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ABSTRACT

Large pretrained language models (PreLMs) are revolutionizing natural language
processing across all benchmarks. However, their sheer size is prohibitive for small
laboratories or deployment on mobile devices. Approaches like pruning and distil-
lation reduce the model size but typically retain the same model architecture. In
contrast, we explore distilling PreLMs into a different, more efficient architecture
CMOW, which embeds each word as a matrix and uses matrix multiplication to en-
code sequences. We extend the CMOW architecture and its CMOW/CBOW-Hybrid
variant with a bidirectional component, per-token representations for distillation
during pretraining, and a two-sequence encoding scheme that facilitates down-
stream tasks on sentence pairs such as natural language inferencing. Our results
show that the embedding-based models yield scores comparable to DistilBERT on
QQP and RTE, while using only half of its parameters and providing three times
faster inference speed. We match or exceed the scores of ELMo, and only fall
behind more expensive models on linguistic acceptability. Still, our distilled bidi-
rectional CMOW/CBOW-Hybrid model more than doubles the scores on linguistic
acceptability compared to previous cross-architecture distillation approaches. Fur-
thermore, our experiments confirm the positive effects of bidirection and the
two-sequence encoding scheme.

1 INTRODUCTION

Large pretrained language models (Devlin et al., 2019; Raffel et al., 2020) (PreLMs) have emerged as
de-facto standard methods for natural language processing (Wang et al., 2018; 2019). The common
strategy is to pretrain models on enormous amounts of unlabeled text before fine-tuning them for
downstream tasks. However, the drawback of PreLMs is that the models are becoming larger
and larger with up to several billions of parameters (Brown et al., 2020). This comes with high
environmental and economic costs (Strubell et al., 2019) and shifts the development and research
in the hands of a few global players only (Bommasani et al., 2021, pp. 10-12). Even though
a single pretrained model can be reused for multiple downstream tasks, the sheer model size is
often prohibitive. The immense resource requirements prevent using those models in small-scale
laboratories and on mobile devices, which is tied to privacy concerns (Sanh et al., 2020b).

There is a need for more efficient models or compressed versions of large models to make AI research
more inclusive and energy-friendly, while fostering deployment in applications. Reducing the size of
PreLMs using knowledge distillation (Hinton et al., 2015) or model compression (Bucila et al., 2006)
is an active area of research (Sanh et al., 2020a; Jiao et al., 2020; Sun et al., 2020). Both knowledge
distillation and model compression can be described as teacher-student setups. The student is trained
to imitate the predictions of the teacher while using less resources. Typically, a large PreLM takes
the role of the teacher while the student is a smaller version of the same architecture. Sharing the
same architecture between student and teacher enables using dedicated distillation techniques, e. g.,
aligning the representations of intermediate layers (Sanh et al., 2020a; Sun et al., 2020).

However, using more efficient architectures as student has already shown promising results such
as the task-specific distillation approaches by Tang et al. (2019) and Wasserblat et al. (2020). In
their works, the student models are LSTMs (Hochreiter & Schmidhuber, 1997) or models based on a
continuous bag-of-words representation (CBOW) (Collobert & Weston, 2008; Mikolov et al., 2013).
On the one hand, LSTMs are difficult to parallelize as they need at least O(n) sequential steps to
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encode a sequence of length n. On the other hand, CBOW-based models are not order-aware, i. e.,
cannot distinguish sentences with the same words but in different order (“cat eats mouse” vs. “mouse
eats cat” are treated equivalent). There are, however, more efficient models such as Mai et al. (2019)’s
continual multiplication of words (CMOW) that do capture word order by representing each token as
a matrix, instead of a vector as in CBOW. A sequence in CMOW is modeled by the non-commutative
matrix multiplication, which makes the encoding of a sequence becomes dependent on the word
order. We denote such models as matrix embeddings.

The present work investigates how order-aware matrix embeddings can be used as student models in
cross-architecture distillation from large PreLM teachers. Thus, we complement the existing body of
works that focused predominantly on same-architecture distillation. All previous cross-architecture
approaches are task-specific, whereas we also explore general distillation. We aim to understand
to which extent order-aware embeddings are suited to capture the teacher signal of a large PreLM
such as BERT. To this end, we extend Mai et al. (2019)’s CMOW/CBOW-Hybrid model, which is
a hybrid variant unifying the strength of CBOW and CMOW, with a bidirectional representation
of the sequences. Furthermore, we add the ability to emit per-token representations to facilitate
using a modern masked language model objective (Devlin et al., 2019). We investigate both general
distillation, i. e., the distillation is applied during pretraining on unlabeled text, as well as task-specific
distillation, when an already fine-tuned PreLM is distilled on a per-task basis. We further introduce a
two-sentence encoding scheme to CMOW such that it can deal with similarity and natural language
inferencing tasks. This improves the performance by 32% compared to a naive joint encoding.

Our results show that large PreLMs can be distilled into efficient order-aware embedding models
and achieve performance comparable to ELMo (Peters et al., 2018) on the GLUE benchmark. On
certain tasks, embedding-based models even challenge other size-reduced BERT models such as
DistillBERT. In summary, our contributions are:

• We extend order-aware embedding models with bidirection and make them amenable for
masked language model pretraining.

• We explore using order-aware embedding models as student models in a cross-architecture
distillation setup with BERT as teacher and compare general and task-specific distillation.

• We introduce the first encoding scheme that enables CMOW/CBOW-Hybrid to deal with
two-sentence tasks (32% increase over the naive approach).

• Our results show that the best distilled embedding models can be on-par with more expensive
models such as ELMo or DistilBERT on certain tasks of the GLUE benchmark, while having
a much higher encoding speed (thrice as high as DistilBERT).

Below, we introduce our embedding models, our cross-architecture distillation setup, and our two-
sequence encoding scheme. The experimental procedure is described in Section 3. The results are
reported in Section 4 and discussed in Section 5, where we also relate our work to the literature.

2 METHODS

First, we introduce our bidirectional extension to the CMOW/CBOW-Hybrid model. Subsequently,
we introduce our approach for cross-architecture distillation that we use during the pretraining and
fine-tuning stages. Finally, we introduce a two-sentence encoding scheme for order-aware embedding
models that is crucial for fine-tuning on downstream tasks with paired sentences.

2.1 EXTENDING THE ORDER-AWARE EMBEDDING MODELS

We extend the CMOW/CBOW-Hybrid embeddings of Mai et al. (2019) with bidirection and the ability
to emit per-token representations as a foundation for cross-architecture distillation. CMOW/CBOW-
Hybrid embeddings, our baseline model, are a combination of matrix embeddings and vector
embeddings. Compared to vector-only embeddings, the word order can be captured because matrix
multiplication is non-commutative. Given a sequence of n tokens, matrix-space embeddings Xj ∈
Rd×d for each different token j, and vector-space embeddings xj ∈ Rdvec , the CMOW/CBOW-
Hybrid embedding of a sequence of length n is the multiplication of embedding matrices Xi

2



Under review as a conference paper at ICLR 2022

concatenated (symbol ·||·) to the summation of the embedding vectors xi:

H(CMOW) := X
(CMOW)
1 ·X(CMOW)

2 · · ·X(CMOW)
n

h(CBOW) :=
∑

1≤j≤n

x
(CBOW)
j

h(Hybrid) := flatten
(
H(CMOW)

)
|| h(CBOW)

where flatten collapses the matrix into a vector. The original work on CMOW (Mai et al., 2019) has
extensively analyzed the CMOW and CBOW components individually and found that joint training
is generally preferable. The CMOW and CBOW components can have different dimensionalities, as
they are combined via concatentation. We initialize each matrix Xj as identity plus Gaussian noise
Id +N (0, σ2

init) with σinit = 0.01.
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Figure 1: The bidirectional CMOW component of our proposed architecture during pretraining.
In this example, the model predicts the masked token at position 4 by concatenating forward and
backward matrix embeddings, which are then fed into a masked language modeling head.

