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Abstract

Large language models have demonstrated re-
markable progress in mathematical reasoning,
leveraging chain-of-thought and reinforcement
learning. However, it is unclear whether im-
proved performance results from longer rea-
soning chains or more efficient reasoning. We
systematically analyze reasoning chain length
across ol-mini and 03-mini variants on the
Omni-MATH benchmark, finding that 03-mini
(m) achieves superior accuracy without re-
quiring longer reasoning chains than ol-mini.
Moreover, we show that accuracy generally de-
clines as reasoning chains grow across all mod-
els and compute settings. This accuracy drop is
significantly smaller in more proficient models,
suggesting that new generations of reasoning
models use test-time compute more effectively.
Finally, we highlight that while 03-mini (h)
achieves a marginal accuracy gain over 03-mini
(m), it does so by allocating substantially more
reasoning tokens across all problems, even the
ones that 03-mini (m) can already solve. These
findings provide new insights into the relation-
ship between model capability and reasoning
length, with implications for efficiency, scaling,
and evaluation methodologies.'

1 Introduction

Large language models (LLMs) have evolved from
handling basic natural language processing tasks
to solving complex problems (Brown et al., 2020;
Bubeck et al., 2023; Romera-Paredes et al., 2024,
Trinh et al., 2024). Scaling model size, data, and
compute (Kaplan et al., 2020) has enabled larger
models to develop richer internal representations
(Gurnee and Tegmark, 2024; Hao et al., 2023) and
emergent capabilities (Wei et al., 2022a). Recently,
a new class of reasoning models has emerged
that couples reinforcement learning with test-time
compute scaling (Muennighoff et al., 2025; Snell
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Figure 1: Performance of OpenAl models on
Omni-MATH across disciplines and difficulty tiers.

et al., 2025). These models leverage reasoning
tokens to guide the chain-of-thought process and
maintain coherence throughout complex problem-
solving tasks (Anderson et al., 2025; Chen et al.,
2024; Wang et al., 2025). By explicitly optimiz-
ing their reasoning process during training (Wei
et al., 2022b) and iteratively refining their output at
inference-time, they achieve superior performance,
even on challenging mathematical benchmarks
(DeepSeek-Al et al., 2025; Guan et al., 2025).

In this paper, we examine whether more capa-
ble models within a single family (OpenAlI’s o-
series) require a longer reasoning chain to achieve
higher performance or if they can reason more ef-
fectively. We systematically compare the num-
ber of tokens in the reasoning chain generated
by ol-mini, 03-mini (m), and 03-mini (h) on the
Omni-MATH benchmark (Gao et al., 2024). Omni-
MATH spans more than 33 mathematical subdo-
mains and 10 difficulty levels, providing a com-
prehensive evaluation framework for LLMs’ math-
ematical reasoning abilities. Well-known bench-
marks GSMS8K (Cobbe et al., 2021) and MATH
(Hendrycks et al., 2021b) have become less ef-
fective in differentiating the mathematical abili-
ties of LLMs due to the high accuracy rates they
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Figure 2: Granular performance and relative reasoning token use. This figure shows that models allocate more
computational resources to problems that require complex combinatorial reasoning, whereas foundational arithmetic
and algebra problems demand relatively fewer resources. On average, token usage scales with difficulty level. The
heatmaps visualize cross-sectional performance scores on a 0-100% scale, represented by the color of the progress
bar. The length of the progress bar in each cell represents relative token usage for the test-time scaled models. The
extra column is computed by averaging over the rows. The extra row and “average” cell are computed independently
to give equal weight to multi-domain questions (see Appendix A.1).

achieve on these tests. More challenging bench-
marks, such as FrontierMath (Glazer et al., 2024),
GSM-Symbolic (Mirzadeh et al., 2024), and sec-
tions of Humanity’s Last Exam (Phan et al., 2025)
only span a few disciplines or are largely being
kept private due to data leakage concerns.

