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ABSTRACT

Large Language Models (LLMs) hold great promise to revolutionize current clinical
systems for their superior capacities on medical text processing tasks and medical
licensing exams. Meanwhile, traditional ML models such as SVM and XGBoost
have still been mainly adopted in clinical prediction tasks. An emerging question
is Can LLMs beat traditional ML models in clinical prediction? Thus, we build a
new benchmark ClinicalBench to comprehensively study the clinical predictive
modeling capacities of both general-purpose and medical LLMs, and compare
them with traditional ML models. ClinicalBench embraces three common clinical
prediction tasks, two databases, 14 general-purpose LLMs, 8 medical LLMs, and
11 traditional ML models. Through extensive empirical investigation, we discover
that both general-purpose and medical LLMs, even with different model scales,
diverse prompting or fine-tuning strategies, still cannot beat traditional ML
models in clinical prediction yet, shedding light on their surprising but critical
deficiency in clinical reasoning. We call for caution when practitioners adopt LLMs
in clinical applications. ClinicalBench can be utilized to bridge the gap between
LLMs’ development for healthcare and real-world clinical practice. Code is here.

1 INTRODUCTION

Large Language Models (LLMs) have shown great potential to revolutionize existing clinical systems
for their superior capacities on a variety of medical text processing tasks including document classifi-
cation, report generation and summarization, and information extraction (Jahan et al., 2024; Chen
et al., 2023a; Zhou et al., 2023). Also, LLMs could even rival human clinician performance in medical
licensing exams (Singhal et al., 2023a;b; Gilson et al., 2023) and clinical case challenges (Kanjee
et al., 2023; McDuff et al., 2023). However, traditional machine learning (ML) models such as
Logistic Regression, SVM, XGBoost, MLP and Transformer have still been predominantly adopted
for clinical prediction tasks in real-world practice (van de Water et al., 2024; Moazemi et al., 2023),
which play an essential role in modern health systems to improve patient outcomes and support
clinical decision making. Thus, considering LLMs’ profound world knowledge and strong reasoning
capacities, an emerging question is: Can LLMs beat traditional ML models in clinical prediction?

In this paper, we propose to build a new benchmark ClinicalBench to comprehensively and system-
atically investigate the capacities of LLMs in clinical prediction tasks. More importantly, we compare
the performance of LLMs with diverse traditional ML models in a head-to-head way to explore
the feasibility of adopting LLMs in real-world clinical prediction. Specifically, following previous
works (Wang et al., 2020; van de Water et al., 2024), we adopt three common clinical prediction tasks
including Length-of-Stay Prediction, Mortality Prediction and Readmission Prediction and two real
clinical databases MIMIC-III (Johnson et al., 2016) and MIMIC-IV (Johnson et al., 2020). As for
the benchmarked methods, ClinicalBench embraces 11 traditional ML models and 22 LLMs with
different scales, which include 14 general-purpose LLMs and 8 medical LLMs.

In ClinicalBench, we aim to answer three research questions through extensive empirical studies.
The first question is Can directly prompting LLMs beat traditional ML models? As shown in Figure 1,
to effectively leverage the language understanding capacities of LLMs, we first convert the original
clinical codes in datasets to texts and then let LLMs output the predicted label directly. Comparing
the performance of both 9 general-purpose LLMs and 6 medical LLMs with around 7B parameters to
traditional ML models, we discover that traditional ML models can mostly outperform LLMs with
a regular scale by a large margin across three tasks and two datasets. Comparing general-purpose
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Benchmarked Methods Evaluation
(Macro) F1, AUROC

Confusion Matrix

Loss Curve

Input Conversion
Age: 69Gender: Male

Patient Diagnosis (ICD-9 diagnosis codes): 038.0, … 

Medical Procedures (ICD-9 procedure codes): 31.1, … 

Medications and Drugs (ATC codes): A03F, … 

Age: 69Gender: Male

Patient Diagnosis: Streptococcal septicemia, … 

Medical Procedures: Temporary tracheostomy, … 

Medications and Drugs: propulsives, … 

Code-to-Text 
Conversion

Clinical Prediction Tasks Datasets
Length-of-Stay Prediction: Three-class Classification
Mortality Prediction: Binary Classification
Readmission Prediction: Binary Classification

MIMIC-III

MIMIC-IV

Dataset Preprocessing
Dataset Filtering: Only keep first-time visits, filter out individuals with age < 18 or missing values.
Dataset Division: 

on Training Set for label rebalancing; Validation and Test Sets are unchanged.
Initial stratified split into Training, Validation and Test Sets; Under-sampling  

Figure 1: Overview of ClinicalBench.

and medical LLMs, we also find that the medical LLMs do not noticeably surpass general-purpose
LLMs with a similar scale in clinical prediction. We further studied the impact of decoding
temperature and model size on LLMs’ predictive modeling capacities. We find that these factors
could potentially influence the clinical prediction performance in a negative or positive way for
different LLMs. However, adjusting temperatures or scaling parameters of LLMs still may not
reach the performance of typical traditional ML models such as XGBoost, SVM, and RNN.

The second question is Can LLMs with prompt engineering beat traditional ML models? We studied
the efficacy of four common prompting strategies including Zero-shot Chain-of-Thought (Kojima
et al., 2022), Self-Reflection (Pan et al., 2023), Role-Playing (Chen et al., 2024b), and In-Context
Learning (Dong et al., 2023) on both general-purpose LLMs and medical LLMs. In general, we find
that the effectiveness of different prompting strategies is very limited. Except the improvement
brought by In-Context Learning on Llama3-8B, Gemma2-9B, and Internist-7B for Length-of-Stay
Prediction, the aforementioned prompting strategies do not enhance the performance of LLMs in
clinical prediction across three tasks and two datasets in a noticeable way.

The third question is Can fine-tuned LLMs beat traditional ML models? We compare the performance
of traditional ML models and LLMs with the same dataset split on training, validation and test sets.
With thorough investigation over 2 fine-tuning strategies, 4 LLMs, 3 clinical prediction tasks and 2
datasets, we find that fine-tuning is clearly effective for certain tasks though the effectiveness
varies across different models. As for Length-of-Stay Prediction and Mortality Prediction, we
observe that fine-tuning can evidently enhance the clinical prediction performance of LLMs though
the extent of improvement depends on models. As for Readmission Prediction, we do not notice
fine-tuning can bring any enhancement. However, most fine-tuned LLMs still cannot surpass
typical traditional ML models such as XGBoost, SVM, Transformer and RNN.

Overall, the contributions of this paper can be summarized as follows:

• We built a new benchmark ClinicalBench, embracing 14 general-purpose LLMs, 8 medical LLMs,
11 traditional ML models, three tasks and two databases, which made the first attempt to compare
the clinical prediction capacities of LLMs and traditional ML models in a head-to-head way.

• We discover that both general-purpose and medical LLMs, even with different model sizes, prompt-
ing or fine-tuning strategies, still cannot beat traditional ML models in clinical prediction yet.

• Our findings demonstrate the surprising but critical deficiency of both general-purpose and
medical LLMs in real-world clinical reasoning and decision-making, which could have almost
clinician-level performance in medical licensing exams and clinical case challenges. We call for
caution when adopting LLMs in practical clinical applications. ClinicalBench could be leveraged
to bridge the gap between the development of LLMs for healthcare and real-world clinical practice.

2 ClinicalBench: BENCHMARKING LLMS AND TRADITIONAL ML MODELS
IN CLINICAL PREDICTION

2.1 CLINICAL PREDICTION TASKS

In ClinicalBench, following previous works (Wang et al., 2020; van de Water et al., 2024), we focus
on three common clinical prediction tasks including Length-of-Stay Prediction, Mortality Prediction,
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and Readmission Prediction. Specifically, Length-of-Stay Prediction is simplified as a three-class
classification task aiming to predict the length of the current hospital visit as less than one week, 1 ~ 2
weeks, or more than two weeks. Mortality Prediction is a binary classification task which intends
to estimate whether the patient will decease in the current visit. Readmission Prediction is a binary
classification task designed to identify patients who are at high risk of being readmitted to the hospital
within a specific time frame. Following PyHealth (Yang et al., 2023), each task requires models
to make predictions based on patients’ demographic features (e.g., gender and age) and clinical
information including diagnosis, medical procedures, medications and drugs for the current visit.

2.2 DATASET PROCESSING

We adopt MIMIC-III-v1.4 (Johnson et al., 2016) and MIMIC-IV-v2.2 (Johnson et al., 2020) in
ClinicalBench, which are two large and freely accessible databases and widely adopted in the fields
of healthcare data science. They contain de-identified data associated with ICU admissions at the
Beth Israel Deaconess Medical Center during 2001-2012 and 2008-2019 respectively.

Dataset Filtering We generally follow the filtering criteria in previous literature (Yang et al., 2023;
Purushotham et al., 2018; Wang et al., 2020; Tang et al., 2020). First, we only keep the samples of the
first-time visits for each patient since other visits require the consideration of patients’ history, which
desire different prediction strategies compared with first-time visits. Second, we filter out patients
who are younger than 18 due to the substantial differences between pediatric and adult physiology.
Third, we also did not consider patients with missing values following the literature.

Dataset Division For traditional ML models, we first adopt stratified split to divide the original
dataset into training, validation and test sets. Due to the label imbalance of training set for three
tasks, we apply under-sampling to rebalance the training set but leave the validation and test sets
unchanged, which can reflect the real-world clinical prediction performance of different models. For
prompting-based methods, we directly assess the performance of LLMs on the same test set. For
fine-tuning based methods, the division is the same as traditional ML models for fair comparison.

Code-to-Text Conversion It is worth noting that the information of patient diagnosis, medical
procedures, medications and drugs in original MIMIC-III (MIMIC-IV) dataset is stored in the form of
ICD-9 (ICD-10) diagnosis codes, ICD-9 (ICD-10) procedure codes and ATC codes respectively. To
effectively leverage the natural language understanding and reasoning capacities of LLMs, as shown
in Figure 1, we first convert the codes into texts and then design the specific prompts for LLMs.

2.3 BENCHMARKED METHODS

We compare mainstream traditional ML models and LLMs in ClinicalBench. The traditional ML
models embrace XGBoost, Logistic Regression, Decision Tree, Random Forest, AdaBoost, SVM,
Naive Bayes and neural network models such as MLP, Transformer and RNN. For LLMs, we first
investigated directly prompting both general-purpose and medical LLMs with different decoding
temperatures and model scales. Then, we explored the effectiveness of diverse prompting and fine-
tuning strategies. The examples of specific prompts for the different strategies are in Appendix D. It is
worth noting that we only evaluate open-source LLMs in ClinicalBench since closed-source models
such as GPT-4 are prohibited for MIMIC-III and MIMIC-IV according to their data use policy 1.

3 CAN DIRECTLY PROMPTING LLMS BEAT TRADITIONAL ML MODELS?
In this section, we aim to investigate the question Can directly prompting LLMs beat traditional ML
models? We first compare the performance of 9 general-purpose and 6 medical LLMs with around
7B parameter scale to a variety of traditional ML models. Then, we further explore the impact of
decoding temperatures and parameter scaling on LLMs’ clinical prediction performance.

Main Results As shown in Table 1, red and orange represent the performance regarding (Macro)
F1% and AUROC% respectively. We can clearly observe that the shades of both red and orange
for traditional ML models are darker than those for LLMs. It shows that traditional ML models
generally outperform both general-purpose and medical LLMs with a regular scale in clinical
prediction. Furthermore, we have calculated the ranges of performance with 95% Confidence Interval

1https://physionet.org/about/licenses/physionet-credentialed-health-data-license-150
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Method Length-of-Stay Prediction Mortality Prediction Readmission Prediction

Macro F1 (%)
95% CI

AUROC (%)
95% CI

F1 (%)
95% CI

AUROC (%)
95% CI

F1 (%)
95% CI

AUROC (%)
95% CI

Majority 23.37
(23.37, 23.37)

50.00
(50.00, 50.00)

0.00
(0.00, 0.00)

50.00
(50.00, 50.00)

0.00
(0.00, 0.00)

50.00
(50.00, 50.00)

Minority 10.72
(10.72, 10.72)

50.00
(50.00, 50.00)

20.88
(20.88, 20.88)

50.00
(50.00, 50.00)

13.64
(13.64, 13.64)

50.00
(50.00, 50.00)

Traditional ML Models
XGBoost 68.05

(67.99, 68.11)
93.78

(93.72, 93.84)
64.25

(64.09, 64.41)
95.59

(95.55, 95.63)
19.21

(18.98, 19.44)
68.75

(68.18, 69.32)

LR 66.56
(66.46, 66.66)

93.09
(92.99, 93.19)

62.57
(62.39, 62.75)

94.31
(94.24, 94.38)

19.09
(18.89, 19.29)

68.24
(67.86, 68.62)

DecisionTree 59.17
(59.07, 59.27)

85.19
(85.11, 85.27)

51.05
(50.92, 51.18)

84.21
(84.0, 84.42)

16.46
(16.21, 16.71)

58.0
(57.37, 58.63)

RandomForest 61.59
(61.55, 61.63)

91.25
(91.18, 91.32)

53.40
(53.21, 53.59)

91.01
(90.92, 91.10)

18.93
(18.78, 19.08)

68.91
(68.58, 69.24)

AdaBoost 66.72
(66.62, 66.82)

92.90
(92.83, 92.97)

60.55
(60.40, 60.70)

93.25
(93.18, 93.32)

17.30
(17.06, 17.54)

62.50
(62.06, 62.94)

SVM 70.25
(70.16, 70.34)

94.78
(94.72, 94.84)

63.34
(63.22, 63.46)

95.45
(95.40, 95.50)

19.47
(19.34, 19.60)

70.57
(70.13, 71.01)

NaiveBayes 42.93
(42.84, 43.02)

61.55
(61.43, 61.67)

23.43
(23.41, 23.45)

56.85
(56.80, 56.90)

16.86
(16.77, 16.95)

58.76
(58.56, 58.96)

KNN 44.06
(43.98, 44.14)

74.15
(74.06, 74.24)

45.04
(44.71, 45.37)

85.51
(85.35, 85.67)

15.39
(15.22, 15.56)

58.81
(58.23, 59.39)

MLP 63.16
(63.08, 63.24)

89.82
(89.74, 89.90)

57.82
(57.65, 57.99)

92.41
(92.30, 92.52)

18.39
(18.28, 18.50)

66.87
(66.63, 67.11)

Transformer 64.48
(64.37, 64.59)

91.45
(91.36, 91.54)

56.32
(56.03, 56.61)

93.34
(93.29, 93.39)

18.85
(18.74, 18.96)

67.07
(66.82, 67.32)

RNN 67.41
(67.29, 67.53)

92.86
(92.81, 92.91)

61.15
(60.84, 61.46)

92.97
(92.90, 93.04)

20.94
(20.80, 21.08)

72.07
(71.82, 72.32)

General-purpose Large Language Models
Llama3-8B 25.78

(25.72, 25.84)
83.82

(83.74, 83.90)
25.81

(25.78, 25.84)
85.40

(85.33, 85.47)
13.64

(13.64, 13.64)
43.00

(42.50, 43.50)

Mistral-v0.3-7B 11.59
(11.57, 11.61)

69.73
(69.64, 69.82)

38.11
(38.06, 38.16)

86.84
(86.80, 86.88)

13.44
(13.38, 13.50)

47.16
(46.69, 47.63)

Gemma2-9B 17.30
(17.26, 17.34)

79.19
(79.08, 79.30)

43.03
(42.96, 43.10)

86.46
(86.41, 86.51)

13.66
(13.66, 13.66)

47.14
(46.87, 47.41)

Qwen2-7B 12.17
(12.14, 12.20)

73.97
(73.82, 74.12)

34.98
(34.81, 35.15)

85.97
(85.91, 86.03)

2.14
(1.88, 2.40)

44.04
(43.61, 44.47)

Yi-v1.5-9B 10.89
(10.88, 10.90)

74.51
(74.41, 74.61)

28.75
(28.72, 28.78)

76.05
(75.96, 76.14)

11.35
(11.23, 11.47)

45.02
(44.76, 45.28)

Vicuna-v1.5-7B 22.05
(22.01, 22.09)

73.20
(73.11, 73.29)

20.91
(20.91, 20.91)

77.90
(77.80, 78.00)

13.64
(13.64, 13.64)

39.51
(39.18, 39.84)

Phi3.5-mini-3.8B 13.17
(13.14, 13.20)

73.67
(73.63, 73.71)

26.45
(26.43, 26.47)

80.37
(80.30, 80.44)

12.40
(12.30, 12.50)

46.64
(46.37, 46.91)

InternLM2.5-7B 11.53
(11.52, 11.54)

82.38
(82.28, 82.48)

33.89
(33.57, 34.21)

83.89
(83.81, 83.97)

0.00
(0.00, 0.00)

45.84
(45.51, 46.17)

MiniCPM3-4B 22.25
(22.21, 22.29)

75.95
(75.86, 76.04)

24.01
(24.00, 24.02)

86.28
(86.21, 86.35)

13.36
(13.31, 13.41)

42.23
(41.95, 42.51)

Medical Large Language Models
Meditron-7B 33.43

(33.39, 33.47)
76.63

(76.51, 76.75)
20.88

(20.88, 20.88)
77.26

(77.20, 77.32)
13.64

(13.64, 13.64)
44.93

(44.43, 45.43)

Medllama3-8B 14.88
(14.85, 14.91)

78.27
(78.22, 78.32)

24.12
(24.11, 24.13)

78.74
(78.66, 78.82)

13.64
(13.64, 13.64)

49.80
(49.24, 50.36)

BioMistral-7B 21.96
(21.89, 22.03)

40.94
(40.73, 41.15)

30.53
(30.45, 30.61)

77.88
(77.81, 77.95)

13.37
(13.28, 13.46)

40.93
(40.54, 41.32)

Med42-8B 12.82
(12.80, 12.84)

84.76
(84.70, 84.82)

28.02
(27.98, 28.06)

82.55
(82.46, 82.64)

13.62
(13.60, 13.64)

42.95
(42.56, 43.34)

BioMedGPT-7B 14.11
(14.11, 14.11)

61.54
(61.45, 61.63)

22.55
(22.54, 22.56)

78.93
(78.82, 79.04)

13.72
(13.65, 13.79)

42.89
(42.67, 43.11)

Internist-7B 11.71
(11.68, 11.74)

81.10
(81.04, 81.16)

37.97
(37.92, 38.02)

87.25
(87.20, 87.30)

12.07
(11.90, 12.24)

47.67
(47.36, 47.98)

Table 1: Performance of LLMs and Traditional ML Models on Typical Clinical Prediction
Tasks, which include Length-of-Stay Prediction, Mortality Prediction, and Readmission Prediction.
Experiments are conducted in MIMIC-III dataset. More experiment results on MIMIC-IV dataset
are in Appendix B.1. More experiment results of traditional ML models on different scales of training
set are in Appendix B.2. (Macro) F1% and AUROC% are adopted as metrics considering label
imbalance. Average performance over five runs is reported. The darker shades of red and orange
indicate that the scores are closer to 100%. The numbers in bracket are the ranges of performance
with 95% Confidence Interval (95% CI), which are calculated with the 5-run scores.
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(a) XGBoost (b) Transformer (c) Llama3-8B (d) Meditron-7B

Figure 2: Examples of Confusion Matrix of LLMs and Traditional ML Models on Mortality
Prediction. Experiments are conducted in MIMIC-III dataset. The complete confusion matrices
across different methods, tasks and datasets are in Appendix B.4.

through the five-run results, which are shown as the numbers in bracket in Table 1. The lower bounds
of traditional ML models’ ranges are still mostly larger than the higher bounds of LLMs’ ranges,
indicating the high statistical significance of the advantage of traditional ML models over LLMs.
In addition, we have evaluated the performance of traditional ML models with 5%, 10%, 20%, 40% of
the original training set in Appendix B.2 and their performance is relatively stable and still surpasses
LLMs, which shows the advantage of traditional ML models in low-resource scenarios.

