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Abstract

Language is an intricately structured system,001
and a key goal of NLP interpretability is to pro-002
vide methodological insights for understanding003
how language models internally represent this004
structure. In this paper, we use Shapley Taylor005
interaction indices (STII) in order to examine006
how language and speech models internally re-007
late and structure their inputs. Pairwise Shap-008
ley interactions give us an attribution measure009
of how much two inputs work together to in-010
fluence model outputs beyond if we linearly011
added their independent influences, providing012
a view into how models encode structural in-013
teractions between inputs. We relate the inter-014
action patterns in models to three underlying015
linguistic structures: syntactic structure, non-016
compositional semantics, and phonetic inter-017
action. We find that autoregressive text mod-018
els encode interactions that correlate with the019
syntactic proximity of inputs, and that both020
autoregressive and masked models encode non-021
linear interactions in idiomatic phrases with022
non-compositional semantics. Our speech re-023
sults show that inputs are more entangled for024
pairs where a neighboring consonant is likely025
to influence a vowel or approximant, showing026
that models encode the phonetic interaction027
needed for extracting discrete phonemic rep-028
resentations.029

1 Introduction030

How do language model features work together to031

influence prediction results? Do the internals of032

language models reflect the complex structure of033

language in how they combine features? Under-034

standing feature attribution, how different model035

features (like inputs or neurons) influence output036

decisions, is a key question for understanding and037

interpreting neural models. One common approach038

to feature attribution is adapted from game theory039

scenarios, and treats features like agents in a co-040

operative game, attributing credit for the outcome041

to each feature (Lundberg and Lee, 2017). This 042

credit value, or Shapley value (Shapley, 1952), 043

quantifies the effect of each feature on the output, 044

assuming that features act in a linearly independent 045

manner on the output. The linearity assumption is 046

not accurate for most deep learning scenarios: neu- 047

ral networks are non-linear, and features interact 048

in complex ways inside model representations to 049

influence output predictions. 050

What interactions between features do we miss 051

when we assume this linear independence? To 052

address this question, researchers have proposed 053

methods to calculate residuals, how much informa- 054

tion we lose when assuming linearity (Kumar et al., 055

2021), and Shapley interactions, accounting for 056

how features have influence in pairs or groups on 057

top of how they act independently (Agarwal et al., 058

2019). 059

In this paper, we investigate how Shapley in- 060

teractions can enhance our interpretable under- 061

standing of the internal processes of language 062

models. We ground our investigation in structural 063

features that we know about the input data (like 064

syntactic structure), and ask: what do Shapley in- 065

teractions reveal about how the model uses the 066

non-linear structure in language? By relating Shap- 067

ley interactions to structural linguistic features, we 068

showcase how different models use (or don’t use) 069

linguistic structural features in their internal repre- 070

sentations. We run experiments on autoregressive 071

and masked text models, as well as on automatic 072

speech recognition models, and report the follow- 073

ing findings: 074

• Autoregressive models (but not masked mod- 075

els) show a strong correlation between Shap- 076

ley interaction and the syntactic proximity of 077

features. This indicates that syntactic structure 078

is encoded in non-linear interactions between 079

model features (Section 3.2) 080

• Both autoregressive and masked models ex- 081
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hibit stronger interactions between pairs of082

