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Abstract

Large Language Models (LLMs) have trans-001
formed natural language processing, yet their002
substantial model sizes often demand sig-003
nificant computational resources. To pre-004
serve computing resources and accelerate in-005
ference speed, it is crucial to prune redun-006
dant parameters, especially for experienced007
users who often need expert models tailored008
to specific downstream scenarios. However,009
current pruning methods primarily focus on010
maintaining models’ general capabilities, ei-011
ther requiring extensive post-training or per-012
forming poorly due to coarse-grained prun-013
ing. In this work, we design a Custom Pruning014
method (Cus-Prun) to prune a large general015
model into a smaller lightweight expert model,016
which is positioned along the “language”, “do-017
main” and “task” dimensions. By identify-018
ing and pruning irrelevant neurons of each di-019
mension, Cus-Prun creates expert models020
without any post-training. Our experiments021
demonstrate that Cus-Prun consistently out-022
performs other methods, achieving minimal023
loss in both expert and general capabilities024
across various models from different model025
families and sizes.026

1 Introduction027

Large language models (LLMs) (Achiam et al.,028

2023; Reid et al., 2024; Dubey et al., 2024; Team029

et al., 2024) have revolutionized the field of natural030

language processing (NLP), emerging as powerful031

tools with widespread applications across various032

languages (Cui et al., 2023; Yang et al., 2024a),033

domains (Li et al., 2023a; Roziere et al., 2023; Li034

et al., 2023b), and tasks (Azerbayev et al., 2024;035

Alves et al., 2024). However, the impressive per-036

formance of LLMs often comes at the cost of im-037

mense model sizes, mostly containing billions of038

parameters and thus demand significant computing039

resources (Goldstein et al., 2023; Musser, 2023).040

To address this issue, researchers have recently pro-041

posed various model pruning methods for LLMs. 042

These methods aim to reduce model parameters 043

while maintaining the overall performance through 044

techniques such as removal of unimportant struc- 045

tures (Ma et al., 2023; Men et al., 2024; Song et al., 046

2024), matrix approximation (Sharma et al., 2024; 047

Ashkboos et al., 2024), and extensive post-training 048

after pruning (Wang et al., 2024; Xia et al., 2024). 049

Most existing pruning methods focus on pre- 050

serving the general capabilities of the model, of- 051

ten evaluated by broad-spectrum benchmarks like 052

MMLU (Hendrycks et al., 2021). While aiming 053

for overall versatility, they may not align well with 054

real-world user needs for a pruned small model, 055

which are usually more specific and targeted. For 056

instance, a user might require a question-answering 057

model tailored specifically for the education do- 058

main in German. Such specialized request in fact 059

aligns well with the fundamental motivation behind 060

pruning: to create a smaller model by eliminating 061

unnecessary parameters. In this context, the no- 062

tion of “unnecessary” parameters becomes more 063

precise—referring to those parameters that are ir- 064

relevant to the particular use case. By selectively 065

pruning these redundant parameters, one can con- 066

struct a smaller, expert model that is better aligned 067

with specific requirements. 068

However, current pruning techniques focusing 069

on preserving the general capabilities of LLMs 070

often employ coarse-grained approached such as 071

removing entire layers or modules (Li et al., 2022; 072

Kurz et al., 2024; Huang et al., 2024). Therefore, it 073

may remove parameters that are critical for special- 074

ized downstream scenarios, and thus sometimes re- 075

quire extensive post-training to recover the pruned 076

capabilities (Xia et al., 2024; Muralidharan et al., 077

2024). On the other hand, the preserved certain 078

capabilities may not be useful or relevant to our 079

desired application scenairo. This misalignment 080

with practical requirements — where users need 081

compact, ready-to-deploy expert models without 082
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Figure 1: Given a request for an expert model
across three dimensions (language, domain, and task),
Cus-Prun (i) identifies irrelevant neurons for each di-
mension using corresponding corpora, and (ii) prunes
overlapping irrelevant neurons across dimensions to
obtain the expert model.

