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ABSTRACT

Learning shared structure across environments facilitates rapid learning and adap-
tive behavior in neural systems. This has been widely demonstrated and applied in
machine learning to train models that are capable of generalizing to novel settings.
However, there has been limited work exploiting the shared structure in neural
activity during similar tasks for learning latent dynamics from neural recordings.
Existing approaches are designed to infer dynamics from a single dataset and can-
not be readily adapted to account for statistical heterogeneities across recordings.
In this work, we hypothesize that similar tasks admit a corresponding family of
related solutions and propose a novel approach for meta-learning this solution
space from task-related neural activity of trained animals. Specifically, we capture
the variabilities across recordings on a low-dimensional manifold which concisely
parametrizes this family of dynamics, thereby facilitating rapid learning of latent
dynamics given new recordings. We demonstrate the efficacy of our approach on
few-shot reconstruction and forecasting of synthetic dynamical systems, and neural
recordings from the motor cortex during different arm reaching tasks.

1 INTRODUCTION

Latent variable models are widely used in neuroscience to extract dynamical structure underlying
high-dimensional neural activity (Pandarinath et al., 2018; Schimel et al., 2022; Dowling et al., 2024).
While latent dynamics provide valuable insights into behavior and generate testable hypotheses of
neural computation (Luo et al., 2023; Nair et al., 2023), they are typically inferred from a single
recording session. As a result, these models are sensitive to small variations in the underlying
dynamics and exhibit limited generalization capabilities. In parallel, a large body of work in machine
learning has focused on training models from diverse datasets that can rapidly adapt to novel settings.
However, there has been limited work on inferring generalizable dynamical systems from data, with
existing approaches mainly applied to settings with known low-dimensional dynamics (Yin et al.,
2021; Kirchmeyer et al., 2022).

Integrating noisy neural recordings from different animals and/or tasks for learning the underlying
dynamics presents a unique set of challenges. This is partly due to heterogeneities in recordings across
sessions such as the number and tuning properties of recorded neurons, as well as different stimulus
statistics and behavioral modalities across cognitive tasks. This challenge is further compounded by
the lack of inductive biases for disentangling the variabilities across dynamics into shared and dataset-
specific components. Recent evidence suggests that learned latent dynamics underlying activity of
task-trained biological and artificial neural networks demonstrate similarities when engaged in related
tasks (Gallego et al., 2018; Maheswaranathan et al., 2019; Safaie et al., 2023). In a related line of work,
neural networks trained to perform multiple cognitive tasks with overlapping cognitive components
learn to reuse dynamical motifs, thereby facilitating few-shot adaptation on novel tasks (Turner &
Barak, 2023; Driscoll et al., 2024).

Motivated by these observations, we propose a novel framework for meta-learning latent dynamics
from neural recordings. Our approach is to encode the variations in the latent dynamical structure
present across neural recordings in a low-dimensional vector, e ∈ Rde , which we refer to as the
dynamical embedding. During training, the model learns to adapt a common latent dynamical system
model conditioned on the dynamical embedding. We learn the dynamical embedding manifold from
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Figure 1: A. Neural recordings display heterogeneities in the number and tuning properties of
recorded neurons and reflect diverse behavioral responses. The low-dimensional embedding manifold
captures this diversity in dynamics. B. Our method learns to adapt a common latent dynamics
conditioned on the embedding via low-rank changes to the model parameters.

a diverse collection of neural recordings, allowing rapid learning of latent dynamics in the analysis of
data-limited regime commonly encountered in neuroscience experiments.

Our contributions can be summarized as follows:

1. We propose a novel parameterization of latent dynamics that facilitates integration and
learning of meta-structure over diverse neural recordings.

2. We develop an inference scheme to jointly infer the embedding and latent state trajectory, as
well as the corresponding dynamics model directly from data.

3. We demonstrate the efficacy of our method on few-shot reconstruction and forecasting for
synthetic datasets and motor cortex recordings obtained during different reaching tasks.

2 CHALLENGES WITH JOINTLY LEARNING DYNAMICS ACROSS DATASETS

B.

r2
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M = 20

time

A.

timetime
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1 25 500.5

0.75

1
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Figure 2: A. Three different example neural record-
ings, where the speed of the latent dynamics varies
across them. B. One generative model is trained on
M = 2 and M = 20 datasets. While increasing
the number of datasets allows the model to learn
limit cycle, it is unable to capture the different
speeds leading to poor forecasting performance.

Neurons from different sessions and/or subjects
are partially observed, non-overlapping and ex-
hibit diverse response properties. Even chronic
recordings from a single subject exhibit drift in
neural tuning over time (Driscoll et al., 2017).
Moreover, non-simultaneously recorded neural
activity lack pairwise correspondence between
single trials. This makes joint inference of la-
tent states and learning the corresponding latent
dynamics by integrating different recordings ill-
posed and highly non-trivial.

As an illustrative example, let’s consider a case
where these recordings exhibit oscillatory latent
dynamics with variable velocities (Fig. 2A). One
possible strategy for jointly inferring the dynam-
ics from these recordings is learning a shared dy-
namics model, along with dataset-specific like-
lihood functions that map these dynamics to
individual recordings. However, without additional inductive biases, this strategy does not generally
perform well when there are variabilities in the underlying dynamics. Specifically, when learning
dynamics from two example datasets (M = 2), we observed that a model with shared dynamics
either learned separate solutions or overfit to one dataset, obscuring global structure across record-
ings (Fig. 2A). When we increased the diversity of training data (M = 20), the dynamics exhibited
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a more coherent global structure, albeit with an overlapping solution space (Fig. 2B). As a result,
this model had poor forecasting performance of neural activity in both cases, which is evident in
the k-step r2 (Fig. 2B). While we have a-priori knowledge of the source of variations in dynamics
for this example, this is typically not the case with real neural recordings. Therefore, we develop an
approach for inferring the variation across recordings and use it to define a solution space of related
dynamical systems (Fig. 1A).

