
PyTorch framework with two A-100 GPUs.

E.2.2 COMPARISON BASELINES

We compare with dynamic, sequential, deep learning, bandit and reinforcement learning based models.
More specifically,

• Dynamic models include standard dynamic matrix factorization model timeSVD++ (Koren, 2009)
as the time-evolving latent factorization model and collaborative Kalman filtering (CKF) (Gultekin
& Paisley, 2014).

3https://grouplens.org/datasets/movielens/10m/
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Figure 5: Performance comparison in each time step: (a)-(d): P@5; (e)-(h): nDCG@5

• Sequential models include Sequential Recommendation via Convolutional Sequence Embed-
ding (Caser) (Tang & Wang, 2018), attention-based sequential recommendation model (SASRec)
(Kang & McAuley, 2018), Adversarial Filtering Modeling(ADFM), Sampling-based Deep Interest
Modeling (SDIM), Hierarchical Periodic Memory Network (HPMN) and sequential recommen-
dation with bidirectional encoder (BERT4Rec) (Sun et al., 2019) for learning users’ sequential
preferences. For latest baselines, we have self supervised S3-Rec (Zhou et al., 2020), contrastive
learning based CL4SRec (Xie et al., 2022), and Seq2Seq (Ma et al., 2020) which reconstructs the
representation of the future sequence as a whole and disentangle the intentions behind the given
sequence of behavior.

• Bandit models include upper confidence bound (UCB-based) HLin (Wang et al., 2016), contextual
bandit based method Lin (Li et al., 2010a) and CoLin (Wu et al., 2016) for news recommendation
or collaborative environments respectively.

• Reinforcement learning-based models include ϵ-greedy (Zhao et al., 2013), soft actor critic
(SAC) (Haarnoja et al., 2018), deep Q-network based news recommendation (DRN) (Zheng
et al., 2018), actor-critic based list-wise recommendation (LIRD) (Zhao et al., 2017), Smart
Adaptive Recommendations (SAR) (Antaris & Rafailidis, 2021), Top-K Off-Policy Correction
Recommendations (REINforCE) (Chen et al., 2019), Sequential Recommendation with Residual
Actor for online exploration (ResAct) (Xue et al., 2022), Hyper-Actor Critic (HAC) (Liu et al.,
2023), and Supervised Advantage Actor-Critic (SAS-SQN) (Silva et al., 2024).

E.3 ADDITIONAL RESULTS

In this section, we present additional experiments and compare with different types of baselines.

Step-wise recommendation performance. We further show the step-wise performance of both
precision@5 (P@5) and nDCG@5 metrics considering top-5 recommended items in all datasets as
shown in Figure 5. We show the average precision and nDCG of all the test users over each step
after the model is fully trained to demonstrate the effectiveness of the dynamic recommendation. We
fixed the step size to 16, 10, 20, and 10 for the Movielens-1M, Movielens-100K, Netflix, and Yahoo!
Music datasets based on their minimum number of user-item session length, respectively. At the
initial steps, both precision and nDCG are low for all models (we choose the best model from each
category as shown in Table 2). This is as expected due to lack of user interacted item observations.
All the models start to improve after the initial stage. Dynamic models and sequential models still
have poor performance compared to the RL-based methods. The proposed ECQL model provides
consistently better performance over the entire process. However, it has a smaller advantage at the
beginning due to its strong focus on exploration. After several step’s observation, it quickly grasp
user’s interests and outperforms all its competitors by a clear margin.
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Statistical testing results. We have conducted statistical tests by running our model along with most
competitive baselines from each category three times and collecting the corresponding mean and
standard deviation of P@5 and nDCG@5 performance on MovieLens-1M and MovieLens-100K
datasets. The results are included in Table 7. It can be seen that the proposed model is more
effective in performing effective exploration and provides more accurate recommendations, resulting
in higher P@5 and nDCG@5 on both datasets considering the mean and variance in multiple runs.
We further conduct a significance test to compare ECQL with the second best performing baseline
LIRD. We obtain a p-value of 0.04, which confirms the performance advantage of ECQL over LIRD
is statistically significant.