retraining — motivates us to design a more fine-083

grained and expert model targeting approach.084

In this work, we introduce a novel Custom085

Pruning (Cus-Prun) method, designed to prune086

a large general-purpose model into a small special-087

ized expert model tailored for specific scenarios.088

To achieve broad adaptability, we define the expert089

model by positioning the target user’s needs along090

three key dimensions: language (e.g., English, Chi-091

nese, Germain), domain (e.g., E-commerce, educa-092

tion), and task (e.g., QA, summarization). Inspired093

by existing studies that certain neurons are respon-094

sible for certain functions (Zhao et al., 2024b; Tang095

et al., 2024; Liang et al., 2024), Cus-Prun iden-096

tifies and preserves critical neurons that are more097

relevant to particular languages, domains, or tasks,098

while pruning less relevant ones, ultimately lead-099

ing to a smaller expert models. Specifically, as100

illustrated in Figure 1, Cus-Prun first identifies101

irrelevant neurons for each dimension by assessing102

the impact of their removal on the generated out-103

put when processing corresponding corpus, which104

could be easily constructed from the relevant plain105

text documents. Next, the expert model is con-106

structed by pruning irrelevant neurons across all107

dimensions. Furthermore, Cus-Prun’s flexibility108

allows it to focus on one, two, or all three dimen-109

sions (language, domain, task) as needed, making it110

adaptable to a wide range of real-world applications111

where specialized LLMs are required. Importantly,112

by performing fine-grained pruning at the neuron113

level, the method could also retain most of the es-114

sential neurons within the model backbone, thereby 115

preserving most general capabilities. 116

We conduct comprehensive experiments to eval- 117

uate the performance of Cus-Prun across vari- 118

ous scenarios. Experimental results demonstrate 119

that it consistently outperforms other pruning meth- 120

ods in all settings. For three-dimensional spe- 121

cific expert models, Cus-Prun demonstrates re- 122

markable pruning effectiveness across different 123

model families and sizes, such as Mistral-Nemo- 124

12B, Llama3-8B, Llama2-13B, and Llama3-70B, 125

while maintaining strong expert and general ca- 126

pabilities. The method is evaluated across multi- 127

lingual, multidomain, and multitask datasets, as 128

well as representative compound NLP benchmarks, 129

and consistently outperforms state-of-the-art prun- 130

ing methods. Moreover, Cus-Prun is highly 131

adaptable, working effectively across a wide range 132

of pruning ratios, even up to nearly half the pa- 133

rameters, without compromising its superior per- 134

formance. For more focused applications, such 135

as two- or one-dimensional specific expert mod- 136

els (e.g., language-domain specific or language- 137

specific models), Cus-Prun continues to signif- 138

icantly outperform other pruning methods, show- 139

casing its versatility and effectiveness in diverse 140

specialized settings. 141

2 Custom Pruning (Cus-Prun) 142

An expert model could be generally positioned 143

from three dimensions: “language” (L ∈ L), “do- 144

main” (D ∈ D), and “task” (T ∈ T), which can be 145

represented as LLMExp := (L,D, T ) ∈ L×D×T. 146

Specifically, the language dimension encompasses 147

various languages such as English, Spanish, and 148

Thai. The domain dimension covers different fields 149

like finance, legal, and medical. The task dimen- 150

sion includes various applications such as question- 151

answering, data-to-text, and summarization. In 152

this section, we propose a custom pruning method 153

named Cus-Prun to derive smaller expert models 154

with flexible customization granularity. 155

2.1 Foundational Custom Pruning 156

Drawing inspiration from recent LLM interpreta- 157

tion studies (Tang et al., 2024; Liang et al., 2024; 158

Zhao et al., 2024b) that many parameters in the 159

model are redundant to processing a specific “lan- 160

guage”, we hypothesize that this phenomenon can 161

be extended to other dimensions such as “domain” 162

and “task”, meaning that certain parameters remain 163
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unused when handling a specific dimension. Rather164

than eliminating entire layers or modules (Song165

et al., 2024; Men et al., 2024; Zhang et al., 2024),166

Cus-Prun performs a fine-grained investigation167

by identifying and removing redundant neurons168

(i.e., individual rows or columns in parameter ma-169

trices) across all components (e.g., attention and170

feed-forward layers).171

Concretely, when handling each dimension, we172

identify a specific set of irrelevant neurons in the173

original LLM, denoted as ÑL, ÑD, and ÑT for174

L, D, and T , respectively. Specifically, to identify175

irrelevant neurons corresponding to the selected176

dimension, we construct a corpus within that di-177

mension while ablating others. For example, to de-178

termine irrelevant neurons for a specific language179

LExp, we create a corpus set180

CLExp = {(LExp, D, T )|D ∈ D, T ∈ T}, (1)181

comprising documents in language LExp across var-182

ious domains D and tasks T . We then identify183

neurons that are consistently irrelevant across all184

documents in CLExp ,185

ÑLExp =
{

Neuron
∣∣Irrelevant to c, ∀c ∈ CLExp

}
, (2)186

where a neuron is considered irrelevant if its re-187

moval from the parameter matrix affects the gen-188

erated output below a specified threshold. For-189

mally, for i-th neuron in layer l, denoted as190

N
(l)
i , its relevance to document c is measured by191

|h\N(l)
i ,i

(c)− hi(c)|2, where hi(c) is the layer out-192

put and h\N(l)
i ,i

(c) is the output with the neuron193

removed. Furthermore, neurons with impact in the194

lowest σ% are considered irrelevant, where σ is a195

pre-defined pruning ratio.196

Similarly, we could establish corresponding cor-197

pus sets for other dimensions,198

CDExp = {(L,DExp, T )|L ∈ L, T ∈ T}, (3)199

200
CTExp = {(L,D, TExp)|L ∈ L, D ∈ D}, (4)201

to extract irrelevant neurons, ÑDExp and ÑTExp . Fi-202

nally, the expert model could constructed by203

LLMExp = LLM⊖
{
ÑLExp ∩ ÑDExp ∩ ÑTExp

}
, (5)204

where ⊖ represents removing the corresponding205

neurons from LLM. The overall algorithm is fur-206

ther illustrated in Algorithm 1.207

Algorithm 1 Adaptive Custom Pruning

Input: Original language model LLM, request
for expert model LLMExp with selected di-
mensions: LExp, DExp, TExp (any subset), re-
quest for pruning ratio σ.

1: // Construct specific corpora
for each selected dimension.

2: C = {}
3: if LExp is specified then
4: C = C ∪ {(LExp, D, T ) | D ∈ D, T ∈ T}
5: end if
6: if DExp is specified then
7: C = C ∪ {(L,DExp, T ) | L ∈ L, T ∈ T}
8: end if
9: if TExp is specified then

10: C = C ∪ {(L,D, TExp) | L ∈ L, D ∈ D}
11: end if
12: // Identify irrelevant neurons

for each selected dimension.
13: for all neuron N

(l)
i in LLM do

14: if ∀c ∈ C, N
(l)
i ∈ Ñ (c) then

15: Ñ ← Ñ ∪N
(l)
i

16: end if
17: end for
18: // Prune irrelevant neurons to

obtain expert model.
19: LLMExp = LLM⊖ Ñ
Output: LLMExp

2.2 Adaptive Custom Pruning 208

In many applications, the need for expertise might 209

be constrained to one or two dimensions. For exam- 210

ple, a language-specific or domain-specific model 211

only requires pruning along a single dimension, 212

while a language-domain-specific model (e.g., a 213

Chinese Medical LLM) constrains two dimensions. 214

In this section, we extend Cus-Prun to support 215

different granularity levels. 216

Two-Dimensional Specific Expert Model With- 217

out losing generality, we use the language-domain 218

expert model as a concrete example, which requires 219

an expert model constrained in two dimensions: 220

language (LExp) and domain (DExp). We simi- 221

larly derive the sets of irrelevant neurons ÑLExp 222

and ÑDExp , and obtain the expert model by pruning 223

the original dense model as follows: 224

LLMExp := LLM⊖ {ÑLExp ∩ ÑDExp}. (6) 225

One-Dimensional Specific Expert Model We 226

use the language-specific expert model as an exam- 227
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ple, which focuses on optimizing performance for228

