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Abstract

Large Language Models (LLMs) have demonstrated impressive reasoning capabili-1

ties, yet their direct application to NP-hard combinatorial problems (CPs) remains2

underexplored. In this work, we systematically investigate the reasoning abilities3

of LLMs on a variety of NP-hard combinatorial optimization tasks and introduce4

ACCORD: Autoregressive Constraint-satisfying generation for COmbinatorial op-5

timization with Routing and Dynamic attention. ACCORD features a novel dataset6

representation and model architecture that leverage the autoregressive nature of7

LLMs to dynamically enforce feasibility constraints, coupled with attention-based8

routing to activate problem-specific LoRA modules. We also present the ACCORD-9

90k supervised dataset, covering six NP-hard combinatorial problems: TSP, VRP,10

Knapsack, FlowShop, JSSP, and BinPacking. Extensive experiments demonstrate11

that our ACCORD model, built on an 8B-parameter Llama backbone, consistently12

outperforms standard prompting and input-output methods, even when compared13

to much larger LLMs, such as gpt-4. Ablation studies further show that our output14

structure enhances solution feasibility. To the best of our knowledge, this is the15

first large-scale, end-to-end framework for exploring the applications of LLMs to a16

broad spectrum of combinatorial optimization problems. The codes are publicly17

available at 118

1 Introduction19

Large Language Models (LLMs) have rapidly established themselves as versatile engines for reason-20

ing across a broad spectrum of tasks, encompassing arithmetic, commonsense logic , [27], [7], [6].21

Among the prominent strategies enabling such capabilities is the Chain-of-Thought approach, which22

allows these models to decompose complex problems into sequential, interpretable steps [31].23

Recent efforts have sought to adapt these reasoning techniques to address more advanced optimization24

tasks. Combinatorial optimization problems (CPs) are decision-making challenges where the goal is25

to select an optimal arrangement or subset from a large, discrete set of possibilities. Classic examples26

include the Traveling Salesman Problem (TSP), Vehicle Routing Problem (VRP), and Job Shop27

Scheduling Problem (JSSP), which have widespread applications in logistics, manufacturing, and28

artificial intelligence [18]. Due to their NP-hard nature, even moderately sized instances possess a29

combinatorial explosion of potential solutions, rendering brute-force approaches infeasible. As a30

result, practical methods typically rely on heuristics or approximation algorithms to provide near-31

optimal solutions within reasonable time frames. As NP-hard problems, CPs present huge obstacles32

in practical settings [24]. Presently, the predominant paradigm in industry relies on metaheuristic33

1https://github.com/starjob42/ACCORD
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algorithms—sophisticated combinations of simple, efficient heuristics—for solving CPs under various34

constraints. However, the success of these heuristics is often highly sensitive to the specific structure35

and requirements of each problem, necessitating tailored approaches for optimal results.36
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Figure 1: Overview of the ACCORD inference pipeline. As an example, a knapsack problem
described in natural language is provided as input, then Attention based Dynamic router3 activates the
corresponding LoRA layer specialized for knapsack tasks. Multiple candidate solutions are generated
via sampling, each checked for feasibility. The best feasible solution is returned as the final output.
Note that the pipeline generalizes to other combinatorial problems in the same manner; knapsack is
shown here for illustration.

At the same time, investigations into leveraging LLMs for combinatorial problem solving have37

revealed significant research gaps. While the latest breakthroughs highlight the promise of LLMs in38

diverse reasoning scenarios [1], [14], [30], [34], their full potential in the context of combinatorial39

optimization remains largely untapped. Applying LLMs directly to these problems presents unique40

challenges: LLMs are trained primarily for natural language generation, not for enforcing strict41

combinatorial constraints, leading to issues such as hallucinations (plausible but infeasible solutions)42

[12], lack of optimality, and limited interpretability [28]. Furthermore, the absence of systematic43

search or explicit constraint mechanisms means LLM outputs can violate feasibility or fail to improve44

upon prior attempts. Recent advances have begun to explore the application of large language models45

(LLMs) to combinatorial optimization (CO). Numerous prompting-based approaches have been tested46

on CO tasks [32, 13, 22, 31, 35, 20, 14], demonstrating progress in solution quality and constraint47

handling. However, to date, there has been no comprehensive study evaluating a unified fine-tuned48

LLM-based framework for NP-hard CO problems across multiple domains.49

We introduce ACCORD (Autoregressive Constraint-satisfying generation for COmbinatorial opti-50

mization with Routing and Dynamic attention), a framework for evaluating LLMs on combinatorial51

optimization. Our contributions are: (i) the ACCORD-90k dataset for TSP, VRP, Knapsack, Flow-52

Shop, JSSP, and BinPacking, using an autoregressive constraint-aware representation; (ii) a model53

architecture with attention-based dynamic routing and task-specific LoRA modules; (iii) extensive54

ablations showing lower optimality gaps and higher feasibility than list-of-lists and SOTA prompting55

(e.g., GPT-4 with Code Interpreter). ACCORD yields feasibility gains of 24.86% (FlowShop), 10%56

(TSP, VRP), 7% (JSSP), 4% (Knapsack), and 2% (BinPacking). This is the first large-scale, end-to-end57

CO framework with LLMs, opening new directions in symbolic reasoning and optimization.58

2 Main Method: ACCORD Representation for Feasibility-Aware Solution59

Generation60

A core challenge in applying Large Language Models (LLMs) to combinatorial optimization is61

the effective encoding of feasibility constraints within the generated solutions. Conventional rep-62

resentations, such as the “list of lists” format, provide direct encodings of solution sets, which are63

familiar to LLMs due to their prevalence in general-purpose data and code corpora. However, these64

representations are static—constraints are only checked after solution generation, offering limited65

guidance for incremental feasibility during the autoregressive decoding process. To address this limi-66
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Table 1: Optimality gap (%) of prompting methods (GPT-4 with code interpreter) vs. ACCORD
(Llama 8B). Lower is better. N/A: no feasible solution.