Table 7: Statistical testing results

Model MovieLens-1M MovieLens-100K
P@5 nDCG@5 P@5 nDCG@5

CL4SRec 0.6135±0.019 0.4952±0.014 0.5813±0.018 0.4781±0.012
CKF 0.5567±0.008 0.4481±0.005 0.5285±0.012 0.4322±0.011

DCNv2 0.6152±0.016 0.5187±0.013 0.6158±0.014 0.5166±0.012
LIRD 0.6238±0.025 0.5332±0.018 0.6137±0.023 0.5222±0.018
CoLin 0.6212±0.022 0.5236±0.016 0.6227±0.021 0.5295±0.016
ECQL 0.6313± 0.028 0.5365± 0.021 0.6379± 0.022 0.5386± 0.016

Comparison with RL-based sequential methods on larger datasets. In the main paper, we show
that ECQL achieves a clear advantage over the baseline models on the four benchmark datasets. Now
we focus on evaluating how ECQL performs on larger scale recommendation problems. We select
the strongest baselines from each category for comparison with proposed ECQL on a subset selected
from the large data set MovieLens-10M, denoted as ML-10M, with the minimum user interaction
length larger than 300. From Table 8, it is clear that our method is taking advantage of systematic
exploration and providing much better performance in larger datasets. In comparison to CoLin, LIRD
has better performance due to its capability to leverage a complex reinforcement learning process to
strengthen its user representation capability. However, it also fails to perform enough exploration and
achieves lower performance as compared with our method.

Table 8: Comparison with recent RL-based sequential baselines on larger dataset ML-10M

Model ML-10M
P@5 nDCG@5

CL4SRec 0.5138 0.4598
CKF 0.4952 0.4325

DCNv2 0.5374 0.4762
CoLin 0.5574 0.4516
LIRD 0.5624 0.4642

ECQL 0.6425 0.5518

Combining ECQL with other RL4Rec methods. Our proposed ECQL could be generalized into
any RL4Rec methods and helps to improve their recommendation performance. In Table 9, we use a
recent RL4Rec sequential model CL4SRec as a test platform to show the performance improvement
achieved by our ECQL comparing to other RL exploration strategies. We report the P@5 and
nDCG@5 on a larger MovieLens-10M data set to show the results.

E.4 ADDITIONAL ABLATION STUDY

Impact of hyperparameter (λ). The hyperparameter (λ) plays a critical role in recommending the
top-N items through generating corresponding ranking scores in test phase. We test three different
settings: λ = 0.1, λ = 0.5, and gradually reducing λ from 0.5 to 0.1. As can be seen from Figure
6, dynamically adjusting λ achieves consistently better test returns on all datasets. This supports
the intuition that in the early steps, a large λ allows the model to conduct sufficient exploration.
Once the model gains sufficient knowledge from the user preference and is able to make accurate
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Table 9: Comparison between ECQL and other RL exploration strategies on another RL4Rec
framework CL4SRec

Model MovieLens-10M
P@5 nDCG@5

SAC 0.5923 0.4917
EQL 0.6075 0.5028
CoLin 0.6159 0.5133
ϵ-greedy 0.5138 0.4598
ICM 0.5568 0.4689
RND 0.5348 0.4496

ECQL 0.6315 0.5318
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Figure 6: Test return of ECQL for different λ

recommendations, reducing λ will allow the model to exploit its knowledge to provide effective
recommendations.

Impact of sequence encoders: In this section, we investigate the impact of different sequence
encoders, including RNN, LSTM, and GRU and report the result on Movielens-1M. Table 10 shows
that our model’s performance remains largely robust to different types of sequence encoders.