Proposed Model: Bidirectional CMOW/CBOW-Hybrid Inspired by the success of bidirection
in RNNs (Schuster & Paliwal, 1997), LSTMs (Peters et al., 2018), and Transformers (Devlin et al.,
2019), we extend CMOW by a bidirectional component. Hence, we introduce a second set of matrix-
space embeddings that are multiplied in reverse order. We then have one matrix embedding for the
forward direction X(fw) ∈ Rnvocab×d×d and one for the backward direction X(bw) ∈ Rnvocab×d×d.
Then, we concatenate forward and backward directions. Figure 1 illustrates bidirectional CMOW.

Furthermore, we emit one representation per token position i, which allows training with a masked
language model objective (Devlin et al., 2019). Thus, we are able to make use of the BERT teacher
signal for pretraining. Since we can reuse computations, O(n) matrix multiplications are sufficient to
encode a sequence of length n. For these intermediate representations, we also modify the CBOW
component in a way that it yields partial sums for the forward and backward directions. Formally, we
compute the CMOW/CBOW-Hybrid representation as follows:

H
(Bidi.CMOW)
i := X

(fw)
1 ·X(fw)

2 · · ·X(fw)
i ||X(bw)

n ·X(bw)
n−1 · · ·X

(bw)
i

h
(Bidi.CBOW)
i :=

i∑
j=1

x
(CBOW)
j ||

n∑
j=i

x
(CBOW)
j

h
(Bidi.Hybrid)
i := flatten

(
H

(Bidi.CMOW)
i

)
|| h(Bidi.CBOW)

i
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For fine-tuning on tasks with full sentences as input, e. g., natural language inferencing, we do not
need per-token representations. In this case, we compute the representation of a token sequence as:

H(Bidi.CMOW) := X
(fw)
1 ·X(fw)

2 · · ·X(fw)
n ||X(bw)

n ·X(bw)
n−1 · · ·X

(bw)
1

h(CBOW) :=

n∑
j=1

x
(CBOW)
j

h(Bidi.Hybrid) := flatten
(
H

(Bidi.CMOW)
i

)
|| h(CBOW)

i

Note that the forward and backward directions of the embedding vectors h(CBOW) conflate to
equivalent formulas when we encode entire sequences. Thus, we only need to include a single CBOW
representation along with the two CMOW components that do yield different results for the forward
and backward direction. At inference time, the model is parallelizable along the sequential dimension.

For regularization, we apply a mild dropout (p=0.1) on both the embeddings and their aggregated
representations during pretraining. Then, we feed them into a linear masked language modeling
head, see Figure 1, or an MLP classification head to tackle the downstream tasks. We have also
experimented with linear, LSTM, and CNN classifiers, which are described in Appendix A. We chose
an MLP because it adds nonlinearity to the model without introducing further complexity. The MLP
has led to the best average performance across all GLUE tasks (we report the results in Appendix C).

2.2 CROSS-ARCHITECTURE DISTILLATION

A central question of our research is whether we can distill a large PreLM, e. g., BERT, into more
efficient, non-transformer architectures such as the proposed bidirectional CMOW/CBOW-Hybrid
model. This requires a cross-architecture distillation approach, which we describe below.

In general, the idea of knowledge distillation is to compress the knowledge of a large teacher model
into a smaller student model (Hinton et al., 2015; Bucila et al., 2006) . It involves a loss function L
that is a combination of two loss terms, i. e., L = α · Lhard + (1−α) · Lsoft with weighting parameter
α. Lhard denotes the cross-entropy loss with respect to the ground truth and Lsoft = Σiti · log(si) is
the cross-entropy between student logits s and the teacher signal t. Optionally, the softmax within
Lsoft is flattened by a temperature parameter T . We distinguish general distillation, where BERT’s
teacher signal is only used during pretraining, and task-specific distillation, where the BERT teacher
signal is used during fine-tuning for the downstream (see related work).

Considering our goal to design a cross-architecture distillation, the general distillation approach
has the conceptual benefit that the teacher model is not needed for fine-tuning. Thus, the student
model is capable of tackling downstream tasks without supervision of the large teacher. This has the
benefit that one does not need to carry around the BERT model for adaption to every new downstream
task. Above, we have introduced the ability to emit per-token representations with lightweight
(bidirectional) CMOW/CBOW-Hybrid embedding models. This enables us now to use BERT’s
teacher signal during pretraining together with a masked language modeling objective. With other
words, this enables us to perform cross-architecture distillation with matrix embeddings.

We consider three variants of cross-architecture distillation in our experiments: a) When using
general distillation, depicted in Figure 1, BERT acts as a teacher during pretraining and the model is
fine-tuned to downstream tasks on its own. b) For task-specific distillation, BERT acts as a teacher
during fine-tuning as shown in Figure 2. For this case, we have the option of either b1) starting with
pretrained embeddings (from general distillation, i. e., the a) variant), or b2) starting from scratch
with randomly initialized embeddings.

2.3 TWO-SEQUENCE ENCODING WITH MATRIX EMBEDDINGS

When fine-tuning our matrix embeddings to downstream tasks, we can deviate from BERT’s input
processing, even if BERT is used as a teacher. This is because the distillation loss is computed per
sentence (pair) and not per token. The input processing of BERT encodes two sequences by joining
them into one sequence. For example, in a natural language inferencing task, there is a sentenceA that
potentially entails a sentence B, which is encoded as one sequence using a special separator token.
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This encoding scheme is less useful to our matrix embeddings without any attention component since
the order-aware matrix multiplications would blend the representation of the two sequences.

To develop an appropriate two-sequence encoding scheme for matrix embeddings, we take inspiration
from the pre-transformer era, e. g., Mou et al. (2016), and from SentenceBERT (Reimers & Gurevych,
2019). The key idea is to encode two sentences A and B separately before combining them.
As combination operation, we use the absolute elementwise difference and concatenate it to the
representations of A and B, which we denote as DiffCat:

h(DiffCat) = h(A) || |h(A) − h(B)| || h(B)
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Figure 2: Seperate encoding (DiffCat) for sequence pairs using a Bidirectional CMOW/CBOW-
Hybrid model during fine-tuning, optionally, with task-specific distillation with a BERT teacher.

We illustrate this separate encoding scheme during task-specific distillation in Figure 2. The rationale
for using a concatenation of both sequence representations along with their difference is that we add
a component for the similarity of the two sequence representations, without loss of expressive power.

3 EXPERIMENTAL PROCEDURE

The experimental procedure is divided in pretraining on unlabeled text and fine-tuning on the
downstream tasks. We provide the details for these two stages and close the section by outlining the
downstream tasks and evaluation measures.