Size Method Knapsack BinPack TSP VRP JSSP

5

IO (GPT-4) 90.1 108.2 100.3 102.0 105.3
CoT (GPT-4) 66.9 78.2 81.2 78.2 79.4
SR (GPT-4) 62.0 77.4 71.6 72.5 71.7

LtM (GPT-4) 21.6 40.0 43.6 40.7 44.1
SGE (GPT-4) 8.1 9.1 8.3 11.9 9.3

IO (Llama 8B) N/A N/A N/A N/A N/A
ACCORD (Llama 8B) 3.9* 0.0* 0.6* 1.0* 0.0*

8

IO (GPT-4) 103.5 112.8 116.9 116.3 108.2
CoT (GPT-4) 73.8 85.1 89.0 89.5 85.2
SR (GPT-4) 72.6 86.3 85.6 83.3 78.4

LtM (GPT-4) 26.4 52.7 53.5 54.4 49.8
SGE (GPT-4) 14.9 21.0 15.2 19.7 21.3

IO (Llama 8B) N/A N/A N/A N/A N/A
ACCORD (Llama 8B) 7.4* 0.0* 1.8* 1.0* 5.0*

12

IO (GPT-4) 101.5 120.7 121.6 118.5 117.6
CoT (GPT-4) 79.3 93.8 86.8 90.1 89.3
SR (GPT-4) 77.1 82.2 88.6 88.4 87.0

LtM (GPT-4) 35.8 55.4 57.5 59.2 56.0
SGE (GPT-4) 16.8 22.4 16.1 24.0 22.9

IO (Llama 8B) N/A N/A N/A N/A N/A
ACCORD (Llama 8B) 5.1* 2.6* 2.9* 2.2* 12.4*

tation, we decided to utilize the auto-regressive nature of the LLMs and developed a representation,67

which is specifically designed to leverage the autoregressive generation paradigm of LLMs. Unlike68

the list-based format, our representation decomposes solutions into a sequence of state transitions,69

with each step not only specifying the next element of the solution but also explicitly updating and70

exposing the relevant feasibility metrics (e.g., cumulative weights, distances, machine usage, or71

value). This design allows the model to compute and check constraints dynamically as each token72

is generated, closely mimicking the typical reasoning and verification process of a human solver.73

ACCORD representation embeds constraint satisfaction directly into the generation process. For74

instance, in the Knapsack problem, each item addition is accompanied by an explicit update of the75

running total value and weight, immediately verifying the capacity constraint at each step:76

[[item_id, weight, value] -> value: prev_v + value = new_v,77

weight: prev_w + weight = new_w <= capacity], ...78

Please refer to page 1 in Appendix A for a concrete example. Similarly, for Bin Packing, the79

incremental assignment of items to bins is annotated with cumulative weights, ensuring that no80

bin exceeds its capacity as the sequence unfolds. Routing problems (VRP, TSP) and scheduling81

problems (JSSP) are analogously handled by tracking cumulative distances or machine times within82

the autoregressive output stream. Example of each of these generates is avaialable in the Appendix A.83

This approach transforms the constraint satisfaction problem into a stepwise process, where feasibility84

checks are interleaved with generation. As a result, the LLM is naturally guided away from infeasible85

sequences, as each decision is immediately contextualized by the current state of the solution.86

2.1 Dataset Generation87

We generated synthetic datasets for several CO problems using Google OR-Tools [10], produc-88

ing about 15,000 instances per task in both list-of-lists and ACCORD formats. TSP & VRP:89

Instances varied by location count (N ∈ {5, . . . , 100}) and vehicles (V ∈ {1, . . . , 10}), solved via90

‘PATH_CHEAPEST_ARC‘. Knapsack: Varied item counts and constraints; instances with OR-Tools91

timeouts were discarded. Bin Packing: Item counts, weights, and bin limits were randomized;92

solutions minimized bin usage. JSSP: Instances ranged from 10× 10 to 100× 20 with random job93

sequences, solved via CP-SAT. FSSP: Flowshop instances up to 50× 2 used the NEH heuristic [23].94

See Appendix D for details.95

3 Model Architecture96

To dynamically activate the correct LoRA layers for each combinatorial optimization problem, we97

use an attention-based Dynamic Router TextClassifier that selects the appropriate LoRA weights98
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Feasibility, Gap and Time Comparison for FSSP

(a) Flow Shop
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Feasibility, Gap and Time Comparison for JSSP

(b) JSSP
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(c) BinPack
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(d) Knapsack
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Feasibility, Gap and Time Comparison for VRP

(f) VRP

Figure 2: This figure illustrates the performance of the LLama 3.1 (8B) and LLama 3.2 (1B) models in
terms of the average gap percentage compared to the OR-Tools solution, where a lower gap indicates
better performance. The left y-axis represents the average gap percentage, while the right y-axis
corresponds to the running time in seconds. Bar plots indicate the average gap. The line plots depict
the average running time per instance size, with the x-axis showing the problem size in terms of the
number of nodes in the graph representation. Instances labeled as "No Data" indicate that, within a
sampling budget of 60, the model failed to generate any feasible solution.

based on the instruction text (see Figure 1). Our model builds on a transformer architecture, enhanced99

to capture problem-specific features. Each input token xi is embedded with positional information100

and normalized:101

E′ = Dropout(LayerNorm(Etoken(x) +Epos(p))) (1)

The embeddings are projected to the hidden dimension and passed through several transformer102

layers with alternating multi-head attention and feed-forward sublayers, each followed by layer103

normalization. Token representations from the final transformer layer are pooled using attention-104

based pooling:105

r =

n∑
i=1

aihi y = W2 · LayerNorm(GELU(W1r+ b1)) + b2 (2)

Finally, the pooled vector r is passed through a classification head to produce logits y for each106

problem class. This architecture enables dynamic, instruction-based activation of problem-specific107

LoRA adapters.108
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(d) Knapsack
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Figure 3: Average feasibility comparison with OR-Tools solution across different problem instance
sizes; the higher the feasibility percentage, the better.