a certain language (LExp), irrespective of domain or229

task. Similarly, we obtain the language-specific cor-230

pus CLExp , then identify irrelevant neurons ÑLExp231

and extract the expert model by232

LLMExp := LLM⊖ {ÑLExp}. (7)233

To enhance efficiency, we implement the paral-234

lel neuron-detection method (Zhao et al., 2024b),235

which accelerates the sequential calculations from236

line14 to line16 in Algorithm 1.237

3 Preliminary Evaluation238

In this section, to simulate realistic user-defined239

requirements where all three dimensions (language,240

domain, task) are explicitly specified, we conduct241

preliminary experiments on developing expert mod-242

els with fine-grained pruning. This setting not only243

validates our approach under the most demand-244

ing conditions but also serves as a prototype for245

later experiments with one- or two-dimensional246

customizations.247

Experiment Design We consider three scenarios,248

each named according to the language-domain-task249

pattern: Korean-Legal-Summarization (Hwang250

et al., 2022), English-Medical-MCQ (García-251

Ferrero et al., 2024), and Chinese-E-commerce-252

Sentiment Analysis (Zhang et al., 2015). These253

scenarios were selected because each represents254

a unique combination of language, domain, and255

task, effectively simulating the diverse needs a user256

might specify in practice.257

For each scenario, we curate the corresponding258

corpus for each dimension. This curation can be259

done through manual collection or by automati-260

cally retrieving relevant documents online. In this261

preliminary study, without loss of generality, we262

employ a strong proprietary model1 to generate a263

corpus containing 50 documents for each dimen-264

sion. Detailed prompts can be found in Appendix265

A.1. The generated documents could then be used266

to determine the relevance of neurons for each di-267

mension of each scenario.268

Experiment Setup We use Llama3-8B (Dubey269

et al., 2024) as the original dense model and fol-270

low the typical setting to set the pruning ratio271

as 25%. Performance is evaluated using Rouge-272

L (Lin, 2004) for Korean-Legal-Summary and ac-273

curacy score for another two tasks. For comparison,274

1https://platform.openai.com/docs/
models/gpt-4o

Figure 2: Concrete examples of applying Cus-Prun to
prune 25% of Llama3-8B-Base’s parameters into three-
dimensional expert models. Numbers above each box
indicate performance on the whole test set, with the first
evaluated by Rouge-L, and the other two by accuracy.

we adopt SliceGPT (Ashkboos et al., 2024) as a 275

baseline, which replaces each weight matrix with a 276

smaller proxy matrix without considering the spe- 277

cific use-case requirements. 278

Main Results Figure 2 presents the results and 279

one concrete example for the original dense model, 280

pruned model with SliceGPT, and pruned model 281

with our proposed Cus-Prun method across the 282

three scenarios. We observe that Cus-Prun 283

largely preserves the performance of the dense 284

model, retraining 92%, 83%, and 94% of the 285

original dense model performance on these three 286

cases respectively. In contrast, the baseline 287

method SliceGPT, which does not consider spe- 288

cific use cases, largely underperforms compared 289

to Cus-Prun. Overall, the results demonstrate 290

that our proposed Cus-Prun method could ef- 291

fectively obtain expert models tailored to specific 292

use cases across different languages, domains, and 293

tasks that maintain high performance despite sub- 294

stantial pruning. 295
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Table 1: Main Results of Cus-Prun on multilingual setting with a pruning ratio of 25%, where “general capability”
is tested in English and averaged across several expert models, while “specific capability” is averaged across
languages. Results are expressed in Rouge-L in summarization tasks and in accuracy (%) for other datasets.

Method General Capability Multilingual Expert Multidomain Expert Multitask Expert
ARC-c GSM8K MMLU Avg. MGSM M3 XQuAD Sum Avg. MMCQ FTQA TSA AMSA Avg. MSum ASum AMCF Avg.

L
la

m
a3

-8
B Dense 70.7 58.3 63.1 64.1 41.2 49.1 63.4 32.9 46.7 51.8 23.9 67.1 95.9 59.8 76.6 16.2 78.2 57.0

LLMPrun. 26.3 2.5 24.2 17.7 1.1 24.0 13.6 23.2 15.5 0.0 0.0 61.8 76.0 34.5 62.2 21.8 80.0 54.7
SliceGPT 41.5 0.0 24.2 21.9 0.0 14.9 16.6 8.5 10.0 22.6 0.0 41.2 53.7 29.4 7.3 2.9 51.3 20.5
ShortGPT 38.3 0.0 28.6 22.3 0.0 26.9 0.0 2.7 7.4 3.2 0.0 38.6 35.7 19.4 4.1 4.8 43.8 17.6
Cus-Prun 62.4 37.0 54.7 51.4 30.1 41.5 52.6 31.5 38.9 42.9 20.6 61.8 87.6 53.2 68.4 12.8 75.5 52.2

M
is

tr
al

-1
2B Dense 82.6 68.5 50.4 67.2 51.7 43.8 49.2 25.4 42.5 54.6 26.6 69.4 92.4 60.8 88.7 3.0 78.6 56.4

LLMPrun. 22.5 2.7 30.7 18.6 2.1 27.8 19.0 23.2 18.0 0.0 0.0 51.0 20.9 18.0 59.3 0.5 2.8 20.9
SliceGPT 49.4 1.9 32.1 27.8 0.8 25.1 17.4 7.8 12.8 24.9 9.2 34.2 54.3 30.7 27.4 1.3 36.3 21.7
ShortGPT 37.8 0.0 33.9 23.9 2.9 27.0 18.0 5.0 13.2 31.4 7.2 39.2 52.5 32.6 26.2 0.2 42.7 23.0
Cus-Prun 67.5 43.4 43.8 51.6 34.3 39.2 40.7 23.1 34.3 47.9 25.1 67.3 83.7 56.0 83.5 3.4 72.8 50.9

L
la

m
a2

-1
3B Dense 50.3 31.4 53.4 45.1 17.5 30.4 44.1 24.9 29.2 25.2 0.0 42.7 84.1 38.0 70.0 7.4 44.3 40.6