tokens in multiword expressions (MWEs) that083

have idiomatic non-compositional meaning084

(expressions like I’ll eat my hat) (Section 3.3)085

• In speech models, Shapley interactions are086

stronger between consonants and vowels than087

between pairs of consonants, in accordance088

with how sounds interact in speech: the acous-089

tics of vowels are often shaped by the sur-090

rounding consonants, while consonants are091

more able to be interpreted in isolation (Rak-092

erd, 1984) (Section 4.1). This finding also093

extends to more sonorant vowel-like conso-094

nants, which interact more with surrounding095

consonants than those produced with the vocal096

tract more closed (Section 4.2).097

Understanding non-linearities and interactions in098

model internals is becoming a vital missing piece of099

the wider language model interpretability inquiry.100

Our work showcases how Shapley interactions are a101

powerful interpretability methodology for examin-102

ing how language models use the structure in their103

inputs to organize their internal representations.104

2 Background and related work105

2.1 Shapley Interactions106

Shapley values are used to attribute decisions to107

specific features in predictive models. The Shapley108

value of a set of features A is obtained by comput-109

ing the difference in a model’s output when A is110

included versus when it is excluded. If we take the111

set of all features, N , and remove A, we want to112

see how much value A adds to every possible sub-113

set S ⊆ N\A. In our case, the value function v is114

the logit output of the model. The Shapley value is115

the weighted average of this marginal contribution116

over all S:117

ϕ(A) =
∑

S⊆N\A

wS (v(S ∪A)− v(S)) (1)118

where the weight wS for each subset is the num-119

ber of possible subsets S of the same size:120

wS =

(
|N | − |A|

|S|

)
(2)121

If the interactions between features are linearly122

additive: ϕ(∅) ≈
∑

i∈S v({i}). However, in sce-123

narios where features are dependent and their com-124

position is non-linear, Shapley values do not ac-125

count for interacting effects between sets. Methods126

to understand and address this have been proposed 127

by Owen (1972), Grabisch and Roubens (1999), Fu- 128

magalli et al. (2023), and Tsai et al. (2023). Here, 129

we focus on the Shapley residual (Kumar et al., 130

2021), which calculates how much the Shapley lin- 131

earity assumptions are violated: 132

ri = ∇iϕ−∇ϕ({i}) (3) 133

For simplicity, we consider the case of pairwise 134

interactions: interaction between a pairs of fea- 135

ture sets A and B. To calculate pairwise Shapley 136

interactions, we rely on the Shapley Taylor in- 137

teraction index (STII) (Agarwal et al., 2019) to 138

calculate second-order interactions using the dis- 139

crete second-order derivative. Since our features 140

are vectors, we calculate the scalar Shapley inter- 141

action value for each dimension individually, and 142

take the norm of this Shapley vector for a scalar 143

metric of interaction. Similar to Saphra and Lopez 144

(2020), we scale the residual by the norm of the 145

entire sequence with no feature ablations. 146

STIIA,B =
∥ϕ(∅)− ϕ(A)− ϕ(B) + ϕ(A,B)∥2

∥ϕ(∅)∥2
(4) 147

Calculating the Shapley values for each coalition 148

requires iterating over the powerset of N , requiring 149

O(2|N |) calculations. In high-dimensional input 150

spaces, the exact calculation of Shapley residuals is 151

therefore prohibitively expensive. We approximate 152

Shapley values by using Monte Carlo Permutation 153

Sampling (Castro et al., 2009). 154

2.2 Structure in language models 155

There is a huge and varied literature in NLP inter- 156

pretability aimed at understanding how language 157

models use and represent the structure in their lin- 158

guistic input. Approaches include examining if 159

the output probabilities of language models reflect 160

structural rules (see for example Warstadt et al., 161

2018; Hu et al., 2024; Gauthier et al., 2020), as 162

well as looking inside model representations. For 163

the latter approaches, while many linguistic struc- 164

tural elements can be linearly extracted from the 165

representations of text and speech models (see He- 166

witt and Manning, 2019; Belinkov, 2021; Pasad 167

et al., 2024; Chrupała et al., 2020; Park et al., 2023, 168

among many others), and attribution methods can 169

relate the linear importance of different features in 170

both text and speech models (Markert et al., 2021; 171

Ethayarajh and Jurafsky, 2021; Yeh et al., 2020; 172

Kokalj et al., 2021), the fact remains that neural 173
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Figure 1: Our results for the experiments relating Shapley Interactions with a token’s position in the sequence.
We find that, for both autoregressive models (left) and masked models (right), STII decreases monotonically with
distance. This holds both when we are measuring distance as the distance between the two elements in the interacting
pair (di, blue line) and when we are measuring distance between the interacting pair and the token that the model is
predicting (dp, orange line). Our results indicate that models treat tokens that are far away from each other more like
an unentangled bag-of-words, and that they treat pairs of tokens that are far away from the token being predicted as
unentangled, no matter the distance between them.

