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Abstract001

Large language models have demonstrated re-002
markable progress in mathematical reasoning,003
leveraging chain-of-thought and reinforcement004
learning. However, it is unclear whether im-005
proved performance results from longer rea-006
soning chains or more efficient reasoning. We007
systematically analyze reasoning chain length008
across o1-mini and o3-mini variants on the009
Omni-MATH benchmark, finding that o3-mini010
(m) achieves superior accuracy without re-011
quiring longer reasoning chains than o1-mini.012
Moreover, we show that accuracy generally de-013
clines as reasoning chains grow across all mod-014
els and compute settings. This accuracy drop is015
significantly smaller in more proficient models,016
suggesting that new generations of reasoning017
models use test-time compute more effectively.018
Finally, we highlight that while o3-mini (h)019
achieves a marginal accuracy gain over o3-mini020
(m), it does so by allocating substantially more021
reasoning tokens across all problems, even the022
ones that o3-mini (m) can already solve. These023
findings provide new insights into the relation-024
ship between model capability and reasoning025
length, with implications for efficiency, scaling,026
and evaluation methodologies.1027

1 Introduction028

Large language models (LLMs) have evolved from029

handling basic natural language processing tasks030

to solving complex problems (Brown et al., 2020;031

Bubeck et al., 2023; Romera-Paredes et al., 2024;032

Trinh et al., 2024). Scaling model size, data, and033

compute (Kaplan et al., 2020) has enabled larger034

models to develop richer internal representations035

(Gurnee and Tegmark, 2024; Hao et al., 2023) and036

emergent capabilities (Wei et al., 2022a). Recently,037

a new class of reasoning models has emerged038

that couples reinforcement learning with test-time039

compute scaling (Muennighoff et al., 2025; Snell040

1Data and code are enclosed in an anonymized zip file and
will be released publicly upon acceptance.

Figure 1: Performance of OpenAI models on
Omni-MATH across disciplines and difficulty tiers.

et al., 2025). These models leverage reasoning 041

tokens to guide the chain-of-thought process and 042

maintain coherence throughout complex problem- 043

solving tasks (Anderson et al., 2025; Chen et al., 044

2024; Wang et al., 2025). By explicitly optimiz- 045

ing their reasoning process during training (Wei 046

et al., 2022b) and iteratively refining their output at 047

inference-time, they achieve superior performance, 048

even on challenging mathematical benchmarks 049

(DeepSeek-AI et al., 2025; Guan et al., 2025). 050

In this paper, we examine whether more capa- 051

ble models within a single family (OpenAI’s o- 052

series) require a longer reasoning chain to achieve 053

higher performance or if they can reason more ef- 054

fectively. We systematically compare the num- 055

ber of tokens in the reasoning chain generated 056

by o1-mini, o3-mini (m), and o3-mini (h) on the 057

Omni-MATH benchmark (Gao et al., 2024). Omni- 058

MATH spans more than 33 mathematical subdo- 059

mains and 10 difficulty levels, providing a com- 060

prehensive evaluation framework for LLMs’ math- 061

ematical reasoning abilities. Well-known bench- 062

marks GSM8K (Cobbe et al., 2021) and MATH 063

(Hendrycks et al., 2021b) have become less ef- 064

fective in differentiating the mathematical abili- 065

ties of LLMs due to the high accuracy rates they 066
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Figure 2: Granular performance and relative reasoning token use. This figure shows that models allocate more
computational resources to problems that require complex combinatorial reasoning, whereas foundational arithmetic
and algebra problems demand relatively fewer resources. On average, token usage scales with difficulty level. The
heatmaps visualize cross-sectional performance scores on a 0-100% scale, represented by the color of the progress
bar. The length of the progress bar in each cell represents relative token usage for the test-time scaled models. The
extra column is computed by averaging over the rows. The extra row and “average” cell are computed independently
to give equal weight to multi-domain questions (see Appendix A.1).