3.1 PRETRAINING AND GENERAL DISTILLATION

In the pretraining stage, as shown in Figure 1, we train our proposed bidirectional CMOW/CBOW-
Hybrid model with a masked language modeling objective (MLM) (Devlin et al., 2019) on large
amounts of unlabeled text. The MLM objective is to predict left-out words from their context. We
put equal weights on the MLM objective and the teacher signal from BERT (α = 0.5). As suggested
by Liu et al. (2019) and Sanh et al. (2020a), we do not use the next-sentence-prediction objective of
BERT, but only the MLM objective.

As datasets for pretraining, we use a combination of English Wikipedia and Toronto Books (Zhu
et al., 2015), as used in original BERT. To reduce the environmental footprint of our experiments,
we have only pretrained a single bidirectional CMOW/CBOW-Hybrid model with BERT-base as a
teacher on the full unlabeled training data, after pre-experiments on 10% of the training data showed
that the selected CMOW/CBOW-Hybrid with distillation exceeded the performance of the baseline.

We use matrix embeddings of size 20× 20 = 400 (d = 20) for both the CMOW directions (forward
and backward) and vector embeddings of size dvec = 400. We use BERT’s tokenizer and its
vocabulary for both, the teacher and student. The BERT tokenizer relies primarily on the WordPiece
algorithm (Wu et al., 2016), which yields a high coverage while maintaining a small vocabulary.
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3.2 FINE-TUNING AND TASK-SPECIFIC DISTILLATION

In the fine-tuning stage, as shown in Figure 2, the pretrained model is adapted for each downstream
task individually. The training objective for fine-tuning is either cross-entropy with the ground truth
(in general distillation) or a mixture of the ground truth loss and cross-entropy with respect to the
teacher’s logits (in task-specific distillation). Again we put equal weight on ground truth and teacher
signal along (α = 0.5) with unit temperature. To facilitate distillation on regression tasks, we follow
Raffel et al. (2020) and cast STS-B from regression to classification by binning the scores into
intervals of 0.2. To encode the inputs for two-sequence tasks, we use a sequential encoding similar to
BERT and the proposed DiffCat encoding (see Section 2.3).

For task-specific distillation, we employ an uncased BERT-base model1 from the Huggingface
repository that has already been fine-tuned for each task of the GLUE benchmark. We have fine-tuned
the BERT model ourselves on the tasks STS-B, where we applied binning, and MNLI, since the
Huggingface model led to subpar results. We use the same fine-tuned BERT model as a teacher for
all reported results with task-specific distillation.

We seek a fair comparison between unidirectional CMOW/CBOW-Hybrid baseline model and our
bidirectional model. As such, we allow both models to equally benefit from the BERT’s teacher
signal during fine-tuning. For this comparison, we use random initialization for both models because
the Mai et al. (2019)’s pretrained embeddings would come with a different vocabulary that covers
only 53% of the one of BERT. Throughout the other experiments, we initialize our bidirectional
CMOW/CBOW-Hybrid with the pretrained embeddings from general distillation, while we isolate
the effect of task-specific distillation in a dedicated experiment.

For hyperparameter optimization, we tune learning rates in the range [10−3, 10−6]. In total, we have
conducted 306 training and evaluation runs for hyperparameter optimization of each GLUE task. To
determine the best model, we use each task’s evaluation measure on the development set. We run
each model for 20 epochs with early stopping (5 epochs patience). We select appropriate batch sizes
on the basis of preliminary experiments and training data sizes. For a more detailed discussion, we
refer to Appendix B. The hyperparameters of the best-performing models are reported in Appendix C.

We have further experimented with data augmentation and using exclusively the teacher signal during
task-specific distillation (α = 1). In some tasks, we could further increase the results by a small
margin, but found no consistent improvement. These results are also reported in Appendix C.

3.3 DOWNSTREAM TASKS AND MEASURES

We use the GLUE benchmark (Wang et al., 2018) to evaluate our models. The GLUE benchmark
consists of nine tasks for English language comprehension (Wang et al., 2018). These tasks comprise
natural language inference (MNLI-m, QNLI, WNLI, RTE), sentence similarity (QQP, STS-B, MRPC),
linguistic acceptibility (CoLA), and sentiment analysis (SST-2). All tasks are based on pairs of
sentences except for CoLA and SST-2, which are single-sentence tasks. The GLUE benchmark
explicitly encourages using different fine-tuning strategies for different tasks. For our evaluation,
we use the GLUE development set along with its task-specific measures. As such, the performance
on all four NLI tasks as well as SST-2 is measured with accuracy. CoLA is evaluated by Matthews
correlation coefficient. Similarity tasks are measured by the average of Pearson and Spearman
correlation for the STS-B task, and as the average of accuracy and F1-score for MRPC and QQP.

4 RESULTS

We present the results along the design choices introduced in Section 2, namely bidirection, cross-
architecture distillation approaches, and two-sequence encoding scheme. Finally, we compare our
best embedding methods with ELMo and BERT distillates from the literature. For brevity, we focus
on reporting key results. The detailed results can be found in Appendix C.

Bidirectional CMOW/CBOW-Hybrid versus Baseline To isolate the effect of the bidirectional
component, we compare unidirectional CMOW/CBOW-Hybrid with bidirectional CMOW/CBOW-

1https://huggingface.co/textattack
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Hybrid under equal conditions. We train both variants from scratch for the downstream tasks,
while using a BERT’s teacher signal. Table 1 shows the results of comparing unidirectional Hybrid
embeddings with the proposed bidirectional Hybrid embeddings. Bidirection helps on the tasks
MNLI, MRPC, QNLI, SST-2, STS-B, and WNLI. On the other tasks, the difference is marginal. We
have an average improvement of 1% of the bidirectional model over the unidirectional model across
all tasks of the GLUE benchmark.

Table 1: Comparison of bidirectional CMOW/CBOW-Hybrid versus unidirectional and bag-of-words
baselines under task-specific distillation with DiffCat encoding and MLP classifier.

Model Type Score CoLA MNLI-m MRPC QNLI QQP RTE SST-2 STS-B WNLI

Hybrid, rand. init. 62.5 13.1 62.5 74.3 71.5 86.6 58.1 83.1 58.6 56.3
Bidirectional Hybrid, rand. init. 63.2 13.0 63.3 75.7 72.6 86.1 57.4 83.3 59.7 57.7

General Distillation vs. Task-specific Distillation Next, we compare general distillation with
task-specific distillation. As shown in Table 2, using general distillation leads to better results for five
tasks (MNLI, MRPC, QQP, STS-B, and RTE) compared to task-specific distillation. For the other
four tasks (CoLA, QNLI, SST-2, and WNLI), task-specific distillation achieves higher scores. The
average score of general distillation is higher than with task-specific distillation in both pretrained
and randomly initialized cases.

Table 2: Comparison of task-specific vs. general distillation using bidirectional CMOW/CBOW-
Hybrid embeddings and MLP classifier. In 5 out of 9 tasks, general distillation performs best.

Distillation Type Score CoLA MNLI-m MRPC QNLI QQP RTE SST-2 STS-B WNLI

General 66.6 16.7 66.6 79.7 71.7 87.2 61.0 82.9 76.9 56.3
Task-specific, rand. init 63.2 13.0 63.3 75.7 72.6 86.1 57.4 83.3 59.7 57.7
Task-specific, pretrained 64.6 23.3 61.8 75.0 72.0 86.3 59.9 82.9 62.9 57.7

DiffCat Encoding vs. Joint Encoding Now, we compare the two encoding schemes, whose results
are presented in Table 3. The best scores were achieved with DiffCat encoding. Most remarkable
is the improvement from 18.1 to 56.2 on the sentence similarity task STS-B when encoding the
sentence pair input via DiffCat. The average improvement of DiffCat encoding is 32% across the
two-sentence GLUE tasks.