We find that more proficient models (ol-mini
vs. 03-mini (m)) do not generate longer reasoning
chains to achieve higher accuracy. For all models
and compute settings, we find that accuracy gener-
ally decreases as the reasoning chain grows, even
when controlling for question difficulty. This ef-
fect is notably smaller for more proficient models,
indicating that 03-mini (m) tends to overthink less
and uses reasoning tokens more effectively than
ol-mini. However, within one model (03-mini (m)
vs. 03-mini (h)), we observe that the slower accu-
racy decrease per token is partially due to a higher
average accuracy, but mainly due to the model al-
locating (more than) double the reasoning tokens
for all questions. Our findings contribute to the on-
going discussion about whether models such as ol
tend to overthink or underthink (Chen et al., 2024;
Wang et al., 2025), while complementing studies
on reasoning step length (Jin et al., 2024), input
length (Levy et al., 2024), reasoning failure modes
(Anderson et al., 2025), and the optimization of
mathematical reasoning (Zhong et al., 2024).

2 Experiment

Our data consists of 4,428 Olympiad-level math
problems, the Omni-MATH benchmark, together
with a reference answer and relevant metadata

fields Domain and Difficulty (Figures Al and A2).
We consider six elementary mathematics domains,
Algebra, Applied Mathematics, Calculus, Dis-
crete Mathematics, Geometry and Number The-
ory and divide the data into four difficulty tiers,
Tier 1, Tier 2, Tier 3 and Tier 4 (Figures A3
and A4). Subsequently, we feed the problems to
four OpenAl models, namely gpt-40, o1-mini, 03-
mini (m) and o03-mini (h) and make automated re-
quests to the Omni-Judge model (Gao et al., 2024)—
a math-evaluation model designed to verify and
correct model-generated answers against reference
answers—to correct their answers. Consult Ap-
pendix A for implementation details.

3 Results

Reasoning models consistently outperform gpt-
40. Figures 1 and 2 show the performance of
OpenAl models gpt-40, ol-mini, 03-mini (m) and
03-mini (h) across mathematical disciplines and dif-
ficulty tiers. The gpt-40 model performs between
20% and 30% for all disciplines and clearly lags
behind the three reasoning models. ol-mini signifi-
cantly improves accuracy, reaching 40-60% on all
categories. The introduction of 03-mini (m) fur-
ther enhances performance, achieving 50% in all
categories. The 03-mini (h) model improves with
approximately 4% on average compared to 03-mini
(m) and surpasses 80% accuracy for Algebra and
Calculus. A notable outlier is Discrete Mathemat-
ics, where performance deviates from the overall
trend for all models. In general, accuracy declines
as tier level increases. An exception is observed
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Figure 3: Accuracy across the reasoning token distribution and difficulty tier consistency. This figure shows
that o1-mini and 03-mini (m) have a similar reasoning token distribution, with 03-mini (m) giving more correct
answers for high-token regions. 03-mini (h) has a good ratio of correct vs. incorrect answers, even for very high
token counts. Finally, bin composition shifts from mostly low-tier to mostly high-tier questions (high-token regions
sometimes have insufficient data points to show this pattern). The main panels of the figure display the proportion
of the correct (green bars) versus incorrect (red bars) model responses across the reasoning token distribution. The
red dashed line depicts the conditional error rate, i.e. the probability that the model answers incorrectly given that
the token count has surpassed the bin threshold (see Appendix A.4). The panels below the histogram contain a filled
histogram where the color opacity represents the difficulty level of the math questions (cfr. Figure A4).

in gpt-4o0, which performs better on Tier 4 than on
Tiers 2 and 3. This anomaly suggests that gpt-4o
might leverage unexpected heuristics or struggle
disproportionately with mid-tier complexity.

More complex questions demand greater rea-
soning depth. Besides indicating accuracy (via the
colors of the progress bars), Figure 2 also shows rel-
ative use of reasoning tokens (via the length of the
progress bars). The relative use of tokens increases
with the level of difficulty for all models, highlight-
ing the need for computational resources for more
difficult tasks. This is confirmed by the lower pan-
els in Figure 3. Discrete Mathematics stands out
as a token-intensive domain, indicating a heavier
combinatorial or multi-step reasoning load. Foun-
dational mathematics areas such as Calculus and
Algebra tend to consume fewer tokens, possibly be-
cause they are more procedurally straightforward.
Interestingly, we observe that a relatively longer
chain of reasoning does not generally lead to better
performance, as many Tier 4 math problems from
token-intensive domains remain unsolved.

