© ® N O o A~ W N =

20
21
22
23

24
25
26
27
28
29
30
31
32
33

ACCORD: Autoregressive Constraint-satisfying
Generation for COmbinatorial Optimization with
Routing and Dynamic attention

Anonymous Author(s)
Affiliation
Address

email

Abstract

Large Language Models (LLMs) have demonstrated impressive reasoning capabili-
ties, yet their direct application to NP-hard combinatorial problems (CPs) remains
underexplored. In this work, we systematically investigate the reasoning abilities
of LLMs on a variety of NP-hard combinatorial optimization tasks and introduce
ACCORD: Autoregressive Constraint-satisfying generation for COmbinatorial op-
timization with Routing and Dynamic attention. ACCORD features a novel dataset
representation and model architecture that leverage the autoregressive nature of
LLMs to dynamically enforce feasibility constraints, coupled with attention-based
routing to activate problem-specific LORA modules. We also present the ACCORD-
90k supervised dataset, covering six NP-hard combinatorial problems: TSP, VRP,
Knapsack, FlowShop, JSSP, and BinPacking. Extensive experiments demonstrate
that our ACCORD model, built on an 8B-parameter Llama backbone, consistently
outperforms standard prompting and input-output methods, even when compared
to much larger LLMs, such as gpt-4. Ablation studies further show that our output
structure enhances solution feasibility. To the best of our knowledge, this is the
first large-scale, end-to-end framework for exploring the applications of LLMs to a
broad spectrum of combinatorial optimization problems. The codes are publicly
available at

1 Introduction

Large Language Models (LLMs) have rapidly established themselves as versatile engines for reason-
ing across a broad spectrum of tasks, encompassing arithmetic, commonsense logic , [27], [71], [6].
Among the prominent strategies enabling such capabilities is the Chain-of-Thought approach, which
allows these models to decompose complex problems into sequential, interpretable steps [31]].

Recent efforts have sought to adapt these reasoning techniques to address more advanced optimization
tasks. Combinatorial optimization problems (CPs) are decision-making challenges where the goal is
to select an optimal arrangement or subset from a large, discrete set of possibilities. Classic examples
include the Traveling Salesman Problem (TSP), Vehicle Routing Problem (VRP), and Job Shop
Scheduling Problem (JSSP), which have widespread applications in logistics, manufacturing, and
artificial intelligence [[18]]. Due to their NP-hard nature, even moderately sized instances possess a
combinatorial explosion of potential solutions, rendering brute-force approaches infeasible. As a
result, practical methods typically rely on heuristics or approximation algorithms to provide near-
optimal solutions within reasonable time frames. As NP-hard problems, CPs present huge obstacles
in practical settings [24]. Presently, the predominant paradigm in industry relies on metaheuristic

"https://github.com/starjob42/ACCORD

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

34
35
36

37
38
39
40
41
42
43
44
45
46
47
48
49

50
51
52
53
54
55
56
57
58

59

60

61
62
63
64
65
66

algorithms—sophisticated combinations of simple, efficient heuristics—for solving CPs under various
constraints. However, the success of these heuristics is often highly sensitive to the specific structure
and requirements of each problem, necessitating tailored approaches for optimal results.

Attention based
Dynamic Router

e ~
| il)\
I n
Base LLM Model = s H k Parsing and Feasibility
"‘s{gnlale multple Check
[souons |)
~ J

Final
Solution

Figure 1: Overview of the ACCORD inference pipeline. As an example, a knapsack problem
described in natural language is provided as input, then Attention based Dynamic router3|activates the
corresponding LoRA layer specialized for knapsack tasks. Multiple candidate solutions are generated
via sampling, each checked for feasibility. The best feasible solution is returned as the final output.
Note that the pipeline generalizes to other combinatorial problems in the same manner; knapsack is
shown here for illustration.

VRPITSP LoRa layers.

Knapsack problem
description in natural
language

At the same time, investigations into leveraging LLMs for combinatorial problem solving have
revealed significant research gaps. While the latest breakthroughs highlight the promise of LLMs in
diverse reasoning scenarios [[1], [14]], [30], [34], their full potential in the context of combinatorial
optimization remains largely untapped. Applying LLMs directly to these problems presents unique
challenges: LLMs are trained primarily for natural language generation, not for enforcing strict
combinatorial constraints, leading to issues such as hallucinations (plausible but infeasible solutions)
[12]], lack of optimality, and limited interpretability [28]. Furthermore, the absence of systematic
search or explicit constraint mechanisms means LLM outputs can violate feasibility or fail to improve
upon prior attempts. Recent advances have begun to explore the application of large language models
(LLMs) to combinatorial optimization (CO). Numerous prompting-based approaches have been tested
on CO tasks [32} 13} 22} |31} 135} 20, [14], demonstrating progress in solution quality and constraint
handling. However, to date, there has been no comprehensive study evaluating a unified fine-tuned
LLM-based framework for NP-hard CO problems across multiple domains.

We introduce ACCORD (Autoregressive Constraint-satisfying generation for COmbinatorial opti-
mization with Routing and Dynamic attention), a framework for evaluating LLMs on combinatorial
optimization. Our contributions are: (i) the ACCORD-90k dataset for TSP, VRP, Knapsack, Flow-
Shop, JSSP, and BinPacking, using an autoregressive constraint-aware representation; (ii) a model
architecture with attention-based dynamic routing and task-specific LORA modules; (iii) extensive
ablations showing lower optimality gaps and higher feasibility than list-of-lists and SOTA prompting
(e.g., GPT-4 with Code Interpreter). ACCORD yields feasibility gains of 24.86% (FlowShop), 10%
(TSP, VRP), 7% (JSSP), 4% (Knapsack), and 2% (BinPacking). This is the first large-scale, end-to-end
CO framework with LLMs, opening new directions in symbolic reasoning and optimization.