achieve on these tests. More challenging bench-067

marks, such as FrontierMath (Glazer et al., 2024),068

GSM-Symbolic (Mirzadeh et al., 2024), and sec-069

tions of Humanity’s Last Exam (Phan et al., 2025)070

only span a few disciplines or are largely being071

kept private due to data leakage concerns.072

We find that more proficient models (o1-mini073

vs. o3-mini (m)) do not generate longer reasoning074

chains to achieve higher accuracy. For all models075

and compute settings, we find that accuracy gener-076

ally decreases as the reasoning chain grows, even077

when controlling for question difficulty. This ef-078

fect is notably smaller for more proficient models,079

indicating that o3-mini (m) tends to overthink less080

and uses reasoning tokens more effectively than081

o1-mini. However, within one model (o3-mini (m)082

vs. o3-mini (h)), we observe that the slower accu-083

racy decrease per token is partially due to a higher084

average accuracy, but mainly due to the model al-085

locating (more than) double the reasoning tokens086

for all questions. Our findings contribute to the on-087

going discussion about whether models such as o1088

tend to overthink or underthink (Chen et al., 2024;089

Wang et al., 2025), while complementing studies090

on reasoning step length (Jin et al., 2024), input091

length (Levy et al., 2024), reasoning failure modes092

(Anderson et al., 2025), and the optimization of093

mathematical reasoning (Zhong et al., 2024).094

2 Experiment095

Our data consists of 4, 428 Olympiad-level math096

problems, the Omni-MATH benchmark, together097

with a reference answer and relevant metadata098

fields Domain and Difficulty (Figures A1 and A2). 099

We consider six elementary mathematics domains, 100

Algebra, Applied Mathematics, Calculus, Dis- 101

crete Mathematics, Geometry and Number The- 102

ory and divide the data into four difficulty tiers, 103

Tier 1, Tier 2, Tier 3 and Tier 4 (Figures A3 104

and A4). Subsequently, we feed the problems to 105

four OpenAI models, namely gpt-4o, o1-mini, o3- 106

mini (m) and o3-mini (h) and make automated re- 107

quests to the Omni-Judge model (Gao et al., 2024)– 108

a math-evaluation model designed to verify and 109

correct model-generated answers against reference 110

answers–to correct their answers. Consult Ap- 111

pendix A for implementation details. 112

3 Results 113

Reasoning models consistently outperform gpt- 114

4o. Figures 1 and 2 show the performance of 115

OpenAI models gpt-4o, o1-mini, o3-mini (m) and 116

o3-mini (h) across mathematical disciplines and dif- 117

ficulty tiers. The gpt-4o model performs between 118

20% and 30% for all disciplines and clearly lags 119

behind the three reasoning models. o1-mini signifi- 120

cantly improves accuracy, reaching 40–60% on all 121

categories. The introduction of o3-mini (m) fur- 122

ther enhances performance, achieving 50% in all 123

categories. The o3-mini (h) model improves with 124

approximately 4% on average compared to o3-mini 125

(m) and surpasses 80% accuracy for Algebra and 126

Calculus. A notable outlier is Discrete Mathemat- 127

ics, where performance deviates from the overall 128

trend for all models. In general, accuracy declines 129

as tier level increases. An exception is observed 130
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Figure 3: Accuracy across the reasoning token distribution and difficulty tier consistency. This figure shows
that o1-mini and o3-mini (m) have a similar reasoning token distribution, with o3-mini (m) giving more correct
answers for high-token regions. o3-mini (h) has a good ratio of correct vs. incorrect answers, even for very high
token counts. Finally, bin composition shifts from mostly low-tier to mostly high-tier questions (high-token regions
sometimes have insufficient data points to show this pattern). The main panels of the figure display the proportion
of the correct (green bars) versus incorrect (red bars) model responses across the reasoning token distribution. The
red dashed line depicts the conditional error rate, i.e. the probability that the model answers incorrectly given that
the token count has surpassed the bin threshold (see Appendix A.4). The panels below the histogram contain a filled
histogram where the color opacity represents the difficulty level of the math questions (cfr. Figure A4).

