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Abstract001

Knowledge Graph Question Answering002
(KGQA) aims to automatically answer natural003
language questions by reasoning across004
multiple triples in knowledge graphs (KGs).005
Reinforcement learning (RL)-based methods006
are introduced to enhance model interpretabil-007
ity. Nevertheless, when addressing complex008
questions requiring long-term reasoning,009
the RL agent is usually misled by aimless010
exploration, as it lacks common learning011
practices with prior knowledge. Recently,012
large language models (LLMs) have been013
proven to encode vast amounts of knowledge014
about the world and possess remarkable015
reasoning capabilities. However, they often016
encounter challenges with hallucination issues,017
failing to address complex questions that018
demand deep and deliberate reasoning. In this019
paper, we propose a collaborative reasoning020
framework (CRF) powered by RL and LLMs021
to answer complex questions based on the022
knowledge graph. Our approach leverages023
the common sense priors contained in LLMs024
while utilizing RL to provide learning from025
the environment, resulting in a hierarchical026
agent that uses LLMs to solve the complex027
KGQA task. By combining LLMs and the028
RL policy, the high-level agent accurately029
identifies constraints encountered during030
reasoning, while the low-level agent conducts031
efficient path reasoning by selecting the032
most promising relations in KG. Extensive033
experiments conducted on four benchmark034
datasets clearly demonstrate the effectiveness035
of the proposed model, which surpasses036
state-of-the-art approaches.037

1 Introduction038

Knowledge Graph Question Answering (KGQA)039

is a classical NLP task to automatically answer nat-040

ural language questions by reasoning across multi-041

ple triples in a given knowledge graph (KG). The042

KGQA system uses data from knowledge graphs043

to accurately answer user queries. It has significant 044

applications in various fields, making it a key focus 045

of academic research and industry innovation. As 046

user demands become increasingly intricate, recent 047

research has attempted to build KGQA systems 048

capable of answering complex questions to better 049

adapt to real-world scenarios. 050

Complex questions often involve constraints that 051

necessitate logical, quantitative, and aggregation 052

reasoning across a series of KG triples. To an- 053

swer these complex questions effectively, some 054

methods (Chen et al., 2019; Han et al., 2020) in- 055

troduce a hop-by-hop inference process to select 056

the multi-hop relation paths. They are trained in 057

strong supervision through pre-annotated interme- 058

diate golden relations, thus achieving promising 059

performance for complex KGQA. Unfortunately, 060

due to the high cost of data annotation, complex 061

questions are only annotated with final answers, 062

resulting in weak supervision. To tackle the is- 063

sue, several studies (Cui et al., 2023; Zhang et al., 064

2022; Qiu et al., 2020) train a reinforcement learn- 065

ing (RL) agent to sequentially extend its path of 066

reasoning within the KG by iteratively selecting 067

the most promising actions until the target entity 068

is reached. RL-based methods exhibit strong per- 069

formance in both effectiveness and interpretability, 070

as they establish an interpretable inference chain 071

throughout the sequential decision-making process. 072

However, when tackling complex questions that 073

require long-term reasoning, the RL agent is usu- 074

ally misled by aimless exploration, due to its lack 075

of common learning practices with prior knowl- 076

edge. This issue prevents the rapid convergence of 077

the RL agent, thereby diminishing its exploration 078

efficiency (Lv et al., 2020). Furthermore, the ma- 079

jority of existing methods encounter challenge in 080

performing effective reasoning in the knowledge 081

graph for complex questions with constraints. 082

The emergence of large language models 083

(LLMs) in recent times, such as GPT4 (Achiam 084
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et al., 2023) and Llama (Touvron et al., 2023b),085