3.1 Empirical Comparison with List-of-List Representation109

We assess representation impact by fine-tuning LLaMA 3.1 8B on both list-of-lists and ACCORD110

formats using identical hyperparameters and inputs (Section 2.1). Validation uses 100 out-of-111

distribution instances for each n ∈ {5, 8, 10, 12, 15, 20, 25, 30, 50}. During inference (Fig. 1), an112

Attention-Based Dynamic Router (Section 3) selects the LoRA branch, generating 60 candidate113

solutions per instance. The best feasible solution (lowest gap) is selected, where the optimality gap is114

defined as Gap = Model Value−OR-Tools Value
OR-Tools Value .115

where a lower gap indicates a better solution. Feasibility is measured as the percentage of generated116

solutions that satisfy all constraints. Our results (Fig. 3) show that, although list-of-list representation117

is familier to LLMs, models trained with this format tend to ignore feasibility constraints, resulting in118

lower feasibility rates and higher optimality gaps. In contrast, the ACCORD representation explicitly119

encodes feasibility into the output, enabling the LLM to produce a larger proportion of valid and120

near-optimal solutions, particularly as the problem size increases. Table 1 further compares our121

method against various prompting strategies (see Section B for baselines) on both LLama 8B and122

GPT-4 with code interpreter enabled. Notably, while GPT-4 can potentially generate and execute123

solver code, our ACCORD-based method enables the LLM to generate solutions end-to-end without124

code execution. For both our approach and all prompting baselines, 60 samples per instance are125

generated, and the best result is selected. ACCORD consistently outperforms prompting strategies126

across all 6 combinatorial optimization tasks, and achieves optimal solutions on smaller instances.127

We also assess the impact of model size on average gap, feasibility, and inference time (Fig. 2). The128

8B model mostly outperforms the 1B model in feasibility and optimality gap, with only a moderate129

increase in inference time. For harder instances, such as JSSP, the 1B model fails to find feasible130

solutions within the sampling limit. Our results demonstrate that scaling from 1B to 8B parameters131
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yields a significant 31.5% relative improvement in solution quality, reducing the average gap from132

6.54% to 4.48% (Table 2). The most substantial improvements were observed in routing problems,133

with TSP and VRP showing 65% and 54% relative gap reductions, respectively. Bin packing problems134

showed minimal sensitivity to model scale, with only a 1% improvement. In addition to our synthetic135

OR-Tools instances, we also evaluated ACCORD-8B on Taillard permutation flow-shop benchmarks136

(50 jobs × 10 machines and 50 jobs × 20 machines; avg. gap ≈ 13.7%) and on job-shop benchmarks137

TAI[26] (15 × 15 to 50 × 20; avg. gap ≈ 21.7%) and DMU[8] (20 × 15 to 50 × 15; avg. gap ≈ 22.1%)138

against standard heuristics (MWR/MOR/SPT) and the L2D neural scheduler (see Supplementary139

Material for full results and runtimes).140

3.2 Relationship Between Latent Space Proximity and Solution Feasibility141

We analyzed 500 TSP instances using ACCORD and list-of-lists formats to study how latent represen-142

tations relate to solution feasibility. Hidden states from LLaMA 3.1 8B were reduced via PCA, and143

Euclidean distances between paired representations were computed. We found a significant negative144

correlation between latent distance and feasibility (r = −0.1082, p = 0.0155), with feasibility145

decreasing as distance from the ACCORD manifold increased. Despite a large performance gap146

(71.4% feasible for ACCORD vs. 1.6% for list-of-lists), this trend suggests LLMs encode constraint147

satisfaction geometrically, with latent proximity predicting solution quality.148
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Figure 4: Latent representation distance versus solution feasibility on TSP problems, demonstrating
negative correlation between distance and constraint satisfaction.

4 Conclusion, Limitations and Future Work149

We introduced ACCORD, a framework that encodes combinatorial constraints into an autoregressive150

text format and uses dynamic LoRA routing to probe an LLM’s end-to-end ability on NP-hard tasks.151

On six standard benchmarks (TSP, VRP, FlowShop, JSSP, Knapsack, BinPacking), an 8 B-parameter152

model trained with ACCORD achieves strong feasibility rates and competitive optimality gaps153

compared to prompting and a naïve list-of-lists format. Our goal is not to supplant specialized solvers154

but to map out how far small LLMs can go as self-contained combinatorial reasoners. By releasing155

ACCORD and its 90K dataset, we offer a reproducible codebase for future work at the intersection156

of optimization and generative modeling. Despite its strong performance, ACCORD is bounded157

by the LLM’s context window (limiting very large instances) and relies on LoRA adapters on an158

8B-parameter model. In future work, we will investigate larger backbones (with full fine-tuning),159

expand the effective context via external memory or hierarchical encoding, and apply ACCORD to160

real-world, large-scale optimization scenarios.161
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combinatorial problems. In Advances in Neural Information Processing Systems 37 (NeurIPS194

2024), 2024.195

[15] Damjan Kalajdzievski. A rank stabilization scaling factor for fine-tuning with lora, 2023.196

[16] Elias B. Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial197

optimization algorithms over graphs. In Advances in Neural Information Processing Systems,198

2017.199

[17] Wouter Kool, Holger van Hoof, and Max Welling. Attention, learn to solve routing problems!200

In International Conference on Learning Representations, 2019.201

[18] Jan K Lenstra, A Rinnooy Kan, and P Brucker. Complexity of machine scheduling problems.202

Annals of Discrete Mathematics, 1:343–362, 1979.203

[19] Shengcai Liu, Caishun Chen, Xinghua Qu, Ke Tang, and Yew-Soon Ong. Large language204

models as evolutionary optimizers. arXiv preprint arXiv:2310.19046, 2023.205

7

https://developers.google.com/optimization/


[20] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri206

Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement207

with self-feedback. Advances in Neural Information Processing Systems, 36:46534–46594,208

2023.209

[21] Mahmoud Masoud, Ahmed Abdelhay, and Mohammed Elhenawy. Exploring combinatorial210

problem solving with large language models: A case study on the traveling salesman problem211

using gpt-3.5 turbo. arXiv preprint arXiv:2405.01997, 2024.212

[22] Chinmay Mittal, Krishna Kartik, Mausam, and Parag Singla. Puzzlebench: Can llms solve213

challenging first-order combinatorial reasoning problems? arXiv preprint arXiv:2402.02611,214

2024.215

[23] Muhammad Nawaz, E. Emory Enscore, and Inyong Ham. A heuristic algorithm for the m-216

machine, n-job flow-shop sequencing problem. Omega, 11(1):91–95, 1983.217

[24] Afshin Oroojlooyjadid, Lawrence V Snyder, and Martin Takáč. Applying deep learning to the218
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A Technical Appendices and Supplementary Material250