More proficient models give more correct an-
swers for high-token regions. Figures 3 and 4

display the relationship between the number of
reasoning tokens and the performance of ol-mini,
03-mini (m), and 03-mini (h) on the Omni-MATH
dataset (consult Figure A5 for gpt-4o analysis with
completion tokens, which encompass both the to-
kens leading up to the answer and the answer itself).
One first thing to note is that higher performing
models have a better ratio of correct to incorrect
answers, even for high token counts. This pattern
is also reflected in the conditional error rate: the
conditional error rate is almost instantly at 50% for
ol-mini whereas it takes about 12, 000 tokens for
03-mini (m) and 30, 000 for 03-mini (h) to reach a
50% error rate.

03 (mini) Thinks Harder, Not Longer. A sec-
ond thing to note is that the token distributions
of 01-mini and 03-mini (m) are very similar. Fig-
ure 4b together with the left QQ-plot in Figure A6
further investigate this behavior by comparing the
distribution of the reasoning tokens only for the
questions that the models answered correctly. In-
deed, the almost identical token distributions show
that 03-mini (m) does not use more reasoning to-
kens to achieve its superior performance to ol-mini
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Figure 4: Accuracy vs. token use. This figure shows that 03-mini (m) does not require longer reasoning chains
than ol-mini to achieve better accuracy and that, in general, more proficient models exhibit less accuracy decay as
reasoning tokens increase. Figure A6 confirms that ol-mini and 03-mini (m) have a very similar token distribution
and that the token distribution of 03-mini (h) is stretched linearly with respect to the one of 03-mini (m). a, Accuracy
per reasoning token, dividing the number of correctly answered questions by the total number of questions in each
bin of the histograms in Figure 3. b, Distribution of the reasoning tokens for correctly answered questions.

on Omni-MATH. This suggests that 03-mini (m)
reasons more effectively.

Accuracy decreases with token use. Figure 4a
shows that the average accuracy decreases with in-
creasing use of reasoning tokens for all three mod-
els, but that this trend is the most pronounced for
ol-mini and smaller for 03-mini (m) and 03-mini
(h). While this could be attributed to higher-tier
questions requiring more tokens, Figure A7 shows
that the trend remains even when stratifying by
tier level. In Figure A8, we show this also holds
when stratifying across domains. This suggests
that increased token usage, rather than question
complexity alone, is related to accuracy. We use a
logistic regression to quantify the effect size of us-
ing additional reasoning tokens on the probability
of answering a question correctly, controlling for
different levels of difficulty and domains (see Ap-
pendix A.5 and Table Al). The average marginal
effects indicate that the accuracy decrease per 1000
reasoning tokens is 3.16% for ol-mini, 1.96% for
03-mini (m), and 0.81% for 03-mini (h). These
results indicate that while deeper reasoning is nec-
essary for solving complex problems, there is a
diminishing return, where excessive token usage
correlates with reduced accuracy.

03-mini (h) allocates more tokens for all ques-
tions. Figure 3 (bottom) shows that the token
distribution of 03-mini (h) spans a significantly
wider range of values, with the model allocating
over 50, 000 reasoning tokens for some math prob-
lems. In addition, Figure 4b shows that 03-mini
(h) uses more reasoning tokens to solve all cor-
rectly answered questions, indicating that the small
accuracy gain of 4% compared to 03-mini (m) is
accompanied by a large extra computational cost

(confirmed by the right QQ-plot in Figure A6). The
slower accuracy decrease per token of 03-mini (h)
compared to 03-mini (m) is thus attributed to a
stretched out token distribution along the x-axis.