Table 3: Comparison of DiffCat encoding vs. joint BERT-like encoding. Both variants use pretrained
bidirectional CMOW/CBOW-Hybrid embeddings with MLP under task-specific distillation. DiffCat
encoding improves the results in all cases except for RTE with the largest margin on STS-B.

Two-Sentence Encoding MNLI-m MRPC QNLI QQP RTE STS-B WNLI

BERT-like Encoding 47.4 71.6 60.0 79.5 57.8 18.1 56.3
DiffCat Encoding 62.6 74.5 68.6 85.7 56.3 56.2 56.3

Comparing bidirectional CMOW/CBOW-Hybrid to the Literature Finally, Table 4 shows the
results of the best-performing bidirectional CMOW/CBOW-Hybrid variants using any of the three
considered distillation methods. As described by Wasserblat et al. (2020), a model needs to capture
context and linguistic structure to perform well on CoLA. We doubled the results for CoLA and SST-2
compared to the best previously reported cross-architecture distillation approaches by Wasserblat
et al. (2020). Our best models scored higher than ELMo (Peters et al., 2018) on the tasks MRPC,
QNLI, QQP, RTE, and WNLI. We achieve higher scores than DistilBERT on RTE and WNLI.

Runtime Performance and Parameter Count To compare runtime, we generate 1,024 batches
with 256 random sequences of length 64 and measure the time to encode the sequences with gradient
computation disabled. As shown in Table 5, CMOW/CBOW-Hybrid is more than 3 times faster than
the fastest competitor, DistilBERT, and only uses about half of its parameters. The inference speed of
CMOW/CBOW-Hybrid could be increased even further because theO(n) steps to encode a sequence
of length n can be parallelized toO(log n) sequential steps, since matrix multiplication is associative.
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Table 4: Comparison of best embedding-based methods (in bold) with methods from the literature on
the validation set of the GLUE benchmark

Method Score CoLA MNLI-m MRPC QNLI QQP RTE SST-2 STS-B WNLI

ELMo (Peters et al., 2018) 68.7 44.1 68.6 76.6 71.1 86.2 53.4 91.5 70.4 56.3
DistilBERT (Sanh et al., 2020a) 77.0 51.3 82.2 87.5 89.2 88.5 59.9 91.3 86.9 56.3
MobileBERT (Sun et al., 2020) — 51.1 84.3 88.8 91.6 70.5 70.4 92.6 84.8 —

CBOW (Wasserblat et al., 2020) — 10.0 — — — — — 79.1 — —
BiLSTM (Wasserblat et al., 2020) — 10.0 — — — — — 80.7 — —
Hybrid (Mai et al., 2019) — — — — — — — 79.6 63.4 —
Word2rate (Phua et al., 2021) — — — — — — — 65.7 53.1 —

Bidi. Hybrid + MLP (ours) 68.0 23.3 66.6 80.9 72.6 87.2 61.0 84.0 76.9 59.2

Table 5: Number of parameters and inference time of the models. Inference time is measured as
encoding speed without gradient computation on an NVIDIA A100-SXM4-40GB card

Model # Parameters Encoding speed (sentences / second)

ELMo 94M 1.1k
BERT-base 109M 4.6k
DistilBERT-base 66M 9.2k
MobileBERT 25M 5.5k
TinyBERT (4 layer) 14M 30.0k
Bidi. CMOW/CBOW-Hybrid 37M 30.0k

5 DISCUSSION AND RELATED WORK

Key Results We have shown that BERT can be distilled into efficient matrix embedding models
during pretraining by emitting intermediate representations. We have further introduced a bidirectional
component and a separate two-sequence encoding scheme for CMOW-style models. We have
observed that the general distillation approach, i. e., using the BERT teacher only during pretraining,
leads to results that are oftentimes even better than those achieved with task-specific distillation.
This is an interesting result because all previous works on cross-architecture distillation relied on
task-specific distillation. Our proposed model offers an encoding speed at inference time that is three
times faster than DistilBERT and more than five times faster than MobileBERT.

Limitations Currently, matrix embeddings still fall behind other BERT distillates, most notably,
MobileBERT, on many of the downstream tasks. In particular, detecting linguistic acceptability
remains a challenge for non-transformer methods, even though we improve upon previous cross-
architecture distillation approaches. So far, we have not analyzed the trade-off between embedding
size and downstream performance. We rely on general arguments for the benefits of increased
dimensionality (Wieting & Kiela, 2019).

Reflection w.r.t. Distillation and Size-reduction Approaches In general distillation, a PreLM is
distilled into a student model during pretraining. DistilBERT (Sanh et al., 2020a) is such a general-
purpose language model that has been distilled from BERT. Apart from masked language modeling
and distillation objectives, the authors also introduce a cosine loss term to align the student’s and
teacher’s hidden states (layer transfer). Furthermore, the student is initialized with selected layers of
the teacher. MobileBERT (Sun et al., 2020) introduced a bottleneck to BERT such that layers can be
transferred to student models with smaller dimensions.

In task-specific distillation, the teacher signal is used during fine-tuning. Sun et al. (2019) use
layer-wise distillation objectives and initialize with teacher weights to train BERT students with fewer
layers. TinyBERT (Jiao et al., 2020) applies knowledge distillation in both stages, pretraining and
fine-tuning. TinyBERT (Jiao et al., 2020) yields high throughput rates comparable to CMOW/CBOW-
Hybrid. Yet, TinyBERT requires keeping the teacher model for fine-tuning. We have shown
that CMOW/CBOW-Hybrid is even better with general distillation only than under task-specific
distillation. TinyBERT also augments the training data, which we have also considered but found
no consistent improvement. Turc et al. (2019) analyzes the interaction between pre-training and
fine-tuning with BERT models and find that pretrained distillation works well, which agrees with our
findings on the importance of pretraining with CMOW-style models. LadaBERT (Mao et al., 2020)
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combines knowledge distillation with pruning and matrix factorization. Other approaches consider
distillation in multi-lingual (Tsai et al., 2019) or multi-task settings (Yang et al., 2019).

The works described above assume that the teacher and student share the same architecture. However,
the student model does not need to have the same architecture as the teacher, what we then call
cross-architecture distillation. Wasserblat et al. (2020) use a simple feed forward network with CBOW
embeddings and a bidirectional LSTM model as students. Both models perform well in several
downstream tasks. Tang et al. (2019) explore distilling BERT into a single layer BiLSTM without
using any additional training data or modifications to the teacher architecture. Their distillation-based
approach yields improvements compared to a plain BiLSTM without teacher signal: about 4 points
on all reported tasks (QQP, MNLI, and SST-2). This has motivated us to investigate whether even
simpler models can be used as students of a BERT teacher.

Other techniques for reducing the size of a model are pruning and quantization. Pruning approaches
such as Sanh et al. (2020b) reduce the number of parameters. Still, the resulting smaller models use
the same architecture as their larger counterparts and, thus, pruning does not necessarily improve
inference speed. Quantization is a common post-processing step to reduce model size by decreasing
the floating point precision of the weights (Gupta et al., 2015; Wu et al., 2020). Pruning and
quantization can be applied in conjunction with knowledge distillation (Sanh et al., 2020b; Sun
et al., 2020). Aside from techniques for reducing the model size, there is also a tremendous effort to
improve the efficiency of the transformer architecture in the first place (Tay et al., 2020).