have been shown to encode a tremendous amount086

of knowledge about the world by virtue of being087

trained on massive amounts of text. LLMs have088

achieved significant success in various tasks, which089

encourages their application in KGQA research090

(Luo et al., 2023; Li et al., 2023; Jiang et al., 2023).091

While these studies have significantly enhanced092

the performance of KGQA systems, they often en-093

counter challenges with hallucination issues, fail-094

ing to provide stable and responsible answers when095

faced with complex questions requiring deliberate096

reasoning (Ye et al., 2023). This limitation is ex-097

pected due to the training methodology employed098

by LLMs, where they are trained to predict the099

next token in sequence based on the context pro-100

vided, without an interval for deliberate thoughts.101

As explained in (Kahneman, 2011), our cognition102

comprises two systems: System 1 is an intuitive103

and unconscious thinking system that relies on ex-104

perience, while System 2 employs knowledge for105

deliberate and reliable logical reasoning. Currently,106

LLMs exhibit characteristics that are more in line107

with System 1 thinking, which may account for108

their shortfall in addressing complex questions.109

To this end, in this paper, we propose a collabo-110

rative reasoning framework (CRF) that integrates111

large language models (LLMs) and hierarchical re-112

inforcement learning (HRL) to mimic human cog-113

nitive processes, thereby enhancing the ability to114

answer complex questions based on the knowledge115

graph. Our approach leverages the common sense116

priors contained in LLMs while utilizing RL to117

provide learning from the environment, resulting118

in a hierarchical agent that uses LLMs to solve the119

complex KGQA task. Specifically, the proposed120

model dismantles the KGQA task into a two-level121

hierarchical decision process. In the high-level122

process, the agent employs RL policy to identify123

constraints (options) encountered during reasoning.124

Furthermore, LLMs output the probability of each125

option based on the current state and in-context126

demonstration, serving as intermediate rewards to127

address the challenge of delayed and sparse re-128

wards due to weak supervision. In the low-level129

process, the agent combining LLMs and the RL pol-130

icy conducts efficient path reasoning by selecting131

the most promising relations (actions) in KG. More132

concretely, we use LLMs to inject common sense133

priors into the agent. The LLMs guide the agent134

by suggesting the most likely courses of action135

to avoid aimless exploration, significantly improv-136

ing learning efficiency. Additionally, the trained 137

policy-based agent can provide deliberate and re- 138

liable logical reasoning as verification for LLMs 139

to eliminate hallucinations. In summary, the main 140

contributions of this paper can be summarized as 141

follows: 142

• We propose a collaborative reasoning frame- 143

work powered by hierarchical RL and LLMs 144

to mimic human cognitive processes. Our 145

approach leverages the common sense priors 146

contained in LLMs while utilizing RL to pro- 147

vide learning from the environment, resulting 148

in a hierarchical agent that uses LLMs to solve 149

the complex KGQA task. 150

• We dismantle the KGQA task into a high-level 151

process for constrain detection and a low-level 152

process for path reasoning, respectively. By 153

combining LLMs and the RL policy, the hi- 154

erarchical agents can tackle the challenges of 155

aimless exploration and hallucination for com- 156

plex question answering based on the knowl- 157

edge graph. 158

• We validate the efficacy of the proposed frame- 159

work through comprehensive experiments and 160

meticulous ablation studies on widely-used 161

benchmark datasets. Empirical results demon- 162

strate that our method achieves state-of-the-art 163

performance for complex KGQA. 164

2 Related Work 165

Our KGQA method is closely related to the studies 166

on Reinforcement Learning and Large Language 167

Models. 168

Reinforcement Learning (RL) for KGQA. The 169

RL-based methods are proposed to frame complex 170

KGQA as a sequential decision-making process to 171

extend its reasoning path within the KG by itera- 172

tively selecting promising actions until reaching 173

the target entity. SRN (Qiu et al., 2020) performs 174

an effective path search over KG to infer answer 175

entities based on RL. ARL (Zhang et al., 2022) 176

proposes a new adaptive reinforcement learning 177

framework and introduces three atomic operations 178

to adaptively extend the relation paths. ARN (Cui 179

et al., 2023) incorporates KG embeddings as an- 180

ticipation information into RL framework to cap- 181

ture the potential target information for multihop 182

reasoning. Moreover, Zhu et al. (2022) applies a 183

hierarchical reinforcement learning framework to 184

tackle the challenge of one-to-many relation-entity 185
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in knowledge graph reasoning task. While these186