Also, we notice that there is generally no notable difference between the performances of general-
purpose and medical LLMs, and some medical LLMs can even underperform their general-purpose
counterparts. For example, Med42-8B (Christophe et al., 2024) is adapted from Llama3-8B through
fine-tuning on medical corpus and can outperform Llama3-8B in various medical knowledge bench-
marks such as MedQA (Jin et al., 2021) and MedMCQA (Pal et al., 2022) (The model download links
are in Appendix A). However, there is a clear drop for Length-of-Stay Prediction and no substantial
difference for the other two tasks when comparing Med42-8B to Llama3-8B regarding their clinical
prediction performance, which illustrates that adapting general-purpose LLMs to medical domain
may not improve and could even hurt their clinical reasoning capacities.

XGBoost
RNN

Transformer

SVM

XGBoost
RNN

Transformer

SVM

XGBoost
RNN

Transformer

SVM

Figure 3: Performance Comparison Between
LLMs with Different Temperatures and Tra-
ditional ML Models on Length-of-Stay Pre-
diction. Experiments are conducted in MIMIC-
III dataset. More results on Mortality and Read-
mission Prediction are in Appenidix B.3.

It is noteworthy that the performance of some
LLMs (e.g., Llama3-8B and Meditron-7B for Mor-
tality Prediction) is even comparable to that of “Ma-
jority” or “Minority” method, which refers to select-
ing the “Majority” or “Minority” class as the pre-
dicted label directly, which further shows LLMs’
deficiency in some clinical prediction tasks. In
more detail, we also explore the confusion matrices
of the predictions of both traditional ML models
and LLMs. As shown in Figure 2, we can see that
the prediction patterns of LLMs could be dis-
tinct from those of traditional ML models. With
under-sampling on the training set, traditional ML
models can generally balance precision and recall.
However, the predictions of LLMs could be overly
biased. For example, Llama3-8B and Meditron-7B
have a high rate of false positives, which results in
the poor performance on precision and F1.

The Impact of Decoding Temperature Since
decoding temperature is a key hyperparameter and
could have a considerable impact on LLMs’ rea-
soning capacities (Qiu et al., 2024; Renze & Gu-
ven, 2024), we explore whether adjusting temper-
atures can enhance LLMs’ clinical prediction per-
formance. As shown in Figure 3, when the tem-
perature increases, the impact on LLMs’ clinical prediction performance could be positive or
negative for different LLMs. For example, when the temperature is higher, the performance of
Internist-7B constantly increases but that of Meditron-7B keeps decreasing. However, only adjusting
the decoding temperature of LLMs cannot reach the performance of typical traditional ML
models such as XGBoost, SVM, RNN and Transformer.

5
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Method Length-of-Stay Prediction Mortality Prediction Readmission Prediction

MIMIC-III MIMIC-IV MIMIC-III MIMIC-IV MIMIC-III MIMIC-IV

Traditional ML Models
XGBoost 67.80 64.29 63.29 45.84 19.54 27.15
SVM 70.29 66.54 63.06 46.93 19.13 28.65
Transformer 63.60 56.65 58.13 41.05 17.98 26.17
RNN 66.68 62.17 62.43 48.79 20.79 27.12

General-purpose Large Language Models
Llama3-8B 25.38 17.73 26.06 15.12 13.64 25.05
Llama3-70B 18.66 23.01 30.33 18.43 12.40 22.81
Qwen2-0.5B 5.11 5.78 1.94 3.11 0.00 0.60
Qwen2-1.5B 23.37 29.55 20.91 6.88 13.72 24.82
Qwen2-7B 11.96 6.48 35.65 43.53 4.26 0.29
Yi-v1.5-6B 25.81 30.18 28.35 18.26 13.69 24.66
Yi-v1.5-9B 10.94 6.96 28.82 16.55 10.74 20.73
Yi-v1.5-34B 18.92 18.42 41.78 33.63 13.46 24.12

Medical Large Language Models
Meditron-7B 33.46 26.90 20.88 6.70 13.64 24.92
Meditron-70B 30.15 35.67 43.16 47.93 8.67 9.12
Med42-8B 12.69 9.97 28.59 16.79 13.59 25.06
Med42-70B 15.43 22.95 42.96 31.21 12.99 23.87

Table 2: Performance Comparison Between LLMs with Different Scales and Traditional ML
Models on Clinical Prediction Tasks. Experiments are conducted in MIMIC-III and MIMIC-IV
datasets. Considering label imbalance, Length-of-Stay Prediction adopts Macro F1% and the other
two tasks use F1% as the metric. The darker shades of red indicate that the scores are closer to 100%.

The Impact of Parameter Scaling in LLMs LLMs with more parameters in the same model
series generally perform better across different tasks owing to deeper world knowledge and stronger
reasoning capacities. For example, the performance on diverse datasets such as MMLU (Hendrycks
et al., 2021) and AGIEval (Zhong et al., 2023) shows a steady growth as scales expand for Yi series
models (Young et al., 2024). Thus, after evaluating the performance of LLMs with a around 7B
parameter size in Table 1, we explored the impact of parameter scaling on LLMs’ clinical prediction
performance and investigated whether LLMs with a larger scale could beat traditional ML models.

As shown in Table 2, we have assessed three general-purpose model series including Llama3 (Dubey
et al., 2024), Qwen2 (Yang et al., 2024), and Yi-v1.5 (Young et al., 2024) and two medical model
series including Meditron (Chen et al., 2023b) and Med42 (Christophe et al., 2024). Comparing
LLMs with different scales in the same model series, we can observe that the parameter scaling
does not necessarily lead to better clinical prediction performance. In Mortality Prediction, LLMs
with a larger parameter scale in the same model series tend to perform better. For example, the
performance of Qwen2 series models consistently increases on MIMIC-III and MIMIC-IV datasets as
the parameter scales grow. However, this tendency does not appear in Length-of-Stay Prediction and
Readmission Prediction. Qwen2-1.5B outperforms Qwen2-0.5B and Qwen2-7B for Length-of-Stay
Prediction and Readmission Prediction. We also notice that parameter scaling could even hurt the
clinical prediction performance. For example, Yi-v1.5-6B performs much better than Yi-v1.5-9B
and Yi-v1.5-34B for Length-of-Stay Prediction on both MIMIC-III and MIMIC-IV datasets.

However, through the shades of red color, we can clearly see that even though the performance of
some LLMs is improved for certain tasks as the parameter scales expand, they still underperform
typical traditional ML models such as XGBoost, SVM, RNN and Transformer. For example,
although the performance is substantially enhanced for Meditron-70B compared to Meditron-7B in
Mortality Prediction, there is still a large gap from traditional ML models.

Finding 1: Directly prompting general-purpose and medical LLMs, even with different decoding
temperatures or parameter scales, cannot beat traditional ML models in clinical prediction yet.
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Method Length-of-Stay Prediction Mortality Prediction Readmission Prediction

MIMIC-III MIMIC-IV MIMIC-III MIMIC-IV MIMIC-III MIMIC-IV

Traditional ML Models
XGBoost 64.20 57.60 46.89 41.10 21.19 27.52
SVM 67.19 61.82 53.85 40.00 19.61 28.00
Transformer 60.25 55.38 53.00 29.36 17.24 23.86
RNN 65.19 58.07 53.71 24.29 19.83 23.90

General-purpose Large Language Models
Llama3-8B 26.36 16.14 25.84 14.35 13.78 25.40
+ CoT 14.76 9.22 23.18 10.81 12.05 22.90
+ Self-Reflection 25.88 17.53 24.10 14.29 15.70 22.80
+ Role-Playing 27.44 17.30 25.44 14.11 13.78 24.87
+ ICL 51.77 54.72 28.02 14.85 11.97 24.46
Gemma2-9B 16.22 21.66 44.78 32.99 13.78 23.32
+ CoT 19.34 17.65 22.35 9.94 13.78 24.38
+ Self-Reflection 16.67 17.89 0.00 0.00 13.96 24.07
+ Role-Playing 16.29 20.24 44.19 41.03 13.83 23.74
+ ICL 44.13 46.29 23.92 12.45 14.68 23.95

Medical Large Language Models
Meditron-7B 35.88 27.53 20.79 6.58 13.78 24.87
+ CoT 16.04 12.58 13.90 5.95 12.83 24.34
+ Self-Reflection 18.36 10.40 20.47 6.60 13.78 24.91
+ Role-Playing 27.73 17.54 20.79 6.58 13.78 24.87
+ ICL 14.09 14.62 23.72 11.37 11.64 23.27
Internist-7B 11.00 14.14 38.57 29.06 11.54 17.80
+ CoT 22.86 17.03 21.67 8.86 14.26 25.48
+ Self-Reflection 23.57 15.09 21.23 10.49 12.16 21.36
+ Role-Playing 10.87 12.61 25.44 15.38 14.42 23.08
+ ICL 47.08 34.33 31.15 16.59 11.59 22.86

Table 3: Performance Comparison Between LLMs with Prompt Engineering and Traditional
ML Models on Clinical Prediction Tasks. Experiments are conducted in sampled MIMIC-III and
MIMIC-IV datasets. Length-of-Stay Prediction adopts Macro F1% and the other two tasks use F1%
as the metric for label imbalance. The darker shades of red indicate the scores are closer to 100%.

4 CAN LLMS WITH PROMPTING ENGINEERING BEAT TRADITIONAL ML
MODELS?

It has been shown that different prompting engineering techniques can exert a notable influence
on LLMs’ performance across various tasks (Schulhoff et al., 2024; Sahoo et al., 2024). Thus, we
investigate the effectiveness of different prompting methods on both general-purpose and medical
LLMs for clinical prediction, and also compare them with traditional ML models in this section.

We studied four typical prompting engineering techniques including Zero-shot Chain-of-Thought (Ko-
jima et al., 2022), Self-Reflection (Pan et al., 2023), Role-Playing (Chen et al., 2024b), and In-Context
Learning (Dong et al., 2023). The examples of the specific prompt design for different strategies
across three tasks are shown in Appendix D. As shown in Table 3, we can observe that the effective-
ness of different prompting strategies is generally very limited though it may vary across models
and tasks. Except that In-Context Learning can explicitly enhance the performance of Llama3-8B,
Gemma2-9B, and Internist-7B on Length-of-Stay Prediction, other strategies do not bring a notable
improvement and could even degrade the original performance. More importantly, through the shades
of red color, we can clearly see that traditional ML models such as XGBoost, SVM, RNN and
Transformer still outperform LLMs with different prompting strategies.

Finding 2: The effectiveness of typical prompting engineering techniques is generally limited
and they still cannot make general-purpose and medical LLMs beat traditional ML models yet.
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(a) Length-of-Stay Prediction (MIMIC-III) (b) Length-of-Stay Prediction (MIMIC-IV)

(c) Mortality Prediction (MIMIC-III) (d) Mortality Prediction (MIMIC-IV)

(e) Readmission Prediction (MIMIC-III) (f) Readmission Prediction (MIMIC-IV)

Figure 4: Performance Comparison Between Fine-tuned LLMs and Traditional ML Models on
Clinical Prediction Tasks. Experiments are conducted on MIMIC-III and MIMIC-IV. Length-of-
Stay Prediction adopts Macro F1% and the others use F1% as the metric. LoRA (Full) and LoRA
(Last Layer) refer to applying LoRA (Hu et al., 2022) to full layers and only last layer respectively.

5 CAN FINE-TUNED LLMS BEAT TRADITIONAL ML MODELS?

Fine-tuning is a common paradigm to adapt LLMs to specific tasks or domains (Zhang et al., 2023;
Lou et al., 2024). Our results on medical LLMs in Table 1 have shown that only adapting general-
purpose LLMs to medical domain may not improve and could even degrade the clinical reasoning
capacities. In this section, we explored whether directly adapting general-purpose LLMs to clinical
prediction tasks can enhance their performance and also compare them with traditional ML models.

For a fair comparison, we adopted the same dataset division of training, validation and test sets for
fine-tuning LLMs and training traditional ML models. The details of fine-tuning data construction
for the three clinical prediction tasks are in Appendix C. Considering the relatively small scale of the
training set, we adjusted the original LoRA (Hu et al., 2022) into two fine-tuning strategies named
LoRA (Full) and LoRA (Last Layer). We set the training epochs for both LLMs and traditional ML
models as 20. The loss curves of fine-tuning in Appendix B.5 show that LLMs can mostly converge
within 20 epochs and we leveraged the validation set to select the optimal fine-tuned checkpoint.

As shown in Figure 4, we can observe that fine-tuning can clearly enhance the clinical prediction
performance of LLMs on Length-of-Stay Prediction and Mortality Prediction, though it may
not improve the performance on Readmission Prediction. More specifically, LoRA (Full) brings
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a more evident improvement than LoRA (Last Layer) across different LLMs on Length-of-Stay
Prediction. The enhancement from fine-tuning on Mortality Prediction is generally less notable than
that on Length-of-Stay Prediction. However, most fine-tuned LLMs still cannot surpass typical
traditional ML models such as XGBoost, SVM, RNN and Transformer. In particular, even with
the substantial improvement brought by fine-tuning on Length-of-Stay Prediction, there is still an
explicit gap between the performance of most LLMs and typical traditional ML models. Although
the fine-tuned Gemma2-9B with LoRA (Full) has been demonstrated to surpass the aforementioned
four traditional ML models on MIMIC-IV for Mortality Prediction, the same fine-tuning strategy
cannot bring a similar improvement to Gemma2-9B on MIMIC-III for Mortality Prediction.

Finding 3: Fine-tuning can clearly enhance LLMs’ performance on certain clinical prediction
tasks but most fine-tuned LLMs still cannot beat traditional ML models yet.

6 IMPLICATIONS AND HYPOTHESIS

It has attracted increasing attention to transform the existing healthcare systems with LLMs (Zhou
et al., 2023; Liu et al., 2024b). While the high performance in medical licensing exams and question-
answering benchmarks such as MedQA (Jin et al., 2021) and MedMCQA (Pal et al., 2022) has
shown that LLMs may have clinician-level general medical knowledge, it is still highly under-
explored whether they could perform clinical reasoning and decision-making with real-world complex
scenarios. ClinicalBench made the first attempt to systematically and comprehensively benchmark
the clinical reasoning capacities of both general-purpose and medical LLMs based on three real-
world clinical prediction tasks. By comparing their performance with traditional ML models, we
have shown LLMs’ surprising but critical deficiency in performing real-world clinical reasoning,
implying their safety and reliability risks in practical adoption and the challenges of integrating
LLMs into clinical workflows. Our discoveries also echo the recent discussions on LLMs’ potential
limitations (Hager et al., 2024; Han et al., 2024; Gallifant et al., 2024). We hypothesize that LLMs’
limited clinical reasoning abilities could be attributed to the lack of realistic and relevant data in
both of the pre-training and post-training stages, considering the sensitivity nature of patients’
information. The recent emerging clinical digital twin (Katsoulakis et al., 2024; Das et al., 2023; Sun
et al., 2023) and data synthesis (Liu et al., 2024d; Bauer et al., 2024; Tan et al., 2024) techniques
could be explored in the future to address this challenge. ClinicalBench could be adopted to facilitate
the progress in enhancing LLMs’ clinical reasoning capacities and minimize the gap between the
development of LLMs for healthcare and clinical practice in the real world.