The literature focuses on reducing the size of PreLMs via distillation, pruning, and quantization.
Specialized techniques depend on teacher and student sharing the same architecture, and thus, are not
applicable for cross-architecture distillation. So far, only few recent works consider distilling PreLMs
into other architectures like LSTMs and CBOW models. In this work, we show that cross-architecture
distillation with order-aware embedding models as students outperform previous cross-architecture
distillation approaches and achieve scores comparable to ELMo, while using less computational
resources. Finally, all previous cross-architecture distillation approaches are task-specific, while we
could show that general distillation can lead to even higher scores than task-specific distillation.

6 CONCLUSION AND FUTURE WORK

We have introduced three extensions to the CMOW/CBOW-Hybrid model: a bidirectional component,
a separate two-sequence encoding scheme, and the ability to emit per-token representations. These
per-token representations allow us to distill BERT into CMOW/CBOW-Hybrid already during
pretraining with a masked language modeling objective. Our results show that a separate encoding
scheme improves the performance of CMOW/CBOW-Hybrid on two-sentence GLUE tasks by
more than 30%, while bidirection improves the performance by 1% compared to the unidirectional
model. Furthermore, we have shown that general distillation seems to be sufficient and task-specific
distillation is not necessary for most GLUE tasks. In comparison with more expensive models from
the literature, our embedding-based approach achieves scores that match or exceed the scores of
ELMo and are competitive to DistilBERT on QQP and RTE with only half of its parameters and thrice
its encoding speed. While linguistic acceptibility remains a challenge for non-transformer models,
our approach yields notably higher scores than previous cross-architecture distillation approaches.

In future work, one could further improve the efficiency by applying pruning (Sanh et al., 2020b)
and/or quantization (Wu et al., 2020) techniques on the learned matrices to allow sparse matrix
multiplication during encoding. Future work could explore what components would be necessary
to improve the scores on particularly challenging downstream tasks such as detecting linguistic
acceptability. This might include the introduction of a small attention module like the one of
gMLP (Liu et al., 2021) to CMOW/CBOW-Hybrid. Since we have shown how to emit (and train)
per-token representations with CMOW, an interesting direction of future work would be to explore
whether CMOW representations are suited as order-aware embeddings in transformer models, which
might alleviate the need for a dedicated position embedding. Similarly, the per-token representations
enables tackling question answering tasks with CMOW-style models, in which a span of the context
ought to be predicted. Finally, matrix embeddings are technically not limited to natural language
processing. Therefore, another interesting path of future work would be to explore the use of matrix
embeddings in other domains where sequences of discrete elements need to be encoded, e. g., event
sequences, gene sequences, or item sequences in recommender systems.
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ETHICS STATEMENT

There has been criticism about large-scale language models and the amplification of bias through the
reduction of model size. This is particularly a problem when the model is not explainable. In our
proposed method, we distill large-scale pretrained language models into models that do not have a
nonlinearity (except for the final classification head). Since nonlinearities make explainabilty more
difficult, we hope to contribute to more explainable language models with our work, even though
explainability is not the main focus of the present work.

Another concern with large language models is their immense consumption of resources. In our work,
we have only conducted the expensive pretraining step once on the full unlabeled training data. Only
afterwards, we conduct multiple “cheap” runs to optimize hyperparameters for downstream tasks.
Thus, our experiments themselves have been conducted resource efficient. Furthermore, this research
contributes to the development of simpler and more efficient models for natural language processing.

REPRODUCIBILITY STATEMENT

To ensure that our experiments are reproducible, we have tracked all hyperparameters throughout
experimentation. We have described all steps for data processing, i. e., tokenization (we use the BERT
tokenizer) and binning (for STS-B) in the main part. The datasets from the GLUE benchmark are
well-known to the community, because of which we have omitted a detailed description, except for
the metrics that we have reported.

We make the code and pretrained embeddings available upon acceptance of the paper. For now, we
provide the code for our experiments as supplementary material.
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APPENDIX

A OVERVIEW OF ARCHITECTURAL CHOICES

Figure 3 provides an overview of the architectural choices explored in this paper. We use pretrained
BERT Devlin et al. (2019) as well as the embeddings from Mai et al. (2019) as teacher for general
distillation. Additionally, we pretrain a model CMOW/CBOW-Hybrid with our extension of masked
language model training and bidirection on the same English Wikipedia + Toronto Books dataset.
These pretrained embeddings may serve as initialization for the downstream classification models.
We also evaluate downstream classification models that have been initialized randomly. For the
downstream classification models, we consider three types of embeddings along with four types of
classifiers.

Linear

MLP

2D-CNN (only with
pure CMOW)

LSTM

Masked Language Model
Pretraining

Embedding Model and Downstream Classifier

CMOW

CMOW/CBOW-Hybrid

Bidirectional
CMOW/CBOW-Hybrid

Word2vec-style Pretraining 
(Mai et al. 2019)

BERT (Devlin 2018)

General Distillation 

Unlabeled Text

Fine-Tuning on
Downstream

Tasks

Task-specific Distillation (optional)

Pretrained
Embeddings

(optional)

Figure 3: All considered for embeddings and downstream classifiers, pretraining and fine-tuning.

For training on the downstream task, we use once again BERT as a teacher for task-specific distillation,
while our experiments on general distillation only benefit from the initalization of the MLM-pretrained
CMOW/CBOW-Hybrid model. Throughout the main part of the paper, we have reported scores
with an MLP downstream classifier, which achieved the highest average scores. We have further
experimented with a linear downstream classifier, LSTM, and 2D-CNN, which we briefly describe
below.

LSTM We have further experimented with pooling the sequence of embeddings with an LSTM. In
the past, BiLSTM models have been successfully used in sentiment analysis tasks Xu et al. (2019);
Hameed & Garcia-Zapirain (2020). In an LSTM network, the information at hand is propagated
in the forward direction. Thus, each state t depends on its predecessor t− 1. BiLSTM are LSTM
networks, in which the inputs are processed twice: once in the forward direction and once in the
backward direction, generating a set of two outputs. In order to generate the output vectors, the output
of a single BiLSTM block is fed into an MLP, consisting of two consecutive linear layers with ReLU
activation functions. Note that the BiLSTM operates on a sequence of token embeddings, instead of
operating on pooled sentence embeddings like the other student models. We apply a dropout of 0.5
after the first linear layer.