B Related Work251

B.1 Heuristic and Machine Learning Approaches on CO problems252

Combinatorial optimization has been tackled with both heuristic and exact methods. Simple priority253

dispatching rules (PDRs), such as shortest processing time or earliest due date, are computationally254

efficient but often yield suboptimal solutions due to their greedy nature [18]. Metaheuristics (e.g.,255

simulated annealing, tabu search, genetic algorithms) offer improved solution quality, and exact256

approaches like the shifting bottleneck procedure [2], mixed-integer programming, and constraint257

programming can find optimal solutions for small instances, though at high computational cost [25, 9].258

Recently, machine learning, particularly deep reinforcement learning (RL) and graph neural networks259

(GNNs) have advanced combinatorial optimization [33, 16, 17]. RL methods treat scheduling as260

sequential decision making, learning dispatching policies via environment interaction [33]. GNNs en-261

code jobs and machines as nodes, enabling permutation-invariant representations and, when combined262

with RL, can model complex dependencies [16]. Attention-based and sequence-to-sequence models263

further enhance performance on tasks like TSP and VRP, often utilizing iterative refinement [17].264

B.2 Large Language Models in Combinatorial Optimization265

The advent of LLMs has introduced new paradigms for CO. Early work explored whether LLMs266

could generate solutions through prompting [32], [13], [22], [31] [35], [20], [14]. Prompting-based267

strategies, such as OPRO, involve iterative refinement based on feedback, while methods for VRP268

employ self-debugging and verification to enhance feasibility [13]. However, scalability remains269

a challenge, as even strong prompting techniques struggle on larger or more complex instances270

[22]. Recent research has explored a variety of prompting strategies to leverage LLMs for solving271

combinatorial optimization (CO) problems. The Input-Output (IO) method presents the LLM with272

multiple examples of input and corresponding output solution pairs. The LLM is then prompted to273

generate an output solution in the same format as the provided examples. This approach relies on the274

LLM’s ability to generalize the mapping from input to output based on observed patterns. In Chain-275

of-Thought (CoT) prompting, the LLM is guided to produce a sequence of intermediate reasoning276

steps, or "thoughts," before arriving at the final answer [31]. This technique encourages the model to277

break down complex CO tasks into structured, stepwise reasoning, improving both transparency and278

solution quality. Least-to-Most (LtM) prompting strategy aims to decompose a complex problem279

into a sequence of simpler subproblems, solving them incrementally [35]. Each subproblem builds280

upon the solutions of previous ones, enabling the LLM to tackle challenging CO tasks through a281

series of manageable steps. Self-Refinement (SR) is an iterative prompting technique wherein the282

LLM first generates an initial solution, then provides feedback on its own output, and finally refines283

the solution based on this feedback [20]. The process repeats until a satisfactory solution is reached.284

Self-Guiding Exploration for Combinatorial Problems (SGE) autonomously generates multiple285

thought trajectories for a given CO task [14]. Each trajectory represents a distinct heuristic approach,286

inspired by metaheuristics. SGE decomposes these trajectories into actionable subtasks, executes287

them sequentially, and refines the results to ensure optimal solutions. Fine-tuning LLMs for CO tasks288

is another active area [1],[21] . [1] showed that fine-tuned LLM on job-shop scheduling, demonstrates289

significant improvements in solution quality. Similarly, [21] applied fine-tuning to TSP instances290

with promising but size-limited results. Hybrid methods integrate LLMs into evolutionary or search291

frameworks, where the LLM guides genetic operations or receives feedback from constraint solvers292

to iteratively improve solutions [19, 29, 5]. While promising, these approaches often entail significant293

computational overhead and still face scaling hurdles.294

C Preliminaries: Overview of Classic Combinatorial Optimization Problems295

In this section, we introduce several foundational combinatorial optimization problems, explaining296

their goals and constraints in accessible terms while also providing their standard mathematical297

formulations. General Combinatorial Optimization Problem Combinatorial optimization involves298

searching for the best solution from a finite set of possibilities. Formally, given a set of feasible299
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solutions S and an objective function f : S → R, the goal is to find300

s∗ = argmin
s∈S

f(s)

or, in some cases, to maximize f(s) depending on the problem.301

Traveling Salesman Problem (TSP) Given a list of cities and the distances between each pair of302

cities, what is the shortest possible route that visits each city exactly once and returns to the starting303

point. Mathematically, for n cities V = {1, 2, . . . , n} and a distance matrix D ∈ Rn×n, we seek a304

tour (a permutation π of all cities) that minimizes the total travel distance, where π(n+ 1) = π(1) to305

ensure the tour closes:306

min
π∈Pn

n∑
i=1

Dπ(i),π(i+1)

Vehicle Routing Problem (VRP) The VRP extends the TSP to multiple vehicles. Given a depot,307

n customers (with demands qi), and a fleet of vehicles each with capacity Q, the goal is to design308

routes—each starting and ending at the depot—so that every customer is visited exactly once, no309

vehicle exceeds its capacity, and the total travel distance is minimized:310

min
m∑

k=1

ℓk∑
j=0

Dvk
j ,v

k
j+1

subject to311

m⋃
k=1

{vk1 , . . . , vkℓk} = V (All customers served)

ℓk∑
j=1

qvk
j
≤ Q ∀k (Capacity constraint)

Job Shop Scheduling Problem (JSSP) JSSP schedules n jobs, each as a sequence of operations312

on specific machines. Each operation Oj,k requires machine Mj,k for pj,k time units, following job313

order. Let Sj,k and Cj,k be the start and completion times. The objective is to minimize makespan:314

minCmax = max
j

Cj,ℓj

subject to:315

(Precedence) Sj,k+1 ≥ Cj,k

(No machine conflicts) Sj,k ≥ Cj′,k′ or Sj′,k′ ≥ Cj,k,

∀(j, k) ̸= (j′, k′) with Mj,k = Mj′,k′

Knapsack Problem (KP) Given a set of items, each with a value and weight, what is the most316

valuable combination of items you can carry without exceeding the weight limit of your knapsack.317

With n items (weights wi, values vi) and capacity W , choose xi ∈ {0, 1} (item picked or not) to318

solve:319

max

n∑
i=1

vixi s.t.
n∑

i=1

wixi ≤ W

Bin Packing Problem (BPP) Given a set of items of varying sizes, how can you pack them into the320

fewest number of fixed-size bins. For n items of sizes si ∈ (0, 1], assign them to bins of capacity 1321

so as to minimize the total number of bins K:322

minK

subject to:323

∑
i∈Bk

si ≤ 1 ∀k,
K⋃

k=1

Bk = {1, . . . , n}, Bk ∩Bk′ = ∅ ∀k ̸= k′
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where Bk is the set of items in bin k.324