2 Main Method: ACCORD Representation for Feasibility-Aware Solution
Generation

A core challenge in applying Large Language Models (LLMs) to combinatorial optimization is
the effective encoding of feasibility constraints within the generated solutions. Conventional rep-
resentations, such as the “list of lists” format, provide direct encodings of solution sets, which are
familiar to LLMs due to their prevalence in general-purpose data and code corpora. However, these
representations are static—constraints are only checked after solution generation, offering limited
guidance for incremental feasibility during the autoregressive decoding process. To address this limi-

67
68
69
70
71
72
73
74
75
76

77
78

79
80
81
82
83
84
85
86

87

88
89
90
91
92
93
94
95

96

97
98

Table 1: Optimality gap (%) of prompting methods (GPT-4 with code interpreter) vs. ACCORD
(Llama 8B). Lower is better. N/A: no feasible solution.

Size Method Knapsack BinPack TSP VRP JSSP
10 (GPT-4) 90.1 108.2 100.3 102.0 105.3
CoT (GPT-4) 66.9 78.2 81.2 78.2 79.4
SR (GPT-4) 62.0 77.4 71.6 72.5 71.7
5 LtM (GPT-4) 21.6 40.0 43.6 40.7 44.1
SGE (GPT-4) 8.1 9.1 83 11.9 9.3
10 (Llama 8B) N/A N/A N/A N/A N/A
ACCORD (Llama 8B) 3.9% 0.0* 0.6* 1.0% 0.0*
10 (GPT-4) 103.5 112.8 1169 1163 1082
CoT (GPT-4) 73.8 85.1 89.0 89.5 85.2
SR (GPT-4) 72.6 86.3 85.6 833 78.4
8 LtM (GPT-4) 26.4 52.7 535 54.4 49.8
SGE (GPT-4) 14.9 21.0 15.2 19.7 213
10 (Llama 8B) N/A N/A N/A N/A N/A
ACCORD (Llama 8B) 7.4% 0.0* 1.8* 1.0* 5.0%
10 (GPT-4) 101.5 120.7 121.6 1185 117.6
CoT (GPT-4) 79.3 93.8 86.8 90.1 89.3
SR (GPT-4) 77.1 82.2 88.6 88.4 87.0
12 LtM (GPT-4) 35.8 55.4 57.5 59.2 56.0
SGE (GPT-4) 16.8 224 16.1 24.0 229
10 (Llama 8B) N/A N/A N/A N/A N/A
ACCORD (Llama 8B) 5.1% 2.6* 2.9% 2.2% 12.4%

tation, we decided to utilize the auto-regressive nature of the LLMs and developed a representation,
which is specifically designed to leverage the autoregressive generation paradigm of LLMs. Unlike
the list-based format, our representation decomposes solutions into a sequence of state transitions,
with each step not only specifying the next element of the solution but also explicitly updating and
exposing the relevant feasibility metrics (e.g., cumulative weights, distances, machine usage, or
value). This design allows the model to compute and check constraints dynamically as each token
is generated, closely mimicking the typical reasoning and verification process of a human solver.
ACCORD representation embeds constraint satisfaction directly into the generation process. For
instance, in the Knapsack problem, each item addition is accompanied by an explicit update of the
running total value and weight, immediately verifying the capacity constraint at each step:

[[item_id, weight, value] -> value: prev_v + value = new_v,
weight: prev_w + weight = new_w <= capacity],

Please refer to page 1 in Appendix [A] for a concrete example. Similarly, for Bin Packing, the
incremental assignment of items to bins is annotated with cumulative weights, ensuring that no
bin exceeds its capacity as the sequence unfolds. Routing problems (VRP, TSP) and scheduling
problems (JSSP) are analogously handled by tracking cumulative distances or machine times within
the autoregressive output stream. Example of each of these generates is avaialable in the Appendix [A]
This approach transforms the constraint satisfaction problem into a stepwise process, where feasibility
checks are interleaved with generation. As a result, the LLM is naturally guided away from infeasible
sequences, as each decision is immediately contextualized by the current state of the solution.

2.1 Dataset Generation

We generated synthetic datasets for several CO problems using Google OR-Tools [10], produc-
ing about 15,000 instances per task in both list-of-lists and ACCORD formats. TSP & VRP:
Instances varied by location count (N € {5,...,100}) and vehicles (V € {1,...,10}), solved via
‘PATH_CHEAPEST_ARC"*. Knapsack: Varied item counts and constraints; instances with OR-Tools
timeouts were discarded. Bin Packing: Item counts, weights, and bin limits were randomized;
solutions minimized bin usage. JSSP: Instances ranged from 10 x 10 to 100 x 20 with random job
sequences, solved via CP-SAT. FSSP: Flowshop instances up to 50 x 2 used the NEH heuristic [23].
See Appendix D] for details.