models have complex nonlinearities in their inter-174

nal processing.175

How can we analyze the ways in which nonlin-176

ear interactions play out in model internals, and177

what they encode? Multiple papers have analyzed178

the difficulties of knowing what we can extract179

when using nonlinear probing methods (Voita and180

Titov, 2020; Pimentel and Cotterell, 2021; Hewitt181

et al., 2021), and others have proposed searching182

for causal effects which can be generally agnostic183

to whether the processing is linear (Geiger et al.,184

2021; Arora et al., 2024). Shapley interactions let185

us directly link features of the input to different186

extents of nonlinear processing. Prior work show-187

ing the utility of Shapley interactions in analyzing188

NLP models has focused on older architectures189

like LSTMs, and on models fine-tuned for simple190

text classification tasks (Saphra and Lopez, 2020;191

Jumelet and Zuidema, 2023; Chen et al., 2020;192

Singh et al., 2019). Our work builds on and gen-193

eralizes these results by relating Shapley interac-194

tions to diverse forms of linguistic structure (syn-195

tactic, semantic, and phonetic) on models trained196

on domain-general language tasks (generation for197

text, and ASR for speech)198

3 Text models: Interactions between199

tokens200

Our first experiments are on language models, mea-201

suring how known associations between tokens202

correlate with Shapley-based measures of feature203

interaction. We consider the influence of token204

position, idiomatic phrases, and syntax. We find 205

that masked LMs and Autoregressive LMs differ in 206

their interaction structure, especially in how they 207

respond to syntax. 208

Models and Datasets We run all of our exper- 209

iments on two models: the autoregressive model 210

GPT-2 (Radford et al., 2019) and the masked lan- 211

guage model BERT-base-uncased (Devlin et al., 212

2018). Each input sentence is unpadded and trun- 213

cated to 20 tokens, and we apply softmax to the 214

logit outputs to ensure that interactions across dif- 215

ferent examples are comparable. 216

All English language modeling experiments use 217

wikitext-2-raw-v1 (Merity et al., 2016) tok- 218

enized and dependency parsed (for syntax exper- 219

iments) with spaCy (Honnibal et al., 2020). We 220

resolve incompatibilities between the spaCy tok- 221

enizer and the model-specific tokenizers by assign- 222

ing overlapping tokens a syntactic distance of zero. 223

For the multiword expression experiments, we use 224

the AMALGrAM supersense tagger (Schneider 225

et al., 2014a), which identifies both strong and 226

weak (Schneider et al., 2014b) MWEs. 227

3.1 Baseline: the effect of position 228

One potential factor influencing interactions be- 229

tween tokens is the positional distance between 230

tokens Let’s say that we are calculating the interac- 231

tion between two tokens, xt1 and xt2 at positions t1 232

and t2. The token that the model is trying to predict 233

(i.e. the next token in autoregressive models, and 234

the masked token in masked models) is at position 235
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Figure 2: The results of our syntactic distance experiments (Section 3.2): how does syntactic distance correlate with
STII, controlling for the effect of position? A negative correlation means that tokens closer in the parse tree (low
syntactic distance) are more heavily entangled (high STII). Autoregressive models show a consistently negative
correlation in all significant cells, meaning that syntax is encoded in Shapley interactions. We stratify our results
by the two positional distance metrics in Section 3.1, so that we can calculate the effect of syntactic distance,
marginalizing out the effect of positional distance. Each cell displays a correlation between syntactic distance and
STII for a given interacting pair distance and prediction distance. We only provide results for cells where there
exists at least one direct syntactic modifier pair separated by the positional distance di and the Spearman correlation
given at that cell is statistically significance (p < 0.05). For our correlation calculation, we only include a syntactic
distance if there are at least 50 data points with that syntactic distance in our data set.