4 Conclusion

By systematically comparing the number of to-
kens in the reasoning chain generated by o1-mini,
03-mini (m), and 03-mini (h) on the Omni-MATH
dataset (Gao et al., 2024), we find two important
results. First, more proficient models (o1-mini vs.
03-mini (m)) do not require longer reasoning to
achieve higher accuracy. Second, while accuracy
generally declines with a longer chain-of-thought,
this effect is notably smaller in more proficient
models, underscoring that “thinking harder” is not
the same as “thinking longer”. A possible hypoth-
esis for this accuracy drop is that models tend to
reason more on problems they cannot solve. An-
other possibility is that longer reasoning chains
inherently have a higher probability of leading to
a wrong final solution, highlighting the need for
mathematical benchmarks with reference reason-
ing templates. A practical takeaway from our study
is that constraining the chain-of-thought (by set-
ting max_completion_tokens) is more useful for
weaker reasoning models than for stronger ones, as
the latter still give a significant amount of correct
answers for high-token regions.

The token count for 03-mini (h) contained the
following subtlety: although o3-mini (h) solves
additional problems compared to 03-mini (m), the
model uses more tokens for all math problems. The
slower decrease in accuracy per token is thus due
to a stretched token distribution rather than a more
effective usage of reasoning tokens.



Limitations

This work evaluates the reasoning abilities of four
large language models within the OpenAl family.
Our methodological choice to focus on one fam-
ily, stems from the fact that this allows us to di-
rectly compare post-training effects and test-time
compute settings without introducing confounding
factors such as closed- vs. open-source models,
different training strategies or architectures. Fur-
thermore, at the time of submission, the OpenAl
o-series is the largest family that allows for this
type of comparison.

The reasoning tokens usage of o1-mini, 03-mini
(m) and 03-mini (h) is analysed exclusively when
solving the Omni-MATH benchmark (Gao et al.,
2024). As discussed in the Introduction, Omni-
MATH is currently the only publicly available, an-
notated, mathematical dataset that is not deprecated.
More general benchmarks like those in Srivastava
et al. (2023) and MMLU (Hendrycks et al., 2021a),
along with specialized tests such as AI2 Reason-
ing (Clark et al., 2018) and GPQA (Rein et al.,
2024) would broaden the evaluation landscape to
diverse reasoning domains. However, current focus
remains on mathematics due to the relative ease of
implementing objective reward models and auto-
mated verification procedures.

Finally, our study relies on automated correc-
tion by Omni-Judge (Gao et al., 2024), a model
based evaluator that, while effective, may produce
judgements that diverge from human corrections
(Verga et al., 2024; Li et al., 2025). Omni-Judge
has only been validated for data leakage checks
on ol-mini (Gao et al., 2024), and extending these
checks to 03-mini remains future work, though we
assume minimal overlap. Additionally, our prompt-
ing strategy employed here (Kojima et al., 2022;
Wang et al., 2023; Yao et al., 2024) may not gener-
alize to alternative approaches or more constrained
prompt settings (Tam et al., 2024). This interaction
between prompt design and test-time compute is an
important direction for further investigation, partic-
ularly as much of the existing research has focused
on models without test-time compute. As a result,
the broader implications for the latest generation
of reasoning models (DeepSeek-Al et al., 2025)
remain to be fully explored.

Ethical Considerations

We do not foresee any immediate ethical or societal
implications arising from our work. However, as

large language models become increasingly capa-
ble of solving complex (mathematical) problems, it
is important to consider the implications of integrat-
ing such technologies into educational, scientific
and professional contexts. Our work contributes to
the responsible use of Al in these contexts by pro-
viding a rigorous analysis of the mathematical rea-
soning abilities of LLMs, with wider implications
for efficient resource allocation, the refinement of
LLMs’ universal reasoning skills, and Al-driven
scientific discovery.
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A Appendix

We describe our experimental setup and provide the
data processing details necessary to replicate our
analysis. At the end of this section, we elaborate
on the regression analysis conducted to analyse the
effect size of increased reasoning token usage on
accuracy.

