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ABSTRACT

We find that the cross-entropy loss curves of neural language models empirically
adhere to a scaling law with learning rate (LR) annealing over training steps:

L(s) = L0 +A · S−α
1 − C · S2,

where L(s) is the validation loss at step s, S1 is the area under the LR curve, S2 is
the LR annealing area, and L0, A, C, α are constant parameters. This formulation
accounts for two main effects: (1) power-law scaling over data size, and (2) the
additional loss reduction during LR annealing. Unlike previous studies that only
fit losses at final steps, our formulation captures the entire training curve, allowing
for parameter fitting using losses from any training step. Applying the scaling law
with LR annealing and fitting only one or two training curves, we can accurately
predict the loss at any given step under any learning rate scheduler (LRS). This ap-
proach significantly reduces computational cost in formulating scaling laws while
providing more accuracy and expressiveness. Extensive experiments demonstrate
that our findings hold across a range of hyper-parameters and model architectures
and can extend to scaling effect of model sizes. Moreover, our formulation pro-
vides accurate theoretical insights into empirical results observed in numerous
previous studies, particularly those focusing on LR schedule and annealing. We
believe that this work is promising to enhance the understanding of LLM training
dynamics while democratizing scaling laws, and it is helpful to guide both re-
search and industrial participants in refining training strategies for further LLMs.

1 INTRODUCTION

In recent years, large language models (LLMs) have garnered significant academic and industrial
attention (Brown et al., 2020; Touvron et al., 2023). The scaling law suggests that the validation
loss of language models follow a power-law pattern as model and data sizes increase (Hestness
et al., 2017; Kaplan et al., 2020; Henighan et al., 2020). This law provides a powerful framework
for forecasting LLM performances before large scale training by fitting losses at smaller scales
(OpenAI, 2023; DeepSeek-AI, 2024; Dubey et al., 2024). Numerous studies have explored on the
formulation to model the scaling effect of LLMs under various different settings (Bahri et al., 2021;
Hernandez et al., 2021; Caballero et al., 2022; Michaud et al., 2023; Muennighoff et al., 2023).

However, typical scaling law formulations focus only on the final loss at the end of training (Hoff-
mann et al., 2022). Specifically, previous approaches generally rely on a set of training runs and
fit the scaling law curve solely on the final loss from each run, while ignoring middle losses during
training which do not follow traditional scaling laws. This approach underutilizes the training com-
pute and fails to capture the training dynamics within each run. Further, the application of scaling
laws in LLM developments is limited since the loss curve through the whole training process is
not modeled. An expressive formulation that models full loss curves enables prediction of future
training dynamics and also offers insights on understanding the learning process of LLMs.

In this study, we propose a scaling law that models the full loss curve within a complete LLM
training run. Specifically, we dive deeper into the training dynamics during LR annealing, and
incorporate a LR annealing factor into the traditional scaling law formula to formulate the process.
This design is motivated by the observed correlation between LRS and loss curves, where loss
gradually decreases as we consume more training steps 1 and then sharply declines when the LR

1In this paper, we use training steps to quantify the amount of consumed data, as they are typically propor-
tional, with data amount calculated as training steps multiplied by batch size.
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Figure 1: Visualization of S1 and S2 at the 20-th step of a cosine LR scheduler. S1 is the forward
area, i.e., sum of red grid areas; S2 is the decayed annealing area, i.e., weighted sum of blue grid
areas, where lighter shades indicate smaller weights. Both S1 and S2 contribute to loss reduction,
and balancing their values is crucial for achieving the lowest possible final loss.

undergoes significant annealing (Loshchilov & Hutter, 2016; Smith et al., 2018; Ibrahim et al., 2024;
Hu et al., 2024). We propose that the model’s validation loss L(s) at step s is determined by two
main factors: the forward area S1 under the LR curve and the degree of LR annealing S2:

L(s) = L0 +A · S−α
1 − C · S2,

S1 =

s∑
i=1

ηi, S2 =

s∑
i=1

i∑
k=1

(ηk−1 − ηk) · λi−k,
(1)

where ηi is the learning rate at step i, and λ is a hyper-parameter representing the decay factor for
LR annealing momentum (see Sec. 3 in detail),which typically ranges from 0.99 to 0.999. L0, A, C,
α are undetermined positive constants. S1 is also known as the summed learning rate (Kaplan et al.,
2020), and S2 represents the LR annealing area. A visualization of S1 and S2 is provided as Fig. 1.

Eq. 1 describes how loss changes for each step in a full loss curve during training. In Eq. 1, the
term L0 + A · S−α

1 represents a rectified scaling law that captures the expected loss decreases as a
power-law function of the number of training steps. The new term −C · S2 accounts for the further
loss drop due to learning rate annealing. Remarkably, this simple formulation accurately describes
the validation loss at any training step across various LRS and even allows us to predict the loss
curve for unseen LRS. For example, we can fit Eq. 1 to the full loss curve of constant and cosine
LRS with 20K total steps (Fig. 2), and then predict the full loss curve for various unseen LRS with
longer total steps (e.g. 60K) (Fig. 3).

We validate our proposed equation through extensive experiments and find that: (1) Our formulation
performs consistently well across various hyper-parameters and model architectures; (2) Eq. 1 can
be extended to incorporate other scaling factors, such as model sizes; (3) Our proposed equation
accurately fits the loss curves of open-sourced models; (4) Our formulation can be used to verify
and explain numerous previous findings regarding LR annealing and scheduling.

In Sec. 3, we derive the scaling law formulation with LR annealing and elucidate the potential theory
underpinning our formulation. Extensive experiments are conducted to validate the formulation. In
Sec. 4, we apply our formulation to verify and explain the empirical results from various previous
studies. Our approach offers theoretical insights into the crux of loss drop, LR schedule, and LR
annealing, enabling LLM participants to better understand training dynamics of LLM and select op-
timal training recipes in advance. In Sec. 5, we compare our approach to typical scaling law formula,
such as the Chinchilla scaling law (Hoffmann et al., 2022). We show that our formulation is more
general and requires significantly less compute to fit, which greatly democratizes the development
of LLMs and scaling laws.
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(a) LR curves.
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(b) Loss curves.
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(c) Zoomed-in view.

Figure 2: Using Eq. 1 to fit full loss curves yield by constant and cosine LRS. Total steps = 20K,
ηmax = 2× 10−4, ηmin = 0. The fitted equation is L(s) = 2.628 + 0.429 · S−0.550

1 − 0.411 · S2.
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(a) Full loss curve prediction of the cosine LRS (60K steps, ηmin = 0.1 · ηmax).
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(b) Full loss curve prediction of the multi-step cosine LRS (80% + 10% + 10%) (DeepSeek-AI, 2024).
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(c) Full Loss curve prediction of the WSD LRS (20% cosine annealing to ηmin = 0) (Hu et al., 2024).
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(d) Full Loss curve prediction of the Cyclic LRS (Smith, 2017).

Figure 3: Using the fitted equation from Fig. 2 to predict full loss curves for unseen LRS with 60K
total steps. The left, middle, and right columns present the LR curve, the loss curve, and a zoomed-
in view of loss curve, respectively. Warmup steps (500) are not shown in this figure. The fitted
equation accurately predicts each loss curve, particularly for capturing the trend of loss changes as
the LR varies. Notable, all LRS and loss curves shown here were unseen during the fitting in Fig.
2. The mean prediction errors across different LRS is as low as ∼ 0.2%.
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2 PRELIMINARY

Scaling Laws. Cross-entropy loss of language models on the validation set is a reliable indicator
of LLMs’ performance on downstream tasks (Caballero et al., 2022; Du et al., 2024). Kaplan et al.
(2020) empirically discovered a power-law relationship between validation loss L and three factors:
model size N , dataset size D, and training compute. As an application of scaling law, Hoffmann
et al. (2022) developed Chinchilla, a compute-optimal LLM, by balancing model size and dataset
size. They used a simplified and intuitive scaling law equation: L(D,N) = L0+A·D−α+B ·N−β ,
where L0, A, B, α, β are positive constants. Traditional scaling law formulations fit only the loss
at the final training step, while ignoring losses from other steps. Collecting a new loss value of data
size requires launching a another training run with the same LRS, which is resource-intensive.