LLMPrun. 22.4 2.1 23.6 16.0 1.1 22.8 3.8 17.7 11.3 0.0 0.0 9.7 0.0 2.4 21.6 4.8 0.0 8.8
SliceGPT 45.9 2.4 48.7 32.3 2.8 25.3 23.4 9.9 15.5 18.7 0.0 28.4 67.3 28.6 24.5 4.9 32.9 20.8
ShortGPT 39.5 3.8 37.2 26.8 2.4 23.0 24.7 11.3 15.3 16.9 0.0 34.6 69.8 30.3 23.8 5.2 39.1 22.7
Cus-Prun 48.3 20.8 50.0 39.7 12.7 26.2 34.2 24.1 24.3 25.6 0.0 38.5 68.3 33.1 64.5 6.7 42.9 38.0

L
la

m
a3

-7
0B Dense 84.1 82.7 78.8 81.9 69.5 71.1 69.1 36.6 61.6 72.1 55.3 83.6 96.2 76.8 84.2 17.3 81.8 61.1

LLMPrun. 69.1 26.0 53.2 49.4 16.8 43.7 43.0 29.0 33.1 27.3 1.0 51.0 50.3 32.4 10.2 13.7 20.6 14.8
SliceGPT 65.7 0.0 54.2 40.0 3.7 44.8 33.0 21.2 25.7 57.6 27.6 68.1 59.4 53.2 58.0 14.2 68.3 46.8
ShortGPT 59.4 5.6 75.5 46.8 11.9 43.1 38.8 24.0 29.5 58.4 32.2 67.5 64.9 55.8 59.6 13.9 65.8 46.4
Cus-Prun 68.4 53.2 66.6 62.7 43.1 57.7 59.8 34.3 48.7 68.2 43.9 81.4 87.8 70.3 80.4 15.7 77.5 57.9

4 Foundational Custom Pruning296

Assessment297

As demonstrated by preliminary evaluation in Sec-298

tion 3, Cus-Prun enables the creation of expert299

models tailored to specific languages, domains,300

and tasks. However, existing benchmark datasets301

may not always align with such specialized require-302

ments for a systematic evaluation. To simplify our303

evaluation without losing generality, we use two304

distinct corpora: one focusing independently on305

a single dimension and another encompassing the306

remaining two dimensions. This approach allows307

us to evaluate Cus-Prun’s performance in multi-308

lingual, multidomain, and multitask settings.309

Formally, in the multilingual setting, instead of310

constructing CLExp , CDExp and CTExp independently,311

we can construct two corpora, CLExp and C(D,T )Exp ,312

where CLExp helps to identify irrelevant neurons313

in a specific language (ÑLExp) and C(D,T )Exp helps314

to identify irrelevant neurons in a specific domain-315

task combination (ÑDExp∩TExp). Formally speaking,316

Cus-Prun in Equation 5 is transferred to317

LLMExp = LLM⊖
{
ÑLExp ∩

(
ÑDExp ∩ ÑTExp

)}
≡ LLM⊖

{
ÑLExp ∩ ÑDExp∩TExp

}
.

(8)318

Note that this simplification is also applicable to319

CDExp , C(L,T )Exp and CTExp , C(L,D)Exp .320

4.1 Experiment Setup 321

Benchmarks Although the primary goal of 322

Cus-Prun is to create expert LLMs tuned to 323

specific use cases, we also evaluate the pruned 324

models on standard general capabilities to en- 325

sure minimal performance loss. Specifically, we 326

employ ARC-Challenge (Clark et al., 2018) (5- 327

shots), GSM8K (Cobbe et al., 2021) (5-shots 328

with CoT prompting (Wei et al., 2022)), and 329

MMLU (Hendrycks et al., 2021) (5-shots) to repre- 330

sent models general capability. Note that we utilize 331

a generation task and implement CoT prompting 332

method, a more challenging setting that has not 333

been previously evaluated by existing pruning tech- 334

niques (Song et al., 2024; Sharma et al., 2024; Yang 335

et al., 2024b; Zhang et al., 2024). 336

Baselines We employ several state-of-the-art 337

pruning methods as the baseline that do not require 338

post-training after pruning the model. (i) Dense 339

represents the original model without pruning; (ii) 340

LLM-Pruner (Ma et al., 2023) adopts structural 341

pruning that selectively removes non-critical cou- 342

pled structures based on gradient information;2 (iii) 343

SliceGPT (Ashkboos et al., 2024) replaces each 344

weight matrix with a smaller dense matrix, reduc- 345

ing the embedding dimension of the network; (iv) 346

ShortGPT (Men et al., 2024) directly deletes the 347

redundant layers in LLMs based on an importance 348

2To ensure a fair comparison, we evaluate its performance
before post-training, following Men et al. (2024).
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score. We follow the typical pruning setting from349