CNN We also explore a 2D-CNN classifier that induces a bias for learning two-dimensional struc-
tures within the (aggregated) embedding matrices. The CNN consists of one transposed convolution,
which increases the matrix dimensions by a factor of four. Following that, we employ a block of
three convolutional layers, the first one having a single filter (or two, for hybrid variants) and a kernel
size of four, with the remaining two layers having 3 (4) kernels with stride 2. To avoid distorting
the input embeddings, no padding is applied. ReLU is used for all activation functions. We apply
BatchNorm for regularization before the last convolutional layer’s output is flattened and passed into
a linear layer, which produces the predictions. We add a dropout of 0.4 before the last linear layer.
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Table 6: Hyperparameter search space and optimization method
Hyperparameter Range Opt. method

— General Distillation —
Learning rate {10−3, 5 · 10−4, 10−4, 5 · 10−5, 10−5} grid search
Warmup steps {0, 500} grid search
Embedding dropout {0, 0.1} grid search
Hidden unit dropout {0.2} fixed
Batch size {1,8,32,64,128,256} manual

— Task-specific Distillation —
Learning rate {10−3, 5 · 10−4, 10−4, 5 · 10−5, 10−5, 5 · 10−6} grid search
Embedding type Hybrid, CMOW, CBOW grid search
Embedding initialization random, pretrained grid search
DiffCat true, false grid search
Bidirectional true, false grid search
Classifier Linear Probe, MLP, CNN, BiLSTM grid search

B DISCUSSION OF HYPERPARAMETERS AND LOSS FUNCTIONS FOR
DISTILLATION

We list hyperparameter search spaces along with their optimization methods in Table 6. For the
experiments on data augmentation and using only soft loss, we keep the configurations of the best
models (See Table 7 and tune the learning rate, again. We optimize over all six initial learning rates,
namely {10−3, 5 · 10−4, 10−4, 5 · 10−5, and 10−5}. All initial learning rates decay linearly over the
course of training. Note, we also experimented with using warmup steps versus no warmup for the
learning rate schedule. As the warmup did not improve the results, we did not use it.

For the softmax temperature, we find that T = 1 is often used Hinton et al. (2015); Mao et al. (2020);
Jiao et al. (2020); Mishra & Marr (2018); Polino et al. (2018). Since a higher temperature also flattens
the curve over all predictions, it could add too much noise and it is therefore better to use a smaller
temperature Chen et al. (2017). Setting the weight α = 1 corresponds to only using hard loss and
α = 0 to only using soft loss. Since we do not want to discard any information stemming from the
hard loss, we do not follow the approach of Wasserblat et al. who only use the soft loss Wasserblat
et al. (2020) but instead, we employ a vanilla knowledge distillation approach following Hinton et
al. Hinton et al. (2015).

Hinton et al. (2015) state, that using cross-entropy loss on the softmax-temperature with a large
temperature, for example T = 20, corresponds to only using the Mean Square Error (MSE) loss
on the raw student and teacher logits. Therefore it is also common to use this loss for the soft
distillation loss Tang et al. (2019); Wasserblat et al. (2020); Mukherjee & Awadallah (2020). While
Tang et al. Tang et al. (2019) used the weighted hard cross-entropy loss in the overall loss calculation,
Wasserblat et al. and Mukherjee et al. only used the soft loss Tang et al. (2019); Wasserblat et al.
(2020); Mukherjee & Awadallah (2020). A disadvantage of MSE loss, is that every error has a huge
effect on the overall loss, since it is squared. Another point is, that Hinton et al. found it beneficial to
use small temperature values if the teacher is way bigger than the student Hinton et al. (2015). Since
using MSE loss corresponds to using big T values, this loss does not apply to our use case of using
small students for lower bound knowledge distillation, but with cross-entropy loss, we still have the
possibility to achieve the behavior of the MSE loss by setting the value of T to a big value.

C DETAILED RESULTS

In the following, we provide detailed results for task-specific distillation including the different
downstream classifiers, unidirectional CMOW/CBOW-Hybrid, and joint two-sequence encoding.
The best performing model per task are marked in bold. We abbreviate CMOW/CBOW-Hybrid as
’Hybrid’.
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For the unidirectional baseline model CMOW/CBOW-Hybrid, we initialize with pretrained embed-
dings provided by Mai et al. (2019)2, which cover 54% of BERT’s vocabulary. As initialization for
the newly developed bidirectional CMOW/CBOW-Hybrid models, we use our own pretrained model
obtained by general distillation with BERT, as described in Section 3.

Table 7 summarizes the best performing models along with their hyperparameter configurations for
each task. Note that we have chosen to use an MLP downstream classifier for the results reported in
the main part of this work. Using an MLP downstream classifier has led to the highest average scores
across all GLUE tasks.

In Table 8, we report an extended version of the comparison with the literature. Here, we also include
our BERT-base teacher model, aswell as TinyBERT Jiao et al. (2020) and Tang et al. (2019)’s distilled
BiLSTM. Note that TinyBERT and BiLSTM are not fully comparable, because those numbers are
reported on the official GLUE test set, while we have used the validation set for our experiments.

In Table 9, we report the results for all downstream classifiers without the DiffCat aggregation but
with a sequential BERT-like two-sequence encoding. It is interesting to see that the CMOW-only
variant with 2D-CNN classifier leads to the best scores on sentiment analysis task SST-2. Note that
all CMOW variants reported in this table are unidirectional and use task-specific distillation.

In Table 10, we report the results for all downstream classifiers with DiffCat two-sequence encoding.
Here we observe, that pretrained CBOW with an MLP classifier leads to the best results on sentence
similarity (STS-B). Again, all CMOW variants reported in this table are unidirectional and use
task-specific distillation.

In Table 11, we report the results for bidirectional models with DiffCat two-sequence encoding.

From all tables combined, we see that Bidirectional CMOW/CBOW-Hybrid model leads to the highest
scores on average, even though, on individual tasks, some other variations of the approach lead to
higher scores. Thus, we regard bidrectional CMOW/CBOW-Hybrid as our primary model, whose
scores we have reported in the main paper, while isolating the effect of the individual components
(bidirection, DiffCat encoding, distillation strategies).

We list the number of parameters in Tables 12 and 13. While the absolute numbers might seem high,
it is important to note that we have also counted the parameters of the embeddings. As we show in
the tables, the number of parameters in the classification models is much lower.

We have performed further experiments with the best performing model for each task: data augmen-
tation and using only soft loss.

Using Only Soft Loss We study the influence of the alpha value used in the loss function, based on
the best results obtained with the initial α = 0.5. The goal is to investigate whether using only soft
loss, i. e., setting α = 0.0 leads to different results. As Table 8 shows, using only soft loss improves
only the MRPC task by a small margin.

Data Augmentation We conduct a further study with data augmentation as in TinyBERT (Jiao
et al., 2020). We employ their technique of replacing words by similar word embeddings and nearest
predictions from BERT to augment the GLUE training datasets. The results are shown in Table 8.
We find that the effect of data augmentation is small. An improvement was only observed on SST-2
(+1.2 points) and STS-B (+3.6).

2Downloaded from Zenodo: https://zenodo.org/record/3933322#.YKJ_uxKxXJU
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Task Score Classifier Emb. type Emb. initialization DiffCat Bidirectional Learning rate

CoLA 23.3 MLP CMOW/CBOW-Hybrid pretrained true true 1.0E-4
MNLI-m 63.3 MLP CMOW/CBOW-Hybrid not pretrained true true 1.0E-4
MRPC 78.2 MLP CBOW pretrained true false 1.0E-3
QNLI 72.6 MLP CMOW/CBOW-Hybrid not pretrained true true 5.0E-5
QQP 86.6 MLP CMOW/CBOW-Hybrid not pretrained true false 1.0E-4
RTE 59.9 MLP CMOW/CBOW-Hybrid pretrained true true 5.0E-4
SST-2 86.8 CNN CMOW not pretrained false false 5.0E-4
STS-B 66.0 MLP CBOW pretrained true false 1.0E-4
WNLI 69.0 CNN CMOW pretrained false false 1.0E-5

Table 7: Hyperparameter configurations for best-performing models by GLUE task

Table 8: Scores on the GLUE development set. Our best performing general distillation and task-
specific distillation models are highlighted in bold font per task. References indicate sources of
scores. The ?-symbol indicates numbers on the official GLUE test set. CMOW/CBOW-Hybrid is
abbreviated as ’Hybrid’.