3 INTEGRATING NEURAL RECORDINGS FOR META-LEARNING DYNAMICS

Let y1:M1:T denote neural time series datasets of length T , with yit ∈ Rdi
y , collected from M different

sessions and/or subjects during related tasks. We are interested in learning a generative model that
can jointly describe the evolution of the latent states across these datasets and rapidly adapt to novel
datasets from limited trajectories. In this work, we focus on state-space models (SSM), a powerful
class of generative models for spatio-temporal datasets. An SSM is described via the following pair
of equations (we drop the superscript for ease of presentation),

zt |zt−1 ∼ pθ(zt |zt−1), (1)
yt |zt ∼ pϕ(yt |zt), (2)

where zt ∈ Rdz is the latent state at time t, pθ(zt |zt−1) is the dynamics model and pϕ(yt |zt) is the
likelihood function that maps the latent state to observed data.

Following standard practice, we parameterize the dynamics as pθ(zt |zt−1) = N (zt |fθ(zt−1), Q),
where fθ is a deep neural network (DNN) and Q is a covariance matrix1. As previous work has
shown that making both the likelihood and dynamics highly expressive can lead to optimization
issues (Bowman et al., 2015), we model the mean of the likelihood as an affine function of zt. For
instance; in the case of real-valued observations, the likelihood is defined as, pϕ(yt | zt) = N (yt |
Czt +D,R).

3.1 HIERARCHICAL STATE-SPACE MODEL FOR MULTIPLE DATASETS

We introduce a hierarchical structure in the latent dynamical system model to capture variations
across datasets and jointly describe the spatiotemporal evolution across M neural recordings in a
unified SSM. A natural choice for learning this generative model is a fully Bayesian approach, where
each dataset would have its own latent dynamics, parameterized by θi, and a hierarchical prior would
tie these dataset-specific parameters to shared parameters, θ ∼ p(θ) (Linderman et al., 2019), leading
to the following SSM,

θi |θ ∼ p(θi |θ), (3)

zit |zit−1, θ
i ∼ N (zit |fθi(zit−1), Q

i), (4)

yit |zit ∼ pϕi(yit |zit), (5)

where dataset specific likelihoods, pϕi(yit |zit), are used to account for different dimensionality and/or
modality of recordings. If we assume p(θi | θ) is Gaussian, i.e., p(θi | θ) = N (θi | θ,Σ), we can
equivalently express dynamics for the hierarchical generative model as,

εi ∼ N (εi |0,Σ), (6)

zit |zit−1, θ, ε
i ∼ N

(
zit |fθ+εi(z

i
t−1), Q

i
)
, (7)

where the dataset-specific dynamics parameter, θi, is expressed as a sum of the shared parameters,
θ, and a dataset-specific term, εi. While this formulation is intuitive, the latent dynamics are
approximated using a DNN, thereby introducing a large number of parameters and limiting the
scalability of this approach. In order to make this approach suitable to large-scale settings, we propose
a modified hierarchical framework that affords better scalability as well as parameter efficiency.

Specifically, we introduce a low-dimensional latent variable, ei ∈ Rde ,Rde ≪ Rdε—which we
refer to as the dynamical embedding—that encodes dynamical variations across datasets (Rusu et al.,

1We note that Q can also be parameterized via a neural network as well.
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2019). This dataset-specific dynamical embedding subsequently maps to the parameter space of
the latent dynamics function via a hypernetwork (Ha et al., 2016), hϑ : Rdi

e → Rdi
ε . Apart from

improving scalability, this formulation also facilitates efficient few-shot learning since it requires
simply inferring the embedding given trials from novel recordings. The generative model for this
hierarchical SSM is then described as,

ei ∼ p(e), (8)

θi = θ + hϑ(e
i), (9)

zit |zit−1, e
i ∼ N (zit |fθi(zit−1), Q

i), (10)

yit |zit ∼ pϕi(yit |zit), (11)

where we drop the prior over the shared dynamics parameter, θ, significantly reducing the dimension-
ality of the inference problem. Similar to the hierarchical Bayesian model, all datasets share the same
latent dynamics, θ, with the dataset-specific variation captured by the dynamical embedding, ei.

We encourage learning of shared dynamical structure and further improve parameter efficiency by
constraining hϑ to make low-rank changes to the parameters of fθ (Fig. 1B). For example, if we
parameterize fθ as a 2-layer fully-connected network and constrain the hypernetwork to only make
rank dr = r changes to the hidden weights, then fθi would be expressed as,

fθi(zit) = Wo σ
(
{Whh + hϑ(e

i)︸ ︷︷ ︸
embedding modification

}σ(Win zit)
)

(12)

= Wo︸︷︷︸
Rdz×d2

σ
(
{Whh︸ ︷︷ ︸
Rd2×d1

+uϑ(e
i)︸ ︷︷ ︸

Rd2×dr

·vϑ(e
i)⊤︸ ︷︷ ︸

Rdr×d1

}σ(Win︸︷︷︸
Rd1×dz

zit)
)

(13)

where σ(·) denotes a point-nonlinearity, and the two functions vϑ(e
i) : Rd

e → Rd1×r, uϑ(e
i) :

Rd
e → Rd2×r map the embedding representation to form the low-rank perturbations, and both uϑ

and vϑ are parameterized by a neural network.