ttarget. There are two relevant positional distances236

that are likely to influence interaction.237

Firstly, the interacting pair distance, di, is the238

distance between the two tokens, defined in Equa-239

tion (5):240

di(xt1 , xt2 , xttarget) = t2 − t1 (5)241

Secondly, the prediction distance, dp, is the242

distance between the pair of tokens that we are243

calculating the interaction of, and the target token244

that the model is trying to predict, defined in Equa-245

tion (6):246

dp(xt1 , xt2 , xttarget) = min
t∈{t1,t2}

∣∣ttarget − t
∣∣ (6)247

For our position baseline experiments, we test248

how both interacting pair distance and prediction249

distance influence the STII between the two tokens250

xt1 and xt2251

Results Our results are presented in Figure 1,252

confirming that distance has an effect on STII in253

both autoregressive and masked models. This holds254

whether we are measuring distance as distance be-255

tween the interacting pair (interacting pair distance256

di) or distance between the last token in that pair257

and the target prediction token (prediction distance 258

dp). The dramatic decline of STII with increased 259

prediction distance implies that when these models 260

predict tokens, they treat the more distant context 261

as a bag of words rather than as complex syntactic 262

relations (Khandelwal et al., 2018). We also see 263

that closer tokens interact more strongly with each 264

other. 265

For the rest of our experiments, we will stratify 266

samples by both di and dp, so that we can mea- 267

sure the effects of linguistic structure beyond these 268

position effects that we demonstrate here. 269

3.2 Syntactic structure 270

Syntactic structure can also influence an LM’s pre- 271

dictions. If a model composed distant syntactic re- 272

lations in a linear way, it would treat the wider con- 273

text as though it were a bag of words. By instead 274

exhibiting strong interactions between syntactically 275

close tokens, the model would closely entangle the 276

meaning of a modifier with its head. We measure 277

syntactic distance by the number of dependency 278

edges traversed to connect a pair of tokens, a met- 279

ric encoded by projected representations in both 280

masked (Hewitt and Manning, 2019) and autore- 281

gressive (Murty et al., 2022) models. We verify 282

the role of modifier connections by the Spearman 283
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Figure 3: Results for our multiword expressions experiments: Shapley interactions are higher for tokens in multiword
expressions than tokens that are not. The results are controlled for prediction distance dp (different facets) and
interacting pair distance di (x-axis). Within each facet for each x-axis value, we can see that the STIIs for tokens in
Strong MWEs (blue) and Weak MWEs (orange) are significantly higher than the average over all pairs (green).

correlation between syntactic distance and STII,284

stratified by interacting pair distance and predic-285

tion distance.286

Results Figure 2 shows correlation between syn-287

tactic distance and STII. Our analysis reveals that,288

for autoregressive language models, all statistically289

significant correlations are negative. In contrast,290

non-autoregressive language models exhibit both291

positive and negative correlations. This finding292

aligns with Saphra and Lopez (2020)’s research293

on LSTMs showing that syntax is handled more294

consistently in autoregressive models, and with295

Ahuja et al. (2024), who in a different setting show296

that autoregressive models are more predisposed to297

syntax-style generalizations.298

The inconsistencies observed in non-299

autoregressive models may stem from their300

handling of positional proximity in less intuitive301

ways, complicating the relationship between302

syntactic and linear distance. The interaction303

between these two dimensions may be more304

difficult to manage in masked models, leading to305

the varied correlation outcomes.306

This finding suggests that we can interpret fea-307

ture interaction as a distinctly syntactic alterna-308

tive to the inherent distance encoding found in au-309

toregressive architectures (Haviv et al., 2022). In310

these models, the degree of interaction is learned311

to prioritize syntactic relationships rather than de-312

pending solely on positional information within the313

language modeling objective. This highlights a fun- 314

damental difference in how these models integrate 315

syntactic structure and distance. 316

3.3 Multiword expressions 317

While semantics is often treated as compositional 318

(the meaning of a sentence can be composed by 319

rules, following the syntax and the meaning of each 320

individual word), language is also characterized by 321

non-compositional, or idiomatic, phrases. These 322

are groups of words whose meaning can only be de- 323

rived when looking at the entire group rather than 324

the individual words. These word groups, known as 325

multiword expressions (MWEs), include idioms 326

like break a leg, where the isolated meaning of 327

each of the component words break, a, and leg fail 328

to compose the meaning of the entire expression. 329

Higher interaction values for the tokens in the id- 330

iom would indicate a less compositional treatment 331

of the whole phrase. 332

In these experiments, we compare interactions 333

between arbitrary pairs of tokens to interactions 334

between tokens contained within an MWE. The 335

extreme case where there is no Shapley residual 336

would imply perfect compositionality—after all, 337

linear addition is compositional—so our hypothesis 338

is that MWEs have a larger than average residual. 339

Results Figure 3 compares the STII between to- 340

kens that belong to the same MWE to the average 341

STII between all tokens, stratified by interacting 342
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Figure 4: Vowel-consonant interactions are higher than consonant-consonant interactions when comparing adjacent
inputs. There isn’t a clear relationship between interaction and the size of the interval around the phoneme boundary.
Confidence intervals are provided by bootstrap.