methods exhibit strong performance in both effec-187

tiveness and interpretability, they struggle to per-188

form effective reasoning in the knowledge graph189

for complex questions with constraints and are in-190

fluenced by aimless exploration. Our work extends191

the line of RL-based models, utilizing hierarchical192

RL to formulate complex KGQA as a hierarchical193

decision problem. It introduces a novel perspective194

to handle complex questions in knowledge graph195

reasoning196

Large Language Models (LLMs) for KGQA.197

LLMs have achieved significant success in vari-198

ous tasks, which encourages their application in199

KGQA research. The most intuitive idea is to use200

LLMs as parsers to generate logical forms for ques-201

tions. KB-BINDER (Li et al., 2023) uses LLMs to202

create preliminary logical forms through demon-203

stration imitation and then binds the draft to an204

executable version through knowledge base inte-205

gration. ChatKBQA (Luo et al., 2023) proposes206

generating the logical form with fine-tuned LLMs207

first, then retrieving and replacing entities and re-208

lations through an unsupervised retrieval method.209

Furthermore, FlexKBQA uses LLMs to generate210

synthetic data for the KGQA task, then use the data211

to fine-tune a smaller light-weight KGQA model.212

In addition, novel methods have been proposed to213

fully leverage the reasoning capability of LLMs.214

ToG (Sun et al., 2023) enables the LLM agent to215

iteratively execute beam search on KG, discover216

the most promising reasoning paths, and return the217

most likely reasoning results. StructGPT (Jiang218

et al., 2023) gathers relevant evidence from struc-219

tured data, allowing LLMs to focus on the reason-220

ing task using the acquired information. However,221

they often encounter challenges with hallucination222

issues, failing to address complex questions.223

3 Methodology224

3.1 Problem Formulation225

Our study focuses on factoid question answering226

over a knowledge graph (KG). The KG can be227

formally represented as G = (E,R), where E228

is the set of entities and R is the set of relations.229

Given a natural language question q and a KG G,230

our goal is to take an optimal reasoning process231

to predict the answer entities Aq ∈ E. In this232

paper, we focus on handling complex questions, in233

which the corresponding answer entities are multi-234

hop away from the topic entities, and the questions235

may contain constraints, such as entity constraint, 236

numerical constraint, etc. 237

3.2 Framework Overview 238

Our methodology utilizes the inherent common 239

sense priors in LLMs and incorporates RL for envi- 240

ronmental learning, leading to the construction of a 241

hierarchical agent for solving the complex KGQA 242

task. Figure 1 shows the overall architecture of our 243

framework, which mainly consists of four parts: 244

a high-level policy-based agent for constraint de- 245

tection, a low-level policy-based agent for path 246

reasoning, LLMs as reward function and LLMs as 247

guider. The high-level policy-based agent identifies 248

constraints (options) encountered during reasoning, 249

while the low-level policy-based agent conducts ef- 250

ficient path reasoning by selecting the most promis- 251

ing relations (actions) in KG. The LLMs-based 252

reward function generates the probability of each 253

option as intermediate rewards for the high-level 254

policy-based agent. Moreover, the LLMs guide 255

the low-level policy-based agent by suggesting the 256

most likely courses of action. 257

3.3 High-level Process for Constraint 258

Detection 259

In the high-level process, the agent is designed 260

to detect the constraint type of current timestep t, 261

which guides the corresponding path reasoning. 262

State. At timestep t, the state of the high-level 263

process is defined as Sh
t = (e0, q, et, ht), where 264

e0 is the topic entity of the given question q; et 265

represents the current entity at timestep t during 266

reasoning process; and ht refers the representation 267

of the historical relation path selected, we apply 268

LSTM to represent the sequential path information 269

as following: ht = LSTM(ht−1, rt−1). Note that 270

h0 and r0 are both set to zero vectors. 271

Option. To handle different types of complex ques- 272

tions, we define six types of options correspond- 273

ing to the constraints: Basic, Bridge, Union, 274

Filter, Ordinal, and Aggregation. Specifically, 275

Basic indicates that the current option is gener- 276

ating the reasoning path by adding relations hop- 277

by-hop. In Bridge, the option can incorporate 278

the path from different topic entities to handle the 279

questions with multiple topic entities. The option 280

Union aims to solve questions containing mul- 281

tiple relations from the same topic entity. The 282

option of Filter represents a numerical or tem- 283

poral comparison, including <,≤, >,≥,=, ̸=. In 284

Ordinal, the option involves sorting the current 285
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Figure 1: The overview of our proposed collaborative reasoning framework (CRF).

entity set in either ascending or descending order286

and selecting entities based on the ordinal num-287

ber. Within Aggregation, the option signifies the288

use of aggregation functions on the current enti-289

ties, such as Count, Limit, etc. At the timestep t,290

the option ot is selected from option space Ot =291

{Basic,Bridge, Union, F ilter, Aggregation,292

Ordinal}.293

Reward. The rewards received by the high-level294

agent are primarily divided into two parts: extrinsic295

rewards provided by the environment KG and the296

likelihood of options output by LLMs. Regarding297

extrinsic rewards, since only the final answers are298

labeled as weak supervision, we utilize the scor-299

ing function of the KGE model to calculate soft300

rewards for candidate entities (Cui et al., 2023).301

Formally, the extrinsic reward function Rh
e (S

h
T ) is302

defined as follows:303

Rh
e (S

h
T ) =

{
1, eT = ê

fs(e0, q, eT ), otherwise
(1)304

where eT is the predicted entity and ê is the golden305

answer. Intuitively, if eT matches ê, the agent gets306

a reward of 1; otherwise, it receives a soft reward307

between 0 and 1 from the scoring function fs().308

In addition, the extensive training data of309

LLMs enables them to excel as in-context learners310

and also equips them to comprehend significant311

common-sense priors to assess the reasonableness312

of the selected constraint types. Therefore, LLMs313

can output the probability of each option based314

on the current state and in-context demonstration,315

serving as intermediate rewards. Formally, the in- 316

termediate reward function Rh
i (S

h
t ) is defined as 317

follows: 318

Rh
i (ot, S

h
t ) = PLLM (ot,S

h
t ,ρ) (2) 319

where ot and Sh
t represent the textual descriptions 320

of the option and state at the timestep t. The details 321

of the prompt ρ are described in Appendix C. Fi- 322

nally, the high-level reward function can be defined 323

as follows: 324

Rh(ot, S
h
t , S

h
T ) = Rh

i (ot, S
h
t ) +Rh

e (S
h
T ) (3) 325

Policy. The policy for the high-level process 326

takes state information as input and outputs 327

the probabilities over candidate options at each 328

step. Specifically, we use Transformer encoder 329

to obtain the question representation denoted as 330

q = [w1, w2, ...wn]. To make the agent aware 331

of the current step, a linear network is explored to 332

generate step-aware question representation qt ∈ 333

R
d×n: 334

qt = Tanh(Wt · q + bt) (4) 335

Where Wt ∈ Rd×n and bt ∈ Rd×1 are learnable 336

parameters. At timestep t, the high-level agent re- 337

ceives state Sh
t , and selects an option according to 338

the calculated probability distribution. Addition- 339

ally, a "Loop" option is added into the option space 340

to signify when the reasoning process should stop. 341

The option space is encoded by stacking the em- 342

bedding of all valid options in Ot : Ot ∈ R|Ot|×d. 343
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And the high-level policy network πh is defined as:344