3.2 INFERENCE AND LEARNING

Given y1:M1:T , we want to infer both the latent states, z1:M1:T and the dynamical embeddings, e1:M =
[e1, . . . , eM ] as well as learn the parameters of the generative model, Θ = {θ, ϑ, ϕ1, . . . , ϕM}. Exact
inference and learning requires computing the posterior, pΘ(z1:M1:T , e1:M | y1:M1:T ), and log marginal
likelihood, log pΘ(y1:M1:T ), which are both intractable.

In this paper, we use a sequential variational autoencoder—an extension of variational autoencoders
for state-space models—specifically, the Deep Kalman Filter (DKF) (Krishnan et al., 2015), to
circumvent this issue. In order to learn the generative model, we maximize a lower-bound to the log
marginal likelihood (commonly referred to as the ELBO). The ELBO for y1:M1:T is defined as follows
(trial indices are omitted for ease of notation),

L(y1:M1:T ) =
∑
t,i

Eqα,β

[
log pϕi(yit |zit)

]
− Eqβ

[
DKL(qβ(z

i
t | ȳi1:T , ei)||pθ,ϑ(zit |zit−1, e

i))
]
− DKL(qα(e

i | ȳi1:T )||p(ei))
(14)

where qα and qβ are encoders that approximate the posterior distributions over the dynamical
embedding and latent state for dataset i, respectively, and the joint expectation factorizes as Eqα,β

≡
Eqβ(zi

t|ȳi
1:T ,ei)qα(ei|ȳi

1:T ). As described in Sec. 2, one of the challenges with integrating recordings
in a common latent space is different dimensionalities (number of recorded neurons) as well as the
dependence of neural activity on the shared latent space. We address this by training additional
read-in networks Ωi : Rdi

y → Rdȳ for each dataset that map yit to an intermediate vector, which we
denote by ȳit ∈ Rdȳ . This read-in network ensures that the latent states and dynamical-embeddings
inferred from each dataset live in the same space.
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While there are many choices for parameterizing the encoders, we follow the parameterization
in (Krishnan et al., 2015) for simplicity2, defined as follows,

ȳib,1:T = Ωi(yib,1:T ), (15)

qα(e
i | ȳib,1:T ) = N (eib |agg[µα(ȳ

i
b,1:T )], agg[σ2

α(ȳ
i
b,1:T )]), (16)

qβ(z
i
1:T | ȳi1:T , eib) =

T∏
t=1

N (zit |µβ(concat[ȳib,1:T , e
i
b]), σ

2
β(concat[ȳib,1:T , e

i
b])), (17)

where yib denotes a randomly sampled mini-batch of trials b from dataset i, concat is the concatenation
operation, and agg is an aggregation operation. We aggregate the dynamical embedding over trials in
a mini-batch that belong to the same dataset since we are interested in capturing inter-dataset, rather
than intra-dataset variations, in the underlying dynamical systems. In practice, we parameterize µα,
σ2
α by a bidirectional recurrent neural network, and µβ , σ2

β by a regular recurrent network, and agg
corresponds to a simple averaging function. We emphasize that µα, σ2

α, µβ , and σ2
β are shared across

all datasets (See Fig. 14 for details on inference).

3.3 PROOF OF CONCEPT

A.

0

1

2

|e|

Velocity

Inferred embedding

0.8

0.9

1

M=20 B.

C.

Pr
ed

ic
tio

n 
r2

M=2
M=20

Central Dynamics
Learnt by the Model

k-step = 50

Figure 3: A. Mean dynamical system correspond-
ing to the slowest velocity recording learned by
the proposed approach when trained with M = 20
datasets. B. Samples from the inferred dynamical
embedding for each dataset (see eq. 16). C. Fore-
casting r2 at k-step=50 for models trained with
M = 2 and M = 20 datasets.

As a proof of concept, we revisit the motivating
example presented in Section 2 as a means to
validate the efficacy of our approach and inves-
tigate how it unifies dynamics across datasets.
For both M = 2 and M = 20 datasets, we
used an embedding dimensionality of 1 and al-
lowed the network to make a rank-1 change to
the dynamics parameters.

After training, we observed that the shared dy-
namics (when e = 0) converged to a limit cy-
cle with a slow velocity (Fig. 3A)—capturing
the global topology that is shared across all
datasets—and the model learned to modulate
the velocity of the dynamics conditioned on the
dynamical embedding which strongly correlated
with the dataset specific velocity3 (Fig 3B). This
demonstrated that the proposed approach is able
to capture dataset-specific variability. Lastly,
Fig. 3C demonstrates that the proposed approach
is able to forecast well for both M = 2 and
M = 20 datasets. We include further validation
experiments when there is no model mismatch
as well as the generalization of the trained model

to new data in Appendix B. We additionally include results on these recordings from multi-session
CEBRA (Schneider et al., 2023) in Appendix B.