7 RELATED WORK

Clinical Prediction Clinical prediction tasks play a critical role in current healthcare systems
with multifaceted significance including improving patient outcomes, optimizing hospital resources,
and supporting clinical decision-making (Rajkomar et al., 2019). Length-of-Stay Prediction (Stone
et al., 2022), Mortality Prediction (Jentzer et al., 2021), and Readmission Prediction (Artetxe et al.,
2018) are among the most common ones. While traditional ML models such as XGBoost, SVM,
and RNN have still been widely adopted in these tasks (Moazemi et al., 2023; van de Water et al.,
2024), many advanced models have also been developed for clinical predictive modeling (Wang
et al., 2024b). For example, Xu et al. (2023) proposed to leverage hypergraph transformers with
patients as hyperedges and medical codes as nodes for predictive tasks. Jiang et al. (2024) leveraged
personalized knowledge graphs and attention-augmented graph neural networks for enhancing the
prediction performance. Cui et al. (2024) conducted diffusion-based data augmentation to further
improve health risk prediction. Although the emerging LLMs may have been demonstrated to perform
well on medical question-answering and hold great promise to transform healthcare systems, their
capacities on clinical prediction tasks are largely under-explored. ClinicalBench shows that LLMs
cannot beat traditional ML models yet, suggesting their critical limitations in clinical applications.

Clinical Benchmarks for LLMs The majority of existing clinical benchmarks for LLMs can
generally be categorized from two perspectives. The first one aims to assess LLMs’ capacities in
clinical text processing tasks (Harris et al., 2024; Jahan et al., 2024; Feng et al., 2024; Chen et al.,
2023a; Wang et al., 2023a; Luo et al., 2024). For example, Jahan et al. (2024) has comprehensively
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evaluated four LLMs in different typical biomedical text tasks (e.g., named entity recognition, relation
extraction, entity linking, text classification and text summarization with biomedical texts). The
second one intends to evaluate LLMs performance in clinical question-answering tasks. Besides
MedQA (Jin et al., 2021) and MedMCQA (Pal et al., 2022), many recent benchmarks have been
built to test the medical knowledge of LLMs in different aspects (Korgul et al., 2023; Chen et al.,
2024a; Vladika et al., 2024; Shoham & Rappoport, 2024). For example, Chen et al. (2024c) and
Wang et al. (2024a) have developed QA benchmarks to assess the diagnostic performance of LLMs in
rare diseases. Kweon et al. (2024), Kasai et al. (2023), Rosoł et al. (2023), Alonso et al. (2024), Cai
et al. (2024a), Wang et al. (2023b), and Liu et al. (2024a;c) designed QA benchmarks with languages
beyond English such as Korean, Japanese, Polish and Chinese. However, benchmarks on LLMs’
clinical reasoning capacities with real-world complex scenarios are relatively lacking. ClinicalBench
filled the gap through a comprehensive investigation involving three common clinical prediction
tasks, two databases, 14 general-purpose LLMs, 8 medical LLMs and has provided valuable insights.

8 CONCLUSION

In this paper, we have built a new benchmark ClinicalBench to comprehensively and systematically
compare the effectiveness of traditional ML models and LLMs in typical clinical prediction tasks in-
cluding Length-of-Stay Prediction, Mortality Prediction, and Readmission Prediction. With extensive
empirical evidence, we find that general-purpose and medical LLMs, even with different scales of
parameters, diverse prompting or fine-tuning strategies, still cannot beat traditional ML models in
clinical prediction yet. Our findings have illustrated the critical limitations of LLMs in performing
real-world clinical reasoning and decision-making with complex scenarios. We urge practitioners to
exercise caution when adopting LLMs in real-world clinical applications.
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A REPRODUCIBILITY STATEMENT

We conduct the experiments on eight NVIDIA RTX A6000 GPUs. We have benchmarked 14
general-prupose LLMs including Llama3-8B (Dubey et al., 2024), Llama3-70B (Dubey et al., 2024),
Mistral-v0.3-7B (Jiang et al., 2023), Gemma2-9B (Team et al., 2024), Qwen2-0.5B (Yang et al., 2024),
Qwen2-1.5B (Yang et al., 2024), Qwen2-7B (Yang et al., 2024), Yi-v1.5-6B (Young et al., 2024), Yi-
v1.5-9B (Young et al., 2024), Yi-v1.5-34B (Young et al., 2024), Vicuna-v1.5-7B (Zheng et al., 2023),
Phi3.5-mini-3.8B (Abdin et al., 2024), InternLM2.5-7B (Cai et al., 2024b), MiniCPM3-4B (Hu et al.,
2024) and 8 medical LLMs including Meditron-7B (Chen et al., 2023b), Meditron-70B (Chen et al.,
2023b), Medllama3-8B, BioMistral-7B (Labrak et al., 2024), Med42-8B (Christophe et al., 2024),
Med42-70B (Christophe et al., 2024), BioMedGPT-7B (Luo et al., 2023) and Internist-7B (Griot
et al., 2024). The model checkpoints are downloaded from https://huggingface.co/. The specific
download links are as follows:

• Llama3-8B: https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
• Llama3-70B: https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
• Mistral-v0.3-7B: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
• Gemma2-9B: https://huggingface.co/google/gemma-2-9b-it
• Qwen2-0.5B: https://huggingface.co/Qwen/Qwen2-0.5B-Instruct
• Qwen2-1.5B: https://huggingface.co/Qwen/Qwen2-1.5B-Instruct
• Qwen2-7B: https://huggingface.co/Qwen/Qwen2-7B-Instruct
• Yi-v1.5-6B: https://huggingface.co/01-ai/Yi-1.5-6B-Chat
• Yi-v1.5-9B: https://huggingface.co/01-ai/Yi-1.5-9B-Chat
• Yi-v1.5-34B: https://huggingface.co/01-ai/Yi-1.5-34B-Chat
• Vicuna-v1.5-7B: https://huggingface.co/lmsys/vicuna-7b-v1.5
• Phi3.5-mini-3.8B: https://huggingface.co/microsoft/Phi-3.5-mini-instruct
• InternLM2.5-7B: https://huggingface.co/internlm/internlm2_5-7b-chat
• MiniCPM3-4B: https://huggingface.co/openbmb/MiniCPM3-4B
• Meditron-7B: https://huggingface.co/epfl-llm/meditron-7b
• Meditron-70B: https://huggingface.co/epfl-llm/meditron-70b
• Medllama3-8B: https://huggingface.co/ProbeMedicalYonseiMAILab/medllama3-v20
• BioMistral-7B: :https://huggingface.co/BioMistral/BioMistral-7B
• Med42-8B: https://huggingface.co/m42-health/Llama3-Med42-8B
• Med42-70B: https://huggingface.co/m42-health/Llama3-Med42-70B
• BioMedGPT-7B: https://huggingface.co/PharMolix/BioMedGPT-LM-7B
• Internist-7B: https://huggingface.co/internistai/base-7b-v0.2
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B MORE EXPERIMENT RESULTS

B.1 RESULTS OF TRADITIONAL ML MODELS AND DIRECTLY PROMPTING LLMS ON
MIMIC-IV

Method Length-of-Stay Prediction Mortality Prediction Readmission Prediction

Macro F1 (%)
95% CI

AUROC (%)
95% CI

F1 (%)
95% CI

AUROC (%)
95% CI

F1 (%)
95% CI

AUROC (%)
95% CI

Majority 29.56
(29.56, 29.56)

50.0
(50.0, 50.0)

0.0
(0.0, 0.0)

50.0
(50.0, 50.0)

0.0
(0.0, 0.0)

50.0
(50.0, 50.0)

Minority 4.56
(4.56, 4.56)

50.0
(50.0, 50.0)

6.7
(6.7, 6.7)

50.0
(50.0, 50.0)

24.92
(24.92, 24.92)

50.0
(50.0, 50.0)

Traditional ML Models
XGBoost 63.33

(63.22, 63.44)
95.43

(95.40, 95.46)
48.85

(48.59, 49.11)
98.24

(98.20, 98.28)
27.60

(27.46, 27.74)
60.37

(60.16, 60.58)

LR 61.78
(61.73, 61.83)

94.52
(94.49, 94.55)

50.90
(50.78, 51.02)

98.12
(98.08, 98.16)

26.67
(26.52, 26.82)

58.71
(58.48, 58.94)

DecisionTree 55.48
(55.18, 55.78)

89.23
(89.11, 89.35)

32.65
(32.43, 32.87)

88.78
(88.58, 88.98)

26.14
(26.07, 26.21)

56.46
(56.32, 56.6)

RandomForest 57.76
(57.61, 57.91)

92.23
(92.14, 92.32)

34.01
(33.66, 34.36)

95.08
(95.01, 95.15)

28.03
(27.93, 28.13)

61.41
(61.32, 61.5)

AdaBoost 62.17
(62.05, 62.29)

93.23
(93.16, 93.30)

48.00
(47.50, 48.50)

97.08
(97.02, 97.14)

26.90
(26.78, 27.02)

58.83
(58.63, 59.03)

SVM 66.06
(65.98, 66.14)

96.24
(96.18, 96.30)

46.28
(46.07, 46.49)

98.11
(98.09, 98.13)

28.82
(28.70, 28.94)

62.44
(62.27, 62.61)

NaiveBayes 48.03
(47.98, 48.08)

66.52
(66.32, 66.72)

18.83
(18.62, 19.04)

82.04
(81.81, 82.27)

25.51
(25.47, 25.55)

52.95
(52.88, 53.02)

KNN 47.24
(47.08, 47.40)

75.29
(74.97, 75.61)

46.89
(46.73, 47.05)

89.70
(89.63, 89.77)

24.85
(24.73, 24.97)

55.40
(55.16, 55.64)

MLP 58.23
(58.15, 58.31)

91.61
(91.55, 91.67)

46.33
(46.13, 46.53)

97.54
(97.50, 97.58)

25.38
(25.26, 25.50)

56.7
(56.49, 56.91)

Transformer 57.06
(56.95, 57.17)

92.78
(92.72, 92.84)

43.95
(43.43, 44.47)

97.87
(97.84, 97.9)

26.22
(26.16, 26.28)

57.3
(57.12, 57.48)

RNN 63.58
(63.47, 63.69)

93.66
(93.63, 93.69)

49.49
(49.33, 49.65)

97.32
(97.27, 97.37)

26.64
(26.48, 26.8)

57.65
(57.42, 57.88)

General-purpose Large Language Models
LLama3-8B 18.08

(18.02, 18.14)
91.72

(91.64, 91.8)
14.97

(14.95, 14.99)
95.45

(95.4, 95.5)
25.1

(25.09, 25.11)
49.6

(49.48, 49.72)

Mistral-v0.3-7B 12.29
(12.22, 12.36)

86.1
(86.07, 86.13)

28.97
(28.89, 29.05)

95.64
(95.6, 95.68)

24.7
(24.6, 24.8)

51.22
(51.06, 51.38)

Gemma2-9B 19.83
(19.79, 19.87)

89.68
(89.6, 89.76)

32.91
(32.86, 32.96)

95.82
(95.78, 95.86)

24.83
(24.81, 24.85)

49.92
(49.79, 50.05)

Qwen2-7B 6.57
(6.54, 6.6)

83.46
(83.28, 83.64)

48.05
(47.63, 48.47)

95.46
(95.42, 95.5)

0.23
(0.21, 0.25)

48.83
(48.72, 48.94)

Yi-v1.5-9B 6.97
(6.96, 6.98)

84.35
(84.3, 84.4)

16.87
(16.82, 16.92)

88.89
(88.79, 88.99)

19.14
(19.0, 19.28)

50.33
(50.23, 50.43)

Vicuna-v1.5-7B 23.25
(23.17, 23.33)

81.12
(80.99, 81.25)

7.22
(7.22, 7.22)

88.39
(88.33, 88.45)

24.92
(24.92, 24.92)

51.92
(51.87, 51.97)

Phi3.5-mini-3.8B 11.56
(11.51, 11.61)

82.84
(82.70, 82.98)

16.72
(16.68, 16.76)

93.55
(93.50, 93.60)

21.52
(21.40, 21.64)

50.87
(50.73, 51.01)

InternLM2.5-7B 11.40
(11.35, 11.45)

90.42
(90.31, 90.53)

40.68
(40.39, 40.97)

95.29
(95.25, 95.33)

0.00
(0.00, 0.00)

49.05
(48.89, 49.21)

MiniCPM3-4B 17.80
(17.71, 17.89)

86.41
(86.29, 86.53)

12.28
(12.26, 12.30)

94.54
(94.47, 94.61)

22.93
(22.89, 22.97)

49.90
(49.80, 50.00)

Medical Large Language Models
Meditron-7B 28.08

(27.96, 28.2)
86.17

(86.03, 86.31)
6.7

(6.7, 6.7)
91.95

(91.9, 92.0)
24.92

(24.92, 24.92)
48.92

(48.75, 49.09)

Medllama3-8B 8.31
(8.27, 8.35)

80.73
(80.57, 80.89)

12.86
(12.84, 12.88)

91.48
(91.46, 91.5)

24.92
(24.92, 24.92)

48.22
(48.04, 48.4)

BioMistral-7B 13.53
(13.46, 13.6)

39.12
(38.99, 39.25)

22.81
(22.75, 22.87)

91.89
(91.81, 91.97)

22.03
(21.94, 22.12)

48.54
(48.45, 48.63)

Med42-8B 9.95
(9.9, 10.0)

90.86
(90.76, 90.96)

16.7
(16.67, 16.73)

93.62
(93.56, 93.68)

25.61
(25.55, 25.67)

50.78
(50.67, 50.89)

BioMedGPT-7B 7.65
(7.65, 7.65)

70.48
(70.22, 70.74)

12.01
(12.00, 12.02)

93.51
(93.49, 93.53)

23.97
(23.92, 24.02)

50.35
(50.30, 50.40)

Internist-7B 14.24
(14.18, 14.30)

89.39
(89.32, 89.46)

28.81
(28.75, 28.87)

96.57
(96.54, 96.60)

15.72
(15.59, 15.85)

50.59
(50.43, 50.75)

Table 4: Performance of LLMs and Traditional ML Models on Typical Clinical Prediction
Tasks. Experiments are conducted in MIMIC-IV dataset. The numbers in bracket are the ranges of
performance with 95% Confidence Interval (95% CI), which are calculated with the 5-run scores.
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B.2 RESULTS OF TRADITIONAL ML MODELS ON DIFFERENT SCALES OF TRAINING SET

Method Length-of-Stay Prediction Mortality Prediction Readmission Prediction

Macro F1 (%)
95% CI

AUROC (%)
95% CI

F1 (%)
95% CI

AUROC (%)
95% CI

F1 (%)
95% CI

AUROC (%)
95% CI

Majority 23.37
(23.37, 23.37)

50.00
(50.00, 50.00)

0.00
(0.00, 0.00)

50.00
(50.00, 50.00)

0.00
(0.00, 0.00)

50.00
(50.00, 50.00)

Minority 10.72
(10.72, 10.72)

50.00
(50.00, 50.00)

20.88
(20.88, 20.88)

50.00
(50.00, 50.00)

13.64
(13.64, 13.64)

50.00
(50.00, 50.00)

Traditional ML Models with 40% of Original Training Set from MIMIC-III
XGBoost 63.91

(63.8, 64.02)
91.6

(91.52, 91.68)
60.53

(60.41, 60.65)
94.2

(94.15, 94.25)
17.68

(17.51, 17.85)
64.3

(64.0, 64.6)

LR 62.51
(62.35, 62.67)

90.64
(90.5, 90.78)

59.42
(59.29, 59.55)

92.42
(92.37, 92.47)

17.63
(17.44, 17.82)

65.37
(64.89, 65.85)

DecisionTree 56.18
(56.03, 56.33)

83.24
(83.03, 83.45)

47.13
(47.01, 47.25)

81.39
(81.18, 81.6)

14.76
(14.72, 14.8)

54.29
(54.07, 54.51)

RandomForest 60.83
(60.72, 60.94)

90.86
(90.81, 90.91)

51.74
(51.54, 51.94)

89.96
(89.83, 90.09)

18.03
(17.89, 18.17)

65.65
(65.36, 65.94)

AdaBoost 62.52
(62.31, 62.73)

89.43
(89.15, 89.71)

55.79
(55.59, 55.99)

90.25
(90.06, 90.44)

17.35
(17.15, 17.55)

62.0
(61.53, 62.47)

SVM 65.08
(64.95, 65.21)

91.68
(91.6, 91.76)

59.75
(59.53, 59.97)

93.68
(93.62, 93.74)

18.3
(18.07, 18.53)

65.44
(65.02, 65.86)

NaiveBayes 45.57
(45.48, 45.66)

62.48
(62.28, 62.68)

24.86
(24.81, 24.91)

59.1
(59.02, 59.18)

16.41
(16.31, 16.51)

57.66
(57.45, 57.87)

KNN 44.78
(44.71, 44.85)

74.84
(74.69, 74.99)

41.53
(41.22, 41.84)

83.81
(83.54, 84.08)

14.94
(14.89, 14.99)

59.45
(59.19, 59.71)

MLP 59.08
(58.96, 59.2)