these previous studies to set the pruning ratio to350

25% for all methods and all models.351

Backbone Models We choose 4 models from352

different model series and different sizes, includ-353

ing Llama3-8B-Base (Dubey et al., 2024), Mistral-354

Nemo-Base-24073(short as Mistral-12B), Llama2-355

13B-Base (Touvron et al., 2023), Llama3-70B-356

Base (Dubey et al., 2024).357

4.2 Multilingual Setting358

Dataset We employ multiple representative mul-359

tilingual datasets for multilingual setting, which360

covers reasoning (MGSM (Shi et al., 2023), 5-361

shots), multilingual knowledge (M3Exam (Zhang362

et al., 2023), 3-shots, abbreviated as M3), under-363

standing (XQuAD (Artetxe et al., 2020), 5-shots),364

and generation (XLSum (Hasan et al., 2021), zero-365

shots, abbreviated as Sum). Furthermore, we con-366

sider three languages spanning a range from high-367

resource to low-resource including German (De),368

Chinese (Zh) and Thai (Th). More detailed experi-369

ment settings are explained in Appendix A.3.1.370

Main Results Table 1 summarizes the perfor-371

mance of Cus-Prun on multilingual datasets,372

with average scores across languages. Detailed373

breakdown results for each language are shown374

in Table 5, Table 6 and Table 7 in Appendix A.2.375

We can observe that Cus-Prun consistently out-376

performs baseline pruning methods in achieving377

expert capabilities while preserving general perfor-378

mance. For example, on Llama3-8B, Cus-Prun379

achieves a score of 38.9 compared to at most 15.5380

for other methods. Similar improvements are ob-381

served for Mistral-12B (34.3 vs. 18.0), Llama2-382

13B (24.3 vs. 15.5), and Llama3-70B (48.7 vs.383

33.1). We can also see that the generation tasks are384

especially challenging; for instance, Cus-Prun385

achieves a score of 30.1 on MGSM for Llama3-8B,386

while other methods nearly lose the ability to gener-387

ate coherent reasoning outputs (often approaching388

0 accuracy for all but the largest model). Addi-389

tionally, Cus-Prun performs robustly across both390

high-resource and low-resource languages. Over-391

all, Cus-Prun excels in both performance and392

robustness across diverse tasks and languages.393

3https://huggingface.co/mistralai/
Mistral-Nemo-Base-2407

4.3 MultilDomain Setting 394

Dataset For the multidomain setting, we employ 395

several domain-specific datasets, including medical 396

domain multiply choices questions (MedMCQ (Pal 397

et al., 2022), 3-shots, abbreviated as MMCQ), 398

finance domain table question-answering (Fin- 399

TQA (Chen et al., 2021), 8-shots, abbreviated 400

as FTQA), social media domain sentiment anal- 401

ysis (TSA (Kharde and Sonawane, 2016), 3- 402

shots), and e-commerce domain sentiment analysis 403

(AMSA (Zhang et al., 2015), 3-shots). Moreover, 404

in multidomain setting, our focus is exclusively on 405

the English language. Detailed experiment settings 406

are explained in Appendix A.3.2. 407

Main Results Table 1 shows the performance of 408

Cus-Prun on multidomain setting. We find that 409

Cus-Prun consistently outperforms other prun- 410

ing methods in both expert and general capabili- 411

ties. For expert capabilities, Cus-Prun achieves 412

a score of 53.2 on Llama3-8B, while other prun- 413

ing methods achieve at most 34.5. Similar im- 414

provements are observed for Mistral-12B (56.0 vs. 415

32.6), Llama2-13B (33.1 vs. 30.3), and Llama3- 416

70B (70.3 vs. 55.8). 417

4.4 MultiTask Setting 418

Dataset For the multitask setting, we employ 419

several task-specific datasets, including the med- 420

ical summarization task (MedSum (Abacha and 421

Demner-Fushman, 2019), 3-shots, abbreviated 422

as MSum), summarization task in e-commerce 423

(Amazon Summary (Wang et al., 2022; Brüel- 424

Gabrielsson et al., 2024), 3-shots, abbreviated as 425

ASum), counterfactual task in e-commerce (Ama- 426

zon Counterfactual (O’Neill et al., 2021), 3-shots, 427

abbreviated as AMCF). Similarly, in multitask set- 428

ting scenarios, our focus is exclusively on the En- 429

glish language. Detailed experiment settings are 430

explained in Appendix A.3.3. 431

Main Results Table 1 shows the performance 432

of Cus-Prun on multitask setting. We find 433

that except for LLM-Pruner under Llama3-8B, 434

Cus-Prun outperforms other pruning methods 435

in both expert and general capabilities. For ex- 436

pert tasks, Cus-Prun achieves a score of 50.9 on 437

Mistral-12B, significantly outperforming the 438

highest score of 23.0 from other methods. Like- 439

wise, it attains 38.0 on Llama2-13B and 57.9 440

on Llama3-70B, both markedly higher than the 441

corresponding maximum scores of 22.7 and 46.8 442
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Table 2: Performance of Chinese-Medical ex-
pert model on MCQ task

Method General CMExam

Dense 59.3 50.6
LLM-Pruner 18.6 25.0
SliceGPT 27.8 26.9
ShortGPT 23.9 23.7
Cus-Prun 52.4 48.7 Figure 3: Chinese Medical LLM performance. Numbers are quality

on the whole test set evaluated by GPT4.

achieved by competing methods.443

4.5 Analysis on Aggressive Pruning Ratio444

To optimize for specialized tasks rather than main-445

taining general capabilities, we employ more ag-446

gressive pruning ratios. We combine layer pruning447

with our custom neuron pruning method in Algo-448

rithm 1 and evaluate the approach on M3Exam,449

MedMCQ, and Amazon Counterfactual (AMCon-450

tFact) datasets using Llama3-8B. Detailed results451

are shown in Table 3. We find that Cus-Prun con-452

sistently maintains the model’s capabilities even at453

higher pruning ratios. Specifically, when the prun-454

ing ratio is increased to 45%, ShortGPT nearly455

loses the capability of generating meaningful an-456

swers, while Cus-Prun still achieves scores of457

48.4 on MMLU and 50.6 on expert capabilities.458

Table 3: Aggressive pruning ratio on Llama3-8B.