in gpt-4o, which performs better on Tier 4 than on131

Tiers 2 and 3. This anomaly suggests that gpt-4o132

might leverage unexpected heuristics or struggle133

disproportionately with mid-tier complexity.134

More complex questions demand greater rea-135

soning depth. Besides indicating accuracy (via the136

colors of the progress bars), Figure 2 also shows rel-137

ative use of reasoning tokens (via the length of the138

progress bars). The relative use of tokens increases139

with the level of difficulty for all models, highlight-140

ing the need for computational resources for more141

difficult tasks. This is confirmed by the lower pan-142

els in Figure 3. Discrete Mathematics stands out143

as a token-intensive domain, indicating a heavier144

combinatorial or multi-step reasoning load. Foun-145

dational mathematics areas such as Calculus and146

Algebra tend to consume fewer tokens, possibly be-147

cause they are more procedurally straightforward.148

Interestingly, we observe that a relatively longer149

chain of reasoning does not generally lead to better150

performance, as many Tier 4 math problems from151

token-intensive domains remain unsolved.152

More proficient models give more correct an-153

swers for high-token regions. Figures 3 and 4154

display the relationship between the number of 155

reasoning tokens and the performance of o1-mini, 156

o3-mini (m), and o3-mini (h) on the Omni-MATH 157

dataset (consult Figure A5 for gpt-4o analysis with 158

completion tokens, which encompass both the to- 159

kens leading up to the answer and the answer itself). 160

One first thing to note is that higher performing 161

models have a better ratio of correct to incorrect 162

answers, even for high token counts. This pattern 163

is also reflected in the conditional error rate: the 164

conditional error rate is almost instantly at 50% for 165

o1-mini whereas it takes about 12, 000 tokens for 166

o3-mini (m) and 30, 000 for o3-mini (h) to reach a 167

50% error rate. 168

o3 (mini) Thinks Harder, Not Longer. A sec- 169

ond thing to note is that the token distributions 170

of o1-mini and o3-mini (m) are very similar. Fig- 171

ure 4b together with the left QQ-plot in Figure A6 172

further investigate this behavior by comparing the 173

distribution of the reasoning tokens only for the 174

questions that the models answered correctly. In- 175

deed, the almost identical token distributions show 176

that o3-mini (m) does not use more reasoning to- 177

kens to achieve its superior performance to o1-mini 178
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Figure 4: Accuracy vs. token use. This figure shows that o3-mini (m) does not require longer reasoning chains
than o1-mini to achieve better accuracy and that, in general, more proficient models exhibit less accuracy decay as
reasoning tokens increase. Figure A6 confirms that o1-mini and o3-mini (m) have a very similar token distribution
and that the token distribution of o3-mini (h) is stretched linearly with respect to the one of o3-mini (m). a, Accuracy
per reasoning token, dividing the number of correctly answered questions by the total number of questions in each
bin of the histograms in Figure 3. b, Distribution of the reasoning tokens for correctly answered questions.