87.01
(86.86, 87.16)

56.1
(55.99, 56.21)

90.17
(90.11, 90.23)

19.34
(19.11, 19.57)

65.63
(65.22, 66.04)

Transformer 59.44
(59.26, 59.62)

86.93
(86.8, 87.06)

54.59
(54.26, 54.92)

91.17
(91.05, 91.29)

18.26
(18.08, 18.44)

64.38
(64.03, 64.73)

RNN 62.44
(62.26, 62.62)

88.5
(88.37, 88.63)

58.26
(58.14, 58.38)

89.44
(89.32, 89.56)

19.61
(19.38, 19.84)

67.23
(66.89, 67.57)

Traditional ML Models with 20% of Original Training Set from MIMIC-III
XGBoost 62.26

(62.14, 62.38)
90.93

(90.84, 91.02)
56.98

(56.61, 57.35)
92.34

(92.23, 92.45)
15.8

(15.59, 16.01)
60.55

(60.18, 60.92)

LR 60.52
(60.27, 60.77)

89.69
(89.5, 89.88)

55.27
(54.94, 55.6)

90.99
(90.87, 91.11)

16.98
(16.76, 17.2)

62.37
(61.91, 62.83)

DecisionTree 54.73
(54.57, 54.89)

80.14
(79.94, 80.34)

44.94
(44.43, 45.45)

76.99
(76.71, 77.27)

14.66
(14.55, 14.77)

55.62
(55.31, 55.93)

RandomForest 60.36
(60.2, 60.52)

90.65
(90.52, 90.78)

50.52
(50.31, 50.73)

89.23
(89.14, 89.32)

16.15
(16.02, 16.28)

62.38
(62.11, 62.65)

AdaBoost 60.79
(60.65, 60.93)

88.14
(87.96, 88.32)

51.95
(51.51, 52.39)

87.71
(87.48, 87.94)

16.02
(15.89, 16.15)

58.35
(58.02, 58.68)

SVM 63.04
(62.93, 63.15)

91.02
(90.94, 91.1)

56.06
(55.74, 56.38)

92.26
(92.17, 92.35)

17.17
(16.99, 17.35)

63.7
(63.35, 64.05)

NaiveBayes 43.82
(43.77, 43.87)

62.88
(62.7, 63.06)

25.63
(25.57, 25.69)

60.44
(60.34, 60.54)

16.82
(16.65, 16.99)

58.21
(57.87, 58.55)

KNN 44.39
(44.2, 44.58)

74.48
(74.27, 74.69)

41.03
(40.77, 41.29)

82.86
(82.66, 83.06)

14.72
(14.65, 14.79)

59.46
(58.95, 59.97)

MLP 57.17
(56.86, 57.48)

85.85
(85.63, 86.07)

53.01
(52.68, 53.34)

89.27
(89.11, 89.43)

16.58
(16.3, 16.86)

61.92
(61.47, 62.37)

Transformer 58.11
(57.84, 58.38)

87.64
(87.38, 87.9)

52.56
(52.11, 53.01)

90.29
(90.11, 90.47)

16.82
(16.69, 16.95)

61.36
(61.07, 61.65)

RNN 61.67
(61.38, 61.96)

88.45
(88.26, 88.64)

55.31
(54.94, 55.68)

88.42
(88.2, 88.64)

19.14
(18.9, 19.38)

63.92
(63.69, 64.15)

Table 5: Performance of Traditional ML Models on Typical Clinical Prediction Tasks with
Different Scales of Training Set. Experiments are conducted in MIMIC-III dataset. The training
set is obtained through stratified sampling from the original training set in Table 1. The numbers
in bracket are the ranges of performance with 95% Confidence Interval (95% CI), which are
calculated with the 5-run scores.
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Under review as a conference paper at ICLR 2025

Method Length-of-Stay Prediction Mortality Prediction Readmission Prediction

Macro F1 (%)
95% CI

AUROC (%)
95% CI

F1 (%)
95% CI

AUROC (%)
95% CI

F1 (%)
95% CI

AUROC (%)
95% CI

Majority 23.37
(23.37, 23.37)

50.00
(50.00, 50.00)

0.00
(0.00, 0.00)

50.00
(50.00, 50.00)

0.00
(0.00, 0.00)

50.00
(50.00, 50.00)

Minority 10.72
(10.72, 10.72)

50.00
(50.00, 50.00)

20.88
(20.88, 20.88)

50.00
(50.00, 50.00)

13.64
(13.64, 13.64)

50.00
(50.00, 50.00)

Traditional ML Models with 10% of Original Training Set from MIMIC-III
XGBoost 61.38

(61.22, 61.54)
90.25

(90.13, 90.37)
50.83

(50.46, 51.2)
89.61

(89.43, 89.79)
16.84

(16.6, 17.08)
61.41

(60.83, 61.99)

LR 60.77
(60.59, 60.95)

90.19
(90.05, 90.33)

53.21
(52.91, 53.51)

89.94
(89.81, 90.07)

17.36
(17.11, 17.61)

62.26
(61.96, 62.56)

DecisionTree 53.08
(52.97, 53.19)

77.14
(76.78, 77.5)

40.69
(40.43, 40.95)

75.1
(74.77, 75.43)

14.95
(14.81, 15.09)

55.91
(55.34, 56.48)

RandomForest 60.05
(59.89, 60.21)

90.27
(90.18, 90.36)

48.62
(48.31, 48.93)

88.18
(87.99, 88.37)

16.58
(16.44, 16.72)

61.47
(61.27, 61.67)

AdaBoost 59.9
(59.8, 60.0)

87.2
(87.0, 87.4)

48.94
(48.62, 49.26)

85.3
(85.11, 85.49)

15.51
(15.37, 15.65)

57.14
(56.71, 57.57)

SVM 62.6
(62.48, 62.72)

90.72
(90.66, 90.78)

51.91
(51.55, 52.27)

90.73
(90.59, 90.87)

16.84
(16.63, 17.05)

45.66
(43.96, 47.36)

NaiveBayes 41.54
(41.39, 41.69)

63.82
(63.65, 63.99)

26.48
(26.32, 26.64)

62.18
(61.81, 62.55)

15.44
(15.33, 15.55)

55.3
(55.09, 55.51)

KNN 43.35
(43.13, 43.57)

73.5
(73.23, 73.77)

40.12
(39.82, 40.42)

82.63
(82.47, 82.79)

14.48
(14.39, 14.57)

56.86
(56.58, 57.14)

MLP 56.93
(56.68, 57.18)

85.96
(85.75, 86.17)

50.54
(50.23, 50.85)

88.87
(88.79, 88.95)

16.4
(16.22, 16.58)

59.36
(59.09, 59.63)

Transformer 57.98
(57.78, 58.18)

88.5
(88.28, 88.72)

50.76
(50.46, 51.06)

89.33
(89.21, 89.45)

15.15
(15.0, 15.3)

57.59
(57.41, 57.77)

RNN 61.51
(61.25, 61.77)

88.57
(88.41, 88.73)

53.81
(53.51, 54.11)

88.23
(88.09, 88.37)

9.13
(8.38, 9.88)

61.97
(61.73, 62.21)

Traditional ML Models with 5% of Original Training Set from MIMIC-III
XGBoost 59.22

(59.0, 59.44)
89.27

(89.12, 89.42)
48.62

(48.47, 48.77)
87.47

(87.41, 87.53)
16.03

(15.85, 16.21)
58.28

(57.99, 58.57)

LR 60.01
(59.87, 60.15)

89.97
(89.81, 90.13)

52.56
(52.28, 52.84)

88.97
(88.81, 89.13)

16.05
(15.87, 16.23)

59.63
(59.37, 59.89)

DecisionTree 52.41
(52.29, 52.53)

76.2
(75.96, 76.44)

39.33
(38.89, 39.77)

71.41
(70.92, 71.9)

16.0
(15.88, 16.12)

56.57
(56.35, 56.79)

RandomForest 60.07
(59.86, 60.28)

90.35
(90.27, 90.43)

50.14
(49.84, 50.44)

88.39
(88.22, 88.56)

15.9
(15.78, 16.02)

61.34
(61.06, 61.62)

AdaBoost 56.82
(56.56, 57.08)

86.79
(86.64, 86.94)

44.83
(44.66, 45.0)

83.22
(83.02, 83.42)

15.67
(15.51, 15.83)

58.59
(58.32, 58.86)

SVM 61.63
(61.53, 61.73)

90.1
(90.01, 90.19)

51.29
(50.94, 51.64)

89.46
(89.33, 89.59)

16.25
(16.06, 16.44)

61.02
(60.68, 61.36)

NaiveBayes 42.91
(42.71, 43.11)

66.12
(65.9, 66.34)

29.89
(29.72, 30.06)

66.44
(66.25, 66.63)

14.58
(14.4, 14.76)

53.94
(53.75, 54.13)

KNN 40.78
(40.69, 40.87)

71.91
(71.63, 72.19)

39.87
(39.31, 40.43)

82.65
(82.52, 82.78)

14.14
(14.09, 14.19)

55.36
(54.92, 55.8)

MLP 56.19
(55.95, 56.43)

85.5
(85.3, 85.7)

49.36
(49.12, 49.6)

87.51
(87.34, 87.68)

15.37
(15.26, 15.48)

57.12
(56.89, 57.35)

Transformer 56.8
(56.6, 57.0)

87.99
(87.77, 88.21)

48.81
(48.38, 49.24)

87.6
(87.4, 87.8)

13.77
(13.61, 13.93)

52.6
(52.35, 52.85)

RNN 60.77
(60.53, 61.01)

87.05
(86.86, 87.24)

51.75
(51.44, 52.06)

87.05
(86.86, 87.24)

12.9
(12.17, 13.63)

59.04
(58.81, 59.27)

Table 6: Performance of Traditional ML Models on Typical Clinical Prediction Tasks with
Different Scales of Training Set. Experiments are conducted in MIMIC-III dataset. The training
set is obtained through stratified sampling from the original training set in Table 1. The numbers
in bracket are the ranges of performance with 95% Confidence Interval (95% CI), which are
calculated with the 5-run scores.
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Under review as a conference paper at ICLR 2025

Method Length-of-Stay Prediction Mortality Prediction Readmission Prediction

Macro F1 (%)
95% CI

AUROC (%)
95% CI

F1 (%)
95% CI

AUROC (%)
95% CI

F1 (%)
95% CI

AUROC (%)
95% CI

Majority 29.56
(29.56, 29.56)

50.0
(50.0, 50.0)

0.0
(0.0, 0.0)

50.0
(50.0, 50.0)

0.0
(0.0, 0.0)

50.0
(50.0, 50.0)

Minority 4.56
(4.56, 4.56)

50.0
(50.0, 50.0)

6.7
(6.7, 6.7)

50.0
(50.0, 50.0)

24.92
(24.92, 24.92)

50.0
(50.0, 50.0)

Traditional ML Models with 40% of Original Training Set from MIMIC-IV
XGBoost 62.05

(61.92, 62.18)
94.51

(94.46, 94.56)
44.35

(44.07, 44.63)
97.27

(97.22, 97.32)
26.73

(26.7, 26.76)
58.34

(58.22, 58.46)

LR 60.69
(60.49, 60.89)

93.7
(93.64, 93.76)

47.2
(46.99, 47.41)

97.45
(97.41, 97.49)

26.19
(26.11, 26.27)

58.04
(57.86, 58.22)

DecisionTree 53.14
(52.85, 53.43)

86.59
(86.51, 86.67)

31.34
(30.88, 31.8)

84.88
(84.66, 85.1)

26.09
(26.04, 26.14)

54.92
(54.8, 55.04)

RandomForest 57.63
(57.51, 57.75)

92.04
(91.95, 92.13)

33.86
(33.32, 34.4)

94.79
(94.64, 94.94)

26.97
(26.92, 27.02)

59.84
(59.71, 59.97)

AdaBoost 60.81
(60.71, 60.91)

92.3
(92.2, 92.4)

43.24
(42.8, 43.68)

95.33
(95.15, 95.51)

26.33
(26.23, 26.43)

56.44
(56.27, 56.61)

SVM 64.64
(64.51, 64.77)

95.59
(95.54, 95.64)

42.78
(42.49, 43.07)

97.36
(97.33, 97.39)

28.44
(28.31, 28.57)

60.9
(60.72, 61.08)

NaiveBayes 42.47
(42.37, 42.57)

70.0
(69.84, 70.16)

16.13
(15.99, 16.27)

77.43
(77.32, 77.54)

25.27
(25.15, 25.39)

52.69
(52.48, 52.9)

KNN 44.5
(44.29, 44.71)

71.41
(71.17, 71.65)

42.8
(42.5, 43.1)

89.51
(89.31, 89.71)

23.39
(23.09, 23.69)

53.7
(53.36, 54.04)

MLP 57.11
(56.97, 57.25)

89.83
(89.77, 89.89)

42.14
(41.91, 42.37)

96.8
(96.77, 96.83)

25.79
(25.63, 25.95)

56.82
(56.64, 57.0)

Transformer 57.82
(57.77, 57.87)

91.02
(90.84, 91.2)

40.47
(40.14, 40.8)

97.24
(97.21, 97.27)

25.56
(25.46, 25.66)

56.39
(56.31, 56.47)

RNN 61.97
(61.86, 62.08)

91.51
(91.44, 91.58)

46.1
(45.89, 46.31)

96.31
(96.27, 96.35)

25.52
(25.39, 25.65)

56.99
(56.87, 57.11)

Traditional ML Models with 20% of Original Training Set from MIMIC-IV
XGBoost 60.24

(60.16, 60.32)
93.49

(93.41, 93.57)
39.34

(38.94, 39.74)
95.9

(95.81, 95.99)
25.84

(25.77, 25.91)
56.76

(56.57, 56.95)

LR 60.04
(59.88, 60.2)

92.98
(92.82, 93.14)

43.39
(43.03, 43.75)

96.68
(96.63, 96.73)

25.48
(25.37, 25.59)

56.25
(56.13, 56.37)

DecisionTree 51.88
(51.6, 52.16)

83.38
(83.19, 83.57)

26.88
(26.1, 27.66)

82.63
(82.29, 82.97)

21.59
(21.01, 22.17)

52.31
(52.08, 52.54)

RandomForest 57.32
(57.13, 57.51)

91.71
(91.6, 91.82)

33.69
(33.22, 34.16)

94.41
(94.25, 94.57)

27.09
(27.03, 27.15)

58.76
(58.52, 59.0)

AdaBoost 58.46
(58.27, 58.65)

92.23
(92.1, 92.36)

38.71
(38.36, 39.06)

94.1
(93.93, 94.27)

24.58
(24.46, 24.7)

54.43
(54.31, 54.55)

SVM 63.1
(63.0, 63.2)

94.99
(94.92, 95.06)

40.0
(39.62, 40.38)

96.36
(96.3, 96.42)

26.6
(26.43, 26.77)

58.55
(58.32, 58.78)

NaiveBayes 39.13
(39.0, 39.26)

70.63
(70.41, 70.85)

14.53
(14.4, 14.66)

75.68
(75.44, 75.92)

24.64
(24.45, 24.83)

53.75
(53.52, 53.98)

KNN 43.72
(43.57, 43.87)

72.58
(72.31, 72.85)

40.05
(39.64, 40.46)

86.05
(85.74, 86.36)

23.05
(22.95, 23.15)

53.07
(52.88, 53.26)

MLP 55.42
(55.28, 55.56)

88.33
(88.16, 88.5)

39.63
(39.3, 39.96)

96.11
(96.05, 96.17)

24.58
(24.48, 24.68)

54.86
(54.73, 54.99)

Transformer 56.93
(56.81, 57.05)

90.98
(90.8, 91.16)

37.91
(37.47, 38.35)

96.29
(96.22, 96.36)

24.79
(24.7, 24.88)

54.86
(54.72, 55.0)

RNN 60.43
(60.27, 60.59)

90.04
(89.89, 90.19)

43.05
(42.75, 43.35)

95.49
(95.42, 95.56)

25.01
(24.86, 25.16)

55.59
(55.44, 55.74)

Table 7: Performance of Traditional ML Models on Typical Clinical Prediction Tasks with
Different Scales of Training Set. Experiments are conducted in MIMIC-IV dataset. The training
set is obtained through stratified sampling from the original training set in Table 1. The numbers
in bracket are the ranges of performance with 95% Confidence Interval (95% CI), which are
calculated with the 5-run scores.
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Under review as a conference paper at ICLR 2025

Method Length-of-Stay Prediction Mortality Prediction Readmission Prediction

Macro F1 (%)
95% CI

AUROC (%)
95% CI

F1 (%)
95% CI

AUROC (%)
95% CI

F1 (%)
95% CI

AUROC (%)
95% CI

Majority 29.56
(29.56, 29.56)

50.0
(50.0, 50.0)

0.0
(0.0, 0.0)

50.0
(50.0, 50.0)

0.0
(0.0, 0.0)

50.0
(50.0, 50.0)

Minority 4.56
(4.56, 4.56)

50.0
(50.0, 50.0)

6.7
(6.7, 6.7)

50.0
(50.0, 50.0)

24.92
(24.92, 24.92)

50.0
(50.0, 50.0)

Traditional ML Models with 10% of Original Training Set from MIMIC-IV
XGBoost 56.69

(56.62, 56.76)
92.01

(91.89, 92.13)
33.33

(32.75, 33.91)
93.82

(93.65, 93.99)
25.09

(24.98, 25.2)
55.63

(55.37, 55.89)