Flow Shop Scheduling Problem (FSSP)325

We consider the permutation flow shop scheduling problem (FSSP), where all jobs are processed in326

the same order on each of m machines. Given n jobs J = {1, 2, . . . , n} and processing times pj,k327

for job j on machine k, the goal is to find a job sequence π that minimizes the makespan.328

Let Cj,k denote the completion time of job j on machine k. The constraints are:329

(Machine order) Cπ(i),k ≥ Cπ(i),k−1 + pπ(i),k ∀i = 1, . . . , n, k = 2, . . . ,m

(Job sequence) Cπ(i),k ≥ Cπ(i−1),k + pπ(i),k ∀i = 2, . . . , n, k = 1, . . . ,m

The objective is to find the permutation π∗ that minimizes the makespan:330

min
π∈Pn

Cmax = min
π∈Pn

max
i

Cπ(i),m

where Cπ(i),m is the completion time of job π(i) on the last machine.331

Below, we provide representative examples from each of the major combinatorial optimization332

problems in our dataset. Each example is shown in both the standard “list of list” representation and333

the “Accord” (arrow-based) representation.334

Knapsack Problem335

Instruction: You are given a paired representation (value, weight): Find a set of items to pack into a336

container with a maximum weight capacity = 20 that maximizes total value of packed items.337

• Input:338 
6 5
10 8
7 4
6 2
1 1


• Output (List of List):339

Solution: [(6, 5), (10, 8), (7, 4), (6, 2), (1, 1)]340

Value: 6+10+7+6+1=30341

Weight: 5+8+4+2+1=20<=20342

343

• Output (Accord):344

Solution:345

[[6, 5] -> value:0+6=6, weight:0+5=5<=20],346

[[10, 8] -> value:6+10=16, weight:5+8=13<=20],347

[[7, 4] -> value:16+7=23, weight:13+4=17<=20],348

[[6, 2] -> value:23+6=29, weight:17+2=19<=20],349

[[1, 1] -> value:29+1=30, weight:19+1=20<=20]350

351

Total Value: 30352

Total Weight: 20<=20353

354

Bin Packing Problem355

Instruction: Given a list of items (id, weight), determine the minimum number of bins (capacity=77)356

needed to pack all items without exceeding the capacity.357

• Input:358

[(0, 17), (1, 24), (2, 19), (3, 11), (4, 27)]

• Output (List of List):359
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The minimum number of bins required is 2. The bin assignments are: [[0, 1, 2, 3], [4]].360

361

• Output (Accord):362

Bin 1:363

(0, 17)->17 (1, 24)->41 (2, 19)->60 (3, 11)->71<=77364

Bin 2:365

(4, 27)->27<=77366

Total bins required: 2367

368

Vehicle Routing Problem (VRP)369

Instruction: Given customers with coordinates and a depot, and multiple vehicles of capacity 85,370

find the minimum-length routes serving all customers.371

• Coords: 0:(34, 42), 1:(39, 58), 2:(46, 48), 3:(57, 49), 4:(45, 16)372

• Output (List of List):373

[(0): (34, 42), (0): (34, 42)]374

[(0): (34, 42), (0): (34, 42)]375

[(0): (34, 42), (0): (34, 42)]376

[(0): (34, 42), (0): (34, 42)]377

[(0): (34, 42), (1): (39, 58), (2): (46, 48),378

(3): (57, 49), (4): (45, 16), (0): (34, 42)]379

Overall Total Distance: 102380

381

• Output (Accord):382

Vehicle Route: (0): (34, 42) -> (0): (34, 42) + 0383

Vehicle Route: (0): (34, 42) -> (0): (34, 42) + 0384

Vehicle Route: (0): (34, 42) -> (0): (34, 42) + 0385

Vehicle Route: (0): (34, 42) -> (0): (34, 42) + 0386

Vehicle Route: (0): (34, 42) -> (1): (39, 58) + 16 -> (2): (46, 48) + 12 ->387

(3): (57, 49) + 11 -> (4): (45, 16) + 35 -> (0): (34, 42) + 28388

Overall Total Distance: 102389

390

Traveling Salesman Problem (TSP)391

Instruction: Given customers with coordinates and a depot, and 1 vehicle, find the minimum-length392

route serving all customers.393

• Coords: 0:(17, 22), 1:(63, 8), 2:(22, 60), 3:(3, 29), 4:(7, 12)394

• Output (List of List):395

[(0): (17, 22), (4): (7, 12), (3): (3, 29), (2): (22, 60), (1): (63, 8), (0): (17, 22)]396

Overall Total Distance: 181397

398

• Output (Accord):399

Vehicle Route: (0): (17, 22) -> (4): (7, 12) + 14 -> (3): (3, 29) + 17 ->400

(2): (22, 60) + 36 -> (1): (63, 8) + 66 -> (0): (17, 22) + 48401

Overall Total Distance: 181402

403

Job Shop Scheduling Problem (JSSP)404

Instruction: Optimize schedule for 2 Jobs (J) across 6 Machines (M) to minimize makespan. Each405

M can process only one J at a time, and once started, J cannot be interrupted.406
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• Input:407

J0:408

M2:205 M1:157 M0:198 M5:79 M3:110 M4:32409

J1:410

M3:179 M4:108 M2:82 M5:112 M1:136 M0:27411

412

• Output (List of List):413

[[0, 2, 0, 205], [1, 3, 0, 179], [1, 4, 179, 108], [0, 1, 205, 157], [1, 2, 287, 82],414

[0, 0, 362, 198], [1, 5, 369, 112], [1, 1, 481, 136], [0, 5, 560, 79], [1, 0, 617, 27],415