4 RELATED WORKS

Multi-Dataset Training in Neuroscience. Previous work has explored multi-dataset training for
extracting latent representations in neuroscience, especially across datasets recorded during the
same behavioral tasks. LFADS (Pandarinath et al., 2018), a variant of the seqVAE framework, used
session-stitching with dataset-specific likelihood functions, but focused on single-animal record-
ings. Linderman et al. (2019) used a hierarchical Bayesian state-space model with switching linear
dynamical systems, while Herrero-Vidal et al. (2021) developed a joint model with shared linear
dynamics and dataset-specific likelihoods. In contrast to these approaches, we incorporate a more

2We evaluate alternative inference and learning formulations in Appendix D
3Note that we plot the absolute embedding samples since the likelihood function can introduce arbitrary

invariance such as direction flipping, rotation, and so on.
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expressive function to approximate the underlying family of dynamical systems which can disentan-
gle variabilities across recordings. CEBRA (Schneider et al., 2023) and CS-VAE (Yi et al., 2023)
have been recently proposed for extracting latent representations by integrating multiple datasets.
Multi-session training in CEBRA is specifically designed to recover invariant features across datasets,
while CS-VAE partitions the latent space to encourage learning shared features from behavioral
videos. In contrast to our approach, these methods do not learn a dynamical systems model for the
latent dynamics underlying these datasets. In this work, we are interested in learning a generative
model that can capture variations in underlying dynamics. Recently, there has been growing interest
in using diverse neural recordings for training large-scale foundation models in neuroscience (Ye
et al., 2023; Zhang et al., 2023; Caro et al., 2024; Azabou et al., 2024). While our approach shares the
same broad goal of pretraining a single generative model for rapid learning on downstream recordings,
we are interested in learning a dynamical system model across recordings. These methods leverage
transformer-based architectures which lack recurrence and only incorporate temporal information
indirectly via positional embeddings.

RNNs in Neuroscience Integrating dynamical behaviors have also been explored in RNN models
of neural systems. Specifically, in Driscoll et al. (2024), the authors train an RNN to perform
multiple cognitive tasks and observe motifs corresponding to distinct dynamical behaviors. This has
subtle differences from our proposed approach–we want to capture both topological and geometrical
differences, and the “context” or embedding is learned from data, whereas the motifs in Driscoll
et al. (2024) corresponded to a distinct fixed point structure or topology and the context cue was
a pre-specified input that could push the dynamics to regions of state space corresponding to task-
relevant dynamics. However, the broad idea of dynamical structure re-use is similar in both works.
The embedding analysis in (Cotler et al., 2023b), where the authors trained a meta-model to capture
multiple trained RNNs is quite similar to our main idea since they observed similar dynamical
properties in models that were close in the embedding space. Recent work on modeling motor
adaptation (Pellegrino et al., 2023) by low-tensor rank learning in RNNs is broadly similar to our
work since the authors learn to adapt an RNN model to capture diverse dynamics across trials in the
same network. In our work, we are interested in modeling diverse dynamics across different datasets.

Additional related works can be found in Appendix A.

5 EXPERIMENTS

We first validate the proposed method on synthetic data and then test our method on neural recordings
from the primary motor and premotor cortex. We compare the proposed approach against the
following baselines for all experiments.

We train a separate Single Session model using the seqVAE framework on each dataset. Given
sufficient training data, this should result in the best performance, but will fail in trial-limited regimes.
We consider a multi-session Shared Dynamics model with dataset-specific likelihoods (Pandarinath
et al., 2018; Herrero-Vidal et al., 2021). We also compare against a baseline where the embedding is
provided as an additional input to the dynamics model( Embedding-Input), a similar formulation
to CAVIA (Concat) (Zintgraf et al., 2019) and DYNAMO (Cotler et al., 2023a). We also test the
hypernetwork parametrization proposed in CoDA (Kirchmeyer et al., 2022), where the hypernetwork
adapts all parameters as a linear function of the dynamical embedding ( Linear Adapter).

We include additional baselines for the motor cortex experiment; we evaluate single session
LFADS (Pandarinath et al., 2018) with the controller as an alternative approach for dynamics
modeling. We also consider other methods for learning and inference. Specifically, we include
single-session generative models as well as our proposed model trained using Variational Sequential
Monte Carlo (VSMC) (Naesseth et al., 2018), and the Deep Variational Bayes Filter (DVBF) (Karl
et al., 2016).

For each experiment, we split each of the M datasets into a training and test set and report recon-
struction and forecasting metrics on the test set. To measure the generalization performance, we also
report these metrics on held-out datasets. Further details on training and evaluation metrics can be
found in Appendix G.
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5.1 BIFURCATING SYSTEMS

In these experiments, we test whether our method could capture variations across multiple datasets,
particularly in the presence of significant dynamical shifts, such as bifurcations commonly observed
in real neural populations. To test this, we chose two parametric classes of dynamical systems: i) a
system undergoing a Hopf bifurication and, ii) the unforced Duffing system. We include the results
for training on datasets generated only from the Hopf system in Appendix C and discuss the results of
jointly training on both systems here. We briefly outline the data generation process for the Duffing
system (details of the data generation for the Hopf system can be found in Appendix E.2).

The latent trajectories for the Duffing system were generated from a family of stochastic differential
equations,

ż1 = z2 + 5dWt, ż2 = aiz2 − z1(b
i + cz21) + 5 dWt (18)

with c = 0.1, a, b ∈ R, and dWt denoting the Wiener process. In Fig. 4A, we visualize how the
dynamical system changes as a and b vary. We chose M = 20 pairs of (ai, bi) values (Fig 13),
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Figure 4: A. (Left) True underlying dynamics from some example datasets used for pretraining as a
function of parameters a and b and (Right) the embedding conditioned dynamics learnt by our model.
B., C. Mean reconstruction and forecasting r2 of the observations for all datasets used for pretraining
on test trials.

and generated latent trajectories of length T = 300. Observations were generated according to
yit ∼ N (Cizit, 0.01I); the dimensionality of the observations varied between 30 and 100. In addition
to these 20 datasets, we included 11 datasets from the Hopf system (Appendix C), and used 128
trajectories from each of these 31 datasets for training all methods. We report performance on 64
test trajectories from each dataset. We used de = 2 for all embedding-conditioned approaches and
constrained the hypernetwork to make rank dr = 1 changes for our approach.