Score CoLA MNLI-m MRPC QNLI QQP RTE SST-2 STS-B WNLI

— large-scale pre-trained language models —
ELMo (Sanh et al., 2020a) 68.7 44.1 68.6 76.6 71.1 86.2 53.4 91.5 70.4 56.3
BERT-base (Sanh et al., 2020a) 79.5 56.3 86.7 88.6 91.7 89.6 69.3 92.7 89.0 53.5
BERT-base (our teacher model) 78.9 57.9 84.2 84.6 91.4 89.7 67.9 91.7 88.0 54.9
Word2rate Hybrid (Phua et al., 2021) — — — — — — — 65.7 53.1 —

— general distillation baselines —
DistilBERT (Sanh et al., 2020a) 77.0 51.3 82.2 87.5 89.2 88.5 59.9 91.3 86.9 56.3
MobileBERT (Sun et al., 2020) — 51.1 84.3 88.8 91.6 70.5 70.4 92.6 84.8 —

— task-specific distillation baselines —
?TinyBERT (Jiao et al., 2020) — 54.0 84.5 90.6 91.1 88.0 70.4 93.0 90.1 —
?BiLSTM (Tang et al., 2019) — — 73.0 — 78.2 — — 90.7
CBOW-FFN (Wasserblat et al., 2020) — 10.0 — — — — — 79.1 — —
BiLSTM (Wasserblat et al., 2020) — 10.0 — — — — — 80.7 — —

— general distillation (ours) —
Bidi. Hybrid + Linear 65.1 15.0 63.6 80.9 70.7 84.3 56.7 84.0 71.1 59.2
Bidi. Hybrid + MLP 66.6 16.7 66.6 79.7 71.7 87.2 61.0 82.9 76.9 56.3

— task-specific distillation (ours) —
CMOW + CNN (rand. init.) 54.6 13.4 45.6 72.3 61.2 82.6 56.3 86.8 15.0 57.8
CMOW + CNN (pretrained) 56.2 18.3 50.1 71.8 60.5 80.6 57.0 85.0 13.2 69.0
CBOW + MLP (pretrained) 63.8 14.0 61.7 78.2 70.8 86.2 57.4 83.8 66.0 56.3
Hybrid + MLP (rand. init.) 62.5 13.1 62.5 74.3 71.5 86.6 58.1 83.1 58.6 56.3
Bidi. Hybrid + MLP (rand. init.) 63.2 13.0 63.3 75.7 72.6 86.1 57.4 83.3 59.7 57.7
Bidi. Hybrid + MLP (pretrained) 64.6 23.3 61.8 75.0 72.0 86.3 59.9 82.9 62.9 57.7

— further experiments on best-performing task-specific distillation models —
Only soft loss (α = 0) 64.0 19.9 62.3 78.7 72.4 68.5 56.3 86.6 62.4 69.0
Data augmentation 63.5 21.2 47.3 76.2 72.1 86.6 52.7 88.0 69.6 57.7
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Table 9: Scores on the GLUE development set without DiffCat encoding
Task-Specific Distillation Score CoLA MNLI-m MRPC QNLI QQP RTE SST-2 STS-B WNLI

— task-specific finetuning (ours) —
Teacher BERT-base 78.9 57.9 84.2 84.6 91.4 89.7 67.9 91.7 88.0 54.9

— task-specific distillation (ours) CBOW not pretrained —
Linear probe 52.8 12.2 43.0 72.3 60.1 74.8 55.6 82.8 17.7 56.3
MLP 53.2 13.0 46.3 71.3 59.7 76.9 54.5 82.9 17.5 56.3
CNN 52.8 11.7 43.0 72.1 60.1 77.5 54.5 82.7 17.2 56.3
BiLSTM 52.1 10.9 44.9 70.8 59.8 78.1 54.5 81.3 12.3 56.3

— task-specific distillation (ours) CBOW pretrained —
Linear probe 52.4 11.0 43.2 72.1 58.8 74.8 54.9 82.5 14.0 60.6
MLP 54.0 14.3 46.3 71.3 60.1 76.9 58.5 83.1 14.8 60.6
CNN 53.0 12.0 43.5 71.6 59.2 77.5 55.2 82.6 18.8 56.3
BiLSTM 50.8 0 44.9 71.3 59.4 78.0 54.0 81.0 12.0 56.3

— task-specific distillation (ours) CMOW not pretrained —
Linear probe 53.7 13.8 45.3 72.1 62.5 80.9 53.4 84.1 15.2 56.3
MLP 54.8 15.1 45.6 72.8 60.6 82.6 55.6 84.3 20.0 56.3
CNN 54.6 13.4 45.6 72.3 61.2 82.6 56.3 86.8 15.0 57.8
BiLSTM 53.2 16.7 44.9 72.1 64.8 80.6 54.2 82.9 7.9 54.9

— task-specific distillation (ours) CMOW pretrained —
Linear probe 54.3 20.8 48.6 71.3 60.3 78.4 54.9 84.5 13.8 56.3
MLP 55.4 18.9 50.4 72.3 61.3 79.3 55.2 83.0 17.9 60.6
CNN 56.2 18.3 50.1 71.8 60.5 80.6 57.0 85.0 13.2 69.0
BiLSTM 51.4 0 44.2 68.4 59.8 81.1 55.2 82.3 15.0 56.3

— task-specific distillation (ours) CMOW/CBOW-Hybrid not pretrained —
Linear probe 54.4 17.0 47.0 72.6 61.1 81.4 53.4 84.5 15.1 57.8
MLP 54.4 13.8 50.0 73.0 60.4 78.6 53.8 84.9 18.5 56.3
CNN 53.6 12.0 42.1 72.6 60.9 79.6 52.7 85.7 16.3 60.6
BiLSTM 52.4 0 43.2 72.1 61.2 80.0 57.4 83.0 18.1 56.3

— task-specific distillation (ours) CMOW/CBOW-Hybrid pretrained —
Linear probe 53.9 19.1 41.0 71.8 57.6 78.7 57.8 83.7 16.2 59.2
MLP 55.3 22.1 47.4 71.6 60.0 79.5 57.8 84.1 18.1 56.3
CNN 54.0 20.7 44.5 71.8 59.9 79.7 54.9 85.9 9.9 59.1
BiLSTM 53.7 17.0 40.6 71.8 61.3 80.3 57.4 82.5 14.0 59.2
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Table 10: Scores on the GLUE development set with DiffCat two-sequence encoding
Task-Specific Distillation Score CoLA MNLI-m MRPC QNLI QQP RTE SST-2 STS-B WNLI

— task-specific finetuning (ours) —
Teacher BERT-base 78.9 57.9 84.2 84.6 91.4 89.7 67.9 91.7 88.0 54.9

— task-specific distillation (ours) CBOW not pretrained —
Linear probe 53.8 11.5 46.6 72.8 62.2 76.7 52.7 83.5 22.0 56.3
MLP 61.0 14.3 57.8 77.2 70.3 86.0 56.7 82.3 47.0 57.7
CNN 53.8 11.2 51.5 75.0 65.8 81.3 53.1 82.3 7.2 56.3
BiLSTM 48.4 11.5 31.8 68.3 66.8 63.2 56.7 83.5 1.5 56.3