Learning Rate Annealing. Learning rate annealing is a widely-used technique in training neural
networks, where the learning rate is progressively reduced from a maximum to a minimum value
following a pre-defined LRS. Various LRS schemes have been proposed to improve the performance
and stability of model training (Loshchilov & Hutter, 2016). For example, the popular cosine LRS
reduces the LR in a cosine-like pattern over full training steps. WSD LRS (Hu et al., 2024) keeps a
constant LR for the majority of training, and applies annealing only in the final (e.g. 10% ∼ 20%)
steps. In LLM training, it has been widely observed that a more pronounced decrease in the learning
rate often results in a more precipitous drop in the validation loss.

3 OBSERVATIONS AND EXPERIMENTS

In this section, we elaborate the origin, the intuition, and the experimental basis behind Eq. 1. We
then validate our formula through extensive experiments.

3.1 SIMILARITY BETWEEN LEARNING RATE, GRADIENT NORM, AND LOSS
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Figure 4: The shapes of LR (top), gradient norm
(medium), and validation loss (bottom) curves ex-
hibit high similarity across various LRS (labeled
as different colors).

The first key observation is that the shapes of
LR curve, gradient norm curve, and validation
loss curve are quite similar across various LRS
when training LLMs (Fig. 4). This suggests an
implicit connection between learning rate and
loss, where gradient norm could be the bridge.

Scaling Laws for Constant LRS. A constant
LRS is a special LRS, where every training
step can be viewed as an endpoint of the LRS.
Notably, the Chinchilla scaling law (Hoffmann
et al., 2022) exactly fits losses of last steps, i.e.,
LRS endpoints. Therefore, it is expected that
the validation loss of all steps under a constant
LRS adheres to the Chinchilla scaling law, i.e.,
a power-law over training step s.

Extra Loss Changes in LR Annealing. Unlike
a constant LRS, LR annealing (or re-warmup)
brings significant local changes in the loss (see Fig. 4), causing the full loss curve to deviate from
the traditional power-law formulation that consider only the training steps s. We hypothesis that
such loss changes can be captured by an additional LR (η) related term, i.e.,

L(s) = L0 +A · s−α−f(η), (2)

where the first two terms follow traditional scaling laws, while the last term denotes the extra loss
change brought by LR annealing. Recall the similarity between learning rate and loss curves, we
can form an initial guess for f(η) as f(η) = C · η, where C is a positive constant.

Training Discount in Annealing. The form of Eq. 2 is still imperfect. Note that the gradient
norm ∥g∥ decreases almost proportionally with LR during the annealing process (shown in Fig. 4).
Thus, the amount of parameter movement (approximately η · ∥g∥ per step) in the LR annealing
stage declines at an almost quadratic rate compared to stages before annealing. As the parameter
movement become smaller, the change in loss also slows down accordingly. Therefore, the loss drop

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

39000 40000 41000 42000 43000 44000 45000
Steps

2.69

2.70

2.71

2.72

2.73

2.74

2.75

2.76

2.77

Va
lid

at
io

n 
Lo

ss

1.1K Delay Steps
0.8K Delay Steps

0.4K Delay Steps

0.3K Delay Steps

Ground-Truth Loss-Annealing-0.1K
Ground-Truth Loss-Annealing-0.5K
Ground-Truth Loss-Annealing-1K
Ground-Truth Loss-Annealing-2K
Turning Point of Loss

0.0

0.5

1.0

1.5

2.0

Le
ar

ni
ng

 R
at

e 
×1

0
4

Learning Rate
Turning Point of LR

(a) Different delay steps in the annealing process as-
sociated with different annealing steps (0.1K, 0.5K,
1K and 2K).
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Figure 5: The delay phenomenon between the LR and validation loss curves. This phenomenon
suggests that LR annealing (re-warmup) has momentum.

brought by the power law term (i.e., the first two terms in Eq. 2) should also diminish during LR
annealing. This consideration leads to an improved equation:

L(s) = L0 +A · S−α
1 −f(η), S1 =

s∑
i=1

ηi, (3)

where S1 is the forward area, i.e., the area under the LR curve (as visualized in Fig.1), which could
be approximately interpreted as the total amount of parameter updates.

3.2 LR ANNEALING MOMENTUM

Another key observation is that LR annealing has momentum. To refine the formulation of f(η),
we design a special LRS where the LR decreases linearly from ηmax to ηmin and then increases.
The increasing stage always has a fixed slope, reaching the maximum value in 5K steps, while the
slope of the decreasing stage is varied, with durations of 0.1K, 0.5K, 1K, and 2K. Symmetrically, we
design another LRS where the LR increases linearly from ηmin to ηmax and then decreases. Fig. 5
shows the corresponding LR and loss curves.

We observe a delay phenomenon between the LR and the validation loss. Firstly, the turning point
of the validation loss curve consistently lags behind the turning point of the LR curve, indicating
that the validation loss continuous along its previous trajectory for some steps even after the LR
changes direction. Secondly, the steeper the slope of the LR annealing (or re-warmup), the more
pronounced the delay phenomenon becomes. Thirdly, given the same LR slope, the left figure
(where LR decreases then increases) consistently shows a longer delay compared to the right figure
(where LR increases then decreases).

Interestingly, this phenomenon closely resembles the physical experiment of a small ball rolling
down a slope. The steeper the slope, the faster the ball accelerates. When the ball lands, the accumu-
lated momentum causes the ball to slide further. Inspired by this delay phenomenon, we hypothesize
that f(η), the loss reduction induced by LR annealing, has cumulative historical formation so that
the past change of learning rate will affect the following loss curve for a few steps. In summary,
learning rate annealing exhibits momentum. To capture this, we define f(η) = C · S2, where S2 is
calculated as:

mi = λ ·mi−1 + (ηi−1 − ηi),

S2 =

s∑
i=1

mi =

s∑
i=1

i∑
k=1

(ηk−1 − ηk) · λi−k,
(4)

where mi is the LR annealing momentum at step i (m1 = 0), and ∆η = ηi−1 − ηi denotes the LR
annealing amount at step i. λ is the decay factor that signifies how much historical information is
retained. We find that λ values between 0.99 and 0.999 generally works well. In contrast, λ = 0

5
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implies no momentum effect, reducing f(η) to C ·ηs, which degenerate to the initial form mentioned
above. Note that S2 applies not only to LR annealing (S2 > 0), but also to LR re-warmup (S2 < 0).
This means that our equation is applicable to scenarios like continual pre-training, where LR re-
warmup plays an important role in improving outcomes. Fig. 1 presents a visualization of S2.

3.3 FINAL FORMULATION

We formally present our formulation for the scaling law with LR annealing:

Scaling Law with LR Annealing. Given the same training and validation dataset, the same model
size, the same training hyper-parameters such as warmup steps, max learning rate ηmax and batch
size, the language modeling loss at training step s empirically follows the equation L(s) = L0 +
A · S−α

1 − C · S2, where S1 and S2 are defined in Eq. 1. L0, A, C, α are positive constants.

Our formulation describes the loss of each training step across different LRS. It allows fitting based
on a simpler LRS with shorter training steps and enables the prediction of validation losses for more
complex LRS with longer training steps. Notably, loss curves with different max learning rates have
different values of L0, A, C, α, and our scaling law does not fit divergent and collapsed loss curves
(e.g., overly large LR). We also discuss some possible corner cases (i.e., η = 0) in Appendix H.3.

Loss Surface as a Slide. To better understand our formulation, we view the loss surface of language
models as a slide in Fig. 6. The optimization process can be seen as sliding down the slide according
to the power-law scaling (orange line), while oscillating on the inner wall (blue dashed line). When
the LR anneals (red line), the amplitude of the oscillation decreases, resulting in a reduction in loss.
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Constant LR

Annealing LR

Figure 6: Loss surface of language models as
a slide after simplification. Optimization di-
rection could be decomposed into two direc-
tions: power-law scaling direction (S1, slid-
ing down) and annealing direction (S2, inner
height of the slide).

Balance between S1 and S2. Note that in Eq.1,
∂L
∂S1

< 0 and ∂L
∂S2

< 0 always hold, indicating that
increases in both S1 and S2 help to reduce the loss.
However, as shown intuitively in Fig. 1, there ex-
ists delicate balance between S1 and S2. When LR
begins to anneal and S2 starts to increase, the for-
ward area S1 of subsequent steps starts to diminish
instead. Our equation aptly describes this delicate
balance. In Sec. 4, we elaborate this topic in detail.