3 Model Architecture

To dynamically activate the correct LORA layers for each combinatorial optimization problem, we
use an attention-based Dynamic Router TextClassifier that selects the appropriate LoRA weights

99
100
101

102
103
104
105

106
107
108

Feasibility, Gap and Time Comparison for FSSP Feasibility, Gap and Time Comparison for JSSP

Feasibility

sibilty (%)

e Fear

(a) Flow Shop (b) JSSP

Feasibility, Gap and Time Comparison for BINPACK Feasibility, Gap and Time Comparison for KNAPSAK

Namtems” "

(c) BinPack (d) Knapsack

Feasibility, Gap and Time Comparison for TSP Feasibility, Gap and Time Comparison for VRP

Feasibility Gap

Feasibility (%)

(e) TSP (f) VRP

Figure 2: This figure illustrates the performance of the LLama 3.1 (8B) and LLama 3.2 (1B) models in
terms of the average gap percentage compared to the OR-Tools solution, where a lower gap indicates
better performance. The left y-axis represents the average gap percentage, while the right y-axis
corresponds to the running time in seconds. Bar plots indicate the average gap. The line plots depict
the average running time per instance size, with the x-axis showing the problem size in terms of the
number of nodes in the graph representation. Instances labeled as "No Data" indicate that, within a
sampling budget of 60, the model failed to generate any feasible solution.

based on the instruction text (see Figure . Our model builds on a transformer architecture, enhanced
to capture problem-specific features. Each input token z; is embedded with positional information
and normalized:

E’ = Dropout(LayerNorm(Eoken (%) + Epos(P))) 1)

The embeddings are projected to the hidden dimension and passed through several transformer
layers with alternating multi-head attention and feed-forward sublayers, each followed by layer
normalization. Token representations from the final transformer layer are pooled using attention-
based pooling:

r= Z a;h; y = Wy - LayerNorm(GELU(Wr + by)) + by 2)
i=1

Finally, the pooled vector r is passed through a classification head to produce logits y for each
problem class. This architecture enables dynamic, instruction-based activation of problem-specific
LoRA adapters.

109

110
111
112
113
114
115

116
17
118
119
120
121
122
123
124
125
126
127
128
129
130
131

fssp_val - Feasibility Comparison (Bar Chart) Jssp_val - Feasibility Comparison (Bar Chart)

nnnnnn

j-ﬁjﬁlﬂyan ﬁmm;aiﬁiji

Number of Jobs x Number of Machines Number of Jobs x Number of Machines

(a) FSSP (b) JSSP

Average Feasibility (%)

binpack_val - Feasibility Comparison (Bar Chart) knapsak_val_ood - Feasibility Comparison (Bar Chart)
((((((% = ACCORD

‘‘‘‘‘‘‘

ge Feasibility (%)

‘bR XTITITETY

2 is
Number of Items. Number of Items.

Averag

(c) Bin Packing (d) Knapsack

tsp_val - Feasibility Comparison (Bar Chart) vrp_val - Feasibility Comparison (Bar Chart)

. a 1 ﬁ ! P 'y ﬁ |

Number of Cities Number of Cities

(e) TSP (f) VRP

Figure 3: Average feasibility comparison with OR-Tools solution across different problem instance
sizes; the higher the feasibility percentage, the better.

3.1 Empirical Comparison with List-of-List Representation

We assess representation impact by fine-tuning LLaMA 3.1 8B on both list-of-lists and ACCORD
formats using identical hyperparameters and inputs (Section [2.1). Validation uses 100 out-of-
distribution instances for each n € {5,8,10,12, 15,20, 25, 30,50}. During inference (Fig. , an
Attention-Based Dynamic Router (Section 3 selects the LoRA branch, generating 60 candidate

solutions per instance. The best feasible solution (lowest gap) is selected, where the optimality gap is
defined as Gap = Model Value—OR-Tools Value
p = OR-Tools Value

where a lower gap indicates a better solution. Feasibility is measured as the percentage of generated
solutions that satisfy all constraints. Our results (Fig.[3) show that, although list-of-list representation
is familier to LLMs, models trained with this format tend to ignore feasibility constraints, resulting in
lower feasibility rates and higher optimality gaps. In contrast, the ACCORD representation explicitly
encodes feasibility into the output, enabling the LLM to produce a larger proportion of valid and
near-optimal solutions, particularly as the problem size increases. Table [I] further compares our
method against various prompting strategies (see Section |B|for baselines) on both LLama 8B and
GPT-4 with code interpreter enabled. Notably, while GPT-4 can potentially generate and execute
solver code, our ACCORD-based method enables the LLM to generate solutions end-to-end without
code execution. For both our approach and all prompting baselines, 60 samples per instance are
generated, and the best result is selected. ACCORD consistently outperforms prompting strategies
across all 6 combinatorial optimization tasks, and achieves optimal solutions on smaller instances.
We also assess the impact of model size on average gap, feasibility, and inference time (Fig. [2). The
8B model mostly outperforms the 1B model in feasibility and optimality gap, with only a moderate
increase in inference time. For harder instances, such as JSSP, the 1B model fails to find feasible
solutions within the sampling limit. Our results demonstrate that scaling from 1B to 8B parameters

132
133
134
135
136
137

139
140

141

142
143
144
145
146
147
148

149

150
151
152

154
155
156
157
158
159
160
161

yields a significant 31.5% relative improvement in solution quality, reducing the average gap from
6.54% to 4.48% (Table[2)). The most substantial improvements were observed in routing problems,
with TSP and VRP showing 65% and 54% relative gap reductions, respectively. Bin packing problems
showed minimal sensitivity to model scale, with only a 1% improvement. In addition to our synthetic
OR-Tools instances, we also evaluated ACCORD-8B on Taillard permutation flow-shop benchmarks
(50 jobs x 10 machines and 50 jobs x 20 machines; avg. gap = 13.7%) and on job-shop benchmarks
TAI[26] (15 x 15 to 50 x 20; avg. gap ~ 21.7%) and DMUI[8] (20 x 15 to 50 x 15; avg. gap ~ 22.1%)
against standard heuristics MWR/MOR/SPT) and the L2D neural scheduler (see Supplementary
Material for full results and runtimes).