[0, 3, 639, 110], [0, 4, 749, 32]]416

Maximum end completion time or Makespan: 781417

418

• Output (Accord):419

Solution:420

J0-M2: 0+205 -> 205,421

J1-M3: 0+179 -> 179,422

J1-M4: 179+108 -> 287,423

J0-M1: 205+157 -> 362,424

J1-M2: 287+82 -> 369,425

J0-M0: 362+198 -> 560,426

J1-M5: 369+112 -> 481,427

J1-M1: 481+136 -> 617,428

J0-M5: 560+79 -> 639,429

J1-M0: 617+27 -> 644,430

J0-M3: 639+110 -> 749,431

J0-M4: 749+32 -> 781,432

Maximum end completion time or Makespan: 781433

434

Flow Shop Scheduling Problem (FSSP)435

Input:436

J1:437

M1:12 M2:7438

J2:439

M1:8 M2:4440

J3:441

M1:4 M2:15442

J4:443

M1:5 M2:9444

Output (List of List):445

[[3, 1, 0, 4], [3, 2, 4, 15], [2, 1, 4, 8], [4, 1, 12, 5],446

[1, 1, 17, 12], [2, 2, 19, 4], [4, 2, 23, 9], [1, 2, 32, 7]]447

Maximum end completion time or Makespan: 39448

Output (Accord):449

J3: M1(0+4=4) -> M2(4+15=19)450

J2: M1(4+8=12) -> M2(19+4=23)451

J4: M1(12+5=17) -> M2(23+9=32)452

J1: M1(17+12=29) -> M2(32+7=39)453

454

Maximum end completion time or Makespan: 39455
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D Training Details456

We conducted supervised fine-tuning using input-output pairs for two models from Meta: Llama 3.1457

8B and Llama 3.2 1B. To minimize memory usage during training, we employed 4-bit quantized458

versions of these models and trained each for 2 epochs. For a fair comparison, we fine-tuned459

each model with the same hyperparameters, varying only the output representation: once using460

the list-of-lists format and once using the ACCORD format, while keeping the input and all other461

hyperparameters identical. We used Rank-Stabilized Low-Rank Adaptation (RSLoRA) [15] with a462

rank of r = 64 and α = 64. The two epochs, training required roughly 40 hours and about 30GB463

of GPU memory on Nvdidia RTX A6000 GPU. We limited the context length of the model to 40k464

instead of the original 128k, to reduce memory consumption and increase the speed of fine-tuning.465

“Context length” refers to the maximum number of tokens (words or subwords) the model can process466

at once as input. More training details and curves are available in D.467

Training details468

The model being fine-tuned is LLaMA 3.1, an 8 billion parameter model from Meta[3], using a 4-bit469

quantized version to reduce memory usage. Finetning was conducted using Stabilized Low-Rank470

Adaptation (RsLoRA) [15] with rank r = 64 to introduce learnable parameters specifically in targeted471

layers. [15] Compared to Lora[11] RsLoRa improves the stability of training by modifying the rank472

during adaptation[15]. The target modules include:473

target_modules = {q_proj, k_proj, v_proj, o_proj,
gate_proj, up_proj, down_proj} (3)

The LoRA-specific parameters are configured as follows:474

• Rank (r): 64475

• LoRA Alpha (α): 64476

• LoRA Dropout: 0477

• Bias: none478

This resulted in number of trainable parameters = 167, 772, 160 or 0.02 % of the entire Llama 8B479

model’s parameters.480

Quantization and Memory Efficiency481

The model is loaded in 4-bit precision to reduce memory consumption. Gradient checkpointing is482

enabled using the unsloth [4] method, to fit longer sequences by saving memory. This reduces the483

VRAM usage by approximately 30%, enabling larger batch sizes.484

Table 2: The effect of the model size on Average Gap (%): Comparison Across CO Problems
Problem 1B Model 8B Model
BINPACK 1.01% 1.00%
FSSP 7.92% 7.17%
JSSP N/A 6.08%
KNAPSAK 5.90% 5.33%
TSP 8.11% 2.84%
VRP 9.74% 4.50%
AVERAGE 6.54% 4.48%
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NeurIPS Paper Checklist485

1. Claims486

Question: Do the main claims made in the abstract and introduction accurately reflect the487

paper’s contributions and scope?488

Answer: [Yes]489

Justification: Yes through experimental evaluation and ablation study that support the claims.490

Guidelines:491

• The answer NA means that the abstract and introduction do not include the claims492

made in the paper.493

• The abstract and/or introduction should clearly state the claims made, including the494

contributions made in the paper and important assumptions and limitations. A No or495

NA answer to this question will not be perceived well by the reviewers.496

• The claims made should match theoretical and experimental results, and reflect how497

much the results can be expected to generalize to other settings.498

• It is fine to include aspirational goals as motivation as long as it is clear that these goals499

are not attained by the paper.500

2. Limitations501

Question: Does the paper discuss the limitations of the work performed by the authors?502

Answer: [Yes]503

Justification: Section 4 provides possible limitations of the work.504

Guidelines:505

• The answer NA means that the paper has no limitation while the answer No means that506

the paper has limitations, but those are not discussed in the paper.507

• The authors are encouraged to create a separate "Limitations" section in their paper.508

• The paper should point out any strong assumptions and how robust the results are to509

violations of these assumptions (e.g., independence assumptions, noiseless settings,510

model well-specification, asymptotic approximations only holding locally). The authors511

should reflect on how these assumptions might be violated in practice and what the512

implications would be.513

• The authors should reflect on the scope of the claims made, e.g., if the approach was514

only tested on a few datasets or with a few runs. In general, empirical results often515

depend on implicit assumptions, which should be articulated.516

• The authors should reflect on the factors that influence the performance of the approach.517

For example, a facial recognition algorithm may perform poorly when image resolution518

is low or images are taken in low lighting. Or a speech-to-text system might not be519

used reliably to provide closed captions for online lectures because it fails to handle520

technical jargon.521

• The authors should discuss the computational efficiency of the proposed algorithms522

and how they scale with dataset size.523

• If applicable, the authors should discuss possible limitations of their approach to524

address problems of privacy and fairness.525

• While the authors might fear that complete honesty about limitations might be used by526

reviewers as grounds for rejection, a worse outcome might be that reviewers discover527

limitations that aren’t acknowledged in the paper. The authors should use their best528

judgment and recognize that individual actions in favor of transparency play an impor-529

tant role in developing norms that preserve the integrity of the community. Reviewers530

will be specifically instructed to not penalize honesty concerning limitations.531

3. Theory assumptions and proofs532

Question: For each theoretical result, does the paper provide the full set of assumptions and533

a complete (and correct) proof?534

Answer: [Yes]535
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Justification: Although the paper is not theoretical, we discuss every detail and assumtion536

for empirical evaluation. Morever for Statistical hypothesis testing details is discussed in537

section 3.2538

Guidelines:539

• The answer NA means that the paper does not include theoretical results.540

• All the theorems, formulas, and proofs in the paper should be numbered and cross-541

referenced.542

• All assumptions should be clearly stated or referenced in the statement of any theorems.543