A.1 Datasets

The Omni-MATH benchmark (Gao et al., 2024)
contains Olympiad-level math problems specifi-
cally designed to test the reasoning abilities of large
language models. Each entry in the dataset con-
sists of a problem, an exact answer, and a writ-
ten out solution together with the following meta-
data fields: Domain, Difficulty, and Source (see
Figure Al). Each problem has between one and
three domains of the form Mathematics — Pri-
mary domain — ..., with a maximum length of
five. In this paper, we only take the primary do-
mains into account, as a more granular classifica-
tion gives rise to very imbalanced or underpopu-
lated classes. Figure A3 shows the number of math
problems per (primary) domain where we follow
Gao et al. (2024) in double- or triple-counting the
multi-domain questions. We made sure to delete
the duplicate entries, e.g. some data entries had
multiple domain trees but the same primary do-
main. Every domain-specific analysis in the paper
follows this convention. Finally, we joined the Cal-
culus and Pre Calculus class and deleted the Other
class to obtain a more balanced domain distribution.
Math problems are also classified according to dif-
ficulty level as presented in Figure A4. We divide
the data into difficulty tiers based on the quartiles
of the difficulty distribution (without separating
difficulty levels).

A.2 Large Language Models

We evaluate the performance of the several OpenAl
models that are affordable for most users: gpt-4o-
06-08-2024, 01-mini-12-09-2024, 03-mini-31-01-
2025 medium (default) and 03-mini-31-01-2025
high. The 03-mini high model, instead of medium,
is obtained by setting reasoning_effort to high.
We feed each model the math problems using the
Batch API with the following vanilla prompt as
user message:

Solve the following problem. Enclose the
final answer in a \\boxed{{}} environment.
Problem: {problem}

Furthermore, we set max_completion_tokens
limits of 25, 000 for 01-mini and 03-mini medium,
and a 100, 000 token limit for 03-mini high. Each
reasoning model refused to answer a few questions
(flagged as invalid prompts), which were subse-
quently omitted from the analysis.

To correct the responses of the four OpenAl
models on the Omni-MATH dataset, we employ
another large language model called Omni-Judge
(KbsdJames/Omni-Judge). Omni-Judge is an ef-
ficient and low cost open-source math-evaluation
model developed by the authors of Gao et al. (2024).
The model is trained to assess the correctness of an
answer generated by an LLM, given the problem
and a reference answer (see Figure A2). Table 9 in
Gao et al. (2024) shows that Omni-Judge is 91.78%
consistent with gpt-4o as a judge (who is 98% con-
sistent with human evaluators) and has almost a
100% success rate of correctly parsing model gen-
erated answers. To judge the models’ generated
answers, we make requests to the chat completions
endpoint of the kbsdjames.omni-judge API by
running the model in LM Studio. We use the same
few-shot prompt as in Gao et al. (2024) and set the
max_new_tokens parameter to 300. In the very few
cases where Omni-Judge fails to parse the model
output (< 1%), we omit that question from the
performance evaluation.

A.3 Data and Code Availability

The original Omni-MATH dataset is avail-
able at https://huggingface.co/datasets/
KbsdJames/Omni-MATH. The original Omni-Judge
model is available at https://huggingface.co/
KbsdJames/Omni-Judge. Data and code for this
publication are attached in an anonymized zip file.
The code is based on the Omni-MATH bench-
mark analysis code, publicly available at https:
//github.com/KbsdJames/Omni-MATH. We used
Python 3.12.6 (pandas 2.2.3, numpy 2.1.1, mat-
plotlib 3.9.2, seaborn 0.13.2, statsmodels 0.14.4,
and scikit-learn 1.5.2) to analyse and visualize data
and to conduct statistical analyses.

A.4 Conditional Probability

The conditional probability appearing in Figure 3
and Figure A5 is computed using a full Bayesian
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model with uninformative priors (we assume that
P(False) = P(True) = 0.5). In particular, we have
that

P(False | T' > B;)
B P(T > B; | False)
~ P(T > B; | False) +P(T > B; | True)’
(D

where {1 > B} is the event that the number of
tokens exceeds the right bin threshold and "False"
indicates that the model answered incorrectly. Be-
cause B; can only take a finite number of values,
we have that

IP’(False | T > B;) 2)

B Z P(T € By, | False)
]P’ T € By | False) + P(T € By | True)
3)

B Z |False € By
_k:i+1|False € Bg| + |True € Bg|’

4

which can be easily computed using the stacked
histogram data.