3.4 EXPERIMENTS

LR Warmup. LR warmup is important for train-
ing LLMs. During the warmup stage, neural net-
works are prone to random optimization, resulting
in unpredictable outcomes (Hestness et al., 2017).
Various studies, along with our own pilot experi-
ments (Appendix A), show that LR warmup signif-
icantly accelerates model convergence. High gra-
dient norms are usually observed during the LR
warmup stage, especially in the initial steps of train-
ing (see Fig. 4). This indicates that model param-
eters undergo substantial updates during this stage.
Therefore, in all our experiments, we linearly warmup LR to reach ηmax and compute S1 and S2

assuming a constant LR value ηmax in the warmup stage.

Experimental Setups and Fitting Details. We use standard experimental setups for LLM pre-
training. To verify the robustness of our formulation across different experimental settings, we have
five distinct experimental setups (see Appendix C). We adopt λ = 0.999 in our all experiments.
We follow the fitting approach of Hoffmann et al. (2022) to obtain parameters in our equation (see
Appendix B for more details).

Fitting and Prediction Results. We fit Eq.1 on the loss curves under constant and cosine LRS
with 20K total steps (see Fig. 2), and then predict the full loss curves under several unseen LRS
with 60K total steps (see Fig. 3). The results show an almost perfect fit, achieving a coefficient of
determination (R2) greater than 0.999. This underscores the robust capability of our equation to
accurately fit loss curves across diverse LRS using a single parameter tuple.
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Figure 7: The loss drop brought by LR annealing (left) and the N -extended full loss curve fitting
and prediction (right).

The prediction results in Fig. 3 indicate that our formulation is broadly applicable and generalizes
robustly across four unseen LRS, with a mean prediction error as low as 0.2%. Moreover, our
equation can accurately predict losses even for complex LRS that include multiple LR re-warmup
stages (Fig. 3d), despite that the loss curves used for fitting do not contain any LR re-warmup stages.

Extensive Experiments on Different Setups. To demonstrate the broad applicability of our pro-
posed equation, we conduct additional fitting and prediction experiments using various setups. (1)
We use an alternative set of training hyper-parameters (Appendix D.1); (2) We test our equation on
the Mixture of Experts (MoE) architecture (Appendix D.2); (3) We apply our equation to predict
loss curves for a much longer training run involving a 1.7B parameter model trained on 1.4T tokens
(Appendix D.3). (4) We fit the loss curves of open-sourced models, including BLOOM-176B trained
on 300B tokens (BigScience, 2022) and OLMo-1B trained on 2T tokens (Groeneveld et al., 2024)
(Appendix D.4). All experiments produce excellent results, indicating that our equation is effec-
tive across diverse experimental setups, including different training hyper-parameters, architecture,
model sizes, and dataset scales. We also present the ablation studies on S1 and S2 in Appendix D.5,
which shows each component in our formulation is important and indispensable.

3.5 EXTENSION TO MODEL SIZE SCALING

Loss Drop During Annealing Scales with Model Size N . We explore the effect of model size N
on the loss drop during the annealing stage. Specifically, we compare the final losses obtained with
a constant LRS and a WSD LRS (10% cosine annealing to ηmin = 0) to estimate the loss drop due
to LR annealing. We conduct this experiment on different total steps and different model sizes. The
experimental results are shown in Fig. 7a. It suggest that the loss drop from LR annealing scales
with both annealing steps and model sizes. This implies that the annealing area S2 in our equation
should also increase as the model size N increases. We suppose there is a simple relationship of
S2 ∝ Nγ where γ is a positive constant.

Model Size Scaling. Building on the experiments and analysis above, we extend our proposed Eq.1
to incorporate model size scaling, based on traditional scaling laws:

L(s,N) = L0 +A · S−α
1 +B ·N−β − C · S2 ·Nγ , (5)

where N is the number of non-embedding model parameters, and B, β, γ are positive constants
related to N . We realize S2 ∝ Nγ via a multiplier Nγ to the original annealing term −C · S2.

Fitting and Prediction with Model Size. We validate Eq. 5 by fitting the full loss curves of models
with varying sizes. We then apply the obtained equation to predict full loss curve on the unseen
largest model size. Results in Fig. 7b show an almost perfect fit (R2 > 0.998) and prediction for
entire training dynamics of larger-scale models. This indicates the effectiveness and robustness of
our proposed N -extended equation. Additional N -extended experiments with other setups further
confirm the robustness of our formulation (see detail in Appendix D.6).
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4 APPLICATION

We apply our proposed formulation to validate and provide a theoretical explanation for numer-
ous existing experimental findings regarding the training dynamics of language models. These key
insights also guide researchers in selecting critical LRS before initiating model training. An inter-
esting summary is that, the art of learning rate schedule lies in the delicate balancing act between
forward area and annealing area.

4.1 DETERMINING COSINE CYCLE LENGTH AND MINIMUM LR IN COSINE LRS.
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Figure 8: Predicted loss curves of different
cycle length T and min LR in cosine LRS.
The results well align with previous studies.

Many papers have found that in LLM pre-training
using cosine LRS, setting the cosine cycle length T
as the total steps S, and setting min LR as nearly 0
(rather than 10% max LR) can lead to the optimal
loss (Hoffmann et al., 2022; Hu et al., 2024; Hägele
et al., 2024; Parmar et al., 2024). We theoretically
validate this observation using our equation in Fig. 8.
The predicted loss curve with T = S and a minimum
LR of 0 indeed achieves the optimal loss in the final
step. Moreover, our equation gives a quite intuitive
explanation: setting T > S leads to incomplete an-
nealing, while T < S leads to a small forward area
S1 due to early annealing. Thus, the optimal con-
figuration is to set T equal to S. Also, setting the
minimum LR to 0 maximizes the annealing amount,
thereby increasing the annealing area S2, which fa-
cilitates lower final loss.

4.2 IT VERIFIES AND EXPLAINS WHY WSD AND MULTI-STEP COSINE LRS ARE BETTER.
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(a) Learning rate curves of three types of LRS.
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Figure 9: The comparison between S1-item and negative S2-item in different LRS.

Recent studies have shown that WSD LRS (Hu et al., 2024) and multi-step cosine LRS (DeepSeek-
AI, 2024) result in lower loss compared to the traditional cosine LRS. We validate and elucidate this
finding using our proposed equation. Fig. 9 shows the learning rate curve (left) and the predicted
loss drop (right) for different LRS. The results suggest that for WSD and multi-step cosine LRS,
the negative S2-item (−C · S2) is slightly larger than that of the cosine LRS, whereas the S1-
item (A · S−α

1 ) is significantly lower. Specifically, both the WSD LRS and multi-step cosine LRS
unintentionally employ strategies that marginally reduces S2 but substantially increases S1, leading
to an overall decrease in validation loss.

4.3 DETERMINING OPTIMAL ANNEALING RATIO OF WSD SCHEDULER.

In the case of WSD LRS, it is crucial to ascertain the optimal annealing ratio for training steps.
Hägele et al. (2024) found that there is an optimal annealing ratio for WSD LRS, and both exces-
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Figure 10: Illustration of the predicted loss in relation to the ratio of annealing steps and the forward
area in WSD LRS (cosine annealing), presenting parabola-like curves, with a distinct optimal loss.

sively high or low annealing ratios lead to sub-optimal model performance. This phenomenon can
be further elucidated through our proposed equation. Specifically, a high annealing ratio results in a
significant reduction of the forward area S1 while a low annealing ratio leads a diminished anneal-
ing area S2. Our scaling law equation describes the trade-off between the forward area S1 and the
annealing area S2 about the annealing ratio.

Fig. 10 depicts the final loss predicted by our equation for various annealing ratios and total training
steps. The predictions form parabola-like curves, and align well with the actual experimental results
reported in previous studies. This suggests that a moderate annealing ratio, typically around 10% to
20%, is optimal, as it balances S1 and S2 to maximize their combined effect, thereby minimizing
the overall validation loss. Moreover, our equation can directly predict the optimal annealing ratio
for different total steps without large-scale experiments, which saves a lot of resources.

4.4 MANY OTHER TAKEAWAYS

Moreover, we use our equation to verify and explain more phenomena as follows: (1) Appendix G.1:
An empirical reason of loss dropping more sharply when LR anneals (Loshchilov & Hutter, 2016;
Ibrahim et al., 2024; DeepSeek-AI, 2024). (2) Appendix G.2: the comparison between constant and
cosine LRS, aligned with previous works (Hu et al., 2024). (3) Appendix G.3: how to choose the
optimal annealing function in WSD LRS, aligned with previous works (Hägele et al., 2024). (4)
Appendix G.4 and G.5: how to re-warmup (including re-warmup peak LR and steps) in continual
pre-training, aligned with previous works (Gupta et al., 2023). Given the instances above, we believe
that our equation can help analyze and select more training recipes in specific scenarios.