πh(ot|Sh
t ) = Ot ·Wh2 ·ReLu(Wh1 · [ht; qt]) (5)345

where Wh1 and Wh2 are parameter matrices.346

[ht; qt] denotes the concatenation of encoded deci-347

sion history and step-aware question vector.348

3.4 Low-level Process for Path Reasoning349

Once the high-level agent has detected a constraint350

type, the low-level agent will execute path reason-351

ing to select the most promising relation. To make352

the detected constraint type accessible in the low-353

level process, the option ot is taken as additional354

input for guiding the low-level path reasoning pro-355

cess.356

State. Similar to the policy for constraint detection,357

the low-level intra-option state includes topic entity358

e0, given question q, historical information ht. In359

addition, it also contains the high-level option ot,360

which can affect the learning of low-level strategies.361

Formally, the low-level process state can be defined362

as Sl
t = (e0, q, et, ht, ot).363

Action. For the option ot, the low-level agent364

takes action at to select the most promising re-365

lation. The action space for the state Sl
t is the set366

of outgoing edges of the current entity et, where367

At = {(r, e)|(et, r, e) ∈ G}. Meanwhile, each368

option possesses its own list of valid actions for369

every step. Based the option Basic, the agent adds370

a single-hop relation rt to ht. Note that some re-371

lations in the KG are 1-to-many. Therefore, the372

target et+1 may be a set of entities. For the op-373

tions Bridge, Union, and Filter, the relation rt374

is selected based on constraints including entity, re-375

lation, or numerical constraints. In addition, for the376

options Ordinal and Aggregation, the low-level377

RL policy struggles to select the correct actions.378

Here, we enable the agent to directly perform cor-379

rect reasoning with the assistance of LLMs.380

Reward. The low-level agent receives an immedi-381

ate reward by intrinsic motivation. Since a correct382

decision contains a KG relation which covers part383

of the semantic information of the question, we384

measure the semantic similarity between the given385

question and the selected relation as the low-level386

reward, defined as follows:387

Rl(Sl
t) = ReLU(cos[rt; q

∗
t ]) (6)388

where rt is the representation of the selected rela-389

tion; q∗t is produced as the result of the interaction390

between relation rt and question q according to the 391

attention weights. 392

Policy. Once an option ot is selected, the policy 393

for the low-level process takes action at to con- 394

duct path reasoning. Given the low-level state 395

Sl
t and action space At, a relation-aware question 396

representation can be calculated for each action 397

at = (r∗, e∗) ∈ At: 398

q∗t =

n∑
i=1

α∗
i ·wt,i (7) 399

α∗
i = σ(Wa · (r∗ ⊙wt,i) + b) (8) 400

where σ is the SoftMax operator; q∗t is the result of 401

the interaction between the relation and the ques- 402

tion according to the attention weights; r∗ is the 403

vector of relation r∗; wt,i is the step-aware rep- 404

resentation of token wi; Wa and b are learnable 405

parameters. Moreover, the action space is encoded 406

by stacking the embeddings of all valid actions in 407

At : At ∈ R|At|×d. Therefor, the low-level policy 408

network πl is defined as: 409

πl(at|Sl
t) = At ·Wl2 ·ReLu(Wl1 · [ht; q

∗
t ;ot])

(9) 410

where Wl1 and Wl2 are parameter matrices; 411

[ht; q
∗
t ;ot] represents the concatenation of en- 412

coded decision history, relation-aware question vec- 413

tor and option embedding. In addition, utilizing 414

RL for exploration without relying on common- 415

sense intuition may be inefficient when addressing 416

complex queries that require long-term reasoning. 417

Therefore, the section 3.5 introduces how to uti- 418

lize LLMs to improve exploration in the low-level 419

policy. 420

3.5 Using LLMs to Guide Low-level Policy 421

In the low-level process, the agent can conduct 422

efficient exploration in the KG through the combi- 423

nation of LLMs and the RL policy. The common 424

sense priors and planning capabilities of LLMs can 425

be injected into the policy-based agent to improve 426

low-level action selection in the form of language. 427

The core idea is to use LLMs to obtain a value that 428

approximates the probability that each candidate 429

action is relevant to answer the question. Specifi- 430

cally, the LLMs are used to evaluate the function 431

fLLM (e∗t , a
i
t, o

∗
t , q, h

∗
t ) for each candidate action at 432

timestep t, where e∗t , o∗t and h∗t are the language 433

description of the current entity, the current op- 434

tion and the historical selected relation path; amt 435
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represents the language description of the corre-436

sponding relation and tail entity. Essentially, the437

LLM answers the following question: given the438

task of answering question q, based on the current439

entity e∗t , the current option o∗t and the historical440

selected relation path h∗t , should we choose the can-441

didate action amt ? The output of the LLM, ‘yes’ or442

‘no’, can easily be converted to an int (“0” or “1”).443

Further details are listed in Appendix D. Through444

these question-answering prompts, we can acquire445

common-sense priors from the LLMs. After eval-446

uating this for each of the k candidate actions in447

the action space, we utilize the SoftMax function448

for normalization. The formula is represented as449

follows.450

DLLM = SoftMax([fLLM1 , fLLM2 , ..., fLLMk
])