on Omni-MATH. This suggests that o3-mini (m)179

reasons more effectively.180

Accuracy decreases with token use. Figure 4a181

shows that the average accuracy decreases with in-182

creasing use of reasoning tokens for all three mod-183

els, but that this trend is the most pronounced for184

o1-mini and smaller for o3-mini (m) and o3-mini185

(h). While this could be attributed to higher-tier186

questions requiring more tokens, Figure A7 shows187

that the trend remains even when stratifying by188

tier level. In Figure A8, we show this also holds189

when stratifying across domains. This suggests190

that increased token usage, rather than question191

complexity alone, is related to accuracy. We use a192

logistic regression to quantify the effect size of us-193

ing additional reasoning tokens on the probability194

of answering a question correctly, controlling for195

different levels of difficulty and domains (see Ap-196

pendix A.5 and Table A1). The average marginal197

effects indicate that the accuracy decrease per 1000198

reasoning tokens is 3.16% for o1-mini, 1.96% for199

o3-mini (m), and 0.81% for o3-mini (h). These200

results indicate that while deeper reasoning is nec-201

essary for solving complex problems, there is a202

diminishing return, where excessive token usage203

correlates with reduced accuracy.204

o3-mini (h) allocates more tokens for all ques-205

tions. Figure 3 (bottom) shows that the token206

distribution of o3-mini (h) spans a significantly207

wider range of values, with the model allocating208

over 50, 000 reasoning tokens for some math prob-209

lems. In addition, Figure 4b shows that o3-mini210

(h) uses more reasoning tokens to solve all cor-211

rectly answered questions, indicating that the small212

accuracy gain of 4% compared to o3-mini (m) is213

accompanied by a large extra computational cost214

(confirmed by the right QQ-plot in Figure A6). The 215

slower accuracy decrease per token of o3-mini (h) 216

compared to o3-mini (m) is thus attributed to a 217

stretched out token distribution along the x-axis. 218

4 Conclusion 219

By systematically comparing the number of to- 220

kens in the reasoning chain generated by o1-mini, 221

o3-mini (m), and o3-mini (h) on the Omni-MATH 222

dataset (Gao et al., 2024), we find two important 223

results. First, more proficient models (o1-mini vs. 224

o3-mini (m)) do not require longer reasoning to 225

achieve higher accuracy. Second, while accuracy 226

generally declines with a longer chain-of-thought, 227

this effect is notably smaller in more proficient 228

models, underscoring that “thinking harder” is not 229

the same as “thinking longer”. A possible hypoth- 230

esis for this accuracy drop is that models tend to 231

reason more on problems they cannot solve. An- 232

other possibility is that longer reasoning chains 233

inherently have a higher probability of leading to 234

a wrong final solution, highlighting the need for 235

mathematical benchmarks with reference reason- 236

ing templates. A practical takeaway from our study 237

is that constraining the chain-of-thought (by set- 238

ting max_completion_tokens) is more useful for 239

weaker reasoning models than for stronger ones, as 240

the latter still give a significant amount of correct 241

answers for high-token regions. 242

The token count for o3-mini (h) contained the 243

following subtlety: although o3-mini (h) solves 244

additional problems compared to o3-mini (m), the 245

model uses more tokens for all math problems. The 246

slower decrease in accuracy per token is thus due 247

to a stretched token distribution rather than a more 248

effective usage of reasoning tokens. 249
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Limitations250

This work evaluates the reasoning abilities of four251

large language models within the OpenAI family.252

Our methodological choice to focus on one fam-253

ily, stems from the fact that this allows us to di-254

rectly compare post-training effects and test-time255

compute settings without introducing confounding256

factors such as closed- vs. open-source models,257

different training strategies or architectures. Fur-258

thermore, at the time of submission, the OpenAI259

o-series is the largest family that allows for this260

type of comparison.261

The reasoning tokens usage of o1-mini, o3-mini262

(m) and o3-mini (h) is analysed exclusively when263

solving the Omni-MATH benchmark (Gao et al.,264

2024). As discussed in the Introduction, Omni-265

MATH is currently the only publicly available, an-266

notated, mathematical dataset that is not deprecated.267

More general benchmarks like those in Srivastava268

et al. (2023) and MMLU (Hendrycks et al., 2021a),269

along with specialized tests such as AI2 Reason-270

ing (Clark et al., 2018) and GPQA (Rein et al.,271

2024) would broaden the evaluation landscape to272

diverse reasoning domains. However, current focus273

remains on mathematics due to the relative ease of274

implementing objective reward models and auto-275

mated verification procedures.276

Finally, our study relies on automated correc-277

tion by Omni-Judge (Gao et al., 2024), a model278

based evaluator that, while effective, may produce279

judgements that diverge from human corrections280

(Verga et al., 2024; Li et al., 2025). Omni-Judge281

has only been validated for data leakage checks282

on o1-mini (Gao et al., 2024), and extending these283

checks to o3-mini remains future work, though we284

assume minimal overlap. Additionally, our prompt-285

ing strategy employed here (Kojima et al., 2022;286

Wang et al., 2023; Yao et al., 2024) may not gener-287

alize to alternative approaches or more constrained288

prompt settings (Tam et al., 2024). This interaction289

between prompt design and test-time compute is an290

important direction for further investigation, partic-291

ularly as much of the existing research has focused292

on models without test-time compute. As a result,293

the broader implications for the latest generation294

of reasoning models (DeepSeek-AI et al., 2025)295

remain to be fully explored.296

Ethical Considerations297

We do not foresee any immediate ethical or societal298

implications arising from our work. However, as299

large language models become increasingly capa- 300

ble of solving complex (mathematical) problems, it 301

is important to consider the implications of integrat- 302

ing such technologies into educational, scientific 303

and professional contexts. Our work contributes to 304

the responsible use of AI in these contexts by pro- 305

viding a rigorous analysis of the mathematical rea- 306

soning abilities of LLMs, with wider implications 307

for efficient resource allocation, the refinement of 308

LLMs’ universal reasoning skills, and AI-driven 309

scientific discovery. 310
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A Appendix532