5 COMPARISON WITH CHINCHILLA SCALING LAW

5.1 REDUCTION TO CHINCHILLA SCALING LAW

Our scaling law equation can predict the full loss curve across any given LRS. In this section, we
show that our equation has no contradiction with traditional scaling laws, and it is a generalized
form of the Chinchilla scaling law (Hoffmann et al., 2022). Specifically, all the final loss values for
different total training steps following our equation should also follow a power-law relationship. We
prove this by dividing two conditions: (1) constant LRS, and (2) other LRS.

Constant LRS. In the case of a constant LRS, the annealing area S2 is always zero and the forward
area S1 = ηmax · s, where s is the step, and ηmax is the constant maximal LR. Thus, the whole
train loss curve becomes: L(s) = L0 + (A · η−α

max) · s−α = L0 + A′ · s−α, which aligns with the
Chinchilla scaling law equation.

Other LRS. For non-constant LRS, we use a statistical approach to show that our equation can be
reduced to the Chinchilla scaling law. Specifically, we verify whether the Chinchilla scaling law ad-
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Table 2: The comparison of computational cost for fitting different scaling law equations.

Equation LRS Computational cost Applicable to other LRS?
Chinchilla Cosine 100% No
Chinchilla WSD (20% annealing) 21.6% No
Chinchilla WSD (10% annealing) 11.8% No

Ours Any (except constant) <1.0% Yes

equately fits the endpoints of loss curves predicted by our equation. The parameter tuple of our equa-
tion is (L0, A,C, α). We randomly sample different parameter tuples (detailed in Appendix E.1).

Table 1: Mean and std of R2 for differ-
ent parameter fits.

LRS mean(R2) ↑ std(R2) ↓
Cosine 0.972 0.056
WSD 0.979 0.053

Each parameter tuple represents a synthetic fitting re-
sult corresponding to a distinct set of experimental se-
tups (e.g., dataset, model size, etc.). For each sampled
parameter tuple, we apply our equation to predict the fi-
nal loss for different total training steps with both cosine
and WSD LRS, and then employ the predicted losses to
fit the Chinchilla scaling law. We calculate the mean and
standard deviation of R2 values for each fit. The results in
Table 1 demonstrate that Chinchilla scaling law fits well
on the data predicted by our scaling law equation. Thus,
our equation can be considered a generalization that can be reduced to the Chinchilla scaling law.

5.2 SCALING LAW FITTING AND PREDICTION DEMOCRATIZATION

Our scaling law equation allows us to utilize all loss values from a full loss curve during training,
while traditional scaling laws can only collect a single data point from the full loss curve. This
feature allows us to fit scaling laws with much less cost. For a direct comparison, we compare the
computational efficiency of our approach and the Chinchilla scaling law (Hoffmann et al., 2022).
Specifically, we assume to collect 100 data points for parameter fitting, and estimate the compu-
tational costs needed to fit the respective scaling law equations under different LRS configurations
(see Table 2). More details can be found in Appendix E.2. The results indicate that our proposed
equation uses less than 1% of the computational cost required by the Chinchilla scaling law. Further,
our scaling law with LR annealing, can be universally applied to predict loss curves for unseen LRS,
thus conserving even more computational resources. This approach significantly democratizes the
study of scaling laws in LLM pre-training, paving the way for a more environmentally friendly and
carbon-efficient methodology.

6 DISCUSSION

(1) We analyze the impact of the decay factor λ of our equation in Appendix H.1, and it suggests that
selecting a proper decay factor is important for determining the balance point between S1 and S2;
(2) We analyze the root reasons of the delay phenomenon mentioned in Sec. 3 in Appendix H.2. It
suggests that neither the Adam optimizer (Kingma & Ba, 2015) nor S1 are the root reasons and this
can be an important future work; (3) We discuss some potential variation of our proposed equation
(e.g. η = 0 case and L ∝ Sζ

2 variant), and investigate other possible scaling law formats with LR
annealing in Appendix H.3. The results validate the superiority of our proposed formula.

7 CONCLUSION

In conclusion, we propose that the loss curves of neural language models empirically adhere to a
scaling law with learning rate annealing over training steps s: L(s) = L0 +A · S−α

1 −C · S2. This
equation can accurately predict full loss curves across unseen learning rate schedulers. We present
the underlying intuition and theory for deriving our equation and demonstrate that our approach can
be extended to capture the scaling effect of model sizes. Extensive experiments demonstrate that our
proposed scaling law has good accuracy, scalability, and holds under various experimental setups.
It also offers accurate theoretical insights to the training dynamics of LLMs, and explains numerous
phenomena observed in previous studies. We believe that the scaling law with LR annealing is
promising to reshape the understanding of researchers for LLM training and scaling laws.
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Kshitij Gupta, Benjamin Thérien, Adam Ibrahim, Mats L. Richter, Quentin Anthony, Eugene
Belilovsky, Irina Rish, and Timothée Lesort. Continual pre-training of large language models:
How to (re)warm your model?, 2023. URL https://arxiv.org/abs/2308.04014.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive generative
modeling. arXiv preprint arXiv:2010.14701, 2020.

Danny Hernandez, Jared Kaplan, Tom Henighan, and Sam McCandlish. Scaling laws for transfer.
arXiv preprint arXiv:2102.01293, 2021.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
Md. Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
empirically. arXiv preprint arXiv: 1712.00409, 2017.

11

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://github.com/togethercomputer/RedPajama-Data
https://arxiv.org/abs/2308.04014


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models. arXiv preprint arXiv: 2203.15556, 2022.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, Xinrong Zhang, Zheng Leng Thai, Kaihuo Zhang, Chongyi Wang,
Yuan Yao, Chenyang Zhao, Jie Zhou, Jie Cai, Zhongwu Zhai, Ning Ding, Chao Jia, Guoyang
Zeng, Dahai Li, Zhiyuan Liu, and Maosong Sun. Minicpm: Unveiling the potential of small
language models with scalable training strategies. arXiv preprint arXiv: 2404.06395, 2024.

Peter J. Huber. Robust Estimation of a Location Parameter. The Annals of Mathematical Statistics,
35(1):73 – 101, 1964. doi: 10.1214/aoms/1177703732. URL https://doi.org/10.1214/
aoms/1177703732.
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A IMPACT OF WARMUP STEPS

We conduct experiments on the impact of learning rate warmup steps. As shown in Fig. 11, we find
that 500 warmup steps can speed up convergence, and get the lowest validation loss compared to
100 or no LR warmup. The finding is aligned with previous works Liu et al. (2020); Kosson et al.
(2024). The experimental results also guide us to choose 500 warmup steps in the main experiments
of this work 2.
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Figure 11: The comparison of the true loss curve of different warmup steps. We experiment on
cosine LRS with 20K total steps.

B FITTING DETAILS

Given a learning rate scheduler, we can easily compute out S1 and S2 of each step in advance.
To estimate (L0, A,C, α), we adopt a similar fitting method as Chinchilla scaling law (Hoffmann
et al., 2022). Specifically, we minimize the Huber loss (Huber, 1964) between the predicted and the
observed log loss using the L-BFGS algorithm (Nocedal, 1980):

min
L0,A,C,α

∑
Step i

Huberδ

(
log L̂(i)− logL(i)

)
(6)

We implement this by the utilization of minimize in scipy library. Huber loss is to enhance
to robustness of the fitting results and we set δ of Huber loss as 1.0 × 10−3. We mitigate the
potential issue of local minima of fitting by choosing the optimal fit from a range of initial conditions.
Note that in practice, we can also fit the full loss curves using multiple LRS with a single tuple of
(L0, A,C, α). In this situation, we sum the Huber losses in Eq. 6 of all fitted LRS.

C EXPERIMENTAL SETUPS

In this work, we use multiple sets of experimental setups, in order to validate that our equation can
work across different experimental setups. For clarification, we present the experimental setup list
as shown in Table 3. In our most experiments, we use the main setting A. Other than the five settings,
we also successfully fit our equation on BLOOM’s and OLMo’s loss curves, and their experimental
settings are totally different. Refer to their papers for the experimental settings (BigScience, 2022;
Groeneveld et al., 2024).