Method Ratio Speedup MMLU Expert

Dense 0.0 1× 63.1 59.7

ShortGPT 25.0 1.3× 28.6 24.6
Cus-Prun 25.0 1.3× 51.9 53.3

ShortGPT 34.2 1.5× 20.8 18.5
Cus-Prun 35.0 1.5× 50.2 51.4

ShortGPT 43.8 1.8× 7.9 10.2
Cus-Prun 45.0 1.8× 48.4 50.6

5 Adaptive Custom Pruning Assessment459

In this section, we evaluate the generality of460

Cus-Prun in dynamic scenarios, including spe-461

cific expert models in two and one dimensions, as462

described in Section 2.2.463

5.1 Two Dimensions Specific Expert Model464

Experiment Settings We use the Chinese-465

Medical setting as a concrete example of a two-466

dimensional expert model designed to perform a467

wide range of medical tasks in Chinese. We adopt 468

Mistral-12b as the backbone model and utilize cor- 469

pus from Wikipedia for Chinese content and gen- 470

eral medical corpus for medical knowledge. The 471

performance of the target Chinese-Medical expert 472

model is evaluated on two datasets: CMExam (Liu 473

et al., 2023) (5-shots), a Chinese medical multiple- 474

choice question dataset, and HuatuoQA (Li et al., 475

2023a), a Chinese medical question-answering 476

dataset. We assess the performance on CMExam 477

using accuracy metrics. For the latter, we sample a 478

sub-testset of size 100 and use GPT-4 as the evalua- 479

tor, which assigns a score from 0 to 5, representing 480

its quality from low to high. Detailed prompts are 481

listed in Appendix A.1. 482

Main Results Table 2 presents the performance 483

of the Chinese-Medical LLM on CMExam and its 484

general capabilities. Our results indicate that the ex- 485

pert model pruned using Cus-Prun outperforms 486

models obtained through other pruning methods. 487

Specifically, Cus-Prun achieves a score of 48.7 488

on CMExam, while its general capability score 489

is 52.4. These results compare favorably to the 490

dense model, which scores 50.6 on CMExam and 491

59.3 on general capabilities. On the contrary, other 492

pruning methods nearly lose the general and spe- 493

cific capabilities. Furthermore, Figure 3 shows a 494

concrete example of Chinese-Medical LLM per- 495

formance on medical question-answering. We find 496

that Cus-Prun can produce smaller expert mod- 497

els that maintain their expert capabilities, as demon- 498

strated by its performance score of 2.9/5.0 com- 499

pared to 3.2/5.0 for the dense model. 500

5.2 One Dimension Specific Expert Model 501

Experiment Settings For evaluating the prun- 502

ing method under a one-dimensional expert model 503

setting, we focus on language-specific pruning, 504

showing how to transform a dense model into 505
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Figure 4: Performance of Cus-Prun in obtaining language-specific models.

language-specific variants. We consider three506

linguistically diverse languages: German, Chi-507

nese, and Thai. We conduct experiments based508

on the Llama3-8b model. To identify language-509

specific (while domain- and task-agnostic) neurons,510

we employ a diverse range of corpora, including511

Wikipedia, MGSM, and M3Exam, ensuring cover-512

age of various domains and tasks. The effective-513

ness of our pruning technique is then evaluated514

using three held-out multilingual datasets includ-515

ing XQuAD (Artetxe et al., 2020), XNLI (Conneau516

et al., 2018), and XSum (Narayan et al., 2018).517

Main Results Figure 4 illustrates the per-518

formance of language-specific models using519

Cus-Prun. By pruning 25% of the neurons from520

the original model, Cus-Prun not only retains521

general performance but also preserves language-522

specific capabilities. For instance, the German-523

specific model scores 54.7 in general capabilities,524

48.3 on XQuAD, and 56.8 on XNLI, compared to525

the dense model’s scores of 64.1, 52.9, and 62.0,526

respectively. This trend is consistent for Chinese527

and Thai models as well. In contrast, ShortGPT528

struggles to maintain the model’s capabilities, par-529

ticularly in XQuAD and XLSUm, which require530

generative abilities.531

6 Related Work532

LLM Compression Given the high costs of train-533

ing, inferencing, and tuning LLMs, many studies534

focus on model compression methods, including535

compression (Zhu et al., 2023), quantization (Xu536

et al., 2023; Dettmers et al., 2024; Lin et al., 2024;537

Li et al., 2024), and pruning (Wang et al., 2019).538

Sparsity-based structural pruning enhances GPU539

efficiency with sparse structures but doesn’t always540

reduce parameter counts (Li et al., 2022, 2023c;541

Kurz et al., 2024; Zhao et al., 2024a; Huang et al., 542

2024). Unstructured pruning reduces parameters 543

while maintaining performance, using post-training 544

techniques (Ma et al., 2023; Xia et al., 2024; Mu- 545

ralidharan et al., 2024) or coarse methods like pa- 546

rameter approximation (Zhao et al., 2024a), layer 547

removal (Men et al., 2024), or structural elimina- 548

tion (Zhang et al., 2024). However, these often fail 549

to preserve domain- or task-specific capabilities, 550

limiting their utility for specialized scenarios. 551

Customizing Model Customizing LLMs is es- 552

sential for addressing language-specific challenges, 553

domain-specific needs (e.g., healthcare, software 554

development), and task-specific applications (Cui 555

et al., 2023; Yang et al., 2024b; Li et al., 2023a; 556

Roziere et al., 2023; Li et al., 2023b; Azerbayev 557

et al., 2024; Alves et al., 2024). However, cus- 558

tomization often demands extensive fine-tuning 559

with curated data, making it resource-intensive. 560

This highlights the need for efficient methods to 561

quickly create robust, expert models tailored to 562

diverse industries without compromising quality. 563

7 Conclusion 564

LLMs deliver impressive capabilities but incur high 565

computational costs. Efficient pruning of redun- 566

dant parameters is vital for conserving resources 567

and improving inference speed, especially for spe- 568

cialized models. Our method, Cus-Prun, gener- 569

ates smaller expert models without post-training by 570

pruning irrelevant neurons across “language”, “do- 571

main”, and “task” dimensions. This finer-grained 572

approach outperforms existing techniques on three- 573

dimensional models and can adapt to realistic 574

scenarios, such as language-domain or language- 575

specific models. 576
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Limitation577

Despite the promising results of Cus-Prun, sev-578

eral limitations should be noted. First, while our579

method leverages three dimensions (language, do-580

main, and task) for pruning, certain crucial restric-581

tions cannot be fully captured within this frame-582

work, such as variations in query format or input583

structure. Second, whether pruned base models584

can effectively undergo post-training remains an585

open question that requires further investigation.586

This uncertainty about post-training capabilities587

could limit the model’s adaptability to new scenar-588

ios or requirements after pruning. These limitations589

suggest important directions for future research, in-590

cluding exploring additional dimensions for more591

comprehensive pruning strategies and investigating592

the relationship between pruning and post-training593

effectiveness.594
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A Appendix932

A.1 GPT-4o Prompts933

Task Prompt

Generation Generate a text document in {lan-
guage}/{domain}/{task}. Make sure
the documents is not fixed to one
{language}/{domain}/{task} or {lan-
guage}/{domain}/{task}. Ensure the
content is clear, concise, and appropriate
for the specified request. Use professional
and domain-specific terminology where
necessary.

Evaluation Evaluate the quality of the given answer
to the question. Provide a score from 0 to
5, where 0 represents very low quality and
5 represents very high quality. Question:
{question} Answer: {answer}.