• The proofs can either appear in the main paper or the supplemental material, but if544

they appear in the supplemental material, the authors are encouraged to provide a short545

proof sketch to provide intuition.546

• Inversely, any informal proof provided in the core of the paper should be complemented547

by formal proofs provided in appendix or supplemental material.548

• Theorems and Lemmas that the proof relies upon should be properly referenced.549

4. Experimental result reproducibility550

Question: Does the paper fully disclose all the information needed to reproduce the main ex-551

perimental results of the paper to the extent that it affects the main claims and/or conclusions552

of the paper (regardless of whether the code and data are provided or not)?553

Answer: [Yes]554

Justification: The paper fully describes both the data generation hyperparameters in Sec-555

tion2.1 and in the Appendix D556

Guidelines:557

• The answer NA means that the paper does not include experiments.558

• If the paper includes experiments, a No answer to this question will not be perceived559

well by the reviewers: Making the paper reproducible is important, regardless of560

whether the code and data are provided or not.561

• If the contribution is a dataset and/or model, the authors should describe the steps taken562

to make their results reproducible or verifiable.563

• Depending on the contribution, reproducibility can be accomplished in various ways.564

For example, if the contribution is a novel architecture, describing the architecture fully565

might suffice, or if the contribution is a specific model and empirical evaluation, it may566

be necessary to either make it possible for others to replicate the model with the same567

dataset, or provide access to the model. In general. releasing code and data is often568

one good way to accomplish this, but reproducibility can also be provided via detailed569

instructions for how to replicate the results, access to a hosted model (e.g., in the case570

of a large language model), releasing of a model checkpoint, or other means that are571

appropriate to the research performed.572

• While NeurIPS does not require releasing code, the conference does require all submis-573

sions to provide some reasonable avenue for reproducibility, which may depend on the574

nature of the contribution. For example575

(a) If the contribution is primarily a new algorithm, the paper should make it clear how576

to reproduce that algorithm.577

(b) If the contribution is primarily a new model architecture, the paper should describe578

the architecture clearly and fully.579

(c) If the contribution is a new model (e.g., a large language model), then there should580

either be a way to access this model for reproducing the results or a way to reproduce581

the model (e.g., with an open-source dataset or instructions for how to construct582

the dataset).583

(d) We recognize that reproducibility may be tricky in some cases, in which case584

authors are welcome to describe the particular way they provide for reproducibility.585

In the case of closed-source models, it may be that access to the model is limited in586

some way (e.g., to registered users), but it should be possible for other researchers587

to have some path to reproducing or verifying the results.588

5. Open access to data and code589
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Question: Does the paper provide open access to the data and code, with sufficient instruc-590

tions to faithfully reproduce the main experimental results, as described in supplemental591

material?592

Answer: [Yes]593

Justification: The link to the code and the dataset is directly provided in the abstract as a594

footnote.595

Guidelines:596

• The answer NA means that paper does not include experiments requiring code.597

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/598

public/guides/CodeSubmissionPolicy) for more details.599

• While we encourage the release of code and data, we understand that this might not be600

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not601

including code, unless this is central to the contribution (e.g., for a new open-source602

benchmark).603

• The instructions should contain the exact command and environment needed to run to604

reproduce the results. See the NeurIPS code and data submission guidelines (https:605

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.606

• The authors should provide instructions on data access and preparation, including how607

to access the raw data, preprocessed data, intermediate data, and generated data, etc.608

• The authors should provide scripts to reproduce all experimental results for the new609

proposed method and baselines. If only a subset of experiments are reproducible, they610

should state which ones are omitted from the script and why.611

• At submission time, to preserve anonymity, the authors should release anonymized612

versions (if applicable).613

• Providing as much information as possible in supplemental material (appended to the614

paper) is recommended, but including URLs to data and code is permitted.615

6. Experimental setting/details616

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-617

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the618

results?619

Answer: [Yes]620

Justification: Short version of the training details are described in Section D and in the621

Appendix D.622

Guidelines:623

• The answer NA means that the paper does not include experiments.624

• The experimental setting should be presented in the core of the paper to a level of detail625

that is necessary to appreciate the results and make sense of them.626

• The full details can be provided either with the code, in appendix, or as supplemental627

material.628

7. Experiment statistical significance629

Question: Does the paper report error bars suitably and correctly defined or other appropriate630

information about the statistical significance of the experiments?631

Answer: [Yes]632

Justification: Statistical significance test has been conducted in Section 3.2, providing the633

relation between the latent space proximity and solution feasibility.634

Guidelines:635

• The answer NA means that the paper does not include experiments.636

• The authors should answer "Yes" if the results are accompanied by error bars, confi-637

dence intervals, or statistical significance tests, at least for the experiments that support638

the main claims of the paper.639
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• The factors of variability that the error bars are capturing should be clearly stated (for640

example, train/test split, initialization, random drawing of some parameter, or overall641

run with given experimental conditions).642

• The method for calculating the error bars should be explained (closed form formula,643

call to a library function, bootstrap, etc.)644

• The assumptions made should be given (e.g., Normally distributed errors).645

• It should be clear whether the error bar is the standard deviation or the standard error646

of the mean.647

• It is OK to report 1-sigma error bars, but one should state it. The authors should648

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis649

of Normality of errors is not verified.650

• For asymmetric distributions, the authors should be careful not to show in tables or651

figures symmetric error bars that would yield results that are out of range (e.g. negative652

error rates).653

• If error bars are reported in tables or plots, The authors should explain in the text how654

they were calculated and reference the corresponding figures or tables in the text.655

8. Experiments compute resources656

Question: For each experiment, does the paper provide sufficient information on the com-657

puter resources (type of compute workers, memory, time of execution) needed to reproduce658

the experiments?659

Answer: [Yes]660

Justification: The devices used for training is provided in Section D and the devices used for661

the inference is provided in Section 3.1. Execution time results are provided in 2662

Guidelines:663

• The answer NA means that the paper does not include experiments.664

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,665

or cloud provider, including relevant memory and storage.666

• The paper should provide the amount of compute required for each of the individual667

experimental runs as well as estimate the total compute.668

• The paper should disclose whether the full research project required more compute669

than the experiments reported in the paper (e.g., preliminary or failed experiments that670

didn’t make it into the paper).671

9. Code of ethics672

Question: Does the research conducted in the paper conform, in every respect, with the673