2Note LR warmup in training from scratch is different from LR re-warmup in continual training, where we
do not regard re-warmup steps as a hyper-parameter and will show how to apply our equation to find optimal
re-warmup recipes in Appenidx. G.4 and G.5.
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Table 3: Experimental settings adopted in this work. Model size denotes the number of non-
embedding paramters. Our datasets include Fineweb (Penedo et al., 2024) and RedPajama-
CC (Computer, 2023). * denotes pre-training multilingual dataset including mixture of sources
such as common crawls, books, arxiv, code, etc. We use AdamW Optimizer (Kingma & Ba, 2015;
Loshchilov & Hutter, 2017), denoted as AO. Most experiments adopt Llama-3’s tokenizer (Dubey
et al., 2024). Ext Llama-2’s is extended from Llama-2’s tokenizer (Touvron et al., 2023) by adding
vocabulary.

Setups Setting A (mainly) Setting B Setting C
Model Size 594M 293M multiple
Train Dataset Fineweb Finweb Mixture-train*
Val Dataset RedPajama-CC RedPajama-CC Mixture-valid*
Total Steps 60K 120K 143K
Maximal LR 2× 10−4 2× 10−4 1.381× 10−3

Warmup Steps 500 100 500
Batch Size (tokens) 4M 2M 4M
Sequence Length 4096 4096 4096
Tokenizer Llama-3’s Llama-3’s Ext Llama-2’s
β1,β2 in AO 0.9, 0.95 0.9, 0.95 0.9, 0.95
Weight Decay 0.1 0.1 0.1
Gradient Clip 1.0 1.0 1.0

Setups Setting D (MoE) Setting E (1.4T tokens)
Model Size 8× 106M 1704M
Train Dataset Fineweb Mixture-train*
Val Dataset RedPajama-CC Mixture-valid*
Total Steps 60K 350K
Maximal LR 2× 10−4 6× 10−4

Warmup Steps 500 1000
Batch Size (tokens) 4M 4M
Sequence Length 4096 8192
Tokenizer Llama-3’s Llama-3’s
β1,β2 in AO 0.9, 0.95 0.9, 0.95
Top-k Experts 2 -
Auxiliary Loss 0.01 -
Weight Decay 0.1 0.1
Gradient Clip 1.0 1.0
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D OUR SCALING LAW ON EXTENSIVE EXPERIMENTS SETUPS

D.1 ANOTHER SET OF TRAINING HYPER-PARAMETERS

Fig. 2 and Fig. 3 show that our equation can work very well on our main experimental setup. For
proving that our scaling law with LR annealing can apply to different (but given) experimental
settings, we change the setting from A to B (refer to Table 3) and observe whether our equation
can still work or not. The fitting results are shown in Fig. 12. The prediction results are shown
in Fig. 13. The results suggest that our scaling law with LR annealing can still work well across
different experimental setups.

D.2 EXPERIMENTS ON ANOTHER ARCHITECTURE: MOE

Fig. 2 and Fig. 3 show that our equation can work very well on the dense Llama-like architec-
ture (Vaswani et al., 2017; Touvron et al., 2023). We prove that our scaling law can also apply to
different model architectures and we replace Dense model with Mixture of Experts (MoE) architec-
ture. We add widely-used auxiliary loss to do load balancing among experts (Fedus et al., 2021).
The experimental setting is shown as Setting D in Table 3. Moreover, we change the LRS and total
steps to 60K WSD with 10K annealing steps in fitting, testing whether our scaling law is effective
under various circumstances. The fitting results are shown in Fig. 14 while the prediction results are
shown in Fig. 15. The results suggest that our scaling law can with LR annealing can still work well
on MoE architecture.

D.3 SCALING UP: PREDICTION FOR MUCH LONGER STEPS

Our equation has proven its utility in predicting the validation loss over a significantly large number
of total steps. This scalability feature is particularly useful in handling large-scale training scenarios.

To illustrate its effectiveness, we apply our equation to predict the loss curve during the annealing
stage of the training process. The model we train is a sizable 1.7 billion parameter model, and the
training involved a tremendous number of 1,400 billion total training tokens. This is a considerable
scale that tests the practicality and effectiveness of our equation. The specific experimental setup is
Setting E, which can be found in Table 3.

The fitting and prediction results are shown in Figure 16 and Figure 17 respectively. It shows that
we successfully get to know the loss curve in the critical annealing stages after 10x longer steps in
advance, which is crucial to handle the relationship between training dynamics and training recipes.
For example, Llama-3 adopts annealing to do pre-training data selection (Dubey et al., 2024).

D.4 OPEN-SOURCED FULL LOSS CURVES

For further verification for our proposed scaling law, we apply our equation on open-sourced lan-
guage models and the corresponding full loss curves, including BLOOM-176B (BigScience, 2022)
and OLMo-1B (Groeneveld et al., 2024). As shown in Fig. 18, our equation also fits very well on
the open-sourced model training curves, even when the model size scales up to 176B (e.g. BLOOM)
and token number scales up to 2000B over 740K steps (e.g. OLMo).

D.5 ABLATION STUDIES ON S1 AND S2

In Sec. 3, we present the strong capability of our proposed scaling law. The formulation of our
scaling, L(s) = L0 +A · S−α

1 −C · S2, contains two key components including S1 and S2. In this
section, we conduct ablation studies on S1 and S2. Specifically, we compare the forms without S1

or S2 using setting A. For each format, we re-fit the full loss curves under 20K cosine + constant and
re-predict the full curves on longer steps under different LRS. The prediction error results are shown
as Table 4. The results indicate that the prediction error increases significantly in the absence of
either S1 or S2 and suggest that each component in our scaling law is important and indispensable.
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(a) Learning rate.
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(b) Zoomed-out loss fitting.
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(c) Zoomed-in loss fitting.

Figure 12: Full loss curve fitting on cosine (30K steps to ηmin = 0) and constant LRS. The figures
omit the warmup in the first 100 steps. After fitting, we get a universal loss equation L = 2.761 +
0.517 · S−0.491

1 − 0.458 · S2. Refer to setting B in Table 3 for experimental setups.
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(a) Full curve prediction of constant LRS.
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(b) Full curve prediction of WSD LRS (90K total steps; 10 % cosine annealing to ηmin = 0).
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(c) Full curve prediction of WSD LRS (110K total steps; 10 % cosine annealing to ηmin = 0).

Figure 13: Full loss curve prediction (120K steps) by the universal loss curve equation across
various LRS, fitted in Fig. 12. The left, the medium, and the right figures in each row are learning rate
curve, zoomed-out loss prediction, and zoomed-in loss prediction, respectively. The red rectangle
means the zoomed-in zone. The figures omit the warmup in the first 100 steps. Please note that these
are predictive results, which means that none of the points in this figure (except constant LRS) are
involved in the fitting process. The mean prediction errors across various LRS are low to ∼ 0.2%.
Refer to setting B in Table 3 for experimental setups.
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(a) Learning rate.
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(b) Zoomed-out loss fitting.
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(c) Zoomed-in loss fitting.

Figure 14: Full loss curve fitting on MoE model. After fitting, we get a universal loss equation
L = 2.801 + 0.424 · S−0.619

1 − 0.347 · S2. Refer to setting D in Table 3 for experimental setups.
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(a) Full curve prediction of multi-step cosine LRS (80% + 10% + 10%) (DeepSeek-AI, 2024)
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(b) Full curve prediction of WSD LRS (17% exponential annealing to ηmin = 0) (Hu et al., 2024).
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(c) Full curve prediction of Cyclic LRS (Smith, 2017).

Figure 15: Full loss curve prediction on MoE model by the universal loss curve equation across
various unseen LRS fitted in Fig. 14. The left, the medium, and the right figures in each row are
learning rate curve, zoomed-out loss prediction, zoomed-in loss prediction, respectively. The red
rectangle means the zoomed-in zone. The LR curve figures omit 500 warmup steps. Note that these
are all predictive results, and none of the points in the figures are involved in the fitting process. The
mean prediction errors across various LRS are low to ∼ 0.2%. Refer to setting D in Table 3 for
experimental setups.
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(b) Zoomed-out loss fitting.
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(c) Zoomed-in loss fitting.

Figure 16: Full loss curve fitting on 30K Steps. After fitting, we get a universal loss equation
L = 2.788 + 0.906 · S−0.416

1 − 0.254 · S2. Refer to setting E in Table 3 for experimental setups.
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(b) Zoomed-out loss prediction.
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(c) Zoomed-in loss prediction.