LR 58.49
(58.28, 58.7)

92.3
(92.15, 92.45)

40.54
(39.92, 41.16)

96.02
(95.93, 96.11)

24.6
(24.43, 24.77)

55.13
(54.89, 55.37)

DecisionTree 49.88
(49.5, 50.26)

80.31
(80.06, 80.56)

29.06
(28.42, 29.7)

80.44
(79.97, 80.91)

24.79
(24.64, 24.94)

52.8
(52.63, 52.97)

RandomForest 57.15
(56.99, 57.31)

91.72
(91.58, 91.86)

36.3
(35.56, 37.04)

94.94
(94.78, 95.1)

25.57
(25.42, 25.72)

56.15
(55.93, 56.37)

AdaBoost 53.7
(53.58, 53.82)

90.74
(90.61, 90.87)

41.85
(41.52, 42.18)

94.61
(94.54, 94.68)

23.5
(23.26, 23.74)

53.42
(53.24, 53.6)

SVM 62.19
(62.03, 62.35)

94.25
(94.17, 94.33)

37.97
(37.45, 38.49)

95.59
(95.46, 95.72)

24.91
(24.67, 25.15)

54.26
(53.82, 54.7)

NaiveBayes 36.28
(36.2, 36.36)

71.22
(71.14, 71.3)

13.66
(13.58, 13.74)

75.26
(75.19, 75.33)

23.85
(23.69, 24.01)

53.29
(53.2, 53.38)

KNN 41.1
(40.78, 41.42)

71.1
(70.69, 71.51)

34.55
(34.27, 34.83)

84.03
(83.7, 84.36)

22.67
(22.46, 22.88)

53.06
(52.84, 53.28)

MLP 54.22
(54.08, 54.36)

86.64
(86.61, 86.67)

35.58
(35.21, 35.95)

95.34
(95.26, 95.42)

24.0
(23.91, 24.09)

54.24
(54.08, 54.4)

Transformer 55.25
(55.14, 55.36)

90.8
(90.66, 90.94)

32.36
(31.5, 33.22)

95.32
(95.24, 95.4)

23.85
(23.74, 23.96)

54.06
(53.85, 54.27)

RNN 59.13
(59.04, 59.22)

88.22
(88.09, 88.35)

29.23
(28.87, 29.59)

94.99
(94.92, 95.06)

24.5
(24.34, 24.66)

55.15
(54.92, 55.38)

Traditional ML Models with 5% of Original Training Set from MIMIC-IV
XGBoost 54.57

(54.51, 54.63)
90.43

(90.22, 90.64)
27.26

(26.95, 27.57)
90.19

(90.11, 90.27)
24.48

(24.27, 24.69)
54.31

(53.9, 54.72)

LR 57.82
(57.67, 57.97)

92.01
(91.88, 92.14)

36.06
(35.64, 36.48)

94.7
(94.63, 94.77)

24.16
(23.92, 24.4)

54.2
(53.78, 54.62)

DecisionTree 49.19
(48.83, 49.55)

74.38
(73.38, 75.38)

25.61
(24.95, 26.27)

79.92
(79.53, 80.31)

21.38
(20.78, 21.98)

52.16
(51.89, 52.43)

RandomForest 57.24
(57.06, 57.42)

91.38
(91.18, 91.58)

37.01
(36.3, 37.72)

94.14
(93.97, 94.31)

25.47
(25.28, 25.66)

54.89
(54.46, 55.32)

AdaBoost 49.63
(49.4, 49.86)

90.36
(90.21, 90.51)

36.65
(35.85, 37.45)

93.11
(92.94, 93.28)

24.68
(24.51, 24.85)

53.55
(53.27, 53.83)

SVM 60.81
(60.55, 61.07)

93.21
(93.07, 93.35)

33.91
(33.46, 34.36)

93.6
(93.44, 93.76)

24.93
(24.67, 25.19)

52.22
(51.71, 52.73)

NaiveBayes 34.42
(34.32, 34.52)

70.08
(69.74, 70.42)

12.74
(12.58, 12.9)

73.99
(73.69, 74.29)

23.12
(23.0, 23.24)

52.13
(52.0, 52.26)

KNN 38.38
(37.98, 38.78)

67.31
(66.88, 67.74)

23.2
(22.69, 23.71)

78.08
(77.6, 78.56)

22.3
(22.0, 22.6)

52.66
(52.42, 52.9)

MLP 51.86
(51.69, 52.03)

83.12
(82.98, 83.26)

33.01
(32.68, 33.34)

94.05
(93.94, 94.16)

23.93
(23.75, 24.11)

53.48
(53.14, 53.82)

Transformer 53.19
(52.98, 53.4)

89.04
(88.94, 89.14)

24.19
(23.95, 24.43)

92.4
(92.23, 92.57)

23.83
(23.67, 23.99)

53.34
(53.0, 53.68)

RNN 46.33
(46.02, 46.64)

90.15
(89.92, 90.38)

12.49
(11.97, 13.01)

89.77
(89.35, 90.19)

25.14
(24.95, 25.33)

54.8
(54.39, 55.21)

Table 8: Performance of Traditional ML Models on Typical Clinical Prediction Tasks with
Different Scales of Training Set. Experiments are conducted in MIMIC-IV dataset. The training
set is obtained through stratified sampling from the original training set in Table 1. The numbers
in bracket are the ranges of performance with 95% Confidence Interval (95% CI), which are
calculated with the 5-run scores.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

B.3 RESULTS OF LLMS WITH DIFFERENT TEMPERATURES OF DECODING

XGBoost

RNN
Transformer

SVM

63.29
63.06
62.43

XGBoost
RNN

Transformer
SVM

(a) Mortality Prediction (b) Readmission Prediction

Figure 5: Performance Comparison Between LLMs with Different Temperatures and Tra-
ditional ML Models on Mortality Prediction and Readmission Prediction. Experiments are
conducted in MIMIC-III dataset.
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B.4 CONFUSION MATRIX OF TRADITIONAL ML MODELS AND DIRECTLY PROMPTING LLMS

Figure 6: Confusion Matrix of Traditional ML Models and Directly Prompting LLMs for
Length-of-Stay Prediction on MIMIC-III Dataset.
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Figure 7: Confusion Matrix of Traditional ML Models and Directly Prompting LLMs for
Length-of-Stay Prediction on MIMIC-III Dataset.
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Figure 8: Confusion Matrix of Traditional ML Models and Directly Prompting LLMs for
Mortality Prediction on MIMIC-III Dataset.
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Figure 9: Confusion Matrix of Traditional ML Models and Directly Prompting LLMs for
Mortality Prediction on MIMIC-III Dataset.
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Figure 10: Confusion Matrix of Traditional ML Models and Directly Prompting LLMs for
Readmission Prediction on MIMIC-III Dataset.
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Figure 11: Confusion Matrix of Traditional ML Models and Directly Prompting LLMs for
Readmission Prediction on MIMIC-III Dataset.
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Figure 12: Confusion Matrix of Traditional ML Models and Directly Prompting LLMs for
Length-of-Stay Prediction on MIMIC-IV Dataset.
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Figure 13: Confusion Matrix of Traditional ML Models and Directly Prompting LLMs for
Length-of-Stay Prediction on MIMIC-IV Dataset.
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Figure 14: Confusion Matrix of Traditional ML Models and Directly Prompting LLMs for
Mortality Prediction on MIMIC-IV Dataset.
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Figure 15: Confusion Matrix of Traditional ML Models and Directly Prompting LLMs for
Mortality Prediction on MIMIC-IV Dataset.
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Figure 16: Confusion Matrix of Traditional ML Models and Directly Prompting LLMs for
Readmission Prediction on MIMIC-IV Dataset.
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Figure 17: Confusion Matrix of Traditional ML Models and Directly Prompting LLMs for
Readmission Prediction on MIMIC-IV Dataset.
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B.5 LOSS CURVES OF FINE-TUNING LLMS

Figure 18: Loss Curves of LoRA (full) for Length-of-Stay Prediction on MIMIC-III.
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Figure 19: Loss Curves of LoRA (last layer) for Length-of-Stay Prediction on MIMIC-III.
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Figure 20: Loss Curves of LoRA (full) for Mortality Prediction on MIMIC-III.

10 20 30 40 50 60 70 80
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ev
al

ua
tio

n 
Lo

ss

Original
Smoothed

(a) Llama3-8B

10 20 30 40 50 60 70 80
Training Steps

0

1

2

3

4

5

Ev
al

ua
tio

n 
Lo

ss

Original
Smoothed

(b) Gemma2-9B

10 20 30 40 50 60 70 80
Training Steps

0.1

0.2

0.3

0.4

0.5

Ev
al

ua
tio

n 
Lo

ss

Original
Smoothed

(c) Mistral-v0.3-7B

10 20 30 40 50 60 70 80
Training Steps

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ev
al

ua
tio

n 
Lo

ss

Original
Smoothed

(d) Vicuna-v1.5-7B

Figure 21: Loss Curves of LoRA (last layer) for Mortality Prediction on MIMIC-III.
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Figure 22: Loss Curves of LoRA (full) for Readmission Prediction on MIMIC-III.
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Figure 23: Loss Curves of LoRA (last layer) for Readmission Prediction on MIMIC-III.
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Figure 24: Loss Curves of LoRA (full) for Length-of-Stay Prediction on MIMIC-IV.
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Figure 25: Loss Curves of LoRA (last layer) for Length-of-Stay Prediction on MIMIC-IV.
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Figure 26: Loss Curves of LoRA (full) for Mortality Prediction on MIMIC-IV.
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Figure 27: Loss Curves of LoRA (last layer) for Mortality Prediction on MIMIC-IV.
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Figure 28: Loss Curves of LoRA (full) for Readmission Prediction on MIMIC-IV.
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Figure 29: Loss Curves of LoRA (last layer) for Readmission Prediction on MIMIC-IV.
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C MORE DETAILS OF FINE-TUNING DATA CONSTRUCTION FOR LLMS

Table 9: Example of Fine-Tuning Data Construction for Length-of-Stay Prediction

Instruction:
Given the patient information, predict the number of weeks of stay in hospital.
Answer 1 if no more than one week,
Answer 2 if more than one week but not more than two weeks,
Answer 3 if more than two weeks.
Answer with only the number

Input:
Patient information:
Age: 78
Gender: male
Conditions: Coronary atherosclerosis of native coronary artery, Chronic total occlusion of coronary
artery, Malignant neoplasm of rectum, Personal history of antineoplastic chemotherapy, Person
boarding or alighting a pedal cycle injured in collision with railway train or railway vehicle
Procedures: Percutaneous transluminal coronary angioplasty [PTCA], Insertion of non-drug-eluting
coronary artery stent(s), Left heart cardiac catheterization, Coronary arteriography using two catheters,
Insertion of two vascular stents, Procedure on two vessels
Using Drugs: other analgesics and antipyretics, lipid modifying agents, plain, antithrombotic agents,
i.v. solution additives, antidepressants, potassium, viral vaccines, vasodilators used in cardiac diseases,
belladonna and derivatives, plain
Answer:

Output:
1

Table 10: Example of Fine-Tuning Data Construction for Mortality Prediction

Instruction:
Given the patient information, predict the mortality of the patient.
Answer 1 if the patient will die, answer 0 otherwise.
Answer with only the number

Input:
Patient information:
Age: 64
Gender: female
Conditions: Osteoarthrosis, localized, not specified whether primary or secondary, lower leg, Other
and unspecified angina pectoris, Unspecified essential hypertension, Mitral valve disorders, Psoriatic
arthropathy
Procedures: Total knee replacement
Using Drugs: selective calcium channel blockers with mainly vascular effects, beta blocking agents,
lipid modifying agents, plain, vitamin a and d, incl. combinations of the two, antihistamines for
systemic use, other nutrients, macrolides, lincosamides and streptogramins, anticholinergic agents,
drugs for peptic ulcer and gastro-oesophageal reflux disease (gord), drugs for constipation, opioids,
antidepressants, other analgesics and antipyretics, i.v. solutions, antivaricose therapy, antiemetics
and antinauseants, antiinflammatory and antirheumatic products, non-steroids, antacids, calcium,
angiotensin ii receptor blockers (arbs), plain, antithrombotic agents
Will the patient die because of the above situation?
Answer:

Output:
0
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Table 11: Example of Fine-Tuning Data Construction for Readmission Prediction

Instruction:
Given the patient information, predict the readmission of the patient.
Answer 1 if the patient will be readmitted to the hospital within two weeks, answer 0 otherwise.
Answer with only the number

Input:
Patient information:
Age: 91
Gender: female
Conditions: Open wound of forehead, without mention of complication, Hyposmolality and/or
hyponatremia, Open wound of knee, leg [except thigh], and ankle, without mention of complication,
Contusion of thigh, Contusion of scapular region, Open wound of scalp, without mention of compli-
cation, Unspecified essential hypertension, Insomnia, unspecified, Unspecified deficiency anemia,
Acquired absence of both cervix and uterus, Acquired absence of intestine (large) (small), Personal
history of malignant melanoma of skin, Fall from other slipping, tripping, or stumbling
Procedures: Closure of skin and subcutaneous tissue of other sites
Using Drugs: selective calcium channel blockers with mainly vascular effects, vitamin a and d, incl.
combinations of the two, antidepressants, other analgesics and antipyretics, beta blocking agents,
drugs for constipation, antithrombotic agents, antacids, calcium, i.v. solution additives
Will the patient be readmitted to the hospital within two weeks?
Answer:

Output:
0
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D EXAMPLES OF LLM-BASED CLINICAL PREDICTION

D.1 LENGTH-OF-STAY PREDICTION

D.1.1 DIRECTLY PROMPTING

Table 12: Example of LLMs with Directly Prompting for Length-of-Stay Prediction.

Input:
Patient information:
Age: 62
Gender: male
Conditions: Streptococcal septicemia, Pressure ulcer, lower back, Acute osteomyelitis, pelvic region
and thigh, Unknown Diagnosis, Cocaine abuse, unspecified, Acute kidney failure, unspecified,
Hemorrhage complicating a procedure, Hyperpotassemia, Chronic osteomyelitis, pelvic region and
thigh, Sepsis, Paraplegia, Unspecified essential hypertension, Colostomy status, Other artificial
opening of urinary tract status, Anemia of other chronic disease, Other iatrogenic hypotension,
Candidiasis of other urogenital sites, Late effects of injury purposely inflicted by other person
Procedures: Local excision of lesion or tissue of bone, other bones, Local excision of lesion or tissue
of bone, femur, Nonexcisional debridement of wound, infection or burn, Venous catheterization, not
elsewhere classified, Transfusion of packed cells
Using Drugs: anesthetics, general, i.v. solution additives, other antibacterials, anterior pituitary lobe
hormones and analogues, antithrombotic agents, other analgesics and antipyretics, drugs for constipa-
tion, drugs for peptic ulcer and gastro-oesophageal reflux disease (gord), antiseptics and disinfectants,
antiinfectives and antiseptics, excl. combinations with corticosteroids, other nutrients, opioids, other
beta-lactam antibacterials, other mineral supplements, other diagnostic agents, antipsychotics, i.v.
solutions, antivaricose therapy, beta-lactam antibacterials, penicillins
Predict the number of weeks of stay in hospital.
Answer 1 if no more than one week,
Answer 2 if more than one week but not more than two weeks,
Answer 3 if more than two weeks.
Answer with only the number. Answer:

Output for Llama3-8B:
3

Output for Gemma2-9B:
3

Output for Meditron-7B:
3

Output for Internist-7B:
3
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D.1.2 CHAIN-OF-THOUGHT PROMPTING

Table 13: Example of LLMs with Chain of Thought for Length-of-Stay Prediction.

Input:
Patient information:
Age: 73
Gender: female
Conditions: Closed fracture of surgical neck of humerus, Other emphysema, Closed fracture of other
facial bones, Closed fracture of malar and maxillary bones, Hematoma complicating a procedure,
Iatrogenic pulmonary embolism and infarction, Acute posthemorrhagic anemia, Pneumonia, organism
unspecified, Fall from other slipping, tripping, or stumbling, Diabetes mellitus without mention
of complication, type II or unspecified type, not stated as uncontrolled, Other specified surgical
operations and procedures causing abnormal patient reaction, or later complication, without mention
of misadventure at time of operation, Personal history of other diseases of circulatory system, Other
and unspecified hyperlipidemia, Unspecified essential hypertension
Procedures: Partial shoulder replacement, Transfusion of packed cells
Using Drugs: i.v. solution additives, opioids, selective calcium channel blockers with mainly vascular
effects, beta blocking agents, high-ceiling diuretics, antithrombotic agents, lipid modifying agents,
plain, insulins and analogues, blood glucose lowering drugs, excl. insulins, other analgesics and
antipyretics, antiemetics and antinauseants, i.v. solutions, antivaricose therapy, other beta-lactam
antibacterials, antipsychotics, anxiolytics, adrenergics, inhalants, other drugs for obstructive airway
diseases, inhalants, other antibacterials, corticosteroids for systemic use, plain, other diagnostic
agents, vitamin b12 and folic acid, vitamin b1, plain and in combination with vitamin b6 and b12,
other mineral supplements, quinolone antibacterials, antidepressants, potassium, drugs for peptic
ulcer and gastro-oesophageal reflux disease (gord), drugs for constipation
Please provide your concise reasoning steps for the prediction(no more than 3 steps), and finally
answer 1 if the patient will stay no more than one week, answer 2 if more than one week but not more
than two weeks, answer 3 if more than two weeks.