Table 4: GPT-4o prompts for generating documents and
evaluating answer quality.

A.2 Detailed Results for Multilingual934

Detailed results for multilingual settings can be935

found in Table 5, Table 6 and Table 7 for German,936

Chinese and Thai correspondingly.937

A.3 Experiments Detailed Settings 938

A.3.1 Multilingual Settings 939

Experiment Details For multilingual setting, we 940

can obtain two corpora: CLExp and C(D,T )Exp . The 941

first corpus contains samples in a specific lan- 942

guage across various domains and tasks, while 943

the second corpus contains samples from a spe- 944

cific domain-task combination in other languages, 945

i.e., the target dataset in other languages. Specif- 946

ically, for CLExp we employ Wikipedia4 to con- 947

struct language-specific corpus covering various 948

domains and tasks. For C(D,T )Exp , we employ 949

the corresponding datasets in English, including 950

GSM8K (Cobbe et al., 2021) for MGSM, the En- 951

glish split of M3Exam5 for M3Exam, SQuAD (Ra- 952

jpurkar, 2016) for XQuAD, and XSum (Narayan 953

et al., 2018) for XLSum. 954

Hyperparameters, including the sizes of CLExp 955

and C(D,T )Exp , are determined using the validation 956

set of the XLSum dataset and then applied to test- 957

sets in other multilingual datasets. Furthermore, 958

accuracy is the metric used for ARC-c, GSM8K, 959

MMLU, MGSM, M3Exam, and XQuAD, while 960

Rouge-L (Lin, 2004) is used for XLSum. 961

A.3.2 Multidomain Settings 962

Settings For multidomain setting, we can obtain 963

two corpora: CDExp = {(L,DExp, T )|L ∈ L, T ∈ 964

T} and C(L,T )Exp = {(D, (L, T )Exp)|D ∈ D}. 965

The first corpus contains samples in a specific do- 966

main across various languages and tasks, while 967

the second corpus contains samples from a spe- 968

cific language-task combination across different 969

domains, i.e., the target dataset in other domains. 970

Specifically, for CDExp we employ specific domain 971

corpus, including English split of medical cor- 972

pus (García-Ferrero et al., 2024) for medical do- 973

main, general finance corpus for finance domain6, 974

general Twitter corpus (Kharde and Sonawane, 975

2016), and English split of Amazon corpus (Ke- 976

ung et al., 2020). For C(L,T )Exp , we employ the 977

corresponding datasets in general domains, includ- 978

ing CommonsenseQA (Talmor et al., 2019) for 979

MedMCQ, open table question-answering OTT- 980

QA (Chen et al., 2020) for FinTQA, general sen- 981

timent analysis (Attia et al., 2018) for TSA and 982

4https://huggingface.co/datasets/
wikimedia/wikipedia

5M3Exam is language-specific and does not utilize a trans-
lated parallel corpus.

6https://huggingface.co/datasets/
gbharti/finance-alpaca
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Table 5: Main Results of Cus-Prun on Germany with a pruning ratio of 25%, where “general capability” is tested
in English and averaged across several expert models, while “specific capability” is averaged across languages.
Results are expressed in Rouge-L in XLSum and in accuracy (%) for other datasets.

Model Method General Capability Expert Capability
ARC-c GSM8K MMLU Avg. MGSM M3Exam XQuAD XLSum Avg.

Llama3-8B

Dense 70.7 58.3 63.1 64.1 44.8 - 52.9 - 48.8
LLMPrun. 26.3 2.5 24.2 17.7 0.0 - 11.0 - 5.5
SliceGPT 41.5 0.0 24.2 21.9 0.0 - 9.8 - 4.9
ShortGPT 38.3 0.0 28.6 22.3 0.0 - 0.0 - 0.0
Cus-Prun 61.4 38.9 54.5 51.6 32.8 - 49.6 - 41.2

Mistral-12B

Dense 82.6 68.5 50.4 59.3 56.8 - 41.2 - 49.0
LLMPrun. 22.5 2.7 30.7 18.6 2.4 - 13.4 - 7.9
SliceGPT 49.4 1.9 32.1 27.8 0.8 - 15.5 - 8.2
ShortGPT 37.8 0.0 33.9 23.9 3.6 - 20.3 - 12.0
Cus-Prun 64.6 39.7 43.2 49.2 31.6 - 35.9 - 33.8

Llama2-13B

Dense 50.3 31.4 53.4 45.1 24.4 - 40.3 - 32.3
LLMPrun. 22.4 2.1 23.6 16.0 2.0 - 5.7 - 3.9
SliceGPT 45.9 2.4 48.7 32.3 3.6 - 18.1 - 10.9
ShortGPT 39.5 3.8 37.2 26.8 2.8 - 27.2 - 15.0
Cus-Prun 47.6 19.8 49.9 39.1 18.4 - 31.7 - 25.0

Llama3-70B

Dense 84.1 82.7 78.8 81.9 74.8 - 58.2 - 66.5
LLMPrun. 69.1 26.0 53.2 49.4 18.0 - 27.3 - 22.7
SliceGPT 65.7 0.0 54.2 40.0 0.0 - 17.3 - 8.7
ShortGPT 59.4 5.6 75.5 46.8 9.6 - 31.5 - 20.6
Cus-Prun 66.8 59.3 69.1 65.1 48.2 - 53.9 - 51.1

Table 6: Main Results of Cus-Prun on Chinese with a pruning ratio of 25%, where “general capability” is tested
in English and averaged across several expert models, while “specific capability” is averaged across languages.
Results are expressed in Rouge-L in XLSum and in accuracy (%) for other datasets.

Model Method General Capability Specific Capability
ARC-c GSM8K MMLU Avg. MGSM M3Exam XQuAD XLSum Avg.