A.5 Regression Analysis

We use a logistic regression to estimate the effect of
additional reasoning tokens on the probability of an
accurate response on a question Y;, while control-
ling for different levels of difficulty and domains.
The regression takes the following form:

Pr(Y; =1
log <Pr()) = [y + [itokens;

r(Y; =0)
K-1 M-1
+Z oy, difficulty tiery, ;) +Z Ym domain,y, ;y,
k=1 m=1
difficulty fixed effects domain fixed effects

(6]

where ¢, k, and m denote the question-response
pair, the difficulty tier, and the domain, respectively.
Moreover, k(i) and m(i) indicate that the diffi-
culty tier k£ and domain m depend on the question-
response pair ¢. The difficulty tier and domain fixed
effects can be estimated by including dummy vari-
ables, which are equal to one if the difficulty tier
or domain is equal to the difficulty tier or domain
of the current question-response pair and equal to
zero otherwise, with the exclusion of a reference

category (i.e., K — 1 and M — 1). The reference
category for difficulty tiers is the lowest difficulty
Tier 1 and for the domains it is Algebra. We obtain
similar results when using the more fine-grained
difficulty levels (0 — 10) instead of difficulty tiers.

To facilitate interpretation, we compute the Av-
erage Marginal Effect (AME) of additional rea-
soning tokens on the probability of an accurate
response. Unlike the raw logistic regression coeffi-
cients, which are expressed in log-odds, the AME
directly quantifies the effect of an additional token
in probability terms. Specifically, it represents the
average change in the probability of accuracy for
a one-token increase, while holding difficulty tier
and domain constant. By computing AMEs, we
ensure that our estimates account for the full distri-
bution of difficulty levels and domains, rather than
relying on effects evaluated at a single reference
point.

A.6 Figures and Tables



Sample problem Omni-MATH

Domain: Mathematics — Discrete Mathematics — Graph Theory
Difficulty: 9.0
Source: China National Olympiad

Problem: A table tennis club hosts a series of doubles matches following several rules:
1. each player belongs to two pairs at most;
2. every two distinct pairs play one game against each other at most;
3. players in the same pair do not play against each other when they pair with others respectively.

Every player plays a certain number of games in this series. All these distinct numbers make up a set called the set
of games. Consider a set A = {a1,az,...,ax} of positive integers such that every element in A is divisible by
6. Determine the minimum number of players needed to participate in this series so that a schedule for which the
corresponding set of games is equal to set A exists.

Answer: 1 max A + 3.

Solution: To determine the minimum number of players needed to participate in the series such that the set of games is
equal to the set A, we start by analyzing the problem through graph theory.

Consider a graph G where each vertex represents a player and an edge between two vertices represents a pair of players.
According to the problem’s conditions:

(1) Each player belongs to at most two pairs.
(i1) Every two distinct pairs play one game against each other at most.
(iii) Players in the same pair do not play against each other when they pair with others respectively.

Given these conditions, each vertex in G can have a degree of at most 2. This implies that G can be decomposed into
disjoint cycles, paths, and isolated vertices. Let max A = a. We need to ensure that there is a player who plays a games,
and each element in A is divisible by 6. To achieve this, we need to construct a graph where the number of games each
player plays corresponds to the elements in A. ### Proof of optimality: Let  be a vertex with the maximum number of
games a. This vertex  must be connected to at least one other vertex. If = has only one edge, it must have a games
on it. If  has two edges, each edge must have at least 5 games. Let zy be an edge with > 5 games. The remaining
vertices must account for at least 5 edges, ensuring that there are at least § + 2 vertices. However, due to the constraints,
there must be at least § + 3 vertices to satisfy all conditions. ### Construction: To construct such a graph, we can use
clusters of three players, each forming pairs within the cluster. This ensures that each player in a cluster plays 6 games

per edge. By assigning each cluster to a vertex in a graph G with b vertices, where b = % max A + 1, we can ensure

that the set of games corresponds to A. Thus, the minimum number of players needed is: % max A + 3. The answer is:

%maxA—i—S

Figure A1: Sample problem from the Omni-MATH dataset. The Omni-MATH dataset consists of 4428 Olympiad-
level math problems together with an exact answer, a written out solution and metadata Domain, Difficulty and
Source.
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Sample output Omni-judge

Problem: A table tennis club hosts a series of doubles matches following several rules:
(1) each player belongs to two pairs at most;

(i1) every two distinct pairs play one game against each other at most;

(iii) players in the same pair do not play against each other when they pair with others respectively.
Every player plays a certain number of games in this series. All these distinct numbers make up a set called the set
of games. Consider a set A = {a1,az,...,ar} of positive integers such that every element in A is divisible by
6. Determine the minimum number of players needed to participate in this series so that a schedule for which the
corresponding set of games is equal to set A exists.

Answer:  max A + 3.

Model generation: We will show that one may ‘hit’ a prescribed set A = {a1, a2, . .., ax} (where each a; is a positive
multiple of 6) by the following construction, and that no schedule may use fewer than

a1+a2§--~+ak+2k (1)

players. [...] In any such schedule every pair plays some number of games. Rule (ii) means that once we have fixed a
pair P the ‘opponent-teams’ of P form a set; we denote by d(P) the number of games in which P plays. Then a given
player’s ‘score’ (the number of games in which he participates) is determined by whether he belongs to one pair (in
which case his score is the degree of that pair) or to two pairs (in which case his score is the sum of the two degrees).
Note that by rule (iii) if a player belongs to two pairs then those two pairs never meet so that the numbers add! Thus if
we ‘read off’ the numbers of games played by the players (omitting any repetitions) we obtain a set - called the ‘set of
games’. In our problem we wish this set to be exactly the given A.

An important idea is that players who belong to two pairs are ‘economical’ in that one player now serves to ‘cover’ two
teams. (In a ‘non-economical’ schedule each pair would contribute two ‘single—-members’.) One may show that in a
schedule in which as many players as possible are ‘doubles’ (that is, belong to two teams) one may ‘control’ the scores
so that in fact every player’s number is of the form d(P) or d(P) + d(Q) (with d(P) and d(Q) coming from a suitable
graph on the pairs). One may then prove the following two claims:

Claim 1. If the schedule uses only double—players then the total number 7 of players is exactly the number 7" of pairs,
and a routine “pairing” (that is, a perfect matching) of the teams shows that one must have n > 2k (since one obtains
exactly n/2 sums, one for each game—of—a—double, and these must contain the &k given numbers.)

Claim 2. Since a team’s degree is at most (n — 1) the maximum score obtainable by a double is at most 2(n—1). In order
to be able to “reach” a number a; we must have 2(n—1) > a; for every 4, so that in particular n > £ max{a;}+1. A
careful double—counting (namely, counting the total number of games by summing the scores of players in two different
ways) shows that one must have n > %1+92toFdr 4 ok Moreover one may show by an inductive construction that
equality is attainable. One acceptable answer to the problem is therefore to prove that the minimum number of players

needed is % + 2k. An answer equivalent to (1) is completely acceptable. Thus, our final answer is

ar+az +---+ag

2k
3 +

Omni-Judge: ## Student Final Answer: % + 2k. ## Equivalence Judgement: FALSE ## Justification: The
student’s answer is w + 2k, which does not match the reference answer of é max A + 3. The discrepancy
lies in the treatment of the maximum value of A and the constant term. In the student’s solution, they consider the
average of all elements in set A, whereas the reference answer focuses on half of the maximum element in A plus an
additional constant term. This difference indicates that the student’s answer does not capture the same meaning as the
reference answer. === report over ===

Figure A2: Sample output of the Omni-Judge model. The Omni-Judge model is prompted as in Gao et al. (2024),
which is to repeat the ‘student’s’ final answer, asses the equivalence of this answer with the reference answer
and provide complementary justification. We omit the part where 03-mini (h) repeats the problem specifications,
indicated by [...].
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Figure A3: Domain distribution of the Omni-MATH dataset. This figure displays the distribution of the primary
domains of the Omni-MATH dataset. Math problems that belong to multiple domains are counted for each domain,
so the total number of question is higher than in Figure A4.