Output for Llama3-8B:
Please note that the patient’s condition is quite complex and the prediction may not be accurate. This
is a hypothetical scenario and not a real patient.
Answer: 3
Reasoning steps:
1. The patient has a closed fracture of the surgical neck of humerus, which is a serious injury that
requires surgical intervention. This suggests that the patient will require a significant amount of care
and treatment in the hospital.
2. The patient also has a number of other conditions, including pneumonia, acute posthemorrhagic
anemia, and iatrogenic pulmonary embolism and infarction, which are all serious and potentially
life-threatening. This suggests that the patient will require ongoing medical care and monitoring in
the hospital.
3. Given the complexity of the patient’s condition and the need for ongoing medical care and moni-
toring, it is likely that the patient will require more than two weeks of hospitalization.
Note: This is a hypothetical scenario and not a real patient. The actual length of stay may vary
depending on a variety of factors, including the patient’s response to treatment, the severity of their
condition, and the availability of hospital resources.

Output for Gemma2-9B:
Continued on next page

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Table 13 – continued from previous page
**Reasoning:**
1. **Severity of Conditions:** The patient has multiple serious conditions including congestive
heart failure, mitral valve disorders, atrial fibrillation, chronic kidney disease, and diabetes. These
require significant medical management.
2. **Complex Procedures:** The patient underwent major surgeries like mitral valve replacement,
coronary bypass, and transvenous lead insertion. Recovery from these procedures takes considerable
time.
3. **Post-Operative Care:** The patient received multiple transfusions, medications for various con-
ditions, and likely required intensive monitoring post-surgery. This indicates a prolonged hospital
stay for recovery and management.
**Answer:** 3

Output for Meditron-7B:
"," ## Prediction
## Prediction
## Prediction
## Prediction
## Prediction
## Prediction
## Prediction
## Prediction

Output for Internist-7B:
Reasoning:
1. Analyze the patient’s conditions and procedures: - The patient has multiple fractures and injuries,
indicating a high likelihood of a prolonged hospital stay. - The patient has a history of diabetes and
hyperlipidemia, which may require close monitoring and management. - The patient has undergone
a partial shoulder replacement, which is a surgical procedure that typically requires a longer recovery
period.
2. Consider the patient’s medications and drug history: - The patient is taking multiple medications,
including opioids, beta-blockers, and antithrombotic agents. - These medications may require close
monitoring and adjustment during the hospital stay.
3. Evaluate the patient’s overall health and risk factors: - The patient has a history of diabetes and
hyperlipidemia, which may increase the risk of complications and prolong the hospital stay. - The
patient has a history of other diseases of the circulatory system, which may also contribute to a
longer hospital stay.
Based on the above analysis, it is likely that the patient will require a longer hospital stay. Therefore,
the answer is 3, indicating a stay of more than two weeks. It is important to note that this prediction
is based on the information provided and may vary depending on the specific circumstances and
progress of the patient’s condition. Regular monitoring and assessment by healthcare professionals
will be necessary to determine the actual duration of the hospital stay.
Please note that this is a prediction based on the given information and may not be accurate in all
cases. It is important to consider individual patient factors and consult with healthcare professionals
for a more accurate assessment.
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D.1.3 SELF-REFLECTION PROMPTING

Table 14: Example of LLMs with Self Reflection for Length-of-Stay Prediction.

Input:
Patient information:
Age: 73
Gender: female
Conditions: Closed fracture of surgical neck of humerus, Other emphysema, Closed fracture of other
facial bones, Closed fracture of malar and maxillary bones, Hematoma complicating a procedure,
Iatrogenic pulmonary embolism and infarction, Acute posthemorrhagic anemia, Pneumonia, organism
unspecified, Fall from other slipping, tripping, or stumbling, Diabetes mellitus without mention
of complication, type II or unspecified type, not stated as uncontrolled, Other specified surgical
operations and procedures causing abnormal patient reaction, or later complication, without mention
of misadventure at time of operation, Personal history of other diseases of circulatory system, Other
and unspecified hyperlipidemia, Unspecified essential hypertension
Procedures: Partial shoulder replacement, Transfusion of packed cells
Using Drugs: i.v. solution additives, opioids, selective calcium channel blockers with mainly vascular
effects, beta blocking agents, high-ceiling diuretics, antithrombotic agents, lipid modifying agents,
plain, insulins and analogues, blood glucose lowering drugs, excl. insulins, other analgesics and
antipyretics, antiemetics and antinauseants, i.v. solutions, antivaricose therapy, other beta-lactam
antibacterials, antipsychotics, anxiolytics, adrenergics, inhalants, other drugs for obstructive airway
diseases, inhalants, other antibacterials, corticosteroids for systemic use, plain, other diagnostic
agents, vitamin b12 and folic acid, vitamin b1, plain and in combination with vitamin b6 and b12,
other mineral supplements, quinolone antibacterials, antidepressants, potassium, drugs for peptic
ulcer and gastro-oesophageal reflux disease (gord), drugs for constipation
Answer 1 if no more than one week,
Answer 2 if more than one week but not more than two weeks,
Answer 3 if more than two weeks.
First answer with a number. Then conduct a concise reflection. Finally output your answer again with
a number.

Output for Llama3-8B:
Answer: 3
Reflection: The patient has a complex medical history with multiple conditions, including a closed
fracture of the surgical neck of humerus, pneumonia, and iatrogenic pulmonary embolism. They
have undergone a partial shoulder replacement and have received multiple medications. Given the
severity of their conditions and the need for ongoing medical care, it is likely that they will require
a prolonged hospital stay of more than two weeks.
Answer: 3
“‘python
......

Output for Gemma2-9B:
**Answer:** 3
**Reflection:**
The patient presents with multiple severe injuries, including a closed fracture of the surgical neck
of the humerus, facial bones, and a hematoma complicating a procedure. These injuries necessitate
surgical intervention (partial shoulder replacement) and extensive post-operative care. The patient
also has a history of diabetes, emphysema, and hypertension, which can complicate recovery. The
presence of pneumonia and acute posthemorrhagic anemia further suggests a prolonged hospital
stay.
**Answer:** 3

Output for Meditron-7B:
Continued on next page
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Table 14 – continued from previous page
Answer 1
Answer 2
Answer 3
Answer 1
Answer 2
Answer 3
Answer 1
Answer 2
Answer 3
Answer 1
Answer 2
Answer 3
Answer 1
Answer 2
Answer 3

Output for Internist-7B:
Reasoning:To predict the number of weeks of stay in hospital, we need to analyze the patient’s

conditions, procedures, and medications.
1. Conditions: The patient has multiple conditions, including a closed fracture of the surgical neck
of the humerus, other emphysema, closed fractures of other facial bones, closed fractures of the
malar and maxillary bones, hematoma complicating a procedure, iatrogenic pulmonary embolism
and infarction, acute posthemorrhagic anemia, pneumonia, and fall from other slipping, tripping, or
stumbling. These conditions indicate that the patient may require a longer stay in the hospital.
2. Procedures: The patient has undergone a partial shoulder replacement and a transfusion of packed
cells. These procedures may require a longer recovery period and may contribute to a longer hospital
stay.
3. Medications: The patient is using various medications, including i.v. solution additives, opioids,
selective calcium channel blockers with mainly vascular effects, beta blocking agents, high-ceil-
ing diuretics, antithrombotic agents, lipid modifying agents, insulins and analogues, blood glucose
lowering drugs, other analgesics and antipyretics, antiemetics and antinauseants, i.v. solutions, anti-
varicose therapy, other beta-lactam antibacterials, antipsychotics, anxiolytics, adrenergics, inhalants,
other drugs for obstructive airway diseases, inhalants, other antibacterials, corticosteroids for sys-
temic use, plain, other diagnostic agents, vitamin b12 and folic acid, vitamin b1, plain and in com-
bination with vitamin b6 and b12, other mineral supplements, quinolone antibacterials, antidepres-
sants, potassium, drugs for peptic ulcer and gastro-oesophageal reflux disease (gord), drugs for con-
stipation. These medications may also contribute to a longer hospital stay.
Based on the patient’s conditions, procedures, and medications, it is likely that the patient will require
a longer stay in the hospital. Therefore, the correct answer is 3, indicating a stay of more......
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D.1.4 ROLE-PLAYING PROMPTING

Table 15: Example of LLMs with Role-Playing for Length-of-Stay Prediction.

Input:
Imagine that you are a doctor. Today, you’re seeing a patient with the following profile:
Patient information:
Age: 62
Gender: male
Conditions: Streptococcal septicemia, Pressure ulcer, lower back, Acute osteomyelitis, pelvic region
and thigh, Unknown Diagnosis, Cocaine abuse, unspecified, Acute kidney failure, unspecified,
Hemorrhage complicating a procedure, Hyperpotassemia, Chronic osteomyelitis, pelvic region and
thigh, Sepsis, Paraplegia, Unspecified essential hypertension, Colostomy status, Other artificial
opening of urinary tract status, Anemia of other chronic disease, Other iatrogenic hypotension,
Candidiasis of other urogenital sites, Late effects of injury purposely inflicted by other person
Procedures: Local excision of lesion or tissue of bone, other bones, Local excision of lesion or tissue
of bone, femur, Nonexcisional debridement of wound, infection or burn, Venous catheterization, not
elsewhere classified, Transfusion of packed cells
Using Drugs: anesthetics, general, i.v. solution additives, other antibacterials, anterior pituitary lobe
hormones and analogues, antithrombotic agents, other analgesics and antipyretics, drugs for constipa-
tion, drugs for peptic ulcer and gastro-oesophageal reflux disease (gord), antiseptics and disinfectants,
antiinfectives and antiseptics, excl. combinations with corticosteroids, other nutrients, opioids, other
beta-lactam antibacterials, other mineral supplements, other diagnostic agents, antipsychotics, i.v.
solutions, antivaricose therapy, beta-lactam antibacterials, penicillins
Predict the number of weeks of stay in hospital.
Answer 1 if no more than one week,
Answer 2 if more than one week but not more than two weeks,
Answer 3 if more than two weeks.
Answer with only the number. Answer:

Output for Llama3-8B:
3

Output for Gemma2-9B:
3

Output for Meditron-7B:
3

Output for Internist-7B:
3

47



2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

D.1.5 IN-CONTEXT LEARNING

Table 16: Example of LLMs with In Context Learning for Length-of-Stay Prediction.

Input:
Patient information:
Age: 74
Gender: male
Conditions: Subendocardial infarction, initial episode of care, Intestinal infection due to Clostridium
difficile, Congestive heart failure, unspecified, Coronary atherosclerosis of native coronary artery,
Unspecified essential hypertension, Pure hypercholesterolemia, Abdominal aneurysm without men-
tion of rupture, Percutaneous transluminal coronary angioplasty status, Personal history of malignant
neoplasm of large intestine
Procedures: Unknown Procedure, Combined right and left heart cardiac catheterization, Coronary
arteriography using two catheters
Using Drugs: i.v. solution additives, cardiac stimulants excl. cardiac glycosides, other nutrients, an-
tithrombotic agents, potassium, expectorants, excl. combinations with cough suppressants, drugs for
peptic ulcer and gastro-oesophageal reflux disease (gord), hypnotics and sedatives, other analgesics
and antipyretics, opioids, lipid modifying agents, plain, belladonna and derivatives, plain, other min-
eral supplements, other diagnostic agents, agents against amoebiasis and other protozoal diseases,
anxiolytics, quinolone antibacterials, ace inhibitors, plain, beta blocking agents, other antibacterials
Predict the number of weeks of stay in hospital.
Answer 1 if no more than one ,
Answer 2 if more than one week but not more than two weeks,
Answer 3 if more than two weeks.
Answer with only the number. Answer: 1

Patient information:
Age: 36
Gender: male
Conditions: Thoracic aneurysm without mention of rupture, Aortic valve disorders, Congenital in-
sufficiency of aortic valve, Cardiac complications, not elsewhere classified, Other specified cardiac
dysrhythmias, Unspecified essential hypertension
Procedures: Open and other replacement of aortic valve, Resection of vessel with replacement, tho-
racic vessels, Other operations on vessels of heart, Extracorporeal circulation auxiliary to open heart
surgery
Using Drugs: drugs for functional gastrointestinal disorders, antiarrhythmics, class i and iii, drugs for
constipation, drugs for peptic ulcer and gastro-oesophageal reflux disease (gord), other analgesics
and antipyretics, antiinflammatory and antirheumatic products, non-steroids, opioids, other nutrients,
anesthetics, general, antiinfectives and antiseptics, excl. combinations with corticosteroids, calcium,
arteriolar smooth muscle, agents acting on, cardiac stimulants excl. cardiac glycosides, i.v. solu-
tion additives, other beta-lactam antibacterials, insulins and analogues, propulsives, hypnotics and
sedatives, other mineral supplements, other diagnostic agents, beta blocking agents, high-ceiling di-
uretics, potassium, antithrombotic agents, antacids, urologicals, throat preparations, ace inhibitors,
plain, angiotensin ii receptor blockers (arbs), plain
Predict the number of weeks of stay in hospital.
Answer 1 if no more than one week,
Answer 2 if more than one week but not more than two weeks,
Answer 3 if more than two weeks.
Answer with only the number. Answer: 2
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Table 17: Example of LLMs with In Context Learning for Length-of-Stay Prediction (Cont.).

Input (Cont.):
Patient information:
Age: 73
Gender: male
Conditions: Closed fracture of shaft of femur, Acute posthemorrhagic anemia, Subendocardial in-
farction, initial episode of care, Other postoperative infection, Unspecified septicemia, Severe sepsis,
Septic shock, Unknown Diagnosis, Cardiogenic shock, Cardiac complications, not elsewhere clas-
sified, Paroxysmal ventricular tachycardia, Ventricular fibrillation, Congestive heart failure, unspec-
ified, Atrial fibrillation, Unknown Diagnosis, Pneumonia, organism unspecified, Unspecified fall,
Coronary atherosclerosis of native coronary artery, Cardiac pacemaker in situ
Procedures: Open reduction of fracture with internal fixation, femur, Closed reduction of fracture
without internal fixation, femur, Left heart cardiac catheterization, Coronary arteriography using
two catheters, Continuous invasive mechanical ventilation for 96 consecutive hours or more, Venous
catheterization, not elsewhere classified, Enteral infusion of concentrated nutritional substances
Using Drugs: i.v. solution additives, opioids, other analgesics and antipyretics, beta blocking agents,
selective calcium channel blockers with direct cardiac effects, antithrombotic agents, vasodilators
used in cardiac diseases, agents for treatment of hemorrhoids and anal fissures for topical use, an-
giotensin ii receptor blockers (arbs), plain, antidepressants, drugs for constipation, drugs for peptic
ulcer and gastro-oesophageal reflux disease (gord), anti-dementia drugs, lipid modifying agents,
plain, antipsychotics, antipruritics, incl. antihistamines, anesthetics, etc., anxiolytics, antiarrhyth-
mics, class i and iii, quinolone antibacterials, antacids, urologicals, expectorants, excl. combinations
with cough suppressants, antiinfectives and antiseptics, excl. combinations with corticosteroids, cal-
cium, other beta-lactam antibacterials, i.v. solutions, antivaricose therapy, other mineral supplements,
other diagnostic agents, high-ceiling diuretics, anesthetics, general, muscle relaxants, peripherally
acting agents, other antibacterials, other nutrients, hypnotics and sedatives, beta-lactam antibacte-
rials, penicillins, cardiac stimulants excl. cardiac glycosides, anterior pituitary lobe hormones and
analogues, other drugs for obstructive airway diseases, inhalants, adrenergics, inhalants, potassium,
antifungals for topical use, ace inhibitors, plain
Predict the number of weeks of stay in hospital.
Answer 1 if no more than one week,
Answer 2 if more than one week but not more than two weeks,
Answer 3 if more than two weeks.
Answer with only the number. Answer: 3

Patient information:
Age: 73
Gender: female
Conditions: Closed fracture of surgical neck of humerus, Other emphysema, Closed fracture of other
facial bones, Closed fracture of malar and maxillary bones, Hematoma complicating a procedure,
Iatrogenic pulmonary embolism and infarction, Acute posthemorrhagic anemia, Pneumonia, organism
unspecified, Fall from other slipping, tripping, or stumbling, Diabetes mellitus without mention
of complication, type II or unspecified type, not stated as uncontrolled, Other specified surgical
operations and procedures causing abnormal patient reaction, or later complication, without mention
of misadventure at time of operation, Personal history of other diseases of circulatory system, Other
and unspecified hyperlipidemia, Unspecified essential hypertension
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Table 18: Example of LLMs with In Context Learning for Length-of-Stay Prediction (Cont.).

Input (Cont.):
Procedures: Partial shoulder replacement, Transfusion of packed cells
Using Drugs: i.v. solution additives, opioids, selective calcium channel blockers with mainly vascular
effects, beta blocking agents, high-ceiling diuretics, antithrombotic agents, lipid modifying agents,
plain, insulins and analogues, blood glucose lowering drugs, excl. insulins, other analgesics and
antipyretics, antiemetics and antinauseants, i.v. solutions, antivaricose therapy, other beta-lactam
antibacterials, antipsychotics, anxiolytics, adrenergics, inhalants, other drugs for obstructive airway
diseases, inhalants, other antibacterials, corticosteroids for systemic use, plain, other diagnostic
agents, vitamin b12 and folic acid, vitamin b1, plain and in combination with vitamin b6 and b12,
other mineral supplements, quinolone antibacterials, antidepressants, potassium, drugs for peptic
ulcer and gastro-oesophageal reflux disease (gord), drugs for constipation
Predict the number of weeks of stay in hospital.
Answer 1 if no more than one week,
Answer 2 if more than one week but not more than two weeks,
Answer 3 if more than two weeks.
Answer with only the number. Answer:

Output for Llama3-8B:
2

Output for Gemma2-9B:
2

Output for Meditron-7B:
2

Output for Internist-7B:
1
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D.2 MORTALITY PREDICTION

D.2.1 DIRECTLY PROMPTING

Table 19: Example of LLMs with Directly Prompting for Mortality Prediction.