3.2 Relationship Between Latent Space Proximity and Solution Feasibility

We analyzed 500 TSP instances using ACCORD and list-of-lists formats to study how latent represen-
tations relate to solution feasibility. Hidden states from LLaMA 3.1 8B were reduced via PCA, and
Euclidean distances between paired representations were computed. We found a significant negative
correlation between latent distance and feasibility (r = —0.1082, p = 0.0155), with feasibility
decreasing as distance from the ACCORD manifold increased. Despite a large performance gap
(71.4% feasible for ACCORD vs. 1.6% for list-of-lists), this trend suggests LLMs encode constraint
satisfaction geometrically, with latent proximity predicting solution quality.

=
-
Y

Figure 4: Latent representation distance versus solution feasibility on TSP problems, demonstrating
negative correlation between distance and constraint satisfaction.

4 Conclusion, Limitations and Future Work

We introduced ACCORD, a framework that encodes combinatorial constraints into an autoregressive
text format and uses dynamic LoRA routing to probe an LLM’s end-to-end ability on NP-hard tasks.
On six standard benchmarks (TSP, VRP, FlowShop, JSSP, Knapsack, BinPacking), an 8 B-parameter
model trained with ACCORD achieves strong feasibility rates and competitive optimality gaps
compared to prompting and a naive list-of-lists format. Our goal is not to supplant specialized solvers
but to map out how far small LLMs can go as self-contained combinatorial reasoners. By releasing
ACCORD and its 90K dataset, we offer a reproducible codebase for future work at the intersection
of optimization and generative modeling. Despite its strong performance, ACCORD is bounded
by the LLM’s context window (limiting very large instances) and relies on LoRA adapters on an
8B-parameter model. In future work, we will investigate larger backbones (with full fine-tuning),
expand the effective context via external memory or hierarchical encoding, and apply ACCORD to
real-world, large-scale optimization scenarios.

162

164

165

167

168
169

170
171

172
173
174

175
176
177
178

179
180

181
182

183
184

185
186
187

188
189
190

191
192

193
194
195

196

197
198
199

200
201

202
203

204
205

References

[1] H. Abgaryan, T. Cazenave, and A. Harutyunyan. Starjob: Dataset for llm-driven job shop
scheduling. In ArXiv Preprint arXiv:2503.01877v1, 2024.

[2] James Adams, Elias Balas, and David Zawack. Shifting bottleneck procedures for job shop
scheduling. In Management Science, volume 34, pages 391-401. INFORMS, 1988.

[3] Meta Al Llama 3 model card, 2024. Accessed: 2024-08-10.

[4] Unsloth Al. Unsloth: Accelerated fine-tuning for large language models, 2024. Accessed:
2024-11-19.

[5] Pranjal Awasthi, Sreenivas Gollapudi, Ravi Kumar, and Kamesh Munagala. Combinatorial
optimization via llm-driven iterated fine-tuning. arXiv preprint arXiv:2503.06917, 2025.

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

[7] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1—
113, 2023.

[8] Ebru Demirkol, Sanjay Mehta, and Reha Uzsoy. Benchmarks for shop scheduling problems.
European Journal of Operational Research, 109(1):137-141, 1998.

[9] M Goel et al. Genetic algorithms in scheduling. In International Conference on Genetic
Algorithms, 1996.

[10] Google. Google’s or-tools. https://developers.google.com/optimization/. Accessed:
2024-05-07.

[11] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In
International Conference on Learning Representations, 2022.

[12] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Improving the reasoning capabilities of large
language models in complex tasks. In Proceedings of the International Conference on Machine
Learning, 2022.

[13] W. Huang et al. Large language models for vehicle routing: A prompting-based approach. In
Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2024.

[14] Zangir Iklassov, Yali Du, Farkhad Akimov, and Martin Taka¢. Self-guiding exploration for
combinatorial problems. In Advances in Neural Information Processing Systems 37 (NeurIPS
2024), 2024.

[15] Damjan Kalajdzievski. A rank stabilization scaling factor for fine-tuning with lora, 2023.

[16] Elias B. Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. In Advances in Neural Information Processing Systems,
2017.

[17] Wouter Kool, Holger van Hoof, and Max Welling. Attention, learn to solve routing problems!
In International Conference on Learning Representations, 2019.

[18] Jan K Lenstra, A Rinnooy Kan, and P Brucker. Complexity of machine scheduling problems.
Annals of Discrete Mathematics, 1:343-362, 1979.

[19] Shengcai Liu, Caishun Chen, Xinghua Qu, Ke Tang, and Yew-Soon Ong. Large language
models as evolutionary optimizers. arXiv preprint arXiv:2310.19046, 2023.

https://developers.google.com/optimization/

206
207
208
209

210
211
212

213
214
215

216
217

218
219

220
221

222
223

224
225
226

227
228
229

230
231
232
233

234
235
236

237
238
239

240
241

242
243
244

245
246

247
248
249

[20] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534-46594,
2023.

[21] Mahmoud Masoud, Ahmed Abdelhay, and Mohammed Elhenawy. Exploring combinatorial
problem solving with large language models: A case study on the traveling salesman problem
using gpt-3.5 turbo. arXiv preprint arXiv:2405.01997, 2024.

[22] Chinmay Mittal, Krishna Kartik, Mausam, and Parag Singla. Puzzlebench: Can llms solve
challenging first-order combinatorial reasoning problems? arXiv preprint arXiv:2402.02611,
2024.

[23] Muhammad Nawaz, E. Emory Enscore, and Inyong Ham. A heuristic algorithm for the m-
machine, n-job flow-shop sequencing problem. Omega, 11(1):91-95, 1983.