Table 10: Impact of sequential encoders

Sequential encoder P@5 nDCG@5
RNN + CEAC 0.6313 0.5365

LSTM + CEAC 0.6312 0.5364
GRU + CEAC 0.6315 0.5366

Impact of exploration strategies: In the main paper, we show the test return from different
exploration strategies to demonstrate the effectiveness of vacuity-guided exploration of ECQL. In this
section, we further report the P@5 and nDCG@5 on MovieLens-1M to complement the test return
result:

• Epsilon (i.e., ϵ-greedy) is a basic exploration strategy, which uses actor-critic to conduct
Q-learning. Since we only set hyper-parameter ϵ = 0.1, which is our best practice after
grid-search, there’s no need to combine conservative learning in this exploration direction.

• SAC also leverages actor-critic to conduct Q-learning. The difference comparing to ϵ-greedy
is that it uses first-order uncertainty "Entropy" in the rating prediction for score-based
exploration and the reward design.

• EQL is our framework with traditional Q-learning in stead of conservative Q-learning, so
the exploration is purely guided by uncertainty without any constraints.

• CoLin is a collaborative contextual bandit based method which explicitly models the underly-
ing dependency among users/bandits with the help of a weighted adjacency graph, comparing
to other bandit exploration technique like upper confidence bound based (UCB-based) HLin
or factorUCB, it achieves best performance in multiple recommendation datasets.
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Table 12: Recommended Movies for a random user

Model Recommended Important Movies Movie Genre Vacuity

ECQL

1995,Star Trek: Voyager: Season 1 Sci-Fi,Action 0.10
2005,7 Seconds Action,Adventure 0.12

1994,Immortal Beloved Romance 0.14
1996,No Way Back Action 0.11

1996,Screamers Sci-fi, Action 0.09

EQL

2003,Dinosaur Planet Adventure,Fantasy 0.16
1982,Nature: Antarctica Documentary 0.15

1997,Sick Romance, Drama 0.14
1994,Paula Abdul’s Get Up Educational 0.16

1997,Character Romance,Drama 0.15

ϵ-greedy

1979,Winter Kills Action 0.08
1991,Antarctica: IMAX Documentary 0.16

1951,The Frogmen Drama 0.13
1983,Silkwood Documentary 0.15

2002,The Powerpuff Girls Movie Animation 0.15

SAC

1951,The Lemon Drop Kid Comedy 0.13
2002,Mostly Martha Romance 0.13
1989,A Fishy Story Romance 0.14

2004,Spartan Action,Military 0.11
1997,The Game Action 0.09

CoLin

1965,The Great Race Adventure,Action N/A
2002,Obsessed Romance,Drama N/A

2000,Magnolia: Bonus Material Military N/A
1965,The Battle of Algiers: Bonus Material Military N/A

1972,Seeta Aur Geeta Musical,Romance N/A

• ICM uses curiosity to facilitate exploration, measured by the error in predicting the next
state from the current state-action pair, leveraging a forward dynamic model trained on prior
interactions. Additionally, it employs an inverse dynamic model to filter out irrelevant state
representations.

• RND employs a fixed, randomly initialized network (random distillation network) as a
reference model. A predictor neural network is trained to replicate the outputs of the
reference model, and the prediction error for any new state serves as a novelty score.

Table 11: Impact of exploration strategies

Model P@5 nDCG@5
Epsilon 0.5977 0.4834

SAC 0.6105 0.5215
EQL 0.6234 0.5331

CoLin 0.6212 0.5236
ICM 0.6057 0.5088
RND 0.6012 0.5024

ECQL 0.6313 0.5365

E.5 ADDITIONAL QUALITATIVE ANALYSIS

We conduct an additional qualitative analysis of a particular user in the Netflix dataset by comparing
the top-N recommended items in time step 16 of our proposed method ECQL with other models
using different exploration strategies, e.g., ϵ-greedy, SAC, and CoLin. We also include EQL to further
validate the necessity of conservative Q-learning. As shown in Table 12, a user with ID 254775
has five most frequently watched movie categories. By order, they are Action, Sci-Fi, Adventure,
Drama, and Romance, which form a top-5 frequency list and are bold in the table. From the table,
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Table 13: Training Efficiency Comparison (averaged training convergence time in hours)