We describe our experimental setup and provide the533

data processing details necessary to replicate our534

analysis. At the end of this section, we elaborate535

on the regression analysis conducted to analyse the536

effect size of increased reasoning token usage on537

accuracy.538

A.1 Datasets539

The Omni-MATH benchmark (Gao et al., 2024)540

contains Olympiad-level math problems specifi-541

cally designed to test the reasoning abilities of large542

language models. Each entry in the dataset con-543

sists of a problem, an exact answer, and a writ-544

ten out solution together with the following meta-545

data fields: Domain, Difficulty, and Source (see546

Figure A1). Each problem has between one and547

three domains of the form Mathematics → Pri-548

mary domain → . . . , with a maximum length of549

five. In this paper, we only take the primary do-550

mains into account, as a more granular classifica-551

tion gives rise to very imbalanced or underpopu-552

lated classes. Figure A3 shows the number of math553

problems per (primary) domain where we follow554

Gao et al. (2024) in double- or triple-counting the555

multi-domain questions. We made sure to delete556

the duplicate entries, e.g. some data entries had557

multiple domain trees but the same primary do-558

main. Every domain-specific analysis in the paper559

follows this convention. Finally, we joined the Cal-560

culus and Pre Calculus class and deleted the Other561

class to obtain a more balanced domain distribution.562

Math problems are also classified according to dif-563

ficulty level as presented in Figure A4. We divide564

the data into difficulty tiers based on the quartiles565

of the difficulty distribution (without separating566

difficulty levels).567

A.2 Large Language Models568

We evaluate the performance of the several OpenAI569

models that are affordable for most users: gpt-4o-570

06-08-2024, o1-mini-12-09-2024, o3-mini-31-01-571

2025 medium (default) and o3-mini-31-01-2025572

high. The o3-mini high model, instead of medium,573

is obtained by setting reasoning_effort to high.574

We feed each model the math problems using the575

Batch API with the following vanilla prompt as576

user message:577

Solve the following problem. Enclose the
final answer in a \\boxed{{}} environment.
Problem: {problem}

578

Furthermore, we set max_completion_tokens 579

limits of 25, 000 for o1-mini and o3-mini medium, 580

and a 100, 000 token limit for o3-mini high. Each 581

reasoning model refused to answer a few questions 582

(flagged as invalid prompts), which were subse- 583

quently omitted from the analysis. 584

To correct the responses of the four OpenAI 585

models on the Omni-MATH dataset, we employ 586

another large language model called Omni-Judge 587

(KbsdJames/Omni-Judge). Omni-Judge is an ef- 588

ficient and low cost open-source math-evaluation 589

model developed by the authors of Gao et al. (2024). 590

The model is trained to assess the correctness of an 591

answer generated by an LLM, given the problem 592

and a reference answer (see Figure A2). Table 9 in 593

Gao et al. (2024) shows that Omni-Judge is 91.78% 594

consistent with gpt-4o as a judge (who is 98% con- 595

sistent with human evaluators) and has almost a 596

100% success rate of correctly parsing model gen- 597

erated answers. To judge the models’ generated 598

answers, we make requests to the chat completions 599

endpoint of the kbsdjames.omni-judge API by 600

running the model in LM Studio. We use the same 601

few-shot prompt as in Gao et al. (2024) and set the 602

max_new_tokens parameter to 300. In the very few 603

cases where Omni-Judge fails to parse the model 604

output (< 1%), we omit that question from the 605

performance evaluation. 606

A.3 Data and Code Availability 607

The original Omni-MATH dataset is avail- 608

able at https://huggingface.co/datasets/ 609

KbsdJames/Omni-MATH. The original Omni-Judge 610

model is available at https://huggingface.co/ 611

KbsdJames/Omni-Judge. Data and code for this 612

publication are attached in an anonymized zip file. 613

The code is based on the Omni-MATH bench- 614

mark analysis code, publicly available at https: 615

//github.com/KbsdJames/Omni-MATH. We used 616

Python 3.12.6 (pandas 2.2.3, numpy 2.1.1, mat- 617

plotlib 3.9.2, seaborn 0.13.2, statsmodels 0.14.4, 618

and scikit-learn 1.5.2) to analyse and visualize data 619

and to conduct statistical analyses. 620

A.4 Conditional Probability 621

The conditional probability appearing in Figure 3 622

and Figure A5 is computed using a full Bayesian 623
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model with uninformative priors (we assume that624

P(False) = P(True) = 0.5). In particular, we have625

that626

P(False | T > Bi)

=
P(T > Bi | False)

P(T > Bi | False) + P(T > Bi | True)
,

(1)

627

where {T > Bi} is the event that the number of628

tokens exceeds the right bin threshold and "False"629

indicates that the model answered incorrectly. Be-630

cause Bi can only take a finite number of values,631

we have that632

P(False | T > Bi) (2)633

=
n∑

k=i+1

P(T ∈ Bk | False)
P(T ∈ Bk | False) + P(T ∈ Bk | True)