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?674

Answer: [Yes]675

Justification: We release full code and dataset required for reproducibility, alongside with676

dataset generation and training hyperparameter details677

Guidelines:678

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.679

• If the authors answer No, they should explain the special circumstances that require a680

deviation from the Code of Ethics.681

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-682

eration due to laws or regulations in their jurisdiction).683

10. Broader impacts684

Question: Does the paper discuss both potential positive societal impacts and negative685

societal impacts of the work performed?686

Answer: [NA]687

Justification: The paper topic does not have a connection688

Guidelines:689

• The answer NA means that there is no societal impact of the work performed.690
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• If the authors answer NA or No, they should explain why their work has no societal691

impact or why the paper does not address societal impact.692

• Examples of negative societal impacts include potential malicious or unintended uses693

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations694

(e.g., deployment of technologies that could make decisions that unfairly impact specific695

groups), privacy considerations, and security considerations.696

• The conference expects that many papers will be foundational research and not tied697

to particular applications, let alone deployments. However, if there is a direct path to698

any negative applications, the authors should point it out. For example, it is legitimate699

to point out that an improvement in the quality of generative models could be used to700

generate deepfakes for disinformation. On the other hand, it is not needed to point out701

that a generic algorithm for optimizing neural networks could enable people to train702

models that generate Deepfakes faster.703

• The authors should consider possible harms that could arise when the technology is704

being used as intended and functioning correctly, harms that could arise when the705

technology is being used as intended but gives incorrect results, and harms following706

from (intentional or unintentional) misuse of the technology.707

• If there are negative societal impacts, the authors could also discuss possible mitigation708

strategies (e.g., gated release of models, providing defenses in addition to attacks,709

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from710

feedback over time, improving the efficiency and accessibility of ML).711

11. Safeguards712

Question: Does the paper describe safeguards that have been put in place for responsible713

release of data or models that have a high risk for misuse (e.g., pretrained language models,714

image generators, or scraped datasets)?715

Answer: [NA]716

Justification: This does not concern the paper717

Guidelines:718

• The answer NA means that the paper poses no such risks.719

• Released models that have a high risk for misuse or dual-use should be released with720

necessary safeguards to allow for controlled use of the model, for example by requiring721

that users adhere to usage guidelines or restrictions to access the model or implementing722

safety filters.723

• Datasets that have been scraped from the Internet could pose safety risks. The authors724

should describe how they avoided releasing unsafe images.725

• We recognize that providing effective safeguards is challenging, and many papers do726

not require this, but we encourage authors to take this into account and make a best727

faith effort.728

12. Licenses for existing assets729

Question: Are the creators or original owners of assets (e.g., code, data, models), used in730

the paper, properly credited and are the license and terms of use explicitly mentioned and731

properly respected?732

Answer: [Yes]733

Justification: All the other code bases and libraries used in the training and inference codes734

are explicitly mentioned.735

Guidelines:736

• The answer NA means that the paper does not use existing assets.737

• The authors should cite the original paper that produced the code package or dataset.738

• The authors should state which version of the asset is used and, if possible, include a739

URL.740

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.741

• For scraped data from a particular source (e.g., website), the copyright and terms of742

service of that source should be provided.743
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• If assets are released, the license, copyright information, and terms of use in the744

package should be provided. For popular datasets, paperswithcode.com/datasets745

has curated licenses for some datasets. Their licensing guide can help determine the746

license of a dataset.747

• For existing datasets that are re-packaged, both the original license and the license of748

the derived asset (if it has changed) should be provided.749

• If this information is not available online, the authors are encouraged to reach out to750

the asset’s creators.751

13. New assets752

Question: Are new assets introduced in the paper well documented and is the documentation753

provided alongside the assets?754

Answer: [Yes]755

Justification: Both the documentation of the code and dataset are available in the official756

code link page provided.757

Guidelines:758

• The answer NA means that the paper does not release new assets.759

• Researchers should communicate the details of the dataset/code/model as part of their760

submissions via structured templates. This includes details about training, license,761

limitations, etc.762

• The paper should discuss whether and how consent was obtained from people whose763

asset is used.764

• At submission time, remember to anonymize your assets (if applicable). You can either765

create an anonymized URL or include an anonymized zip file.766

14. Crowdsourcing and research with human subjects767

Question: For crowdsourcing experiments and research with human subjects, does the paper768

include the full text of instructions given to participants and screenshots, if applicable, as769

well as details about compensation (if any)?770

Answer: [NA]771

Justification: It does not apply to the paper772

Guidelines:773

• The answer NA means that the paper does not involve crowdsourcing nor research with774

human subjects.775

• Including this information in the supplemental material is fine, but if the main contribu-776

tion of the paper involves human subjects, then as much detail as possible should be777

included in the main paper.778

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,779

or other labor should be paid at least the minimum wage in the country of the data780

collector.781

15. Institutional review board (IRB) approvals or equivalent for research with human782

subjects783

Question: Does the paper describe potential risks incurred by study participants, whether784

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)785

approvals (or an equivalent approval/review based on the requirements of your country or786

institution) were obtained?787

Answer: [NA]788

Justification: It does not apply to the paper789

Guidelines:790

• The answer NA means that the paper does not involve crowdsourcing nor research with791

human subjects.792

• Depending on the country in which research is conducted, IRB approval (or equivalent)793

may be required for any human subjects research. If you obtained IRB approval, you794

should clearly state this in the paper.795
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• We recognize that the procedures for this may vary significantly between institutions796

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the797

guidelines for their institution.798

• For initial submissions, do not include any information that would break anonymity (if799

applicable), such as the institution conducting the review.800

16. Declaration of LLM usage801

Question: Does the paper describe the usage of LLMs if it is an important, original, or802

non-standard component of the core methods in this research? Note that if the LLM is used803

only for writing, editing, or formatting purposes and does not impact the core methodology,804

scientific rigorousness, or originality of the research, declaration is not required.805

Answer: [Yes]806

Justification: All the dertails of how the LLM was fine-tuned are discussed in the paper807

Section D and in the Appendix D808

Guidelines:809

• The answer NA means that the core method development in this research does not810

involve LLMs as any important, original, or non-standard components.811

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)812

for what should or should not be described.813
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