Figure 17: Full loss curve prediction (350K steps) by the universal loss curve equation under WSD
LRS (10% cosine annealing ratio to ηmin = 0). We adopt our equation and accurately predict the
loss curve in the annealing stage after the 10x longer steps. This is meaningful to the development
for large-scale LLM pre-training. Refer to setting E in Table 3 for experimental setups.
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(a) Full loss curve fitting on BLOOM-176B.
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(b) Full loss curve fitting on OLMo-1B (2T tokens).

Figure 18: Open-sourced full loss curve fitting using our proposed equation, which shows that
our equation has strong scalability on model size and token number. We extract the curve
of BLOOM from https://huggingface.co/bigscience/bloom/tensorboard, and
we choose the column lm-loss-validation/valid/lm loss validation as valida-
tion loss. We extract the curve of OLMo from https://wandb.ai/ai2-llm/OLMo-1B?
nw=nwuserdirkgr, and we choose the column eval/pile/CrossEntropyLoss as vali-
dation loss. Both models adopt cosine LRS.
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Table 4: Ablation studies on S1 and S2 in our scaling law formualtion. The prediction errors on
different LRS for each form are reported.

Scaling Law Forms Cosine Multi-step Cosine WSD Cyclic

L(s) = L0 +A · S−α
1 − C · S2 0.159% 0.176% 0.235% 0.322%

w/o S1: L(s) = L0 +A · s−α − C · S2 0.465% 0.458% 1.162% 1.139%
w/o S2: L(s) = L0 +A · S−α

1 1.261% 1.265% 1.519% 1.203%
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Figure 19: Curve fitting on cosine LRS (143K steps to ηmin = 0) of many model sizes using our
scaling law extended to model size N . Refer to setting C in Table 3 for experimental setups.

D.6 OUR N -EXTENDED SCALING LAW ON ANOTHER EXPERIMENTS SETUPS

Fig. 7b show that our N -extended equation can work very well on our main experimental setup.
Similarly, for proving that our N -extended scaling law can apply to different (but given) exper-
imental settings, we change the setting from A to C (refer to Table 3) and observe whether our
equation can still work or not. The fitting results are shown in Fig. 19. The results suggest that our
N -extended scaling law with LR annealing can still work well across different experimental setups.

E COMPARISON WITH CHINCHILLA SCALING LAW

E.1 REDUCTION TO CHINCHILLA SCALING LAW

We have proved that our scaling law can be reduced to chinchilla scaling law for constant LRS in
Sec. 5. For other learning rate schedulers, we adopt a method based on statistics to show that our
scaling law function can be reduced to the chinchilla scaling law. Specifically, we check whether
chinchilla scaling law fits well the endpoints of loss curves predicted by our scaling law. The pa-
rameter tuple of our equation is (L0, A,C, α). We then randomly sample 1000 sets of param-
eter tuples in some uniform distributions: L0 ∼ U(1, 3), A ∼ U(0.3, 0.5), C ∼ U(0.2, 0.6),
α ∼ U(−0.6,−0.4). Each parameter tuple could be seen as the fitting result of a distinct set of ex-
perimental setups 3 (e.g. dataset, batch size, model size, etc.). For each generated parameter tuple,
we apply our equation to predict the final loss of different total training steps on two LRS including
cosine and WSD (10% annealing ratio). range from 5K steps to 60K steps. We conduct the predic-
tion on two LRS including cosine and WSD (10% annealing ratio). The predicted final loss points

3It’s worth noting that some of these sampled parameter tuples might not be reasonable or likely to happen
in real-world scenarios, but we choose to keep them nonetheless.
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(a) The predicted loss of different total steps with co-
sine LRS and the fitted chinchilla curve.
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(b) The predicted loss of different total steps with
WSD LRS and the fitted chinchilla curve.

Figure 20: Chinchilla scaling law fits well the validation loss endpoints predicted by our formulation,
taking cosine LRS (on the left) and WSD LRS (on the right) as examples.

are used to fit the chinchilla equation through minimizing the Huber loss. The fitting examples are
shown in Fig. 20.

E.2 SCALING LAW COMPUTATIONAL COST COMPARISON

We suppose a scenario where it requires 100 fitting points to get the parameters of scaling laws. We
assume the distance between each point as K steps. We compute the required training steps using
different approaches as follows:

• Adopting Chinchilla scaling law, typical cosine LRS requires total steps of at least 1K +
2K + 3K + · · ·+ 100K = 5050K;

• Adopting Chinchilla scaling law, WSD LRS (notating annealing ratio as r) requires total
steps of at least (1K + 2K + 3K + · · ·+ 100K)r + 100K(1− r) = (100 + 4950r)K.

• Adopting our scaling law, all we need is only one training curve with moderate total steps
(and the number of fitting points is far more than 100), such as one curve with 50K steps 4

F WSD SCHEDULER AND ANNEALING FUNCTIONS

Hu et al. (2024) proposes a warmup-stable-decay (WSD) LRS including three learning rate stages,
which could help get a lower validation loss compared to the typical cosine LRS. The format is like

WSD(s) =


s

Twarmup
ηmax, s ≤ Twarmup

ηmax, Twarmup < s ≤ Tstable

ηmin + f(s) · (ηmax − ηmin), Tstable < s ≤ Ttotal

(7)

Where 0 ≤ f(s) ≤ 1 is typically a decreasing function about step s, and ηmax is the maximal learn-
ing rate. Hägele et al. (2024) consolidates the effectiveness of WSD scheduler by many empirical
experiments. Moreover, Hägele et al. (2024) also finds that using 1-sqrt annealing and a moderate
annealing ratio (e.g. 20%) can further decrease the final loss. The 1-sqrt annealing is defined as:

f(s) = 1−
√

s− Tstable

Ttotal − Tstable
(8)

4The empirical rule that more fitting points always achieve better fitting results always holds true. Our
equation can also use more points and LRS for fitting, such as 30K constant + 70K cosine. Nevertheless, we
can collect far more fitting points than the typical scaling law with significantly fewer training steps.
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(a) LR curve of WSD (20% 1-sqrt/cosine annealing).
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(b) LR curve of WSD (50% 1-sqrt/cosine annealing).

Figure 21: The learning rate curves of 20% (left) and 50% (right) annealing ratio in WSD LRS, with
cosine and 1-sqrt annealing method.

Also, Hägele et al. (2024) mentions 1-square annealing method as a baseline, which is defined as:

f(s) = 1−
(

s− Tstable

Ttotal − Tstable

)2

(9)

We draw the learning rate curve of WSD (20% and 50% 1-sqrt annealing) in Fig. 21, compared with
cosine annealing. Other than 1-sqrt annealing,

G TAKEAWAYS: EXPERIMENTAL FINDINGS VERIFICATION AND
EXPLANATION

G.1 IT VERIFIES AND EXPLAINS WHY LOSS DROPS MORE SHARPLY WHEN LR ANNEALS.

We adopt our equation to help researchers understand why loss drops more sharply when LR anneals,
which has been widely observed in many previous studies. We substitute the fitted parameters (see
Fig. 2) to our equation as an instance. We draw how the S1-item (A ·S−α

1 ) and the negative S2-item
(−C ·S2) impacts the loss along with a WSD scheduler. Fig. 22 suggests that starting from annealing
stage, negative S2-item has a much more significant impact on the overall loss than S1-item, which
makes loss drop more sharply compared with the stable LR stage. In conclusion, LR annealing
brings out quick increase of the annealing area, resulting in a drastic decrease in validation loss.

G.2 IT VERIFIES AND EXPLAINS THE PHENOMENON, WHERE CONSTANT LRS GETS A
LOWER LOSS THAN COSINE LRS IF SETTING SMALL TOTAL STEPS, AND VICE VERSA.

In the experiments, we find that if we set small total steps, the final loss of constant LRS could be
even lower than cosine LRS, and vice versa. Refer to the ground-truth loss in Fig. 2 (20K steps). To
validate this phenomenon, we use our equation to draw the prediction loss curve of 10K total steps
and 100K total steps in Fig. 23. It shows that our proposed equation can verify well that the better
LRS changes over the total steps. Moreover, Fig. 23c shows the predicted final loss of different total
steps using constant and cosine LRS. It further convincingly suggests that constant LRS indeed gets
a lower loss if setting small total steps, but the scaling slope is smaller than cosine LRS’s, resulting
in higher loss in more steps.