pair distance di and prediction distance dp. For343

both the autoregressive models (Figure 3a) and344

masked models (Figure 3b), STII is higher when345

the interacting pair is in a MWE: the blue and or-346

ange MWE lines are overall higher in STII than347

the green baseline. The effect is consistent across348

positional distances and more pronounced when349

predicting nearby tokens.350

4 Speech models: Interactions between351

phones352

Do speech models represent phonetic interactions?353

Consonants influence the realization of vowels, and354

in order to be able to separate vowels into a consis-355

tent discrete system a listener has to take these inter-356

actions into account (Rakerd, 1984; Rosner, 1994).357

Vowels are produced in a continuous space, without358

clear boundaries that delineate which vowel a spe-359

cific vocal tract positioning refers to (for example,360

a speaker can glide on the continuum between [i]361

and [e], but there is no clear analog of a continuum362

between [p] and [k]). The realization of vowels is363

influenced by the consonants that surround them.364

Despite the continuous nature of vowel phonetics,365

listeners perceive vowels as belonging to a few dis-366

crete classes of vowel phonemes. To derive this367

discrete phonological representation, a listener —368

or predictive speech model — would need to rep-369

resent the structure of consonant-vowel interaction370

in order to be able to take this into account. We use371

Shapley interactions to372

Since the inputs of speech models are not cleanly373

tokenized into phones, and the transition between374

phones is continuous and without a well-defined 375

boundary, we measure interaction by taking the 376

average pairwise interaction within a time inter- 377

val that includes a transition. For a given interval 378

length, we measure STII between all temporally 379

consecutive features pt1 and pt2 when predicting 380

the immediate next sound pt3 . Formally, the inter- 381

action N between different phonemes over a tem- 382

poral interval within range δ of the approximated 383

phone boundary time tb is: 384

r̄δ =

tb+δ∑
t1=tb−δ

STIIpt1 ,pt2 (7) 385

Note, however, that in the case where no acoustic 386

feature is sampled at exactly tb−δ, we instead start 387

the summation with t1 at the earliest timestamp 388

such that t1 ≥ tb−δ. Since all interaction pairs are 389

consecutive, the confounder of positional distance 390

is automatically removed for these experiments. 391

Models and Datasets Our experiments are run 392

on the Wav2Vec 2.0 model wav2vec2-base-960h 393

(Baevski et al., 2020), which is trained on 960 394

hours of English audio to predict the next sound 395

in a recording. When computing Shapley values, 396

ablated acoustic features are replaced with silence. 397

For all experiments, we use the Common Voice 398

dataset (Ardila et al., 2020) of English language 399

voice recordings, which are contributed by volun- 400

teers around the world and comprise 92 hours of 401

recorded speech. This compilation is character- 402

ized by its rich diversity, featuring a total of 1,570 403

unique voices. We preprocess the dataset by align- 404
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Figure 5: Consonant chart with a heat map indicating average interaction with acoustic features from adjacent
phonemes (samples from 0.1s around the phoneme boundary). Columns indicate the place of articulation while rows
indicate the manner of articulation. Only interactions for acoustic features within 0.1s range around the phoneme
boundary are considered. Consonants with more vowel-like articulations (lower down in the chart) tend to have
higher interactions with surrounding phonemes.