[24] Afshin Oroojlooyjadid, Lawrence V Snyder, and Martin Takac. Applying deep learning to the
newsvendor problem. lise Transactions, 52(4):444-463, 2020.

[25] R Roy and G Sussmann. Machine scheduling by mathematical programming. In Journal of the
Operational Research Society, volume 15, pages 352-362. JORS, 1964.

[26] Eric Taillard. Benchmarks for basic scheduling problems. European Journal of Operational
Research, 64(2):278-285, 1993.

[27] Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-
Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for
dialog applications. arXiv preprint arXiv:2201.08239, 2022.

[28] K. Valmeekam, A. Olmo, S. Sreedharan, and S. Kambhampati. A benchmark for evaluating
planning and reasoning in large language models. In NeurIPS Foundation Models for Decision
Making Workshop, 2022.

[29] Fang Wan, Julien Fondrevelle, Tao Wang, Kezhi Wang, and Antoine Duclos. Optimizing small-
scale surgery scheduling with large language model. In Proceedings of the 21st International
Conference on Informatics in Control, Automation and Robotics (ICINCO), pages 223228,
Lisbon, Portugal, 2024.

[30] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large
language models. arXiv preprint arXiv:2206.07682, 2022.

[31] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824-24837, 2022.

[32] C. Yang, X. Wang, Y. Lu, H. Liu, Q.V. Le, and X. Chen. Optimization by prompting: Leveraging
large language models for combinatorial optimization. arXiv preprint arXiv:2309.03409, 2023.

[33] C. Zhang, W. Song, Z. Cao, J. Zhang, P.S. Tan, and C. Xu. Learning to dispatch for job shop
scheduling via deep reinforcement learning. In Advances in Neural Information Processing
Systems, 2020.

[34] Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting
in large language models. arXiv preprint arXiv:2210.03493, 2022.

[35] Denny Zhou, Nathanael Schérli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables
complex reasoning in large language models. arXiv preprint arXiv:2205.10625, 2022.

250

251

252

253
254
255
256
257
258
259
260
261
262
263
264

265

267
268
269
270
271
272
273
274
275
276
277
278
279

281
282
283
284
285

287
288
289
290
291
292

294

296
297
298
299

A Technical Appendices and Supplementary Material

B Related Work

B.1 Heuristic and Machine Learning Approaches on CO problems

Combinatorial optimization has been tackled with both heuristic and exact methods. Simple priority
dispatching rules (PDRs), such as shortest processing time or earliest due date, are computationally
efficient but often yield suboptimal solutions due to their greedy nature [18]. Metaheuristics (e.g.,
simulated annealing, tabu search, genetic algorithms) offer improved solution quality, and exact
approaches like the shifting bottleneck procedure [2], mixed-integer programming, and constraint
programming can find optimal solutions for small instances, though at high computational cost [25. 9]
Recently, machine learning, particularly deep reinforcement learning (RL) and graph neural networks
(GNNs) have advanced combinatorial optimization [33} 16} [17]. RL methods treat scheduling as
sequential decision making, learning dispatching policies via environment interaction [33]]. GNNs en-
code jobs and machines as nodes, enabling permutation-invariant representations and, when combined
with RL, can model complex dependencies [[16]. Attention-based and sequence-to-sequence models
further enhance performance on tasks like TSP and VRP, often utilizing iterative refinement [[17].

B.2 Large Language Models in Combinatorial Optimization

The advent of LLMs has introduced new paradigms for CO. Early work explored whether LLMs
could generate solutions through prompting [32], [13]], [22], [31] [35], [20], [14]]. Prompting-based
strategies, such as OPRO, involve iterative refinement based on feedback, while methods for VRP
employ self-debugging and verification to enhance feasibility [13]. However, scalability remains
a challenge, as even strong prompting techniques struggle on larger or more complex instances
[22]. Recent research has explored a variety of prompting strategies to leverage LLMs for solving
combinatorial optimization (CO) problems. The Input-Output (I0) method presents the LLM with
multiple examples of input and corresponding output solution pairs. The LLM is then prompted to
generate an output solution in the same format as the provided examples. This approach relies on the
LLM'’s ability to generalize the mapping from input to output based on observed patterns. In Chain-
of-Thought (CoT) prompting, the LLM is guided to produce a sequence of intermediate reasoning
steps, or "thoughts," before arriving at the final answer [31]. This technique encourages the model to
break down complex CO tasks into structured, stepwise reasoning, improving both transparency and
solution quality. Least-to-Most (LtM) prompting strategy aims to decompose a complex problem
into a sequence of simpler subproblems, solving them incrementally [35]. Each subproblem builds
upon the solutions of previous ones, enabling the LLM to tackle challenging CO tasks through a
series of manageable steps. Self-Refinement (SR) is an iterative prompting technique wherein the
LLM first generates an initial solution, then provides feedback on its own output, and finally refines
the solution based on this feedback [20]. The process repeats until a satisfactory solution is reached.
Self-Guiding Exploration for Combinatorial Problems (SGE) autonomously generates multiple
thought trajectories for a given CO task [14]. Each trajectory represents a distinct heuristic approach,
inspired by metaheuristics. SGE decomposes these trajectories into actionable subtasks, executes
them sequentially, and refines the results to ensure optimal solutions. Fine-tuning LLMs for CO tasks
is another active area [1]],[21] . [1] showed that fine-tuned LLM on job-shop scheduling, demonstrates
significant improvements in solution quality. Similarly, [21] applied fine-tuning to TSP instances
with promising but size-limited results. Hybrid methods integrate LLMs into evolutionary or search
frameworks, where the LLM guides genetic operations or receives feedback from constraint solvers
to iteratively improve solutions [[19,29,5]]. While promising, these approaches often entail significant
computational overhead and still face scaling hurdles.