(3)

634

=

n∑
k=i+1

|False ∈ Bk|
|False ∈ Bk|+ |True ∈ Bk|

, (4)635

which can be easily computed using the stacked636

histogram data.637

A.5 Regression Analysis638

We use a logistic regression to estimate the effect of639

additional reasoning tokens on the probability of an640

accurate response on a question Yi, while control-641

ling for different levels of difficulty and domains.642

The regression takes the following form:643

log

(
Pr(Yi = 1)

Pr(Yi = 0)

)
= β0 + β1tokensi

+
K−1∑
k=1

δk difficulty tierk(i)︸ ︷︷ ︸
difficulty fixed effects

+
M−1∑
m=1

γm domainm(i)︸ ︷︷ ︸
domain fixed effects

,

(5)

644

where i, k, and m denote the question-response645

pair, the difficulty tier, and the domain, respectively.646

Moreover, k(i) and m(i) indicate that the diffi-647

culty tier k and domain m depend on the question-648

response pair i. The difficulty tier and domain fixed649

effects can be estimated by including dummy vari-650

ables, which are equal to one if the difficulty tier651

or domain is equal to the difficulty tier or domain652

of the current question-response pair and equal to653

zero otherwise, with the exclusion of a reference654

category (i.e., K − 1 and M − 1). The reference 655

category for difficulty tiers is the lowest difficulty 656

Tier 1 and for the domains it is Algebra. We obtain 657

similar results when using the more fine-grained 658

difficulty levels (0− 10) instead of difficulty tiers. 659

To facilitate interpretation, we compute the Av- 660

erage Marginal Effect (AME) of additional rea- 661

soning tokens on the probability of an accurate 662

response. Unlike the raw logistic regression coeffi- 663

cients, which are expressed in log-odds, the AME 664

directly quantifies the effect of an additional token 665

in probability terms. Specifically, it represents the 666

average change in the probability of accuracy for 667

a one-token increase, while holding difficulty tier 668

and domain constant. By computing AMEs, we 669

ensure that our estimates account for the full distri- 670

bution of difficulty levels and domains, rather than 671

relying on effects evaluated at a single reference 672

point. 673

A.6 Figures and Tables 674
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Sample problem Omni-MATH

Domain: Mathematics → Discrete Mathematics → Graph Theory
Difficulty: 9.0
Source: China National Olympiad

Problem: A table tennis club hosts a series of doubles matches following several rules:

1. each player belongs to two pairs at most;

2. every two distinct pairs play one game against each other at most;

3. players in the same pair do not play against each other when they pair with others respectively.

Every player plays a certain number of games in this series. All these distinct numbers make up a set called the set
of games. Consider a set A = {a1, a2, . . . , ak} of positive integers such that every element in A is divisible by
6. Determine the minimum number of players needed to participate in this series so that a schedule for which the
corresponding set of games is equal to set A exists.

Answer: 1
2
maxA+ 3.

Solution: To determine the minimum number of players needed to participate in the series such that the set of games is
equal to the set A, we start by analyzing the problem through graph theory.
Consider a graph G where each vertex represents a player and an edge between two vertices represents a pair of players.
According to the problem’s conditions:

(i) Each player belongs to at most two pairs.

(ii) Every two distinct pairs play one game against each other at most.

(iii) Players in the same pair do not play against each other when they pair with others respectively.

Given these conditions, each vertex in G can have a degree of at most 2. This implies that G can be decomposed into
disjoint cycles, paths, and isolated vertices. Let maxA = a. We need to ensure that there is a player who plays a games,
and each element in A is divisible by 6. To achieve this, we need to construct a graph where the number of games each
player plays corresponds to the elements in A. ### Proof of optimality: Let x be a vertex with the maximum number of
games a. This vertex x must be connected to at least one other vertex. If x has only one edge, it must have a games
on it. If x has two edges, each edge must have at least a

2
games. Let xy be an edge with ≥ a

2
games. The remaining

vertices must account for at least a
2

edges, ensuring that there are at least a
2
+2 vertices. However, due to the constraints,

there must be at least a
2
+ 3 vertices to satisfy all conditions. ### Construction: To construct such a graph, we can use

clusters of three players, each forming pairs within the cluster. This ensures that each player in a cluster plays 6 games
per edge. By assigning each cluster to a vertex in a graph G with b vertices, where b = 1