Our approach learned a good approximation to the ground-truth dynamics of the Duffing oscillator
system, successfully disentangling different dynamical regimes (Fig. 4 B). Apart from learning the
underlying topology of dynamics, it also better captured the geometrical properties compared to
other embedding-conditioned baselines (Fig. 15). We observed similar results for datasets from
the Hopf system–while our approach approximated the ground-truth system well, the Embedding-
Input baseline displayed interference between dynamics and the Linear-Adapter learned a poor
approximation to the ground-truth system (Fig. 16). Consequently, our approach outperformed other
methods on forecasting observations with all methods having comparable reconstruction performance
(Fig. 4B, C). Notably, apart from the de, we used the same architecture as when training on only the
Hopf datasets, and did not observe any drop in performance for our approach, in contrast to baselines
(Fig. 11C (Bottom), Fig. 4C).

Next, we tested the few-shot performance of all methods on new datasets, two generated from the
Duffing oscillator system and one from the Hopf system, as a function of ns, the number of trials
used for learning the dataset specific read-in network, Ωi and likelihood. Our approach and the
Linear-Adapter demonstrated comparable forecasting performance when using ns = 1 and ns = 8
training trajectories. However, with ns = 16 training trials, unlike other methods, our approach
continued to improved and outperformed them (Table 1). This could be explained by looking at the
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ns = 1 ns = 8 ns = 16

Our Method 0.69 ± 0.072 0.78 ± 0.051 0.87 ± 0.037
Linear-Adapter 0.68 ± 0.08 0.79 ± 0.026 0.74 ± 0.039
Single Session 0.47 ± 0.119 0.79 ± 0.014 0.79 ± 0.047
Shared Dynamics -0.31 ± 0.103 -0.34 ± 0.086 -0.13 ± 0.065
Embedding-Input 0.59 ± 0.084 0.77 ± 0.04 0.74 ± 0.039

Table 1: Few shot forecasting performance (k = 30-step) on 3 held-out datasets as a function of ns,
the number of trials used to learn dataset specific read-in network and likelihood. (± 1 s.e.m)

inferred embedding on held-out datasets—as we increased the number of training trajectories, the
model was able to consistently align to the “correct” embedding (Fig. 17).

5.2 MOTOR CORTEX RECORDINGS

Next, we tested the applicability of the proposed approach on neural data. We used single and multi-
unit neural population recordings from the motor and premotor cortex during two behavioral tasks–the
Centre-Out (CO) and Maze reaching tasks (Perich et al., 2018; Gallego et al., 2020; Churchland
et al., 2012). In the CO task, subjects are trained to use a manipulandum to reach one of eight target
locations on a screen. In the Maze task, subjects use a touch screen to reach a target location, while
potentially avoiding obstacles. These recordings spanned different sessions, animals, and labs, and
involved different behavioral modalities, while still having related behavioral components, making
them a good testbed for evaluating various methods. For training, we used 40 sessions from the CO
task, from subjects M and C, and 4 sessions from the Maze task from subjects Je and Ni. We set the
dimensionality of latent dynamics to dz = 30, and used an embedding dimensionality of de = 2,
for all embedding-conditioned dynamics models. For our approach, we constrain the hypernetwork
to make rank dr = 6 changes, although we verified that the performance was not sensitive to dr

(Fig 18). As a proxy for how well the various approaches learned the underlying dynamics, we report
metrics on inferring the hand velocity using reconstructed and forecasted neural data from the models.
Note that we align all recordings to the movement onset (details in Appendix G).

Inferred embedding

r2 = 0.82

r2 = 0.73

3

1

-1

-2 0 2

Centre-Out
Sub C 

Centre-Out Sub M

Maze Sub Je
Maze Sub Ni

e1

e 2

Condition-averaged
Dynamics

Position
PredictedMonkey

Maze session
Sub Ni

CO session
Sub C

Figure 5: Visualizing the embedding manifold. (Left) Each point corresponds to a sample from
the inferred embedding distribution (see eq. 16) corresponding to each recording. (Right) The
condition-averaged latent dynamics for a session from Maze (Sub Ni) (Top) and a CO Session
(Bottom) generated by the model, along with the corresponding real and forecasted behavior.