ing the audio recordings with their corresponding405

phonemes using p2fa_py3 1, an implementation of406

the Penn Phonetics Lab Forced Aligner (Yuan et al.,407

2008), which uses acoustic models to map the au-408

dio recordings to their corresponding phonemes.409

We preprocess all audio files to a WAV and stan-410

dard sampling rate and then use p2fa_py3 to detect411

and align phonemes within the speech to their cor-412

responding timeframes in the recordings, marking413

the start and end of each phoneme. It is impor-414

tant to note, as a caveat to the following results,415

that identifying the exact duration of a phoneme is416

not only challenging but undefined in practice, as417

the vocal tract is in a state of continuous transition418

between phonemes throughout an utterance.419

4.1 Interactions between consonants and420

vowels421

Vowels are formed with an open vocal tract that422

produces no turbulent airflow, with the specific423

position of each part of that anatomy largely de-424

termined by the surrounding consonants. There-425

fore, it is harder to map vowel sounds in isola-426

tion to their corresponding discrete phoneme than427

it is to map consonants (Rakerd, 1984). In Fig-428

ure 4, we compare the interactions over consonant-429

vowel boundaries and consonant-consonant bound-430

aries, and find that interactions are significantly431

higher in the consonant-vowel case. This implies432

that the model is taking this entanglement into ac-433

count, which is necessary for reaching a discrete434

phonological analysis of the input similar to human435

phonological perception.436

1https://github.com/jaekookang/p2fa_py3

4.2 The effect of consonant manner of 437

articulation 438

Not all consonants are equally stable in their ca- 439

pacity to be interpreted in isolation. In describing 440

consonants, the manner of articulation refers to a 441

hierarchy of vocal tract occlusion, ranging from the 442

stops (consonants like [p], formed by briefly block- 443

ing all air through the vocal tract) to the approx- 444

imants (consonants like [j] as in “universe”, that 445

produce only slightly more turbulent airflow than 446

vowels). Therefore, some consonants in practice 447

behave more like vowels, and we expect them to ex- 448

hibit more nonlinear interactions across phoneme 449

boundaries, as vowels do. 450

Our hypothesis is largely confirmed in Figure 5, 451

modeled on a International Phonetic Alphabet con- 452

sonant chart where row indicates the manner of ar- 453

ticulation. Although the pattern is not perfect, the 454

figure shows high cross-phoneme STII for more 455

sonorant consonants on the lower rows, which are 456

articulated like vowels with a more open oral cav- 457

ity. Sibilants ([s], [z], [Z], [S], [tS], [dZ]) also show 458

high cross-phoneme STII, which is also expected 459

as they are known to lie on a continuum (a con- 460

tinuous space of where the tongue articulates on 461

the roof of the mouth) where boundaries are influ- 462

enced by surrounding phonemes (Mann and Repp, 463

1980; Fleischer et al., 2013). Notable exceptions 464

to the pattern include [w] (a possible reason being 465

that, even though it is an approximant, it is articu- 466

lated in two places simultaneously: the lips and the 467

velum in the back of the mouth), and [h], which is 468

marked as a fricative in the IPA chart for varied rea- 469
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sons (Laufer, 1991) but is articulated largely like470