From a more essential and comprehensive perspective, | ∂L
∂S1

| is a power-law decreasing function
while | ∂L

∂S2
| is stable over training steps. In the early stages, | ∂L

∂S1
| is large when S1 is small, thus

increasing S1 by maintaining large LR (e.g. constant LRS) in the early stages can greatly help reduce
the loss. That is, S1 plays a dominant role over S2. In the later stages, | ∂L

∂S1
| is much smaller when

S1 becomes large, thus increasing S1 in the later stages does not significantly help reduce the loss.
That is, S2 plays a dominant role over S1. At this stage, It is time to start LR annealing to increase
S2. Interestingly, this perspective aligns directly with the idea of WSD LRS (Hu et al., 2024): In the
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Figure 22: How S1-item and negative S2-item changes in a WSD scheduler. Gray area means the
amount of loss drop brought by S1 and S2 in annealing stage.
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(b) The predicted loss curve of
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Figure 23: Comparison of constant and cosine LRS in different steps.

early stages, the neural network is exploring globally and it is a suitable time to use a larger LR; In
the later stages, the neural network is exploring locally and it is a suitable time to use a smaller LR.

G.3 IT VERIFIES AND EXPLAINS THAT THE OPTIMAL ANNEALING FUNCTION IN WSD LRS
DEPENDS ON THE ANNEALING RATIO.

In the context of the WSD LRS, the selection of the annealing method in the annealing stage is also
pivotal to optimize the training process. Hägele et al. (2024) conclude that the 1-sqrt annealing (refer
to Appendix F for 1-sqrt function and curve) yields a lower final loss compared to the other annealing
methods (e.g. cosine). They claim that the conclusion holds true across different annealing ratios.

However, as we predict using our equation (Fig. 24a), the 1-sqrt annealing approach does get a
lower loss than the cosine annealing approach when using small annealing ratios (e.g. 10%), but it
performs much worse than the cosine annealing approach when using 50% annealing ratio.

To verify whether the predictions from our equation are accurate, we conduct experiments by train-
ing models using different annealing methods and ratios within a fixed 50K total steps. As illustrated
in Fig. 24b, at a 10% annealing ratio, the 1-sqrt method outperforms the cosine method, whereas at
a 50% annealing ratio, the latter method exhibits a lower final loss. The true experimental results
align quite well with our prediction, which also overturns some of the conclusions made by previous
works. We conclude that the optimal annealing function in WSD LRS depends on the annealing
ratio.

Our scaling law function provides an explanatory framework for these observations. We draw the LR
curves of 1-sqrt and cosine annealing in Appendix F. At 10% annealing ratio, although the forward
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(a) The predicted loss curve of cosine and 1-sqrt an-
nealing method of different annealing ratio.
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Figure 24: The predicted (left) and true loss (right) of cosine and 1-sqrt annealing method at different
annealing ratios. Experimental results (right), aligned with our prediction (left), refute the previous
finding “the order and results of different annealing hold across settings” (Hägele et al., 2024).
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Figure 25: The predicted validation loss with different re-warmup max learning rate and re-warmup
steps in the continual pre-training process. The LRS of continual pre-training is cosine (T=100K)
and the min learning rate is 0.

area S1 of the cosine method is slightly larger than that of the 1-sqrt method, the larger annealing
area S2 of the 1-sqrt method plays a more critical role in reducing the overall final loss. However,
as the annealing ratio increases, the difference of S1 between two LRS gradually becomes larger
and larger, till breaking the delicate balance between S1 and S2 at 50% annealing ratio, resulting in
a lower final loss for the cosine method. This relationship underscores the importance of carefully
selecting the annealing strategy to optimize model training outcomes within the WSD scheduler.
Still, our equation can help predict a better annealing method without experiments, which saves a
lot of resources.

G.4 IT VERIFIES AND EXPLAINS THAT IN CONTINUAL PRE-TRAINING, THE HIGHER MAX
LEARNING RATE TO RE-WARMUP, THE HIGHER THE INITIAL PEAK LOSS WILL BE, AND
THEN THE MORE SHARPLY IT WILL DECREASE.

In continual pre-training (CPT), the learning rate scheduler is usually set as re-warmup to a new
max LR at the beginning. By many experiments, Gupta et al. (2023) concludes that the higher max
learning rate to re-warmup, the higher the initial peak loss will be, and then the more sharply it will
decrease.
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According to our scaling law function 5, in the re-warmup process, the annealing area S2 will reduce
to a negative value (S2 < 0) and thus the validation loss increases. The higher max LR in re-warmup,
the annealing area S2 becomes more negative and thus there would be a higher peak loss. But still,
higher max LR could make the forward area S1 grow faster and the loss decreases more sharply after
re-warmup. We use the fitted equation to predict the continual pre-training process with different
max LR as shown in Fig. 25a. The predicted loss curves reproduce a quite similar phenomenon with
previous works (Gupta et al., 2023).

There is a more profound strategy using our equation in CPT. As shown in Fig. 25a, after ensuring
total steps during CPT, we can apply our equation to predict a better max LR and scheduler to get
the lowest final loss without experiments, which saves a lot of resources.

G.5 IT VERIFIES AND EXPLAINS THAT IN CONTINUAL PRE-TRAINING, THE STEPS OF
RE-WARMUP HAVE LITTLE IMPACT ON THE FINAL LOSS.

Meanwhile, how many steps to re-warmup is another important issue in the continual pre-training.
Gupta et al. (2023) find that the longer re-warmup steps could smooth the transition of loss curve
but the number of re-warmup steps does not significantly influence the final validation loss. We use
the fitted equation to predicted the continual pre-training dynamics with different re-warmup steps.
The results, shown in Fig. 25b, present a good alignment with previous works (Gupta et al., 2023).

Based on our theory, given the fixed max LR, when the re-warmup steps are longer, the annealing
area decreases more slowly and the loss curve rises more smoothly, but both final S1 and S2 are quite
stable across different re-warmup steps. First, the annealing area S2 of different re-warmup steps
are very close due to the same max LR and the same min LR. Besides, though different re-warmup
steps bring in temporary distinct losses, re-warmup only cover a small percentage compared with all
training steps. Thus, the forward area S1 is also close across different re-warmup steps, resulting in
the close overall loss across different steps of re-warmup.

H DISCUSSION

H.1 THE IMPACT OF DECAY FACTOR λ
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(b) The loss curve of λ = 0.99.
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(c) The loss curve of λ = 0.999.

Figure 26: The comparison of fitting effect of different decay factor λ.

The decay factor λ in our equation plays a crucial role to indicate the information retaining degree
in LR annealing. We set λ as 0.999 in our all experiments. We explore the difference from another
decay factor λ = 0.99. We fit and get different equations for different λ. We compare them (1) on
the predicted loss curves for 1-square and 1-sqrt annealing methods, and (2) on the predicted loss
curves in different annealing ratios of WSD LRS (cosine annealing).

The results, illustrated in Fig. 26 and 27, reveal several key insights into the impact of decay factor:

Delay Steps. A larger decay factor results in longer delay steps. Comparing Fig. 26b and Fig. 26c,
λ = 0.999 introduces a more obvious delay phenomenon, which is consistent across both the 1-

5Strictly speaking, continual pre-training process often include LR re-warmup as well as data distribution
shift. Here we primarily research on the condition where there is no distribution shift between two training
stages. The conclusions transfer across most cases because the loss change brought by LR re-warmup is signif-
icantly larger than the loss change brought by data distribution shift (Gupta et al., 2023; Ibrahim et al., 2024).
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Figure 27: The predicted loss in different annealing ratios of WSD LRS for λ = 0.99 and λ = 0.999.

square and 1-sqrt annealing methods. The root reason is simple: larger λ can retain more LR
historical momentum, causing longer delay steps after LR finish annealing.

Optimal Annealing Ratio. a larger decay factor tends to favor a higher annealing ratio. As shown
in Fig. 27, The optimal annealing ratio of λ = 0.999 is larger than that of λ = 0.99. Meanwhile,
due to the similar reason, λ = 0.999 favors 1-sqrt annealing method while λ = 0.99 favors 1-square
annealing method, as shown in Fig. 26.