— task-specific distillation (ours) CBOW pretrained —
Linear probe 56.3 9.0 47.1 72.8 64.8 77.1 53.4 82.5 43.4 56.3
MLP 63.8 14.0 61.7 78.2 70.8 86.2 57.4 83.8 66.0 56.3
CNN 53.7 10.9 55.0 73.8 66.2 82.1 53.1 82.2 3.8 56.3
BiLSTM 47.7 0 32.7 68.4 69.6 63.2 55.6 82.5 1.3 56.3

— task-specific distillation (ours) CMOW not pretrained —
Linear probe 55.1 10.9 54.3 71.8 62.7 80.9 56.0 85.2 17.6 56.3
MLP 63.2 14.2 61.9 75.5 72.4 86.3 55.2 83.7 62.7 56.3
CNN 55.4 12.4 45.3 72.3 61.5 82.6 57.4 84.3 26.1 56.3
BiLSTM 47.5 0 31.8 70.3 49.5 81.0 55.6 83.4 0 56.3

— task-specific distillation (ours) CMOW pretrained —
Linear probe 56.3 22.4 48.4 72.5 61.3 81.9 54.5 83.9 24.2 57.7
MLP 61.2 20.9 60.2 73.8 64.6 85.9 54.9 84.4 49.4 56.3
CNN 53.4 18.5 40.6 71.8 58.2 68.3 54.9 85.4 26.9 56.3
BiLSTM 49.7 0 32.7 68.3 67.2 82.9 57.0 82.5 0 56.3

— task-specific distillation (ours) Hybrid not pretrained —
Linear probe 51.7 11.2 39.0 71.1 49.5 81.8 56.0 85.2 14.3 57.7
MLP 62.5 13.1 62.5 74.3 71.5 86.6 58.1 83.1 58.6 56.3
CNN 52.8 11.9 45.3 71.6 61.4 84.8 55.2 85.4 2.9 56.3
BiLSTM 50.9 0 42.6 70.1 60.3 79.3 56.0 84.4 9.3 56.3

— task-specific distillation (ours) Hybrid pretrained —
Linear probe 54.0 19.6 45.7 71.3 63.4 80.9 54.2 84.1 11.7 54.9
MLP 62.7 20.9 62.6 74.5 68.6 85.7 56.3 83.1 56.2 56.3
CNN 57.9 19.6 37.6 75.7 62.0 85.4 54.9 82.3 48.5 54.9
BiLSTM 52.1 0 48.0 68.4 71.9 85.3 56.7 82.5 0 56.3

Table 11: Scores on the GLUE development set with DiffCat encoding and the bidirectional
CMOW/CBOW-Hybrid model

Task-Specific Distillation Score CoLA MNLI-m MRPC QNLI QQP RTE SST-2 STS-B WNLI

— task-specific finetuning (ours) —
Teacher BERT-base 78.9 57.9 84.2 84.6 91.4 89.7 67.9 91.7 88.0 54.9

— task-specific distillation (ours) Bidirectional Hybrid, not pretrained —
Linear probe 53.5 11.6 39.4 71.6 64.3 82.5 56.3 85.0 14.6 56.3
MLP 63.2 13.0 63.3 75.7 72.6 86.1 57.4 83.3 59.7 57.7
CNN 52.7 14.5 37.3 71.3 60.8 86.4 55.2 85.8 6.6 56.3

— task-specific distillation (ours) Bidirectional Hybrid, pretrained —
Linear probe 55.5 18.1 42.4 72.1 64.9 81.2 56.7 85.2 22.5 56.3
MLP 64.6 23.3 61.8 75.0 72.0 86.3 59.9 82.9 62.9 57.7
CNN 55.1 20.5 39.3 73.8 61.3 85.9 56.3 85.5 15.9 57.7
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Table 12: Number of parameters without DiffCat encoding
CoLA, MRPC, QNLI, QQP, SST-2, RTE, WNLI MNLI STS-B

— task-specific distillation (ours) CBOW —
Linear probe 47,861,634 47,862,419 47,876,549
– only classifier 3,138 3,923 18,053
MLP 48,647,498 48,648,499 48,666,517
– only classifier 789,002 790,003 808,021
CNN 47,862,708 47,864,737 47,901,259
– only classifier 4,212 6,241 42,763
BiLSTM 53,704,002 53,705,027 53,723,477
– only classifier 5,845,506 5,846,531 5,864,981

— task-specific distillation (ours) CMOW —
Linear probe 23,932,386 23,933,171 23,947,301
– only classifier 3,138 3,923 18,053
MLP 24,718,250 24,719,251 24,737,269
– only classifier 789,002 790,003 808,021
CNN 23,933,460 23,935,489 23,972,011
– only classifier 4,212 6,241 42,763
BiLSTM 24,853,978 24,854,371 35,022,869
– only classifier 924,730 925,123 110,936,21

— task-specific distillation (ours) Hybrid —
Linear probe 24,420,802 24,421,603 24,436,021
– only classifier 3,202 4,003 18,421
MLP 25,222,602 25,223,603 25,241,621
– only classifier 805,002 806,003 824,021
CNN 24,420,558 24,421,855 24,445,201
– only classifier 2,958 4,255 27,601
BiLSTM 30,328,642 30,329,667 30,348,117
– only classifier 5,911,042 5,912,067 5,930,517
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Table 13: Number of parameters with DiffCat two-sequence encoding
CoLA, MRPC, QNLI, QQP, SST-2, RTE, WNLI MNLI STS-B

— task-specific distillation (ours) CBOW —
Linear probe 47,867,906 47,870,259 47,912,613
– only classifier 9,410 11,763 54,117
MLP 50,215,498 50,216,499 50,234,517
– only classifier 2,357,002 2,358,003 2,376,021
CNN 47,865,932 47,869,313 47,930,171
– only classifier 7,436 10,817 71,675
BiLSTM 147,477,458 147,479,811 147,522,165
– only classifier 99,618,962 99,621,315 99,663,669

— task-specific distillation (ours) CMOW —
Linear probe 23,938,658 23,941,011 23,983,365
– only classifier 9,410 11,763 54,117
MLP 26,286,250 26,287,251 26,305,269
– only classifier 2,357,002 2,358,003 2,376,021
CNN 23,936,684 23,940,065 24,000,923
– only classifier 7,436 10,817 71,675
BiLSTM 123,548,210 123,550,563 123,592,917
– only classifier 99,618,962 99,621,315 99,663,669

— task-specific distillation (ours) Hybrid —
Linear probe 24,427,202 24,429,603 24,472,821
– only classifier 9,602 12,003 55,221
MLP 26,822,602 26,823,603 26,841,621
– only classifier 2,405,002 2,406,003 2,424,021
CNN 24,424,990 24,427,583 24,474,257
– only classifier 7,390 9,983 56,657
BiLSTM 128,143,202 128,145,603 128,188,821
– only classifier 103,725,602 103,728,003 103,771,221

— task-specific distillation (ours) Hybrid bidirectional —
Linear probe 36,640,802 36,644,403 36,709,221
– only classifier 14402 18003 82,821
MLP 40,231,402 40,232,403 4,025,0421
– only classifier 3,605,002 3,606,003 3,624,021
CNN 36,638,164 36,641,729 36,705,899
– only classifier 11,764 15,329 79,499
BiLSTM 451,437,602 451,528,821
– only classifier 414,811,202 414,902,421
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