Category Model GFLOPS MovieLens-1M MovieLens-100K
Sequential CL4SRec 5.48 12.9 4.5
Dynamic CKF 5.15 11.0 3.8

Deep Learning DCNv2 5.52 13.3 4.6
Bandit CoLin 5.85 13.9 5.0

Reinforce LIRD 5.87 14.0 5.0

Proposed ECQL 5.08 12.0 4.2

we observe that ECQL successfully captures user’s long-term interests by recommending important
movies that all belong to the top-5 frequency list. Compared to ECQL, EQL recommends some
irrelevant movies of Documentary and Educational Genres that deteriorate the performance since
it is not constrained by a conservative view in the Q-learning process. Frequently recommending
totally irrelevant movies may pose a higher risk of losing the user. For different exploration strategies,
ϵ-greedy brings the least performance by recommending only two important movies that lie in
the top-5 frequency list as it does not leverage a systematic exploration way to explore the user’s
potential interests. In comparison, bandit-based CoLin and entropy-based SAC leverage bandit theory
and first-order entropy to measure the uncertainty and both lead to an improved recommendation
performance by recommending at least three important high frequent movies out of five that reflect
the user’s interests. However, we emphasize that they only capture the short-time interest of the user,
as demonstrated by their recommended important items’ relative order in the top-5 frequency list.

The above analysis is from a random test user in the Netflix data set. For a more comprehensive
analysis, we calculate the Gini index of the diversity for all the recommended results. First, we
test 1,800 users from Netflix test set and then collect 16 (number of time steps) × 1,800 total
recommendations. For each recommendation, we calculate its Gini index by separating 5 results into
different categories and then calculate

Gini = 1−
C∑

c=1

P (c)2 (18)

where C is the number of categories and P (c), c ∈ [1, C] is the probability for each category. Finally,
we average the calculated Gini index for 1,800 recommendations and get the averaged Gini index as
0.71, which is close to 1. This indicates that the recommendation of our model is quite diverse and
contains objects from different categories. Comparing to SAC and CoLin which have averaged Gini
indexes 0.65 and 0.68 respectively, our ECQL achieves the most diverse recommendation thanks to
the novel evidence-based exploration, which is also verified by Table 12.

E.6 TRAINING EFFICIENCY

We report the training efficiency (averaged training convergence time measured in hours) comparison
of the ECQL model on MovieLens-100K and MovieLens-1M datasets with respective strongest
baseline in each category in Table 13. For fair comparison, in all settings, the training resource is two
A-100 GPUs of memory 80G and all baselines are implemented with PyTorch framework. Besides,
our model’s computation per top-5 recommendation step reaches an average 5.08 GFLOPS.

F LIMITATIONS, FUTURE WORKS, AND BROADER IMPACT

In our evaluation, we applied the proposed ECQL method to the simulated off-policy setting using
the offline user interaction datasets to mimic real-world scenarios. It could be more interesting to
implement this ECQL method in the online scenarios which could better reflect the model’s real-time
performance. We are planning to further extend this work to apply to those real-world time sequence
data in different fields such as health and autonomous vehicle to see its scalability, generalizability,
and adaptability as a future work. And we will also conduct plenty of ablation and case analysis in
these sparse and safety-critical domains to evaluate the effectiveness of our unique evidence-based
exploration balanced with a conservative learning design.
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The proposed ECQL can be generally applied to safety-critical applications, which are common in
many domains such as health, autonomous vehicle, cybersecurity, military operations, and more. We
provide conservative evidential exploration which doesn’t let learned policy deviate far from the
behavioral policy and supports the gradual exploration of a complex environment with sparse reward
signals by leveraging fine-grained second-order uncertainties. The principled exploration can ensure
high information gain with much reduced data annotations, which can benefit many domains where
data annotation is costly.

G SOURCE CODE

The source code and processed datasets can be accessed here. https://anonymous.4open.
science/r/EvidentialRecommendation-2BDE/README.md
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