Input:
Patient information:
Age: 73
Gender: female
Conditions: Closed fracture of surgical neck of humerus, Other emphysema, Closed fracture of other
facial bones, Closed fracture of malar and maxillary bones, Hematoma complicating a procedure,
Iatrogenic pulmonary embolism and infarction, Acute posthemorrhagic anemia, Pneumonia, organism
unspecified, Fall from other slipping, tripping, or stumbling, Diabetes mellitus without mention
of complication, type II or unspecified type, not stated as uncontrolled, Other specified surgical
operations and procedures causing abnormal patient reaction, or later complication, without mention
of misadventure at time of operation, Personal history of other diseases of circulatory system, Other
and unspecified hyperlipidemia, Unspecified essential hypertension
Procedures: Partial shoulder replacement, Transfusion of packed cells
Using Drugs: i.v. solution additives, opioids, selective calcium channel blockers with mainly vascular
effects, beta blocking agents, high-ceiling diuretics, antithrombotic agents, lipid modifying agents,
plain, insulins and analogues, blood glucose lowering drugs, excl. insulins, other analgesics and
antipyretics, antiemetics and antinauseants, i.v. solutions, antivaricose therapy, other beta-lactam
antibacterials, antipsychotics, anxiolytics, adrenergics, inhalants, other drugs for obstructive airway
diseases, inhalants, other antibacterials, corticosteroids for systemic use, plain, other diagnostic
agents, vitamin b12 and folic acid, vitamin b1, plain and in combination with vitamin b6 and b12,
other mineral supplements, quinolone antibacterials, antidepressants, potassium, drugs for peptic
ulcer and gastro-oesophageal reflux disease (gord), drugs for constipation
Will the patient die because of the above situation?
Answer 1 if yes, 0 if no. Answer with only the number.
Answer:

Output for Llama3-8B:
1

Output for Gemma2-9B:
0

Output for Meditron-7B:
1

Output for Internist-7B:
0
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D.2.2 CHAIN-OF-THOUGHT PROMPTING

Table 20: Example of LLMs with Chain of Thought for Length-of-Stay Prediction.

Input:
Patient information:
Age: 61
Gender: male
Conditions: Unspecified septicemia, Acute pancreatitis, Alcohol abuse, unspecified, Acute kidney
failure, unspecified, Acute and subacute necrosis of liver, Acidosis, Defibrination syndrome, Shock,
unspecified, Unknown Diagnosis, Unspecified protein-calorie malnutrition, Acute respiratory failure,
Severe sepsis, Anemia, unspecified, Acute alcoholic hepatitis, Personal history of noncompliance with
medical treatment, presenting hazards to health, Diabetes mellitus without mention of complication,
type II or unspecified type, not stated as uncontrolled, Long-term (current) use of insulin, Abdominal
pain, other specified site
Procedures: Continuous invasive mechanical ventilation for less than 96 consecutive hours, Insertion
of endotracheal tube, Arterial catheterization, Venous catheterization, not elsewhere classified,
Transfusion of packed cells
Using Drugs: insulins and analogues, other nutrients, i.v. solution additives, other beta-lactam
antibacterials, anxiolytics, anterior pituitary lobe hormones and analogues, quinolone antibacterials,
other antibacterials, vitamin b1, plain and in combination with vitamin b6 and b12, other diagnostic
agents, vitamin b12 and folic acid, vitamin k and other hemostatics, other mineral supplements,
beta-lactam antibacterials, penicillins, drugs for peptic ulcer and gastro-oesophageal reflux disease
(gord), hypnotics and sedatives, anesthetics, general, posterior pituitary lobe hormones, calcium,
cardiac stimulants excl. cardiac glycosides
Will the patient die because of the above situation?
Please provide your concise reasoning steps for the prediction(no more than 3 steps), and finally
answer 1 if the patient will die and 0 otherwise."
Please provide your concise reasoning steps for the prediction(no more than 3 steps), and finally
answer 1 if the patient will die and 0 otherwise

Output for Llama3-8B:
Here is the reasoning steps:
Step 1: The patient has severe sepsis, acute kidney failure, and liver failure, which are all life-threat-
ening conditions.
Step 2: The patient also has a history of non-compliance with medical treatment, which may worsen
the patient’s condition.
Step 3: Given the severity of the patient’s conditions and the potential for non-compliance with
treatment, it is likely that the patient will die.
Answer: 1

Output for Gemma2-9B:
**Reasoning:**
1. **Severe Sepsis and Multi-Organ Failure:** The patient presents with severe sepsis, a life-threat-
ening condition, and multiple organ failures (pancreas, liver, kidneys, respiratory system).
2. **Complicating Factors:** Alcohol abuse, diabetes, and malnutrition further weaken the patient’s
immune system and ability to fight infection.
3. **Aggressive Treatment:** The patient is receiving intensive care interventions (ventilation, trans-
fusions, multiple medications), indicating a critical condition requiring urgent medical attention.
**Answer:** 1
**Disclaimer:** I am an AI chatbot and cannot provide medical advice. This prediction is based on
the information provided and should not be considered a definitive prognosis. The patient’s actual
outcome depends on various factors and individual medical management.

Output for Meditron-7B:
Continued on next page
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Table 20 – continued from previous page
## 1. The patient is 83 years old.
## 2. The patient has pneumonia.
## 3. The patient has organism unspecified.
## 4. The patient has postinflammatory pulmonary fibrosis.
## 5. The patient has atrial fibrillation.
## 6. The patient has congestive heart failure, unspecified.
## 7. The patient has acute respiratory failure.
## 8. The patient has coronary atherosclerosis of native coronary artery.
## 9. The patient has esophageal reflux.
## 10. The patient is using macrolides, lincosamides and streptogramins.
## 11. The patient is using other beta-lactam antibacterials.
## 12. The patient is using expectorants, excl. combinations with cough suppressants.

Output for Internist-7B:
Reasoning:
1. Assess the patient’s overall condition: The patient has multiple comorbidities, including sep-
ticemia, acute pancreatitis, alcohol abuse, acute kidney failure, acute and subacute necrosis of liver,
acidosis, defibrination syndrome, shock, unspecified, unknown diagnosis, unspecified protein-calo-
rie malnutrition, acute respiratory failure, severe sepsis, anemia, unspecified, acute alcoholic hepati-
tis, personal history of noncompliance with medical treatment, presenting hazards to health, diabetes
mellitus without mention of complication, type II or unspecified type, not stated as uncontrolled,
long-term (current) use of insulin, and abdominal pain.
2. Consider the patient’s medical history and current condition: The patient has a history of non-
compliance with medical treatment, presenting hazards to health, and long-term use of insulin. The
patient also has multiple comorbidities, including septicemia, acute pancreatitis, alcohol abuse, acute
kidney failure, acute and subacute necrosis of liver, acidosis, defibrination syndrome, shock, unspec-
ified, unknown diagnosis, unspecified protein-calorie malnutrition, acute respiratory failure, severe
sepsis, anemia, unspecified, acute alcoholic hepatitis, diabetes mellitus without mention of compli-
cation, type II or unspecified type, not stated as uncontrolled, and abdominal pain.
3. Evaluate the patient’s current treatment and procedures: The patient has undergone continuous
invasive mechanical ventilation for less than 96 consecutive hours, insertion of an endotracheal
tube, arterial catheterization, venous catheterization, not elsewhere classified, transfusion of packed
cells, and has been using various medications, including insulins and analogues, other nutrients, i.v.
solution additives, other beta-lactam antibacterials, anxiolytics, anterior pituitary lobe hormones and
analogues, quinolone antibacterials, other antibacterials, vitamin b1, plain and in combination with
vitamin b.....
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D.2.3 SELF-REFLECTION PROMPTING

Table 21: Example of LLMs with Self Reflection for Mortality Prediction.

Input:
Patient information:
Age: 61
Gender: male
Conditions: Unspecified septicemia, Acute pancreatitis, Alcohol abuse, unspecified, Acute kidney
failure, unspecified, Acute and subacute necrosis of liver, Acidosis, Defibrination syndrome, Shock,
unspecified, Unknown Diagnosis, Unspecified protein-calorie malnutrition, Acute respiratory failure,
Severe sepsis, Anemia, unspecified, Acute alcoholic hepatitis, Personal history of noncompliance with
medical treatment, presenting hazards to health, Diabetes mellitus without mention of complication,
type II or unspecified type, not stated as uncontrolled, Long-term (current) use of insulin, Abdominal
pain, other specified site
Procedures: Continuous invasive mechanical ventilation for less than 96 consecutive hours, Insertion
of endotracheal tube, Arterial catheterization, Venous catheterization, not elsewhere classified,
Transfusion of packed cells
Using Drugs: insulins and analogues, other nutrients, i.v. solution additives, other beta-lactam
antibacterials, anxiolytics, anterior pituitary lobe hormones and analogues, quinolone antibacterials,
other antibacterials, vitamin b1, plain and in combination with vitamin b6 and b12, other diagnostic
agents, vitamin b12 and folic acid, vitamin k and other hemostatics, other mineral supplements,
beta-lactam antibacterials, penicillins, drugs for peptic ulcer and gastro-oesophageal reflux disease
(gord), hypnotics and sedatives, anesthetics, general, posterior pituitary lobe hormones, calcium,
cardiac stimulants excl. cardiac glycosides
Will the patient die because of the above situation?
Answer 1 if yes, 0 if no.
First answer with a number. Then conduct a concise reflection. Finally output your answer again with
a number.

Output for Llama3-8B:
Answer: 1
Reflection: The patient has a multitude of severe conditions, including septicemia, acute pancreatitis,
and acute kidney failure, which are all life-threatening. Additionally, the patient has a history of non-
compliance with medical treatment, which may have contributed to the severity of their condition.
The patient is also receiving multiple medications, including antibiotics, insulin, and other treat-
ments, which may be helping to manage their condition. However, the patient’s overall prognosis is
poor, and it is likely that they will die due to the severity of their condition.
Answer: 1
“‘python
# Define the patient information as a dictionary
patient_info = {
""age"": 61,
......

Output for Gemma2-9B:
0
It is impossible to determine with certainty whether a patient will die based solely on the provided
information. While the patient presents with a multitude of severe and life-threatening conditions,
including septicemia, pancreatitis, kidney failure, liver necrosis, and shock, the course of these con-
ditions and the effectiveness of treatment are crucial factors. The patient’s age, medical history, and
response to interventions all play a role in the prognosis. A definitive answer requires a comprehen-
sive medical evaluation and ongoing monitoring.
0

Output for Meditron-7B:
Continued on next page
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Table 21 – continued from previous page
## 1
## 2
## 3
## 4
## 5
## 6
## 7
## 8
## 9
## 10
## 11
## 12
## 13
## 14

Output for Internist-7B:
Reasoning:The patient in this scenario has multiple medical conditions and has undergone several
procedures. The question asks if the patient will die because of these factors.
To determine the answer, we need to consider the patient’s medical history, current conditions, and
the procedures they have undergone.
The patient has a history of alcohol abuse, acute pancreatitis, acute kidney failure, acute and subacute
necrosis of the liver, acidosis, defibrination syndrome, shock, unspecified protein-calorie malnutri-
tion, acute respiratory failure, severe sepsis, anemia, acute alcoholic hepatitis, and a personal history
of noncompliance with medical treatment.
The patient has also undergone several procedures, including continuous invasive mechanical venti-
lation for less than 96 consecutive hours, insertion of an endotracheal tube, arterial catheterization,
venous catheterization, and transfusion of packed cells.
Given the patient’s multiple medical conditions and the procedures they have undergone, it is likely
that the patient’s overall health is compromised. The combination of these factors increases the risk
of complications and potentially death.
Therefore, the answer is 1, indicating that the patient may die due to the above situation.
Reflecting on the answer, it is important to consider the patient’s medical history, current conditions,
and the procedures they have undergone. The combination of these factors increases the risk of com-
plications and potentially death. It is crucial to provide appropriate medical care and support to the
patient to improve their chances of survival.
Outputting the answer again with a number, the answer is still 1, indicating that the patient may die
due to the above situation.
In summary, based on the patient’s medical history, current conditions, and the procedures they have
undergone, there is a high risk of complications and potentially death. It is important to provide
appropriate medical care and support to the patient to improve their chances of survival. The answer
is 1.
Note: It is important to consider the patient’s overall health and medical history when determining
the likelihood of death. This answer is based on the information provided in the scenario and may
vary in real-life situations. Always consult with a healthcare professional for accurate medical......
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D.2.4 ROLE-PLAYING PROMPTING

Table 22: Example of LLMs with Role-Playing for Mortality Prediction.

Input:
Imagine that you are a doctor. Today, you’re seeing a patient with the following profile:
Patient information:
Age: 73
Gender: female
Conditions: Closed fracture of surgical neck of humerus, Other emphysema, Closed fracture of other
facial bones, Closed fracture of malar and maxillary bones, Hematoma complicating a procedure,
Iatrogenic pulmonary embolism and infarction, Acute posthemorrhagic anemia, Pneumonia, organism
unspecified, Fall from other slipping, tripping, or stumbling, Diabetes mellitus without mention
of complication, type II or unspecified type, not stated as uncontrolled, Other specified surgical
operations and procedures causing abnormal patient reaction, or later complication, without mention
of misadventure at time of operation, Personal history of other diseases of circulatory system, Other
and unspecified hyperlipidemia, Unspecified essential hypertension
Procedures: Partial shoulder replacement, Transfusion of packed cells
Using Drugs: i.v. solution additives, opioids, selective calcium channel blockers with mainly vascular
effects, beta blocking agents, high-ceiling diuretics, antithrombotic agents, lipid modifying agents,
plain, insulins and analogues, blood glucose lowering drugs, excl. insulins, other analgesics and
antipyretics, antiemetics and antinauseants, i.v. solutions, antivaricose therapy, other beta-lactam
antibacterials, antipsychotics, anxiolytics, adrenergics, inhalants, other drugs for obstructive airway
diseases, inhalants, other antibacterials, corticosteroids for systemic use, plain, other diagnostic
agents, vitamin b12 and folic acid, vitamin b1, plain and in combination with vitamin b6 and b12,
other mineral supplements, quinolone antibacterials, antidepressants, potassium, drugs for peptic
ulcer and gastro-oesophageal reflux disease (gord), drugs for constipation
Will the patient die because of the above situation?
Answer 1 if yes, 0 if no. Answer with only the number.
Answer:

Output for Llama3-8B:
1

Output for Gemma2-9B:
1

Output for Meditron-7B:
1

Output for Internist-7B:
1
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D.2.5 IN-CONTEXT LEARNING

Table 23: Example of LLMs with In Context Learning for Mortality Prediction.

Input:
Patient information:
Age: 43
Gender: female
Conditions: Coronary atherosclerosis of native coronary artery, Intermediate coronary syndrome, Di-
abetes mellitus without mention of complication, type I [juvenile type], not stated as uncontrolled,
Unspecified essential hypertension, Pure hypercholesterolemia, Tobacco use disorder
Procedures: (Aorto)coronary bypass of two coronary arteries, Left heart cardiac catheterization, Ex-
tracorporeal circulation auxiliary to open heart surgery, Coronary arteriography using two catheters,
Angiocardiography of left heart structures
Using Drugs: other analgesics and antipyretics, antipsychotics, vasodilators used in cardiac dis-
eases, antacids, urologicals, anxiolytics, antidepressants, potassium, iron preparations, lipid modi-
fying agents, plain, beta blocking agents, drugs for peptic ulcer and gastro-oesophageal reflux dis-
ease (gord), dopaminergic agents, thyroid preparations, opioids, other nutrients, cardiac stimulants
excl. cardiac glycosides, drugs for constipation, i.v. solution additives, calcium, propulsives, anti-
inflammatory and antirheumatic products, non-steroids, other antibacterials, high-ceiling diuretics,
antithrombotic agents, other beta-lactam antibacterials, other mineral supplements Will the patient
die because of the above situation?
Answer 1 if yes, 0 if no. Answer with only the number.
Answer: 0

Patient information:
Age: 86
Gender: male
Conditions: Intracerebral hemorrhage, Pneumonitis due to inhalation of food or vomitus, Unspec-
ified essential hypertension, Aortocoronary bypass status, Coronary atherosclerosis of unspecified
type of vessel, native or graft
Procedures: Continuous invasive mechanical ventilation for less than 96 consecutive hours
Using Drugs: beta blocking agents, vitamin b1, plain and in combination with vitamin b6 and b12,
i.v. solution additives, antiepileptics, quinolone antibacterials, other antibacterials, drugs for pep-
tic ulcer and gastro-oesophageal reflux disease (gord), other mineral supplements, other diagnostic
agents, anxiolytics, anesthetics, general, opioids, antiemetics and antinauseants, hypnotics and seda-
tives
Will the patient die because of the above situation?
Answer 1 if yes, 0 if no. Answer with only the number.
Answer: 1

Patient information:
Age: 73
Gender: female
Conditions: Closed fracture of surgical neck of humerus, Other emphysema, Closed fracture of other
facial bones, Closed fracture of malar and maxillary bones, Hematoma complicating a procedure,
Iatrogenic pulmonary embolism and infarction, Acute posthemorrhagic anemia, Pneumonia, organism
unspecified, Fall from other slipping, tripping, or stumbling, Diabetes mellitus without mention
of complication, type II or unspecified type, not stated as uncontrolled, Other specified surgical
operations and procedures causing abnormal patient reaction, or later complication, without mention
of misadventure at time of operation, Personal history of other diseases of circulatory system, Other
and unspecified hyperlipidemia, Unspecified essential hypertension
Procedures: Partial shoulder replacement, Transfusion of packed cells

Continued on next page
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Table 23 – continued from previous page
Using Drugs: i.v. solution additives, opioids, selective calcium channel blockers with mainly vascular
effects, beta blocking agents, high-ceiling diuretics, antithrombotic agents, lipid modifying agents,
plain, insulins and analogues, blood glucose lowering drugs, excl. insulins, other analgesics and
antipyretics, antiemetics and antinauseants, i.v. solutions, antivaricose therapy, other beta-lactam
antibacterials, antipsychotics, anxiolytics, adrenergics, inhalants, other drugs for obstructive airway
diseases, inhalants, other antibacterials, corticosteroids for systemic use, plain, other diagnostic
agents, vitamin b12 and folic acid, vitamin b1, plain and in combination with vitamin b6 and b12,
other mineral supplements, quinolone antibacterials, antidepressants, potassium, drugs for peptic
ulcer and gastro-oesophageal reflux disease (gord), drugs for constipation
Will the patient die because of the above situation?
Answer 1 if yes, 0 if no. Answer with only the number.
Answer:

Output for Llama3-8B:
1

Output for Gemma2-9B:
1

Output for Meditron-7B:
1

Output for Internist-7B:
1
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D.3 READMISSION PREDICTION

D.3.1 DIRECTLY PROMPTING

Table 24: Example of LLMs with Directly Prompting for Readmission Prediction.