(10)451

where DLLM represents the probability of each452

candidate action evaluated through common sense453

priors from LLMs. Since the RL agent encounters454

the issue of aimless exploration due to a lack of455

common sense. We use the LLMs DLLM to guide456

exploration by suggesting the most likely courses457

of action. In the low-level process, the probabil-458

ity distribution of candidate actions is calculated459

through low-level policy πl and LLMs DLLM . The460

action selection is formalized as follows.461

S(at|Sl
t) = πl(at|Sl

t) +DLLM (Sl
t) (11)462

where the prompts inputted into the LLM are ob-463

tained by the current state Sl
t.464

3.6 Optimization and Inference465

Optimization. During the model training, we ex-466

ploit the REINFORCE algorithm (Williams, 1992)467

to optimize the above policy networks. The al-468

gorithm utilizes the current policy to generate nu-469

merous trajectories for the purpose of estimating470

a stochastic gradient, subsequently updating the471

policy via stochastic gradient ascent.472

For the high-level and low-level policies opti-473

mization, we maximize the expected cumulative474

rewards over all the question-answer pairs (q, a).475

The object functions for the high-level policy and476

low-level policy are computed as follows:477

J (θH) =E(q,a)∈D[Eo1,o2,...,oT∼πh
[

T∑
t=1

ηT−t

Rh(ot, S
h
t , S

h
T )]]

(12)

478

479

J (θL) = E(q,a)∈D[Ea1,a2,...,aT∼πl
[
T∑
t=1

Rl(Sl
t)]]

(13) 480

where η is a discount factor. With the likelihood 481

ratio trick, the gradients for the high-level policy 482

and low-level policy are denoted as: 483

∇θHJ (θH) =E(q,a)∈D[Eo1,o2,...,oT∼πh
[

T∑
t=1

ηT−t 484

Rh(ot, S
h
t , S

h
T )∇θH log πh]] (14) 485

∇θLJ (θL) =E(q,a)∈D[Ea1,a2,...,aT∼πl
[

T∑
t=1

486

Rl(Sl
t)∇θL log πl]] (15) 487

Inference. In the inference stage, our method imi- 488

tates human cognitive processes. During the long- 489

term reasoning process to address a complex ques- 490

tion, LLMs utilize their preexisting knowledge to 491

provide intuitive assessments for each action, while 492

the trained policy-based agent can offer deliberate 493

and reliable logical reasoning as validation, aiding 494

LLMs in discarding hallucinations. 495

4 Experiment 496

4.1 Dataset 497

In order to evaluate the effectiveness of the pro- 498

posed CRF method, we conduct experiments us- 499

ing four public datasets, including WebQuestionSP 500

(WebQSP) (Yih et al., 2016), ComplexWebQues- 501

tions (CWQ) (Talmor and Berant, 2018), PathQues- 502

tion (PQ) (Zhou et al., 2018) and MetaQA (Zhang 503

et al., 2018). We give a detailed description of each 504

dataset in Appendix A. 505

4.2 Baselines 506

To comprehensively evaluate our approach, we se- 507

lect a series of following baseline models for com- 508

parison, which can be divided into three categories: 509

(1) IR-based methods, including EmbedKGQA 510

(Saxena et al., 2020), NSM (He et al., 2021), Trans- 511

ferNet (Shi et al., 2021); (2) RL-based methods, 512

including SRN (Qiu et al., 2020), ARL (Zhang 513

et al., 2022), ARN (Cui et al., 2023); (3) LLMs- 514

based methods, including Llama-2-70B (Touvron 515

et al., 2023a), ChatGPT, KD-CoT (Wang et al., 516

2023), ToG (Sun et al., 2023), StructGPT (Jiang 517

et al., 2023). The detailed description is introduced 518

in Appendix B 519
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Table 1: Experimental results (%Hits@1) on four datasets. The best score is in bold, second best score is underlined.
“-” indicating that no results are reported in the original papers. Results with ♯ are reprinted from (Sun et al., 2023).

Model
WebQSP CWQ PathQuestion MetaQA

Mix Mix 2H 3H Mix 1H 2H 3H
EmbedKGQA (Saxena et al., 2020) 66.6 37.5 - - - 97.5 98.8 94.8
NSM (He et al., 2021) 68.7 47.6 - - - 94.8 97.0 91.0
TransferNet (Shi et al., 2021) 71.4 48.6 - - - 96.5 97.5 90.1
SRN (Qiu et al., 2020) - - 96.3 89.2 89.3 97.0 95.1 75.2
ARL (Zhang et al., 2022) 72.9 48.9 - - - 97.5 99.9 98.9
ARN (Cui et al., 2023) 68.0 - 98.9 90.5 93.6 96.7 93.5 97.0
Llama-2-70B(Touvron et al., 2023a) ♯ 57.4 39.1 - - - - - -
ChatGPT ♯ 62.2 38.8 - - - 61.9 31.0 43.2
KD-CoT (Wang et al., 2023) 73.7 50.5 - - - - - -
ToG w/ChatGPT (Sun et al., 2023) 76.2 58.9 - - - - - -
StructGPT (Jiang et al., 2023) 72.6 - - - - 94.2 93.9 80.2
CRF(ours) 79.5 68.2 99.4 95.7 97.1 99.6 99.9 99.2