an approximant (Ladefoged, 1990).471

5 Future Work472

Our primary objective in this work has been to473

showcase the versatility of Shapley interactions in474

showing the ways that language models encode475

linguistic structure. Understanding structural repre-476

sentation, and especially how this can be nonlinear,477

is a long-standing problem and inquiry in NLP in-478

terpretability. This work suggests a number of open479

questions and follow-up problems, in addition to480

having the potential to be applied as is to different481

types of annotated linguistic structure.482

Speech has multiple layers of structure, as it483

comprises both an acoustic signal and the language484

structure underlying the utterance. Our investiga-485

tion of feature interactions is limited to the phonetic486

level, but future work may find the degree to which487

these multiple layers of linguistic structure affect488

nonlinear feature interactions. Do these speech489

models exhibit similar interaction patterns to the490

autoregressive language models we also analyze?491

Speech, often neglected in interpretability research,492

is ripe with open problems.493

While we compare the behavior of the mod-494

els trained on the masked and autoregressive ob-495

jectives, we do not compare any models that are496

trained on the same objective with different archi-497

tectures. The inductive bias and function of a given498

architecture are matters of great interest to many499

researchers in machine learning, and we believe500

that measuring nonlinear interactions can provide501

many insights into how specific models are similar502

and different.503

This work focuses on pairwise interactions, and504

so has not taken full advantage of the versatility of505

Shapley residuals as a tool. Higher order Shapley506

interactions (Sundararajan et al., 2020) provide a507

method of hierarchical clustering on features and508

introduce yet more nuance into approximations of509

linear and nonlinear behavior in neural networks.510

We also do not consider interactions of internal511

model features. We suggest that future work in512

the area should incorporate knowledge about the513

underlying semantics of the input as well as the514

model architecture.515

Finally, and most crucially, we believe that fol-516

lowup work in this area should be interdisciplinary.517

Speech, language, image processing, and other ar-518

eas that can benefit from interpretability are all519

well-studied, with decades or even centuries of sci- 520

entific research. By collaborating with specialists 521

in these data domains, we can potentially contribute 522

not only to the understanding of artificial models, 523

but also to the understanding of the natural phenom- 524

ena in question. Interpretability is an important new 525

area in the emerging field of AI for scientific under- 526

standing and discovery, and we encourage others 527

to start future work by finding domain experts to 528

choose questions worth asking. 529

6 Conclusions 530

In accordance with The Bitter Lesson (Sutton, 531

2019), researchers and engineers typically apply 532

machine learning methods generically, incorporat- 533

ing as little explicit data structure as possible. How- 534

ever, The Bitter Lesson does not apply to inter- 535

pretability. Instead, meaningful interpretations of 536

representational and mechanistic structures at scale 537

should be informed by the underlying structure of 538

data. Our results show how to use constituents, 539

phones, and object boundaries to build a scientific 540

understanding that goes beyond intuitions about 541

n-grams, acoustic features, and pixels. 542

These results have spanned modality and task. 543

By measuring feature interaction in language mod- 544

els, we present a novel way of describing how the 545

hierarchy of syntactic structure and the encoding 546

of non-compositional semantics both function in 547

model internal representations. In speech predic- 548

tion models, we show that consecutive acoustic fea- 549

tures near a phone transition have more nonlinear 550

interactions if the transition is between a consonant 551

and vowel, rather than between two consonants. 552

We also see that in this sense, sonorant consonants 553

behave more like vowels. 554

These studies do not focus on individual data 555

samples, but on patterns in the structure underly- 556

ing the data. Understanding these general patterns 557

requires greater domain expertise than is often re- 558

quired for sample-level interpretability research. 559

We hope to inspire future interdisciplinary work 560

with phonology, syntax, visual perception, and 561

other sciences that characterize corpus-wide struc- 562

tural phenomena. 563

7 Limitations 564

The work in this paper shows correlations between 565

pairwise Shapley interactions and structural rela- 566

tionships between two inputs. Both the pairwise 567

aspect, and the fact that we only do correlational 568

8



analyses, are limitations. There are two ways to569

expand the analysis to make it more descriptive and570

informative about the internal processing of models.571

Firstly, we could look beyond pairwise interactions,572

creating a hierarchy of interaction: single feature,573

pairwise, groups of three features, etc. This hierar-574

chy of interaction could be related to more subtle575

and hierarchical features. While currently we’re576

limited to pairwise features like syntactic proximity,577

we could more fully analyze complex tree structure578

if we had a hierarchy of interaction effects. The579

second way in which this analysis could be made580

stronger would be to go beyond looking at correla-581

tions, and investigate the causal predictive power582

of Shapley interactions, and the ways in which they583

change the structural processing and effects of lan-584

guage models.585

The analyses in this paper are not on model sizes586

close to the order of magnitude of state-of-the-art587

production models, meaning that the specifics of588

our results might not be relevant to the models589

that are having the most effect on the world at590

the moment. Our paper is meant to showcase the591

applicability of STIIs to relating model internals to592

structure in the input, and like all interpretability593

methods introduced on smaller models, we hope594

that the viewpoint and methodologies of this paper595

can be applied to larger models in the future as the596

field and our understanding develops.597

References598

Ashish Agarwal, Kedar Dhamdhere, and Mukund Sun-599
dararajan. 2019. A new interaction index inspired by600
the taylor series. CoRR, abs/1902.05622.601

Kabir Ahuja, Vidhisha Balachandran, Madhur Pan-602
war, Tianxing He, Noah A Smith, Navin Goyal,603
and Yulia Tsvetkov. 2024. Learning syntax without604
planting trees: Understanding when and why trans-605
formers generalize hierarchically. arXiv preprint606
arXiv:2404.16367.607

R. Ardila, M. Branson, K. Davis, M. Henretty,608
M. Kohler, J. Meyer, R. Morais, L. Saunders, F. M.609
Tyers, and G. Weber. 2020. Common voice: A610
massively-multilingual speech corpus. In Proceed-611
ings of the 12th Conference on Language Resources612
and Evaluation (LREC 2020), pages 4211–4215.613

Aryaman Arora, Dan Jurafsky, and Christopher Potts.614
2024. Causalgym: Benchmarking causal inter-615
pretability methods on linguistic tasks. arXiv616
preprint arXiv:2402.12560.617

Alexei Baevski, Henry Zhou, Abdelrahman Mohamed,618
and Michael Auli. 2020. wav2vec 2.0: A framework619

for self-supervised learning of speech representations. 620
Preprint, arXiv:2006.11477. 621

Yonatan Belinkov. 2021. Probing classifiers: 622
Promises, shortcomings, and advances. Preprint, 623
arXiv:2102.12452. 624

Javier Castro, Daniel Gómez, and Juan Tejada. 2009. 625
Polynomial calculation of the shapley value based on 626
sampling. Comput. Oper. Res., 36:1726–1730. 627

Hanjie Chen, Guangtao Zheng, and Yangfeng Ji. 2020. 628
Generating hierarchical explanations on text classi- 629
fication via feature interaction detection. Preprint, 630
arXiv:2004.02015. 631

Grzegorz Chrupała, Bertrand Higy, and Afra Alishahi. 632
2020. Analyzing analytical methods: The case of 633
phonology in neural models of spoken language. In 634
Proceedings of the 58th Annual Meeting of the Asso- 635
ciation for Computational Linguistics, pages 4146– 636
4156, Online. Association for Computational Lin- 637
guistics. 638

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 639
Kristina Toutanova. 2018. BERT: pre-training of 640
deep bidirectional transformers for language under- 641
standing. CoRR, abs/1810.04805. 642

Kawin Ethayarajh and Dan Jurafsky. 2021. Attention 643
flows are shapley value explanations. In Proceedings 644
of the 59th Annual Meeting of the Association for 645
Computational Linguistics and the 11th International 646
Joint Conference on Natural Language Processing 647
(Volume 2: Short Papers), pages 49–54. 648

David Fleischer, Michael Wagner, and Meghan Cla- 649
yards. 2013. A following sibilant increases the am- 650
biguity of a sibilant continuum. In Proceedings of 651
Meetings on Acoustics, volume 19. AIP Publishing. 652