Tier 2 (1304)
2 1000 -
8 890
% 800 o
g Tier 1 (1445)
E 600 — l l i
15) 543 Tier 4 (1030)
5 i [
[} Tier 3 (649)
—g 400 398 ] 387
=) 232 259 265
209
z 200 126 166 173 200 158 157
106 o
4 21 3 31 12 7 1 1 13 16
0 T T | T T 1 rtrr r 1 11 T T 1 1 1 T T T 1 T T
o Q o Q o Q o o Q o Q o Q o Q o
\Q N YV P Rl » » o) o) © a . @ 9 9

Difficulty level

Figure A4: Classification of difficulty levels in balanced difficulty tiers. This figure shows the difficulty
distribution of the Omni-MATH dataset. The difficulty levels are classified in difficulty tiers based on the quartiles
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Figure AS: Accuracy across the completion token distribution and accuracy vs. token use for gpt-4o. This
figure shows that gpt-40 uses predominantly between 200 and 1000 completion tokens for answering the Omni-
MATH problems. We also observe that shorter answers are more likely to lead to a correct final answer. Finally,
the relative proportion of tier levels in each bin reveals a clear transition from a region where the majority of the
questions come from the lowest tiers to a region where the majority of the questions come from the highest tiers
(for bins with a sufficient amount of data points). a, The main panel of this plot displays a stacked histogram
of the reasoning tokens used for correctly and incorrectly answered questions in the Omni-MATH dataset. The
secondary y-axis depicts the probability that the model answers incorrectly given that the token count has surpassed
the bin threshold (see Appendix A.4). The subplot contains a filled histogram where the color opacity represents the
difficulty level of the math questions (cfr. Figure A4). b, Accuracy per reasoning token, computed by dividing the
number of correctly answered questions by the total number of questions in each bin of the histogram depicted in a.
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reasoning token distribution. The token distribution of 03-mini (h) is a linearly scaled version of the distribution of
03-mini (m) with a factor slightly larger than 2.
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Figure A7: Stratification of Figure 4a by difficulty tier of the Omni-MATH dataset. This figure shows that
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accuracy also decreases within the difficulty tiers as the use of reasoning tokens increases.
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Figure A8: Stratification of Figure 4a by mathematical domain of the Omni-MATH dataset. This figure shows
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that, on average, accuracy also decreases within the domains as the use of reasoning tokens increases.
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ol-mini 03-mini (m) 03-mini (h)
Without controls
Tokens —1.85e—4*"* —1.25e—4*** —5.7Te—5""*
Constant 1.19*** 1.53** 1.87***
With controls
Tokens —1.61e—4**" —1.08e—4*** —5.10e—5"**
Difficulty Tier 2 —0.53"** —0.36™"" —0.20""
Difficulty Tier 3 —0.74™** —0.56™"" —0.37*"
Difficulty Tier 4 —1.08"** —0.70™** —0.63***
Applied Math —0.41*** —0.34™** —0.37**
Calculus 0.13 0.03 0.09
Discrete Math —0.86™*" —0.50"** —0.41***
Geometry —0.46™"" —0.21*" —0.26™"
Number Theory 0.02 0.04 0.08
Other 0.47 0.02 —0.03
Constant 1.93*** 2.02"** 2.25™**
N 5,535 5,531 5,526
McFadden’s pseudo-R?>  0.11 0.06 0.06
(without controls)
McFadden’s pseudo-R? 0.15 0.07 0.08

Table Al: Logistic regression models to estimate the effect size of reasoning tokens on accuracy. We use a
logistic regression to estimate the effect of additional reasoning tokens on the probability of an accurate response on a
question, while controlling for different levels of difficulty and domains. Estimates are from a logistic regression (Eq.
5) fit by maximum likelihood, with robust (Huber—White) standard errors to account for potential heteroskedasticity.
The significance levels are for a two-sided Wald test with a null hypothesis of the regression coefficient being equal
to zero ("p < 0.01, “p < 0.05, “p < 0.1).
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