4.3 Experimental Setting520

Following (Cui et al., 2023), we use the PageRank-521

Nibble algorithm (PRN) to find KB entities near522

the labeled topic entities in the question, which523

helps extract a relatively small question-relevant524

subgraph containing answer entities. Since the525

inference process involves inverse relations, we526

also add the inverse of a fact triple. For example,527

given a triple (e1, r, e2), we add the inverse triple528

(e2, r
−1, e1), where r−1 is the inverse of relation529

r. Throughout our experiments, we apply 300 di-530

mensional pre-trained GloVe word embeddings and531

set the dimension of KG embeddings (i.e. entity532

embeddings and relation embeddings) to 200. The533

KG embeddings are assigned with pre-trained ones,534

which are learned under the constraint following535

TransE (Bordes et al., 2013). Moreover, we use a536

two-layer unidirectional LSTM with a hidden state537

dimension of 200 as the decision history encoder.538

For the question encoder, we use a Transformer539

with 2 layers and 4 heads. For REINFORCE algo-540

rithm, the discount factor η is set 0.95. In addition,541

we use GPT-3.5-turbo API as the LLM for our542

model. Here, we utilize the Hits@1 score to assess543

model performance, indicating the accuracy of the544

top one among predicted answer entities.545

4.4 Main Results546

Table 1 shows the experimental results in four547

datasets. From the results, our method achieves548

promising performance on all datasets. Specifi-549

cally, when faced with challenging datastes such as550

CWQ and WebQSP, our model still demonstrates551

impressive performance compared to other meth-552

ods, attributed to the proposed collaborative reason-553

ing framework powered by RL and LLMs. Further-554

more, we observe that many methods on MetaQA 555

exhibit good performance since the dataset is rela- 556

tively simple and only focus on the movie domain. 557

Compared with RL-based models (e.g., SRN, ARL 558

and ARN), our approach performs well overall. In 559

order to enhance the interpretability of the model, 560

our method is based on a RL framework. How- 561

ever, RL-based methods usually face challenges 562

of aimless exploration and low-quality rewards. 563

We use LLMs to assist in enhancing the RL agent, 564

which significantly improves the performance of 565

our model. Moreover, our methods exhibit superior 566

performance, particularly on CWQ. This advan- 567

tage stems from our approach which formalizes 568

the KGQA task as a hierarchical decision-making 569

process, effectively addressing complex questions 570

with constraints. 571

As for LLM-based methods, we notice that di- 572

rectly using LLMs (e.g., ChatGPT and Llama-2- 573

70B) performs not well on the complex datasets, 574

such as CWQ, MetaQA-2H and MetaQA-3H. It 575

indicates that relying solely on LLMs is challeng- 576

ing for effectively solving the complex KGQA 577

task. Therefore, some methods incorporate external 578

knowledge graphs to enhance LLMs in addressing 579

complex questions (e.g., KD-CoT, ToG and Struct- 580

GPT). Although these methods demonstrate pos- 581

itive outcomes, our approach makes even greater 582

advancements, achieving a 3.3% improvement on 583

WebQSP and 9.3% improvement on more complex 584

CWQ compared to the best one. This is because 585

that we propose a collaborative reasoning frame- 586

work to mimic human cognitive processes. In the 587

inference stage, LLMs use prior knowledge for in- 588

tuitive assessments, while the trained policy-based 589

agents provide logical reasoning as validation, help- 590

ing LLMs relieve hallucinations. 591
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4.5 Further Analysis592

4.5.1 Ablation Study593

We conduct various ablation studies to verify the594

effectiveness of different factors in CRF. The abla-595

tion studies are carried out on two datasets, PQ and596

CWQ. The ablation results are shown in Table 2.597

w/o LLMs as reward function. In the high-598

level process, we remove the intermediate rewards599

generated by LLMs. The ablated model exhibits600

poorer performance than the original one, indicat-601

ing that employing LLMs as the reward function602

helps mitigate low-quality reward challenges.603

w/o LLMs to guide low-level policy. Eliminat-604

ing the use of LLMs to guide the low-level policy605

indicates that our approach only relies on a RL606

framework to solve the KGQA task. The lack of607

prior knowledge provided by LLMs poses a chal-608

lenge of aimless exploration for the agents when609

tackling complex questions that require long-term610

reasoning. The significant performance decline611

of the ablated model on the more complex CWQ612

highlights the critical role of LLMs.613

w/o reinforcement learning. When we remove614

reinforcement learning, we can find that the perfor-615

mance gap between the ablated model and the orig-616

inal model increases as the dataset becomes more617

complex. This is because there is no RL-based618

agent to provide reliable logical reasoning as verifi-619

cation to eliminate the illusions of LLMs. As ques-620

tions increase in complexity, there is a higher like-621

lihood of LLMs generating hallucinations, which622

results in a decline in model performance.623

w/o hierarchical policy structure. Without hi-624

erarchical policy structure, the RL-based agent can625

only iteratively select actions to execute path rea-626

soning and are unable to account for constraint627

conditions, leading to reduce model performance628

in handling complex questions with constraints.629

Table 2: Ablation study results (%Hits@1) on PQ and
CWQ. Best results are marked bold.