Fabian Fumagalli, Maximilian Muschalik, Patrick Kol- 653
paczki, Eyke Hüllermeier, and Barbara Hammer. 654
2023. Shap-iq: Unified approximation of any-order 655
shapley interactions. Preprint, arXiv:2303.01179. 656

Jon Gauthier, Jennifer Hu, Ethan Wilcox, Peng Qian, 657
and Roger Levy. 2020. Syntaxgym: An online plat- 658
form for targeted evaluation of language models. In 659
Proceedings of the 58th Annual Meeting of the Associ- 660
ation for Computational Linguistics: System Demon- 661
strations, pages 70–76. 662

Atticus Geiger, Hanson Lu, Thomas Icard, and Christo- 663
pher Potts. 2021. Causal abstractions of neural net- 664
works. Advances in Neural Information Processing 665
Systems, 34:9574–9586. 666

Michel Grabisch and Marc Roubens. 1999. “an ax- 667
iomatic approach to the concept of interaction among 668
players in cooperative games”. International Journal 669
of Game Theory, 28:547–565. 670

Adi Haviv, Ori Ram, Ofir Press, Peter Izsak, and Omer 671
Levy. 2022. Transformer language models without 672
positional encodings still learn positional information. 673
Preprint, arXiv:2203.16634. 674

9

https://arxiv.org/abs/1902.05622
https://arxiv.org/abs/1902.05622
https://arxiv.org/abs/1902.05622
https://arxiv.org/abs/2006.11477
https://arxiv.org/abs/2006.11477
https://arxiv.org/abs/2006.11477
https://arxiv.org/abs/2102.12452
https://arxiv.org/abs/2102.12452
https://arxiv.org/abs/2102.12452
https://api.semanticscholar.org/CorpusID:42828306
https://api.semanticscholar.org/CorpusID:42828306
https://api.semanticscholar.org/CorpusID:42828306
https://arxiv.org/abs/2004.02015
https://arxiv.org/abs/2004.02015
https://arxiv.org/abs/2004.02015
https://doi.org/10.18653/v1/2020.acl-main.381
https://doi.org/10.18653/v1/2020.acl-main.381
https://doi.org/10.18653/v1/2020.acl-main.381
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2303.01179
https://arxiv.org/abs/2303.01179
https://arxiv.org/abs/2303.01179
https://doi.org/10.1007/s001820050125
https://doi.org/10.1007/s001820050125
https://doi.org/10.1007/s001820050125
https://doi.org/10.1007/s001820050125
https://doi.org/10.1007/s001820050125
https://arxiv.org/abs/2203.16634
https://arxiv.org/abs/2203.16634
https://arxiv.org/abs/2203.16634


John Hewitt, Kawin Ethayarajh, Percy Liang, and675
Christopher Manning. 2021. Conditional probing:676
measuring usable information beyond a baseline. In677
Proceedings of the 2021 Conference on Empirical678
Methods in Natural Language Processing, pages679
1626–1639, Online and Punta Cana, Dominican Re-680
public. Association for Computational Linguistics.681

John Hewitt and Christopher D. Manning. 2019. A682
structural probe for finding syntax in word represen-683
tations. In Proceedings of the 2019 Conference of684
the North American Chapter of the Association for685
Computational Linguistics: Human Language Tech-686
nologies, Volume 1 (Long and Short Papers), pages687
4129–4138, Minneapolis, Minnesota. Association for688
Computational Linguistics.689

Matthew Honnibal, Ines Montani, Sofie Van Lan-690
deghem, and Adriane Boyd. 2020. spacy: Industrial-691
strength natural language processing in python.692

Jennifer Hu, Kyle Mahowald, Gary Lupyan, Anna693
Ivanova, and Roger Levy. 2024. Language mod-694
els align with human judgments on key grammatical695
constructions. Proceedings of the National Academy696
of Sciences, 121(36):e2400917121.697

Jaap Jumelet and Willem Zuidema. 2023. Feature inter-698
actions reveal linguistic structure in language models.699
In Findings of the Association for Computational700
Linguistics: ACL 2023, pages 8697–8712, Toronto,701
Canada. Association for Computational Linguistics.702

Urvashi Khandelwal, He He, Peng Qi, and Dan Jurafsky.703
2018. Sharp nearby, fuzzy far away: How neural lan-704
guage models use context. In Proceedings of the 56th705
Annual Meeting of the Association for Computational706
Linguistics (Volume 1: Long Papers), pages 284–294,707
Melbourne, Australia. Association for Computational708
Linguistics.709

Enja Kokalj, Blaž Škrlj, Nada Lavrač, Senja Pollak, and710
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