Input:
Patient information:
Age: 76
Gender: female
Conditions: Other specified intestinal obstruction, Malignant neoplasm of anus, unspecified site,
Stenosis of rectum and anus, Unknown Diagnosis, Coronary atherosclerosis of native coronary artery,
Esophageal reflux, Unspecified essential hypertension, Personal history of malignant neoplasm of
rectum, rectosigmoid junction, and anus
Procedures: Temporary colostomy, Combined right and left heart cardiac catheterization, Coronary
arteriography using two catheters, Venous catheterization, not elsewhere classified
Using Drugs: opioids, antithrombotic agents, antiinfectives and antiseptics, excl. combinations
with corticosteroids, drugs for peptic ulcer and gastro-oesophageal reflux disease (gord), other
antibacterials, other beta-lactam antibacterials, beta blocking agents, other mineral supplements,
i.v. solution additives, other diagnostic agents, other nutrients, other analgesics and antipyretics,
belladonna and derivatives, plain, i.v. solutions, antivaricose therapy, antiemetics and antinauseants,
drugs for constipation
Will the patient be readmitted to the hospital within two weeks?
Answer 1 for yes, 0 for no. Answer with only the number.
Answer:

Output for Llama3-8B:
1

Output for Gemma2-9B:
1

Output for Meditron-7B:
1

Output for Internist-7B:
1
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D.3.2 CHAIN-OF-THOUGHT PROMPTING

Table 25: Example of LLMs with Chain of Thought for Readmission Prediction.

Input:
Patient information:
Age: 68
Gender: male
Conditions: Malignant neoplasm of other specified sites of bladder, Hemorrhage complicating a
procedure
Procedures: Other transurethral excision or destruction of lesion or tissue of bladder, Control of
(postoperative) hemorrhage of bladder
Using Drugs: antiemetics and antinauseants, opioids, belladonna and derivatives, plain, antipsy-
chotics, antihistamines for systemic use, quinolone antibacterials, i.v. solutions, antivaricose therapy,
hypnotics and sedatives, other analgesics and antipyretics, urologicals, other mineral supplements, i.v.
solution additives, other diagnostic agents
Will the patient be readmitted to the hospital within two weeks?
Please provide your concise reasoning steps for the prediction(no more than 3 steps), and finally
answer 1 if the patient will die and 0 otherwise

Output for Llama3-8B:
Here is the solution:
Step 1: The patient has undergone a transurethral excision or destruction of lesion or tissue of blad-
der, which is a surgical procedure. This increases the likelihood of complications and readmission.

Step 2: The patient has a history of hemorrhage complicating a procedure, which is a significant
complication that may require further treatment and hospitalization.
Step 3: The patient is taking a variety of medications, including opioids, antihistamines, and antipsy-
chotics, which may increase the risk of adverse reactions and complications.
Answer: 1 (The patient will be readmitted to the hospital within two weeks)
Note: This prediction is based on the patient’s medical history and procedures, and may not be
accurate in all cases. A more detailed review of the patient’s medical records and current condition
would be necessary to make a more accurate prediction.

Output for Gemma2-9B:
**Reasoning:**
1. **Procedure:** The patient underwent a procedure for bladder cancer (""Other transurethral ex-
cision or destruction of lesion or tissue of bladder"") and experienced postoperative hemorrhage.

2. **Complications:** Postoperative hemorrhage is a potential complication of bladder cancer pro-
cedures and can require further intervention.
3. **Drug Usage:** The patient is on a variety of medications, including opioids and antiemetics,
which are often used for pain management and nausea after surgery. This suggests ongoing recovery
and potential need for further care.
**Answer:** 1

Output for Meditron-7B:
Continued on next page
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Table 25 – continued from previous page
## 1. The patient is male.
## 2. The patient is 68 years old.
## 3. The patient has a malignant neoplasm of other specified sites of bladder.
## 4. The patient has a hemorrhage complicating a procedure.
## 5. The patient has other transurethral excision or destruction of lesion or tissue of bladder.
## 6. The patient has control of (postoperative) hemorrhage of bladder.
## 7. The patient has antiemetics and antinauseants.
## 8. The patient has opioids.
## 9. The patient has belladonna and derivatives.
## 10. The patient has plain. ......

Output for Internist-7B:
Reasoning:
1. Assess the patient’s condition: The patient is a 68-year-old male with a malignant neoplasm of
other specified sites of the bladder and hemorrhage complicating a procedure. This indicates that the
patient has undergone a procedure related to the bladder and is experiencing bleeding as a complica-
tion.
2. Consider the procedures and medications: The patient has undergone a transurethral excision or
destruction of lesion or tissue of the bladder and control of postoperative hemorrhage of the blad-
der. The patient is also using various medications, including antiemetics and antinauseants, opioids,
belladonna and derivatives, antipsychotics, antihistamines, quinolone antibacterials, i.v. solutions,
antivaricose therapy, hypnotics and sedatives, other analgesics and antipyretics, urologicals, other
mineral supplements, i.v. solution additives, and other diagnostic agents.
3. Evaluate the risk factors: The patient’s age, gender, and medical history are important factors to
consider. The patient is 68 years old, which may increase the risk of complications and readmission.
The patient’s gender and medical history are also relevant, as they may contribute to the overall risk
assessment.
4. Analyze the likelihood of readmission: Based on the patient’s condition, procedures, medications,
and risk factors, it is important to assess the likelihood of readmission within two weeks. This may
involve considering the severity of the patient’s condition, the effectiveness of the procedures and
medications, and the potential for complications or recurrence of the bleeding.
5. Make the prediction: Based on the analysis, if the likelihood of readmission within two weeks is
high, the answer would be 1. If the likelihood is low, the answer would be 0.
In this case, the patient’s condition, procedures, medications, and risk factors suggest a high likeli-
hood of readmission within two weeks. Therefore, the answer is 1.
Note: It is important to consider the specific patient’s condition, procedures, medications, and risk
factors when making a prediction. This explanation is a general guide and may not apply to every
individual case.
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D.3.3 SELF-REFLECTION PROMPTING

Table 26: Example of LLMs with Self Reflection for Readmission Prediction.

Input:
Patient information:
Age: 68
Gender: male
Conditions: Malignant neoplasm of other specified sites of bladder, Hemorrhage complicating a
procedure
Procedures: Other transurethral excision or destruction of lesion or tissue of bladder, Control of
(postoperative) hemorrhage of bladder
Using Drugs: antiemetics and antinauseants, opioids, belladonna and derivatives, plain, antipsy-
chotics, antihistamines for systemic use, quinolone antibacterials, i.v. solutions, antivaricose therapy,
hypnotics and sedatives, other analgesics and antipyretics, urologicals, other mineral supplements, i.v.
solution additives, other diagnostic agents
Will the patient be readmitted to the hospital within two weeks?
Answer 1 for yes, 0 for no. Answer with only the number.
First answer with a number. Then conduct a concise reflection. Finally output your answer again with
a number.

Output for Llama3-8B:
Please enter your answer.
“‘
1
“‘
Reflection: Based on the patient’s conditions and procedures, it is likely that the patient will be read-
mitted to the hospital within two weeks. The patient has a malignant neoplasm of the bladder, which
may require further treatment or monitoring. Additionally, the patient has undergone a transurethral
excision or destruction of lesion or tissue of the bladder, which may lead to complications or side
effects that require hospitalization. The patient is also taking a number of medications, which may
increase the risk of readmission.
Answer:
“‘
1
“‘ “‘ 1
“‘ “‘ 1
“‘ “‘ 1
“‘ “‘ 1
“‘ “‘ 1
“‘ “‘ 1
“‘ “‘ 1
“‘ “‘ 1
“‘ “‘ 1
“‘ “‘ 1"

Output for Gemma2-9B:
**Reflection:**
The patient underwent a procedure for a malignant bladder tumor and experienced post-operative
hemorrhage. This suggests a potentially complex recovery and a higher risk of complications. The use
of various medications, including opioids and antiemetics, points towards ongoing pain management
and potential nausea/vomiting.
While it’s impossible to say for certain without more information, the patient’s condition and the
nature of the procedure increase the likelihood of readmission within two weeks.
**Answer:** 1

Continued on next page
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Table 26 – continued from previous page

Output for Meditron-7B:
## 1
## 2
## 3
## 4
## 5
## 6
## 7
## 8
## 9
## 10
## 11
## 12
## 13
## 14
## 15

Output for Internist-7B:
Reasoning:The patient in this scenario is a 68-year-old male with a malignant neoplasm of other

specified sites of the bladder and hemorrhage complicating a procedure. The patient has undergone
a transurethral excision or destruction of lesion or tissue of the bladder and control of postopera-
tive hemorrhage of the bladder. The patient is also using various medications, including antiemetics
and antinauseants, opioids, belladonna and derivatives, antipsychotics, antihistamines for systemic
use, quinolone antibacterials, i.v. solutions, antivaricose therapy, hypnotics and sedatives, other anal-
gesics and antipyretics, urologicals, other mineral supplements, i.v. solution additives, and other
diagnostic agents.
Based on this information, we need to determine if the patient will be readmitted to the hospital
within two weeks. To do this, we need to consider the patient’s condition, the procedures performed,
and the medications being used.
First, the patient has a malignant neoplasm of other specified sites of the bladder, which indicates a
serious underlying condition. This suggests that the patient may require ongoing medical manage-
ment and follow-up.
Second, the patient has experienced hemorrhage complicating a procedure. This indicates that the
patient may have experienced bleeding during the transurethral excision or destruction of lesion or
tissue of the bladder. This complication may require further intervention or monitoring.
Third, the patient is using various medications, including antiemetics and antinauseants, opioids,
belladonna and derivatives, antipsychotics, antihistamines for systemic use, quinolone antibacteri-
als, i.v. solutions, antivaricose therapy, hypnotics and sedatives, other analgesics and antipyretics,
urologicals, other mineral supplements, i.v. solution additives, and other diagnostic agents. These
medications may have side effects or interactions that could potentially lead to complications or the
need for further medical attention.
Considering all of these factors, it is likely that the patient may require readmission to the hospital
within two weeks......
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D.3.4 ROLE-PLAYING PROMPTING

Table 27: Example of LLMs with Role-Playing for Readmission Prediction.

Input:
Imagine that you are a doctor. Today, you’re seeing a patient with the following profile:
Patient information:
Age: 68
Gender: male
Conditions: Malignant neoplasm of other specified sites of bladder, Hemorrhage complicating a
procedure
Procedures: Other transurethral excision or destruction of lesion or tissue of bladder, Control of
(postoperative) hemorrhage of bladder
Using Drugs: antiemetics and antinauseants, opioids, belladonna and derivatives, plain, antipsy-
chotics, antihistamines for systemic use, quinolone antibacterials, i.v. solutions, antivaricose therapy,
hypnotics and sedatives, other analgesics and antipyretics, urologicals, other mineral supplements, i.v.
solution additives, other diagnostic agents
Will the patient be readmitted to the hospital within two weeks? Answer 1 for yes, 0 for no. Answer
with only the number.
Answer:

Output for Llama3-8B:
1

Output for Gemma2-9B:
1

Output for Meditron-7B:
1

Output for Internist-7B:
1
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D.3.5 IN-CONTEXT LEARNING

Table 28: Example of LLMs with In Context Learning for Readmission Prediction.

Input:
Patient information:
Age: 31
Gender: female
Conditions: Acute respiratory failure, Myasthenia gravis with (acute) exacerbation, Other specified
cardiac dysrhythmias, Diarrhea, Unspecified essential hypertension, Iron deficiency anemia, unspeci-
fied
Procedures: Continuous invasive mechanical ventilation for 96 consecutive hours or more, Insertion
of endotracheal tube, Injection or infusion of immunoglobulin, Non-invasive mechanical ventilation,
Enteral infusion of concentrated nutritional substances, Transfusion of packed cells
Using Drugs: immunosuppressants, corticosteroids for systemic use, plain, drugs for peptic ulcer
and gastro-oesophageal reflux disease (gord), other nutrients, i.v. solutions, antivaricose therapy,
anticholinergic agents, beta blocking agents, anesthetics, general, parasympathomimetics, other
antidiarrheals, calcium, other analgesics and antipyretics, antithrombotic agents, antacids, potas-
sium, i.v. solution additives, sulfonamides and trimethoprim, ace inhibitors, plain, antipropulsives,
antidepressants, belladonna and derivatives, plain, anxiolytics, hypnotics and sedatives, other cardiac
preparations, antiseptics and disinfectants, antiepileptics
Will the patient be readmitted to the hospital within two weeks?
Answer 1 for yes, 0 for no. Answer with only the number.
Answer: 0

Patient information:
Age: 62
Gender: male
Conditions: Acute myocardial infarction of unspecified site, initial episode of care, Congestive heart
failure, unspecified, Unknown Diagnosis, Acute kidney failure with lesion of tubular necrosis, Other
and unspecified complications of medical care, not elsewhere classified, Pneumonia, organism un-
specified, Late effects of cerebrovascular disease, hemiplegia affecting unspecified side, Unspecified
pleural effusion, Unknown Diagnosis, Anticoagulants causing adverse effects in therapeutic use,
Diabetes mellitus without mention of complication, type II or unspecified type, not stated as uncon-
trolled, Anemia, unspecified, Atrial fibrillation, Attention to tracheostomy, Unspecified essential
hypertension, Pure hypercholesterolemia, Coronary atherosclerosis of unspecified type of vessel,
native or graft, Aortocoronary bypass status
Procedures: Thoracentesis, Enteral infusion of concentrated nutritional substances, Infusion of
drotrecogin alfa (activated), Continuous invasive mechanical ventilation for less than 96 consecutive
hours
Using Drugs: antithrombotic agents, beta blocking agents, antiarrhythmics, class i and iii, other
nutrients, lipid modifying agents, plain, drugs for peptic ulcer and gastro-oesophageal reflux disease
(gord), other analgesics and antipyretics, other beta-lactam antibacterials, other antibacterials, i.v.
solution additives, hypnotics and sedatives, anesthetics, general, agents against amoebiasis and other
protozoal diseases, quinolone antibacterials, ace inhibitors, plain, high-ceiling diuretics, other antidiar-
rheals, antacids, insulins and analogues, decongestants and other nasal preparations for topical use,
intestinal antiinfectives, calcium, antifungals for topical use, anxiolytics, beta-lactam antibacterials,
penicillins, adrenergics, inhalants, antidepressants, potassium
Will the patient be readmitted to the hospital within two weeks?
Answer 1 for yes, 0 for no. Answer with only the number.
Answer: 1

Patient information:
Continued on next page
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Table 28 – continued from previous page
Age: 68
Gender: male
Conditions: Malignant neoplasm of other specified sites of bladder, Hemorrhage complicating a
procedure
Procedures: Other transurethral excision or destruction of lesion or tissue of bladder, Control of
(postoperative) hemorrhage of bladder
Using Drugs: antiemetics and antinauseants, opioids, belladonna and derivatives, plain, antipsy-
chotics, antihistamines for systemic use, quinolone antibacterials, i.v. solutions, antivaricose therapy,
hypnotics and sedatives, other analgesics and antipyretics, urologicals, other mineral supplements, i.v.
solution additives, other diagnostic agents
Will the patient be readmitted to the hospital within two weeks? Answer 1 for yes, 0 for no. Answer
with only the number.
Answer:

Output for Llama3-8B:
0

Output for Gemma2-9B:
0

Output for Meditron-7B:
0

Output for Internist-7B:
0
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