Model
PathQuestion CWQ

Mix Mix
CRF(full model) 97.1 68.2
w/o LLMs as reward function 96.8 66.7
w/o LLMs to guide low-level policy 94.9 52.3
w/o reinforcement learning 96.4 58.6
w/o hierarchical policy structure 96.5 65.5

4.5.2 Stability Study630

We define the complexity of the question as the631

number of options chosen in the reasoning process.632

The stability study is conducted on CWQ with var- 633

ious complex questions. As shown in Figure 2a, 634

it is evident that our model maintains consistent 635

performance even with the increasing complexity 636

of questions. The stability demonstrates the effec- 637

tiveness and robustness of CRF at reasoning over 638

KGs for complex questions with constraints. 639

4.5.3 Few-shot Study 640

Figure 2b shows the performance of CRF on differ- 641

ent proportions of CWQ training data. We observe 642

that our method still performs well even with only 643

20% of the training data used. And our method 644

can achieve essentially the same effect using only 645

60% of the data as using all the training data. The 646

results show that our method can achieve good per- 647

formance in few-shot situations. This is because 648

that the common sense priors and planning capa- 649

bilities of LLMs can be injected into the proposed 650

model to enable it to effectively answer complex 651

questions. 652

1 2 3 4 >=5
Options

50

55

60

65

70

75

%
Hi

ts
@

1

(a) Stability Study

20% 40% 60% 80% 100%
CWQ

50

55

60

65

70

75

%
Hi

ts
@

1

(b) Few-shot Study

Figure 2: (a) Performance on CWQ with different com-
plexity. (b) Performance on different proportions of
CWQ training data.

In addition, we present a case study to show our 653

CRF model in Appendix D. 654

5 Conclusion 655

In this paper, we introduce a collaborative reason- 656

ing framework powered by hierarchical RL and 657

LLMs to mimic human cognitive processes. The 658

proposed model leverages the common sense priors 659

contained in LLMs while utilizing RL to provide 660

learning from the environment, resulting in a hi- 661

erarchical agent that uses LLMs to solve the com- 662

plex KGQA task. The high-level agent accurately 663

identifies constraints encountered during reasoning, 664

while the low-level agent conducts efficient path 665

reasoning by selecting the most promising relations 666

in KG. Extensive experiments conducted on four 667

benchmark datasets clearly demonstrate the effec- 668

tiveness of the proposed model, which surpasses 669

state-of-the-art approaches. 670
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6 Limitations671

In our work, we primarily use the frozen LLM672

(ChatGPT), whose capabilities may be limited by673

its pretraining. In the future, it would be worth-674

while to explore how fine-tuning LLMs can more675

effectively guide the reasoning of RL-based agents676

and improve the accuracy of intermediate rewards677

provided by LLMs. Additionally, we assume that678

the given questions contain topic entities, enabling679

reasoning within the knowledge graph to obtain an-680

swers. Consequently, the questions lacking entities681

cannot be answered through reasoning. For this682

case, we rely on the LLM to directly generate the683

answers.684
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A Datasets 840

In order to evaluate the effectiveness of the pro- 841

posed CRF method, we conduct experiments 842

using four public datasets, including WebQues- 843

tionSP(WebQSP) (Yih et al., 2016), ComplexWe- 844

bQuestions(CWQ) (Talmor and Berant, 2018), 845

PathQuestion(PQ)(Zhou et al., 2018) and MetaQA 846

(Zhang et al., 2018). Table 3 shows the statistics of 847

the four datasets. 848

Table 3: Statistics of the experiment datasets.

Datasets KG Train Valid Test
WebQSP Mix Freebase 2848 250 1639
CWQ Mix Freebase 27639 3519 3531

PQ
2H Freebase 1528 189 191
3H Freebase 4163 515 520
Mix Freebase 5691 704 711

MetaQA
1H OMDb 96106 9992 9947
2H OMDb 118980 14872 14872
3H OMDb 114196 14274 14274

WebQuestionSP(WebQSP) (Yih et al., 2016) 849

contains 4373 questions, where the answer entities 850

are within a maximum of 2 hops from the topic 851

entity on the Freebase (Bollacker et al., 2008). 852

ComplexWebQuestions(CWQ) (Talmor and 853

Berant, 2018) is constructed based on WebQSP, 854

which is more complex. It extends the question 855

entities or adds constraints to answers to construct 856

complex questions consisting of four types and 857

requiring up to 4-hops of reasoning based on Free- 858

base. 859

PathQuestion(PQ) (Zhou et al., 2018) is from 860

the general domain, and based on the subsets of 861

Freebase. It extracts paths between two entities in 862

the KG, and generated questions more real by some 863

rules. PQ-2H and PQ-3H deNote 2-hop and 3-hop 864

questions, respectively. PQ-Mix represents the mix 865

of all questions. 866

MetaQA (Zhang et al., 2018) focuses on the 867

movie domain, comprising over 400,000 questions. 868

Based on the number of hops, the dataset includes 869

three sets of question-answer pairs: 1-hop, 2-hop, 870

and 3-hop. 871

B Baselines 872

To comprehensively evaluate our approach, we se- 873

lect a series of following baseline models for com- 874

10

https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://arxiv.org/abs/2308.13259
https://arxiv.org/abs/2308.13259
https://arxiv.org/abs/2308.13259
https://arxiv.org/abs/2308.13259
https://arxiv.org/abs/2308.13259