The inferred dynamical embedding displayed distinct structures across behavioral tasks and subjects
(Fig. 5, Left). While the CO task involves more stereotyped straight reaching behavior with the
same stimulus conditions across datasets, the Maze task has more complex stimulus statistics which
vary across sessions. The family of learned dynamics reflected this heterogeneity across recordings.
We visualize these learned dynamical systems for two example sessions, one from each task, in
Fig 5 (Right). Specifically, we used the trained encoders, qβ and qα to estimate the latent state and
embedding at the beginning of movement onset. We subsequently generate the latent dynamics
from that state using fθ,ei till the end of the movement onset. The condition-averaged principal
components (PCs) of these generated latents are shown in the figure.
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We observed that most of the approaches had adequate performance on reconstructing velocity from
neural recordings, with our method and Linear Adapter outperforming single session reconstruction
performance on the CO task (Fig. 6A, top). Multi-Session CEBRA was not able to adequately capture
the variability in the Maze sessions and had low reconstruction r2. In terms of forecasting, the
single-session model trained using the seqVAE framework had the best performance. Notably, our
approach managed to balance learning both the CO and Maze tasks relative to other multi-session
baselines, with all performing better on the CO task than the Maze (Fig. 6A, bottom). The generative
model learned from CEBRA had poor forecasting performance which resulted in a negative r2 value
(not plotted). Next, we tested if we can transfer these learned dynamics to new recordings as we
varied ns from 8 to 64 trials for learning the read-in network and likelihood. We used trials from 2
held-out sessions from Sub C and M, as well as 2 sessions from a new subject (Sub T) for evaluating
all methods. We observed that our approach consistently performed well on both reconstruction and
forecasting for held-out sessions from previously seen subjects, and reached good performance on
sessions from Sub T as we increased the training trials (Fig. 6B, C (ns = 32)). Moreover, our method
outperformed all other baselines on forecasting, especially in very low-sample regimes, while having
comparable reconstruction performance (Fig. 19).
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Figure 6: A. (top) r2 for hand velocity decoding from reconstructed and (bottom) forecasted neural
observations for Maze and Centre-Out sessions. B. Behavior reconstruction (top) and forecasting
(bottom) performance on held-out sessions and sessions from a new subject as a function of the
number of training samples. C. Hand velocity trajectories (400 ms after movement onset) predicted
by our approach on 17 test trials from held-out session (top) and 13 test trials from a session on a new
subject (bottom), after using ns = 32 trials for aligning to the pre-trained model.

Next, we evaluated the impact of the inference framework on effective learning and few-shot per-
formance. We specifically tested single session models as well as our proposed generative model
trained after performing inference using VSMC and DVBF (Details in Appendix D). In both cases,
we observed that the inferred embedding distribution learned the underlying dynamical structure
across datasets (Fig. 12A). Moreover, we were able to similarly exploit this learned structure for
few-shot forecasting on novel recording sessions (Fig. 12B). We additionally investigated the effect of
large-scale training for sample-efficient transfer on downstream tasks by only pretraining the model
on 128 trials from 4 sessions spanning different tasks and subjects. Even in this case, the embedding
distribution displayed clear clustering based on the task and subject. Moreover, the model performed
comparably to the Single-Session model on reconstruction, while outperforming it on prediction for
both tasks (Fig. 20 A, B). However, it demonstrated poor performance on new sessions given limited
trials for learning the read-in and likelihood parameters (Fig. 20 C), underscoring the importance of
large-scale training for generalizing to novel settings.

Finally, we probed the differences in the latent state evolution given the same initial condition while
interpolating across the learned embedding. In order to do this, we chose an example session from
the Maze and CO datasets and obtained their corresponding dynamical embedding from the model,
shown as a solid blue and green circle in Fig. 7 (middle), respectively. A grid of points was sampled
around each of these inferred embeddings (shown as shaded squares in Fig. 7 middle), and for each
point we obtained the corresponding low-rank parameter changes to generate the latent trajectories.
We observed that the embedding space learned a continuous representation of dynamics, which was
reflected in similar predicted behaviors close to the original learned embedding (Fig 7). Interestingly,
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3
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Interpolating across the embedding space

Predicted behavior (CO)Predicted behavior (Maze)

Figure 7: The predicted behavior for a Maze (Sub Je) session and CO (Sub C) session at 9 grid points
around the original inferred embedding. The point closest to the original embedding is highlighted in
blue and green respectively.

when we interpolated through the entire embedding space, the predicted behavior and corresponding
dynamics continuously varied as well. Specifically, the predicted behavior and dynamics trajectories
on the CO session demonstrated similarities over a large portion of the embedding space, with the
trajectories shifting to more curved reaches further from the original embedding (Fig. 21). On the
Maze task, the trajectories demonstrated more heterogeneity in responses, and decayed to a fixed
point further away from the original embedding (Fig. 22).

6 DISCUSSION

We present a novel framework for jointly inferring and learning latent dynamics from heteroge-
neous neural recordings across sessions/subjects during related behavioral tasks. To the best of our
knowledge, this is the first approach that facilitates learning a family of dynamical systems from
heterogeneous recordings in a unified latent space, while providing a concise, interpretable manifold
over dynamical systems. Our meta-learning approach mitigates the challenges of statistical inference
from limited data, a common issue arising from the high flexibility of models used to approximate
latent dynamics. Empirical evaluations demonstrate that the learned embedding manifold provides a
useful inductive bias for learning from limited samples, with our proposed parametrization offering
greater flexibility in capturing diverse dynamics while minimizing interference. We demonstrate
that the few-shot performance of our proposed generative model is largely agnostic to the inference
method. We observe that the generalization of our model depends on the amount of training data—
when trained on smaller datasets, the model learns specialized solutions, whereas more data allows it
to learn shared dynamical structures. This work enhances our capability to integrate, analyze, and
interpret complex neural dynamics across diverse experimental conditions, broadening the scope of
scientific inquiries possible in neuroscience.