Balance Point between S1 and S2. More essentially, the selection of λ decides the balance point
of S1 and S2. For example, λ = 0.999 means that, LR annealing only retain the information of
previous approximately 1

1−λ = 1000 steps, which can be seen as the window size of LR annealing
momentum. The window size could be very close to the optimal annealing steps. After reaching
window size, S2 increases very slowly, with the cost of large decrease of S1.

The analyses above highlights the importance of selecting a decay factor that aligns closely with
empirical data to ensure the accuracy of predictions. We recommend that the future developers try
different λ for their own setups 6.

H.2 POSSIBLE ROOT REASONS OF DELAY PHENOMENON IN LEARNING RATE ANNEALING

In Sec. 3, we discover the delay phenomenon, which proves that LR annealing has momentum. We
discuss possible root reasons of the phenomenon in this section.

Adam Optimizer? No. We notice that Adam optimizer (Kingma & Ba, 2015) also has the first-
order momentum decay factor β1 and the second-order momentum decay factor β2, which presents
the possible connection to the the delay phenomenon.

We keep β1 = 0.9, and conduct delay experiments on different β2 ∈ {0.95, 0.99, 0.999} (default:
0.95) of AdamW optimizer (Loshchilov & Hutter, 2017) to observe whether larger β2 causes a
more longer delay steps. The learning rate and ground-true loss curve are shown in Fig. 28a. It
suggests that the ground-truth loss curves of different β2 almost coincide with each other, and their
delay steps are also the same. Therefore, we believe that Adam optimizer has little to do with the
delay phenomenon, despite its momentum form seeming very related to our experiments. Speaking
of which, we even once tried to mimic the form of Adam Optimizer to describe LR annealing
momentum, attempting to discover a connection between them, but the fitting results were a mess.

Forward Area S1? Not Really. No matter how LR changes, S1 is always increasing over steps,
resulting in consistently reducing the validation loss brought from S1. Therefore, the forward area,

6Actually, λ can be fitted as a parameter, instead of a hyper-parameter requiring manual tuning. We regard
λ as a hyper-parameter because λ = 0.999 performs well in our all experiments. Besides, fitting with λ could
bring in additional time complexity due to the recomputation of S2.
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(b) The comparison of delay steps of different re-
warmup steps (and thus different S1).

Figure 28: The possible root reason analysis (left: Adam optimizer, right: S1) of delay phenomenon.

S1 would lengthen delay steps in LR annealing then re-warmup, but would shorten delay steps in
LR re-warmup then annealing. The delay phenomenon is indeed related to S1.

But still, S1 is not all the reasons of delay phenomenon. We prove this by Fig. 5b, which suggests that
even though in LR re-warmup then annealing, the delay phenomenon, while not that pronounced,
still exists. Moreover, we conduct delay experiments by adjusting the slope of LR after tuning point
of LR. As shown in Fig. 28b, We find that more smooth slope of LR re-warmup, with smaller S1,
but still causes longer delay steps. Therefore, we conclude that S1 indeed influences the specific
delay length, but is not the root reason.

Other Possible Reasons? The delay phenomenon could be intuitive in some cases. For example,
suppose that learning rate decreases directly from 2e-4 to 2e-5 in one step, and maintains 2e-5. In
this case, although the loss would decrease to a lower value but the parameter changes in one step
is too small in neural networks. Given a sudden low LR, neural networks still require some steps
to gradually optimize to a local minimum, incurring delay phenomenon. But still, analysis above
still ends with a rough description, and we have not figured out the root reasons and look forward to
completing this part in future work.

H.3 OTHER POSSIBLE SCALING LAW FORMATS WITH LR ANNEALING

Adding a LR-weighted Coefficient to S2? Imagine that when LR anneals to nearly 0, the neural
network’s parameters almost do not change and the validation loss should not change, either. How-
ever, as defined in our equation, Eq. 1, S2 still has historical momentum even if LR is nearly 0,
making the loss continue to decrease and misalign with observed training dynamics.

To cover this corner case, we try a revision to our equation and add a LR-weighted coefficient to
S2. Specifically, we adjust S2 to more approach 0 when η is close to 0, counteracting the original
formulation’s tendency to overestimate loss reduction when η ≈ 0.

The revised equation for the annealing area S2 in our scaling law function is as follows:

mi = λ ·mi−1 + (ηk−1 − ηk)

=

i∑
k=1

(ηk−1 − ηk) · λi−k

S2 =

s∑
i=1

mi · ηϵi

(10)

Where the red part is the added LR-weighted coefficient and ϵ is a undetermined positive constant.
ϵ could be very small in practice.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0 10000 20000 30000 40000 50000 60000
Step

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Le
ar

ni
ng

 R
at

e 
×1

0
4

Constant Learning Rate Curve
Cosine Learning Rate Curve

(a) LR of cosine and constant.
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(b) The fitting curve of L ∝ S2
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(c) The fitting curve of L ∝ Sζ
2 .

Figure 29: The comparison of fitting effect between L ∝ Sζ
2 with L ∝ S2.

We have tried the revised function to fit data. We find that the fitting results are quite similar and ϵ
is very close to 0, showing little use in practical effect. Hence, we adopt the original format in our
experiments 7.

L ∝ Sζ
2 rather than L ∝ S2? Actually, all we know is that L and S2 have a positive correlation.

Thus L ∝ Sζ
2 rather than L ∝ S2 might be a more reasonable assumption. That is, our equation

would be changed to L(s) = L0 + A · S−α
1 − C · Sζ

2 . Theoretically, the introduction of ζ as an
additional fitting parameter is expected to provide a more nuanced control over how changes in the
learning rate annealing affect validation loss, potentially leading to improve the accuracy of our
equation.

However, the empirical results, as depicted in Fig. 29, demonstrate that the fitting improvement with
the inclusion of ζ is quite marginal when compared to the version without this parameter. This
slight enhancement does not justify the additional complexity introduced by managing negative
values of S2. Furthermore, the empirical observation that ζ tends to converge close to 1 (e.g. 1.125
in Fig. 29c) reinforces the notion that the original formulation of the function, without the power
term ζ, is adequately robust. This finding suggests that the direct influence of the learning rate
annealing area, as initially modeled, sufficiently captures the essential dynamics without the need
for this additional complexity. Another additional complexity lies in that Sζ

2 becomes incalculable
when S2 < 0 in LR re-warmup.

Studies of scaling laws are mostly empirically driven. Over-parameterizing the scaling law equation
essentially leads to more accurate fitting results. However, it will also complicate the final format
and hinders us to focus on major factors for the training dynamics. We choose our main format not
due to absolute prediction accuracy but to pursue the simplification (i.e., fewest extra parameters)
to model the essential training dynamics of LLMs. Notably, in our main format in Eq. 1, we only
introduce one extra parameter compared to Chinchilla scaling law, i.e., the coefficient C of the S2

term. As suggested in Sec. 3, our main scaling law format still has a strong and robust capacity
across many practical scenarios. We believe and expect that there should be more powerful specific
format (maybe with more parameters) after this work.

H.4 OPTIMIZING LEARNING RATE SCHEDULE

A natural next step of this work would be optimizing LR schedule based on our proposed scaling law.
From a practical engineering aspect, it is feasible and efficient to select better LRS from many candi-
dates based on the prediction of the scaling law. Specifically, WSD (rather than cosine) LRS should
be used to confirm the larger values for both S1 and S2, as stated in Sec. 4.2 and Appendix G.2;
WSD LRS annealing ratio can be determined by the method stated in Sec. 4.3; Annealing function
can be selected by the method stated in Appendix G.3. It is quite easy to get the (nearly) optimal LR
schedule based on the composition of the methods above.

From another perspective, one might adopt our scaling law to directly solve optimal LR schedule
mathematically. It could be found that our Eq. 1 leads to a collapsed LRS: some zero learning rates
at last. This problem is related to the issue (η ≈ 0 case) that we discussed above in Appendix H.3.

7We still recommend future developers to try this format if possible.
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Mathematical optimization strongly depends on an absolute accuracy, while our scaling law in such
scenario does not achieve perfectly 100% accuracy (shown in Fig. 3). In comparison, our mentioned
variant forms (e.g., Eq. 10) with extra parameters should be more preferably used to solve the op-
timal LRS, because they cover more corner cases and have higher accuracy. We believe that in the
future, there will be stronger and more parameterized specific forms, which are more suitable for di-
rectly mathematically solving the optimal LR schedule. At this stage, we believe that the approach
based on the practical engineering mentioned above is sufficient to obtain a (nearly) optimal LR
schedule.
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