6
maxA+ 1, we can ensure

that the set of games corresponds to A. Thus, the minimum number of players needed is: 1
2
maxA+ 3. The answer is:

1

2
maxA+ 3

Figure A1: Sample problem from the Omni-MATH dataset. The Omni-MATH dataset consists of 4428 Olympiad-
level math problems together with an exact answer, a written out solution and metadata Domain, Difficulty and
Source.
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Sample output Omni-judge

Problem: A table tennis club hosts a series of doubles matches following several rules:

(i) each player belongs to two pairs at most;

(ii) every two distinct pairs play one game against each other at most;

(iii) players in the same pair do not play against each other when they pair with others respectively.

Every player plays a certain number of games in this series. All these distinct numbers make up a set called the set
of games. Consider a set A = {a1, a2, . . . , ak} of positive integers such that every element in A is divisible by
6. Determine the minimum number of players needed to participate in this series so that a schedule for which the
corresponding set of games is equal to set A exists.

Answer: 1
2
maxA+ 3.

Model generation: We will show that one may ‘hit’ a prescribed set A = {a1, a2, . . . , ak} (where each ai is a positive
multiple of 6) by the following construction, and that no schedule may use fewer than

a1 + a2 + · · ·+ ak

3
+ 2k (1)

players. [...] In any such schedule every pair plays some number of games. Rule (ii) means that once we have fixed a
pair P the ‘opponent-teams’ of P form a set; we denote by d(P ) the number of games in which P plays. Then a given
player’s ‘score’ (the number of games in which he participates) is determined by whether he belongs to one pair (in
which case his score is the degree of that pair) or to two pairs (in which case his score is the sum of the two degrees).
Note that by rule (iii) if a player belongs to two pairs then those two pairs never meet so that the numbers add! Thus if
we ‘read off’ the numbers of games played by the players (omitting any repetitions) we obtain a set - called the ‘set of
games’. In our problem we wish this set to be exactly the given A.
An important idea is that players who belong to two pairs are ‘economical’ in that one player now serves to ‘cover’ two
teams. (In a ‘non-economical’ schedule each pair would contribute two ‘single–members’.) One may show that in a
schedule in which as many players as possible are ‘doubles’ (that is, belong to two teams) one may ‘control’ the scores
so that in fact every player’s number is of the form d(P ) or d(P ) + d(Q) (with d(P ) and d(Q) coming from a suitable
graph on the pairs). One may then prove the following two claims:

Claim 1. If the schedule uses only double–players then the total number n of players is exactly the number T of pairs,
and a routine “pairing” (that is, a perfect matching) of the teams shows that one must have n ≥ 2k (since one obtains
exactly n/2 sums, one for each game–of–a–double, and these must contain the k given numbers.)

Claim 2. Since a team’s degree is at most (n−1) the maximum score obtainable by a double is at most 2(n−1). In order
to be able to “reach” a number ai we must have 2(n−1) ≥ ai for every i, so that in particular n ≥ 1

2
max{ai}+1. A

careful double–counting (namely, counting the total number of games by summing the scores of players in two different
ways) shows that one must have n ≥ a1+a2+···+ak

3
+ 2k. Moreover one may show by an inductive construction that

equality is attainable. One acceptable answer to the problem is therefore to prove that the minimum number of players
needed is a1+a2+···+ak

3
+ 2k. An answer equivalent to (1) is completely acceptable. Thus, our final answer is

a1 + a2 + · · ·+ ak

3
+ 2k

Omni-Judge: ## Student Final Answer: a1+a2+···+ak
3

+ 2k. ## Equivalence Judgement: FALSE ## Justification: The
student’s answer is a1+a2+···+ak

3
+ 2k, which does not match the reference answer of 1

2
maxA+ 3. The discrepancy

lies in the treatment of the maximum value of A and the constant term. In the student’s solution, they consider the
average of all elements in set A, whereas the reference answer focuses on half of the maximum element in A plus an
additional constant term. This difference indicates that the student’s answer does not capture the same meaning as the
reference answer. === report over ===

Figure A2: Sample output of the Omni-Judge model. The Omni-Judge model is prompted as in Gao et al. (2024),
which is to repeat the ‘student’s’ final answer, asses the equivalence of this answer with the reference answer
and provide complementary justification. We omit the part where o3-mini (h) repeats the problem specifications,
indicated by [...].
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Figure A3: Domain distribution of the Omni-MATH dataset. This figure displays the distribution of the primary
domains of the Omni-MATH dataset. Math problems that belong to multiple domains are counted for each domain,
so the total number of question is higher than in Figure A4.