LIMITATIONS AND FUTURE WORK

Our current framework uses event aligned neural observations; in the future, it would be useful to
incorporate task-related events, to broaden its applicability to complex, unstructured tasks. Further,
the model’s generalization to novel settings depends on accurate embedding inference, a challenge
noted in previous works that disentangle task inference and representation learning (Hummos et al.,
2024). However, we observe consistent improvement in embedding inference with increase in the
number of training samples from novel recordings. Our empirical observations demonstrate that
using a hypernetwork improves the expressivity of the dynamical systems model relative to other
parametrizations. It would be interesting to investigate the theoretical basis of this observation in the
future. While our latent dynamics parametrization is expressive, it assumes shared structure across
related tasks. Future work could extend the model to accommodate recordings without expected
shared structures (for instance, by adding explicit modularity (Márton et al., 2021)). Investigating the
performance of embedding-conditioned low-rank adaptation on RNN-based architectures presents
another avenue for future research. Finally, the embedding manifold provides a map for interpolating
across different dynamics. While we focus on rapid learning in this paper, our framework could have
interesting applications for studying inter-subject variability, learning-induced changes in dynamics,
or changes in dynamics across tasks in the future.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Mehdi Azabou, Vinam Arora, Venkataramana Ganesh, Ximeng Mao, Santosh Nachimuthu, Michael
Mendelson, Blake Richards, Matthew Perich, Guillaume Lajoie, and Eva Dyer. A unified, scalable
framework for neural population decoding. Advances in Neural Information Processing Systems,
36, 2024.

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy Bengio.
Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349, 2015.

Josue Ortega Caro, Antonio H. de O. Fonseca, Christopher Averill, Syed A. Rizvi, Matteo Rosati,
James L. Cross, Prateek Mittal, Emanuele Zappala, Daniel Levine, Rahul M. Dhodapkar, Insu Han,
Amin Karbasi, Chadi G. Abdallah, and David van Dijk. Brainlm: A foundation model for brain
activity recordings. bioRxiv, 2024.

Mark M Churchland, John P Cunningham, Matthew T Kaufman, Justin D Foster, Paul Nuyujukian,
Stephen I Ryu, and Krishna V Shenoy. Neural population dynamics during reaching. Nature, 487
(7405):51–56, 2012.

Jordan Cotler, Kai Sheng Tai, Felipe Hernández, Blake Elias, and David Sussillo. Analyzing
populations of neural networks via dynamical model embedding. arXiv [cs.LG], February 2023a.

Jordan Cotler, Kai Sheng Tai, Felipe Hernández, Blake Elias, and David Sussillo. Analyzing
populations of neural networks via dynamical model embedding, 2023b.

Arnaud Doucet, Nando De Freitas, and Neil Gordon. An introduction to sequential monte carlo
methods. Sequential Monte Carlo methods in practice, pp. 3–14, 2001.

Matthew Dowling, Yuan Zhao, and Il Memming Park. eXponential FAmily dynamical systems
(XFADS): Large-scale nonlinear gaussian state-space modeling. In Advances in Neural Information
Processing Systems (NeurIPS), December 2024. URL https://openreview.net/forum?
id=Ln8ogihZ2S.

Laura N Driscoll, Noah L Pettit, Matthias Minderer, Selmaan N Chettih, and Christopher D Harvey.
Dynamic reorganization of neuronal activity patterns in parietal cortex. Cell, 170(5):986–999,
2017.

Laura N. Driscoll, Krishna Shenoy, and David Sussillo. Flexible multitask computation in recurrent
networks utilizes shared dynamical motifs. Nature Neuroscience, 27(7):1349–1363, 2024.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Juan A. Gallego, Matthew G. Perich, Stephanie N. Naufel, Christian Ethier, Sara A. Solla, and Lee E.
Miller. Cortical population activity within a preserved neural manifold underlies multiple motor
behaviors. Nature Communications, 9(1):4233, 2018.

Juan A Gallego, Matthew G Perich, Raeed H Chowdhury, Sara A Solla, and Lee E Miller. Long-term
stability of cortical population dynamics underlying consistent behavior. Nature neuroscience, 23
(2):260–270, 2020.

David Ha, Andrew M Dai, and Quoc V Le. Hypernetworks. In International Conference on Learning
Representations, 2016.

Pedro Herrero-Vidal, Dmitry Rinberg, and Cristina Savin. Across-animal odor decoding by proba-
bilistic manifold alignment. Advances in Neural Information Processing Systems, 34:20360–20372,
2021.

Ali Hummos, Felipe del Río, Brabeeba Mien Wang, Julio Hurtado, Cristian B. Calderon, and
Guangyu Robert Yang. Gradient-based inference of abstract task representations for generalization
in neural networks, 2024.

Maximilian Karl, Maximilian Soelch, Justin Bayer, and Patrick Van der Smagt. Deep varia-
tional bayes filters: Unsupervised learning of state space models from raw data. arXiv preprint
arXiv:1605.06432, 2016.

11

https://openreview.net/forum?id=Ln8ogihZ2S
https://openreview.net/forum?id=Ln8ogihZ2S


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Matthieu Kirchmeyer, Yuan Yin, Jérémie Donà, Nicolas Baskiotis, Alain Rakotomamonjy, and
Patrick Gallinari. Generalizing to new physical systems via context-informed dynamics model. In
International Conference on Machine Learning, pp. 11283–11301. PMLR, 2022.

Rahul G Krishnan, Uri Shalit, and David Sontag. Deep kalman filters. arXiv preprint
arXiv:1511.05121, 2015.

Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to learn quickly for few-shot
learning. arXiv preprint arXiv:1707.09835, 2017.