C Preliminaries: Overview of Classic Combinatorial Optimization Problems

In this section, we introduce several foundational combinatorial optimization problems, explaining
their goals and constraints in accessible terms while also providing their standard mathematical
formulations. General Combinatorial Optimization Problem Combinatorial optimization involves
searching for the best solution from a finite set of possibilities. Formally, given a set of feasible

300

301

302
303
304
305
306

307
308
309
310

311

312
313
314

315

316
317
318
319

320
321
322

323

solutions S and an objective function f : S — R, the goal is to find
s" = argmin f(s)

or, in some cases, to maximize f(s) depending on the problem.

Traveling Salesman Problem (TSP) Given a list of cities and the distances between each pair of
cities, what is the shortest possible route that visits each city exactly once and returns to the starting
point. Mathematically, for n cities V' = {1,2,...,n} and a distance matrix D € R™*", we seek a
tour (a permutation 7 of all cities) that minimizes the total travel distance, where w(n + 1) = 7(1) to

ensure the tour closes:
n

min Dy
nEP, 4 - mw(2),m(i+1)
1=

Vehicle Routing Problem (VRP) The VRP extends the TSP to multiple vehicles. Given a depot,
n customers (with demands ¢;), and a fleet of vehicles each with capacity (), the goal is to design
routes—each starting and ending at the depot—so that every customer is visited exactly once, no
vehicle exceeds its capacity, and the total travel distance is minimized:

m Ly

ming E D, k&
ViVi+1

k=1 j=0

subject to

m

U {vf, . ,vfk} =V (Al customers served)
k=1

Ly
quk <@ Vk (Capacity constraint)
J

j=1

Job Shop Scheduling Problem (JSSP) JSSP schedules n jobs, each as a sequence of operations
on specific machines. Each operation O; j, requires machine M ;, for p; ;, time units, following job
order. Let S, 1, and C} 1, be the start and completion times. The objective is to minimize makespan:

min Cpax = mjax Cje,

subject to:

(Precedence) Sjpt+1 > Cjix
(No machine conflicts) S > Cj v or Sy j > Cj g,
V(4. k) # (5", k') with Mjj, = My g

Knapsack Problem (KP) Given a set of items, each with a value and weight, what is the most
valuable combination of items you can carry without exceeding the weight limit of your knapsack.
With n items (weights w;, values v;) and capacity W, choose z; € {0, 1} (item picked or not) to

solve:
n n
max g V; T s.t. g w;x; < W
i=1 i=1

Bin Packing Problem (BPP) Given a set of items of varying sizes, how can you pack them into the
fewest number of fixed-size bins. For n items of sizes s; € (0, 1], assign them to bins of capacity 1
0 as to minimize the total number of bins K:

min K

subject to:

K
> si<1 Vk, UBe={1....n}, BxNBp =0Vk#k
1€ By, k=1

10

324

325

326
327

329

330

331

332
333
334

335

336
337

338

339

340
341
342
343

344

345
346
347
348
349
350
351
352
353

355

356
357

358

359

where Bj, is the set of items in bin k.
Flow Shop Scheduling Problem (FSSP)

We consider the permutation flow shop scheduling problem (FSSP), where all jobs are processed in
the same order on each of m machines. Given n jobs J = {1,2,...,n} and processing times p;
for job j on machine k, the goal is to find a job sequence 7 that minimizes the makespan.

Let C} . denote the completion time of job j on machine k. The constraints are:
(Machine order) Criiyx = Criiyp—1 +Priyp Vi=1,...,n, k=2,....m
(Job sequence) Cr(jyk = Crii=1)k T Pr(i)k Vi=2,...,n, k=1,....m

The objective is to find the permutation 7* that minimizes the makespan:

min Cpax = min max Cr(y,m
TEP, TEPn i ’

where Cr (), 1s the completion time of job 7(¢) on the last machine.

Below, we provide representative examples from each of the major combinatorial optimization
problems in our dataset. Each example is shown in both the standard “list of list” representation and
the “Accord” (arrow-based) representation.

Knapsack Problem

Instruction: You are given a paired representation (value, weight): Find a set of items to pack into a
container with a maximum weight capacity = 20 that maximizes total value of packed items.

e Input:
6
0

—
— DN =~ 00 Ut

7
6
1
e QOutput (List of List):

Solution: [(6, 5), (10, 8), (7, 4), (6’ 2): (1, 1)]
Value: 6+10+7+6+1=30
Weight: 5+8+4+2+1=20<=20

* Output (Accord):

Solution:

[[6, 5] -> value:0+6=6, weight:0+5=5<=20],
[[10, 8] -> value:6+10=16, weight:5+8=13<=20],
[[7, 4] -> value:16+7=23, weight:13+4=17<=20],
[[6, 2] -> value:23+6=29, weight:17+2=19<=20],
[[1, 1] -> value:29+1=30, weight:19+1=20<=20]

Total Value: 30
Total Weight: 20<=20

Bin Packing Problem

Instruction: Given a list of items (id, weight), determine the minimum number of bins (capacity=77)
needed to pack all items without exceeding the capacity.

* Input:
[(0,17),(1,24),(2,19), (3,11), (4, 27)]

* QOutput (List of List):

11

360
361

362

363
364
365
366
367
368

369

370
371

372

373

374
375
376
377
378
379
380
381

382

383
384
385
386
387
388
389
390

391

392
393

394

395
396

397
398

399

400
401
402
403

404

405
406

The minimum number of bins required is 2. The bin assignments are: [[0, 1, 2, 3], [4]].