Figure A4: Classification of difficulty levels in balanced difficulty tiers. This figure shows the difficulty
distribution of the Omni-MATH dataset. The difficulty levels are classified in difficulty tiers based on the quartiles
of the distribution (without separating difficulty levels).
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Figure A5: Accuracy across the completion token distribution and accuracy vs. token use for gpt-4o. This
figure shows that gpt-4o uses predominantly between 200 and 1000 completion tokens for answering the Omni-
MATH problems. We also observe that shorter answers are more likely to lead to a correct final answer. Finally,
the relative proportion of tier levels in each bin reveals a clear transition from a region where the majority of the
questions come from the lowest tiers to a region where the majority of the questions come from the highest tiers
(for bins with a sufficient amount of data points). a, The main panel of this plot displays a stacked histogram
of the reasoning tokens used for correctly and incorrectly answered questions in the Omni-MATH dataset. The
secondary y-axis depicts the probability that the model answers incorrectly given that the token count has surpassed
the bin threshold (see Appendix A.4). The subplot contains a filled histogram where the color opacity represents the
difficulty level of the math questions (cfr. Figure A4). b, Accuracy per reasoning token, computed by dividing the
number of correctly answered questions by the total number of questions in each bin of the histogram depicted in a.
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Figure A6: Reasoning token distribution of o1-mini vs. o3-mini (m), and o3-mini (m) vs. o3-mini (h). This
figure compares the token distribution of three OpenAI reasoning models for correctly answered problems in the
Omni-MATH dataset by means of a QQ-plot. We observe that o1-mini and o3-mini (m) have an almost identical
reasoning token distribution. The token distribution of o3-mini (h) is a linearly scaled version of the distribution of
o3-mini (m) with a factor slightly larger than 2.

14



Figure A7: Stratification of Figure 4a by difficulty tier of the Omni-MATH dataset. This figure shows that
accuracy also decreases within the difficulty tiers as the use of reasoning tokens increases.

Figure A8: Stratification of Figure 4a by mathematical domain of the Omni-MATH dataset. This figure shows
that, on average, accuracy also decreases within the domains as the use of reasoning tokens increases.
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o1-mini o3-mini (m) o3-mini (h)

Without controls
Tokens −1.85e−4∗∗∗ −1.25e−4∗∗∗ −5.77e−5∗∗∗

Constant 1.19∗∗∗ 1.53∗∗∗ 1.87∗∗∗

With controls
Tokens −1.61e−4∗∗∗ −1.08e−4∗∗∗ −5.10e−5∗∗∗

Difficulty Tier 2 −0.53∗∗∗ −0.36∗∗∗ −0.20∗∗

Difficulty Tier 3 −0.74∗∗∗ −0.56∗∗∗ −0.37∗∗∗

Difficulty Tier 4 −1.08∗∗∗ −0.70∗∗∗ −0.63∗∗∗

Applied Math −0.41∗∗∗ −0.34∗∗∗ −0.37∗∗∗

Calculus 0.13 0.03 0.09

Discrete Math −0.86∗∗∗ −0.50∗∗∗ −0.41∗∗∗

Geometry −0.46∗∗∗ −0.21∗∗ −0.26∗∗

Number Theory 0.02 0.04 0.08

Other 0.47 0.02 −0.03

Constant 1.93∗∗∗ 2.02∗∗∗ 2.25∗∗∗

N 5, 535 5, 531 5, 526

McFadden’s pseudo-R2 0.11 0.06 0.06

(without controls)

McFadden’s pseudo-R2 0.15 0.07 0.08

Table A1: Logistic regression models to estimate the effect size of reasoning tokens on accuracy. We use a
logistic regression to estimate the effect of additional reasoning tokens on the probability of an accurate response on a
question, while controlling for different levels of difficulty and domains. Estimates are from a logistic regression (Eq.
5) fit by maximum likelihood, with robust (Huber–White) standard errors to account for potential heteroskedasticity.
The significance levels are for a two-sided Wald test with a null hypothesis of the regression coefficient being equal
to zero (***p < 0.01, **p < 0.05, *p < 0.1).
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