parison, which can be divided into three categories:875

(1) IR-based methods, including EmbedKGQA876

(Saxena et al., 2020), NSM (He et al., 2021), Trans-877

ferNet (Shi et al., 2021); (2) RL-based methods,878

including SRN (Qiu et al., 2020), ARL (Zhang879

et al., 2022), ARN (Cui et al., 2023); (3) LLMs-880

based methods, including Llama-2-70B (Touvron881

et al., 2023a), ChatGPT, KD-CoT (Wang et al.,882

2023), ToG (Sun et al., 2023), StructGPT (Jiang883

et al., 2023). The elaborate descriptions of base-884

lines are as follows.885

EmbedKGQA (Saxena et al., 2020) embeds the886

question and KG triples into a vector space. Sub-887

sequently, a scoring function is employed to evalu-888

ate the candidate answer entities, with the highest-889

scoring entity as the predicted answer.890

NSM (He et al., 2021) proposes a novel teacher-891

student framework where the student network fo-892

cuses on answering queries, while the teacher net-893

work provides intermediate supervision to enhance894

the student’s reasoning ability.895

TransferNet (Shi et al., 2021) jointly manages896

labeled and textual relations, navigating between897

entities in several steps. At each step, it focuses on898

parts of the question, calculates scores for relations,899

and moves the scores of entities along those active900

relations smoothly.901

SRN (Qiu et al., 2020) pioneers the formaliza-902

tion of complex KGQA as a sequential decision-903

making process grounded in reinforcement learn-904

ing. Through a potential-based reward shaping905

strategy, SRN mitigates the challenges posed by906

delayed and sparse rewards.907

ARL (Zhang et al., 2022) proposes a new adap-908

tive reinforcement learning framework and intro-909

duces three atomic operations to adaptively extend910

the relation paths.911

ARN (Cui et al., 2023) incorporates KG embed-912

dings as anticipation information into RL frame-913

work to capture the potential target information for914

multihop reasoning. Moreover, a KEQA frame-915

work is designed to assign soft rewards for the RL916

agent.917

ChatGPT is large language model developed by918

OpenAI. We can use their provided APIs to access919

them and solve KGQA tasks.920

Llama-2-70B (Touvron et al., 2023a) is the921

large language model developed by Meta. We can922

use their provided APIs to solve KGQA tasks.923

KD-CoT (Wang et al., 2023) proposes an inter-924

active framework that utilizes a QA system to ac-925

cess external knowledge and provide high-quality926

answers to LLMs for solving knowledge-intensive 927

KBQA tasks. 928

ToG (Sun et al., 2023) enables the LLM agent 929

to iteratively execute beam search on KG, discover 930

the most promising reasoning paths, and return the 931

most likely reasoning results. 932

StructGPT (Jiang et al., 2023) gathers relevant 933

evidence from structured data, allowing LLMs to 934

focus on the reasoning task using the acquired in- 935

formation. 936

C Prompt for Reward Function 937

Figure 3 shows the detail of the prompt ρ.

Given the current entity, the historical selected relation path, 
and the description of the selected option, please output the 
likelihood of the selected option to the question within the range 
of 0 to 1.

In-Context Few-shot

Q: {Query}
Current entity,  Historical selected relation path, The description 
of the slected option
Likelihood:

e

Figure 3: Prompt for Reward Function
938

D Case Study 939

As shown in Figure 4, we present a case study 940

to make a better understanding how our proposed 941

CRF model works. Given a complex question 942

"Which film in which Lucy Hale appeared was 943

edited by Scot J. Kelly?", the topic entity is Lucy 944

Hale and the entity constraint is Scot J. Kelly. To 945

solve the above question, two-hop reasoning is 946

required with a constraint. In the first step, the 947

high-level process selects the "Basic" option and 948

transfers it to the low-level process. Next, we com- 949

pose the input prompt for LLMs based on the cur- 950

rent state and action space of the low-level and 951

generate the probability distribution of the action 952

space. Finally, we select the top-3 actions, i.e., 953

perform_film,publish_album and nationality_in, by 954

combining the low-level RL policy. In the sec- 955

ond step, the option "Bridge" is selected to direct 956

the low-level process in taking actions for execut- 957

ing path reasoning concerning the entity constraint. 958

Concretely, the agent reaches Sorority Wars. Since 959

the option "Loop" is chosen in the subsequent step, 960

indicating the termination of the reasoning process, 961

the entity Sorority Wars is considered as the pre- 962

dicted answer. 963
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should I select the triple ( Sorority Wars,edited_by,Scot J. Kelly)

Yes

Current State 
Action Space

Probability 
distribution

Current State 
Action Space

Probability 
distribution

Figure 4: A case of the hierarchical decision process.

12


	Introduction
	Related Work
	Methodology
	Problem Formulation
	Framework Overview
	High-level Process for Constraint Detection
	Low-level Process for Path Reasoning
	Using LLMs to Guide Low-level Policy
	Optimization and Inference

	Experiment
	Dataset 
	Baselines
	Experimental Setting
	Main Results
	Further Analysis
	Ablation Study
	Stability Study
	Few-shot Study


	Conclusion
	Limitations
	Datasets
	Baselines
	Prompt for Reward Function
	Case Study