* Output (Accord):

Bin 1:

(0, 17)->17 (1, 24)->41 (2, 19)->60 (3, 11)->71<=77
Bin 2:

(4, 27)->27<=77

Total bins required: 2

Vehicle Routing Problem (VRP)

Instruction: Given customers with coordinates and a depot, and multiple vehicles of capacity 85,
find the minimum-length routes serving all customers.

¢ Coords: 0:(34, 42), 1:(39, 58), 2:(46, 48), 3:(57, 49), 4:(45, 16)
¢ Output (List of List):

[(0): (34, 42), (0): (34, 42)]

[(0): (34, 42), (0): (34, 42)]

[(0): (34, 42), (0): (34, 42)]

[(0): (34, 42), (0): (34, 42)]

[(0): (34, 42), (1): (39, 58), (2): (46, 48),
(3): (57, 49), (4): (45, 16), (0): (34, 42)]
Overall Total Distance: 102

¢ Output (Accord):

Vehicle Route: (0): (34, 42) -> (0): (34, 42)
Vehicle Route: (0): (34, 42) -> (0): (34, 42)
Vehicle Route: (0): (34, 42) -> (0): (34, 42)
Vehicle Route: (0): (34, 42) -> (0): (34, 42)
Vehicle Route: (0): (34, 42) -> (1): (39, 58)
(3): (b7, 49) + 11 -> (4): (45, 16) + 35 -> (O
Overall Total Distance: 102

[eNeoNeoNe)

S+ o+ o+ o+ +

(34, 42) + 28

Traveling Salesman Problem (TSP)

Instruction: Given customers with coordinates and a depot, and 1 vehicle, find the minimum-length
route serving all customers.

e Coords: 0:(17, 22), 1:(63, 8), 2:(22, 60), 3:(3, 29), 4:(7, 12)
¢ Output (List of List):

[C0): (17, 22), (4: (7, 12), (3): (3, 29), (2): (22, 60), (1): (63, 8),
Overall Total Distance: 181

¢ Output (Accord):

Vehicle Route: (0): (17, 22) -> (4): (7, 12) + 14 -> (3): (3, 29) + 17 >
(2): (22, 60) + 36 -> (1): (63, 8) + 66 -> (0): (17, 22) + 48
Overall Total Distance: 181

Job Shop Scheduling Problem (JSSP)

Instruction: Optimize schedule for 2 Jobs (J) across 6 Machines (M) to minimize makespan. Each
M can process only one J at a time, and once started, J cannot be interrupted.

12

16 -> (2): (46, 48) + 12 —>

(0):

(17, 22)]

407 e Input:

408 JO:

409 M2:205 M1:157 M0:198 M5:79 M3:110 M4:32

410 J1:

411 M3:179 M4:108 M2:82 M5:112 M1:136 M0:27

412

413 * Output (List of List):

414 tto, 2, o, 20581, 1, 3, o, 1791, [1, 4, 179, 108], [0, 1, 205, 157], [1, 2, 287, 82],
415 (o, o, 362, 1981, [1, 5, 369, 112], [1, 1, 481, 136], [0, 5, 560, 79], [1, O, 617, 27],
416 (o, 3, 639, 110], [0, 4, 749, 32]]

417 Maximum end completion time or Makespan: 781
418

419 * Output (Accord):

420 Solution:

421 JO-M2: 0+205 -> 205,

422 J1-M3: 0+179 -> 179,

423 J1-M4: 179+108 -> 287,

424 JO-M1: 205+157 -> 362,

425 J1-M2: 287+82 -> 369,

426 JO-MO: 362+198 -> 560,

427 J1-M5: 369+112 -> 481,

428 J1-M1: 481+136 -> 617,

429 JO-M5: 560+79 -> 639,

430 J1-MO: 617+27 -> 644,

431 JO-M3: 639+110 -> 749,

432 JO-M4: 749+32 -> 781,

433 Maximum end completion time or Makespan: 781

434

435 Flow Shop Scheduling Problem (FSSP)
436 Input:

437 J1:
438 M1:12 M2:7
439 J2:
440 M1:8 M2:4
441 J3:
442 M1:4 M2:15
443 J4:
444 M1:5 M2:9

445 Output (List of List):

446 [[3, 1: O’ 4], [3, 2: 4’ 15]; [2; 1: 4’ 8]’ [4, 1: 12: 5]’
a7 [1, 1, 17, 12], [2, 2, 19, 4], [4, 2, 23, 9], [1, 2, 32, 7]1]
448 Maximum end completion time or Makespan: 39

449 Output (Accord):

450 J3: M1(0+4=4) -> M2(4+15=19)

451 J2: M1(4+8=12) -> M2(19+4=23)

452 J4: M1(12+5=17) -> M2(23+9=32)

453 J1: M1(17+12=29) -> M2(32+7=39)

454

455 Maximum end completion time or Makespan: 39

13

456

457
458
459
460
461
462
463
464
465
466
467

468

469
470
471
472
473

474

475

476

477

478

479
480

481

482
483
484

D Training Details

We conducted supervised fine-tuning using input-output pairs for two models from Meta: Llama 3.1
8B and Llama 3.2 1B. To minimize memory usage during training, we employed 4-bit quantized
versions of these models and trained each for 2 epochs. For a fair comparison, we fine-tuned
each model with the same hyperparameters, varying only the output representation: once using
the list-of-lists format and once using the ACCORD format, while keeping the input and all other
hyperparameters identical. We used Rank-Stabilized Low-Rank Adaptation (RSLoRA) [[15] with a
rank of » = 64 and v = 64. The two epochs, training required roughly 40 hours and about 30GB
of GPU memory on Nvdidia RTX A6000 GPU. We limited the context length of the model to 40k
instead of the original 128k, to reduce memory consumption and increase the speed of fine-tuning.
“Context length” refers to the maximum number of tokens (words or subwords) the model can process
at once as input. More training details and curves are available in[D]