Llama3-8B

Dense 70.7 58.3 63.1 64.1 43.6 55.1 78.7 49.1 56.6
LLMPrun. 26.3 2.5 24.2 17.7 2.4 23.6 21.3 32.8 20.0
SliceGPT 41.5 0.0 24.2 21.9 0.0 17.4 23.5 8.3 12.3
ShortGPT 38.3 0.0 28.6 22.3 0.0 28.3 0.0 3.1 7.9
Cus-Prun 60.5 25.7 49.4 45.2 36.0 44.7 65.6 46.3 48.2

Mistral-12B

Dense 82.6 68.5 50.4 59.3 53.2 47.8 62.2 33.0 49.1
LLMPrun. 22.5 2.7 30.7 18.6 2.8 30.7 31.8 32.6 24.5
SliceGPT 49.4 1.9 32.1 27.8 1.6 26.4 28.3 10.8 16.8
ShortGPT 37.8 0.0 33.9 23.9 4.4 28.2 29.1 7.2 17.2
Cus-Prun 68.3 43.2 39.5 50.3 38.4 40.7 50.6 30.3 40.0

Llama2-13B

Dense 50.3 31.4 53.4 45.1 21.6 36.5 59.8 35.3 38.3
LLMPrun. 22.4 2.1 23.6 16.0 1.2 23.3 3.8 25.1 13.4
SliceGPT 45.9 2.4 48.7 32.3 4.8 24.5 28.4 11.2 17.2
ShortGPT 39.5 3.8 37.2 26.8 4.4 22.9 24.6 13.7 16.4
Cus-Prun 48.6 20.7 51.9 40.4 14.8 28.2 47.3 34.4 31.2

Llama3-70B

Dense 84.1 82.7 78.8 81.9 68.4 76.1 81.3 55.3 70.3
LLMPrun. 69.1 26.0 53.2 49.4 16.8 47.5 56.1 41.3 40.4
SliceGPT 65.7 0.0 54.2 40.0 6.4 48.3 42.2 29.3 31.6
ShortGPT 59.4 5.6 75.5 46.8 12.4 45.5 44.6 36.1 34.7
Cus-Prun 72.3 48.5 65.2 62.0 40.8 61.7 66.9 51.6 55.3
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Table 7: Main Results of Cus-Prun on Thai with a pruning ratio of 25%, where “general capability” is tested
in English and averaged across several expert models, while “specific capability” is averaged across languages.
Results are expressed in Rouge-L in XLSum and in accuracy (%) for other datasets.

Model Method General Capability Specific Capability
ARC-c GSM8K MMLU Avg. MGSM M3Exam XQuAD XLSum Avg.

Llama3-8B

Dense 70.7 58.3 63.1 64.1 35.2 43.0 58.7 16.7 38.4
LLMPrun. 26.3 2.5 24.2 17.7 0.8 24.4 8.4 13.5 11.8
SliceGPT 41.5 0.0 24.2 21.9 0.0 12.3 16.6 8.7 9.4
ShortGPT 38.3 0.0 28.6 22.3 0.0 25.4 0.0 2.3 6.9
Cus-Prun 58.9 31.2 52.4 47.5 21.6 38.3 42.6 16.8 29.8

Mistral-12B

Dense 82.6 68.5 50.4 59.3 45.2 39.9 44.1 17.8 36.8
LLMPrun. 22.5 2.7 30.7 18.6 1.2 24.8 11.9 13.7 12.9
SliceGPT 49.4 1.9 32.1 27.8 0.0 23.8 8.4 4.7 12.3
ShortGPT 39.5 3.8 37.2 26.8 0.8 25.7 4.7 2.8 8.5
Cus-Prun 68.2 35.8 47.6 50.5 32.8 37.7 35.6 15.9 30.5

Llama2-13B

Dense 50.3 31.4 53.4 45.1 6.4 24.3 28.3 14.5 18.4
LLMPrun. 22.4 2.1 23.6 16.0 0.0 22.3 1.8 10.2 8.6
SliceGPT 45.9 2.4 48.7 32.3 0.0 26.2 23.7 8.6 14.6
ShortGPT 39.5 3.8 37.2 26.8 0.0 23.1 22.3 8.9 13.6
Cus-Prun 47.8 20.9 50.7 39.8 4.8 24.2 23.6 13.8 16.6

Llama3-70B

Dense 84.1 82.7 78.8 81.9 65.2 66.1 67.8 17.8 54.2
LLMPrun. 69.1 26.0 53.2 49.4 15.6 39.9 29.8 16.6 25.5
SliceGPT 65.7 0.0 54.2 40.0 4.8 41.3 39.6 13.2 24.7
ShortGPT 59.4 5.6 75.5 46.8 13.7 40.7 40.4 11.9 26.7
Cus-Prun 73.3 58.7 68.4 66.8 40.4 53.6 58.5 16.9 42.4

AMSA.983

Experiment Details Hyperparameters, including984

the sizes of CDExp and C(L,T )Exp , are determined985

using the validation set of the Amazon sentiment986

analysis dataset and then applied to testsets in other987

multidomain datasets. Furthermore, accuracy is the988

metric used for all datasets.989

A.3.3 Multitask Settings990

Settings For multitask setting, we can obtain two991

corpora: CTExp = {(L,D, TExp)|L ∈ L, D ∈ D}992

and C(L,D)Exp = {(T, (L, S)Exp)|T ∈ T}. The first993

corpus contains samples in a specific task across994

various languages and domains, while the second995

corpus contains samples from a specific language-996

domain combination across different tasks, i.e., the997

target dataset in other tasks. Specifically, for CTExp998

we employ specific task corpus, including XSum999

corpus (Abacha and Demner-Fushman, 2019) for1000

summarization task, general conterfact corpus71001

for counterfactual task. For C(L,D)Exp , we em-1002

ploy the corresponding datasets in other tasks, in-1003

cluding MedQCQ (Pal et al., 2022) for MedSum,1004

AMSA (Zhang et al., 2015) for AMSum and AM-1005

ContFact.1006

7https://huggingface.co/datasets/azhx/
counterfact-easy

Experiment Details Hyperparameters, including 1007

the sizes of CTExp and C(L,D)Exp , are determined us- 1008

ing the validation set of the Amazon counterfactual 1009

dataset and then applied to testsets in other mul- 1010

titask setting datasets. Furthermore, accuracy is 1011

the metric used for ARC-c, GSM8K, MMLU, and 1012

AMContFact, while Rouge-L (Lin, 2004) is used 1013

for MedSum and AMSum. 1014
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