Training details

The model being fine-tuned is LLaMA 3.1, an 8 billion parameter model from Meta[3]], using a 4-bit
quantized version to reduce memory usage. Finetning was conducted using Stabilized Low-Rank
Adaptation (RsLoRA) [15]] with rank » = 64 to introduce learnable parameters specifically in targeted
layers. [15] Compared to Lora[l1] RsLoRa improves the stability of training by modifying the rank
during adaptation[15]. The target modules include:

target_modules = {q_proj, k_proj, v_proj, o_proj,
gate_proj, up_proj, down_proj} (3)
The LoRA-specific parameters are configured as follows:
e Rank (r): 64
* LoRA Alpha (a): 64
* LoRA Dropout: 0

¢ Bias: none

This resulted in number of trainable parameters = 167, 772, 160 or 0.02 % of the entire Llama 8B
model’s parameters.

Quantization and Memory Efficiency

The model is loaded in 4-bit precision to reduce memory consumption. Gradient checkpointing is
enabled using the unsloth [4] method, to fit longer sequences by saving memory. This reduces the
VRAM usage by approximately 30%, enabling larger batch sizes.

Table 2: The effect of the model size on Average Gap (%): Comparison Across CO Problems
Problem 1B Model 8B Model

BINPACK 1.01% 1.00%
FSSP 7.92% 7.17%
JSSP N/A 6.08%
KNAPSAK 5.90% 5.33%
TSP 8.11% 2.84%
VRP 9.74% 4.50%
AVERAGE 6.54% 4.48%

14

485

486

487
488

489

501

502

503

504

506
507

508

509
510
511
512
513
514
515
516
517
518
519
520
521

522
523

524
525

526
527

529
530
531

532

533
534

535

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Yes through experimental evaluation and ablation study that support the claims.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Section [provides possible limitations of the work.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

15

536
537
538

539

541
542

543
544
545
546
547
548

549

550

551
552
553

554

555
556

557

558

559
560
561

562
563

565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

589

Justification: Although the paper is not theoretical, we discuss every detail and assumtion
for empirical evaluation. Morever for Statistical hypothesis testing details is discussed in
section

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully describes both the data generation hyperparameters in Sec-
tion2.1)and in the Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

16

590
591
592

593

594
595

596

597

598
599

600
601
602
603

604
605
606

607
608

609
610
611

612
613

614
615

616

617
618
619

620

621
622

623

624

625
626

627
628

629

630
631

632

633
634

635

636

638
639

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The link to the code and the dataset is directly provided in the abstract as a
footnote.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Short version of the training details are described in Section [D] and in the
Appendix D}
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Statistical significance test has been conducted in Section[3.2] providing the
relation between the latent space proximity and solution feasibility.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

640
641
642

643
644

645

646
647

648
649
650

651
652
653

654
655

656

658
659

660

661
662

663

665
666

667
668

669
670
671

672

673
674

675

676
677

678

679

680
681

682
683

685
686

687

688

689

690

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The devices used for training is provided in Section[D]and the devices used for
the inference is provided in Section Execution time results are provided in

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We release full code and dataset required for reproducibility, alongside with
dataset generation and training hyperparameter details

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: The paper topic does not have a connection
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

18

https://neurips.cc/public/EthicsGuidelines

694

704

712

713
714
715

716

77

718

719

720
721
722
723

724
725

726
727
728

729

730
731
732

733

734
735

736

737
738

740
741

742
743

11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This does not concern the paper
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the other code bases and libraries used in the training and inference codes
are explicitly mentioned.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

19

744
745
746
747

748
749

751

752

753
754

755

756
757

758

759

760
761
762

764
765

767

768
769
770

771

772

773

774
775
776
777
778
779
780
781

782

784
785
786
787

788

789

790

791
792

794
795

13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Both the documentation of the code and dataset are available in the official
code link page provided.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: It does not apply to the paper
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: It does not apply to the paper
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

20

paperswithcode.com/datasets

796 * We recognize that the procedures for this may vary significantly between institutions

797 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
798 guidelines for their institution.

799 * For initial submissions, do not include any information that would break anonymity (if
800 applicable), such as the institution conducting the review.

801 16. Declaration of LLM usage

802 Question: Does the paper describe the usage of LLMs if it is an important, original, or
803 non-standard component of the core methods in this research? Note that if the LLM is used
804 only for writing, editing, or formatting purposes and does not impact the core methodology,
805 scientific rigorousness, or originality of the research, declaration is not required.

806 Answer: [Yes]

807 Justification: All the dertails of how the LLM was fine-tuned are discussed in the paper
808 Section [D]and in the Appendix [D]

809 Guidelines:

810 * The answer NA means that the core method development in this research does not
811 involve LLMs as any important, original, or non-standard components.

812 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
813 for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Main Method: ACCORD Representation for Feasibility-Aware Solution Generation
	Dataset Generation

	Model Architecture
	Empirical Comparison with List-of-List Representation
	Relationship Between Latent Space Proximity and Solution Feasibility

	Conclusion, Limitations and Future Work
	Technical Appendices and Supplementary Material
	Related Work
	Heuristic and Machine Learning Approaches on CO problems
	Large Language Models in Combinatorial Optimization

	Preliminaries: Overview of Classic Combinatorial Optimization Problems
	Training Details