Scott Linderman, Annika Nichols, David Blei, Manuel Zimmer, and Liam Paninski. Hierarchical
recurrent state space models reveal discrete and continuous dynamics of neural activity in c. elegans.
BioRxiv, pp. 621540, 2019.

Thomas Zhihao Luo, Timothy Doyeon Kim, Diksha Gupta, Adrian G Bondy, Charles D Kopec,
Verity A Elliot, Brian DePasquale, and Carlos D Brody. Transitions in dynamical regime and
neural mode underlie perceptual decision-making. bioRxiv, pp. 2023–10, 2023.

Niru Maheswaranathan, Alex Williams, Matthew Golub, Surya Ganguli, and David Sussillo. Uni-
versality and individuality in neural dynamics across large populations of recurrent networks.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Christian David Márton, Léo Gagnon, Guillaume Lajoie, and Kanaka Rajan. Efficient and robust
multi-task learning in the brain with modular latent primitives. arXiv preprint arXiv:2105.14108,
2021.

Christian Naesseth, Scott Linderman, Rajesh Ranganath, and David Blei. Variational sequential
monte carlo. In International conference on artificial intelligence and statistics, pp. 968–977.
PMLR, 2018.

Aditya Nair, Tomomi Karigo, Bin Yang, Surya Ganguli, Mark J. Schnitzer, Scott W. Linderman,
David J. Anderson, and Ann Kennedy. An approximate line attractor in the hypothalamus encodes
an aggressive state. Cell, 186(1):178–193.e15, 2023.

Alex Nichol and John Schulman. Reptile: a scalable metalearning algorithm. arXiv preprint
arXiv:1803.02999, 2(3):4, 2018.

Chethan Pandarinath, Daniel J. O’Shea, Jasmine Collins, Rafal Jozefowicz, Sergey D. Stavisky,
Jonathan C. Kao, Eric M. Trautmann, Matthew T. Kaufman, Stephen I. Ryu, Leigh R. Hochberg,
Jaimie M. Henderson, Krishna V. Shenoy, L. F. Abbott, and David Sussillo. Inferring single-trial
neural population dynamics using sequential auto-encoders. Nature Methods, 15(10):805–815,
2018.

Arthur Pellegrino, N Alex Cayco Gajic, and Angus Chadwick. Low tensor rank learning of neural
dynamics. Advances in Neural Information Processing Systems, 36:11674–11702, 2023.

Matthew G Perich, Juan A Gallego, and Lee E Miller. A neural population mechanism for rapid
learning. Neuron, 100(4):964–976, 2018.

Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero,
and Raia Hadsell. Meta-learning with latent embedding optimization, 2019.

Mostafa Safaie, Joanna C. Chang, Junchol Park, Lee E. Miller, Joshua T. Dudman, Matthew G. Perich,
and Juan A. Gallego. Preserved neural dynamics across animals performing similar behaviour.
Nature, 623(7988):765–771, 2023.

Marine Schimel, Ta-Chu Kao, Kristopher T Jensen, and Guillaume Hennequin. iLQR-VAE : control-
based learning of input-driven dynamics with applications to neural data. In International Confer-
ence on Learning Representations, 2022.

Steffen Schneider, Jin Hwa Lee, and Mackenzie Weygandt Mathis. Learnable latent embeddings for
joint behavioural and neural analysis. Nature, 617(7960):360–368, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Andrew R Sedler and Chethan Pandarinath. lfads-torch: A modular and extensible implementation of
latent factor analysis via dynamical systems. arXiv preprint arXiv:2309.01230, 2023.

Elia Turner and Omri Barak. The simplicity bias in multi-task rnns: Shared attractors, reuse of
dynamics, and geometric representation. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems, volume 36,
pp. 25495–25507. Curran Associates, Inc., 2023.

Rui Wang, Robin Walters, and Rose Yu. Meta-learning dynamics forecasting using task inference.
Advances in Neural Information Processing Systems, 35:21640–21653, 2022.

Joel Ye, Jennifer L. Collinger, Leila Wehbe, and Robert Gaunt. Neural data transformer 2: Multi-
context pretraining for neural spiking activity. bioRxiv, 2023.

Daiyao Yi, Simon Musall, Anne Churchland, Nancy Padilla-Coreano, and Shreya Saxena. Disentan-
gled multi-subject and social behavioral representations through a constrained subspace variational
autoencoder (cs-vae). eLife, 12, 2023.

Yuan Yin, Ibrahim Ayed, Emmanuel de Bézenac, Nicolas Baskiotis, and Patrick Gallinari. Leads:
Learning dynamical systems that generalize across environments. Advances in Neural Information
Processing Systems, 34:7561–7573, 2021.

Daoze Zhang, Zhizhang Yuan, YANG YANG, Junru Chen, Jingjing Wang, and Yafeng Li. Brant:
Foundation model for intracranial neural signal. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems, volume 36,
pp. 26304–26321. Curran Associates, Inc., 2023.

Luisa Zintgraf, Kyriacos Shiarli, Vitaly Kurin, Katja Hofmann, and Shimon Whiteson. Fast context
adaptation via meta-learning. In International Conference on Machine Learning, pp. 7693–7702.
PMLR, 2019.

CONTENTS

A Additional Related Works 14

B Proof-of-Concept Experiment 14

C Hopf Bifurcation Systems 15

D Alternative Inference and Learning Approaches 16

D.1 Variational SMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

D.2 Deep Variational Bayes Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

E Data Generation Details 18

E.1 Limit Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

E.2 Hopf Bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

E.3 Duffing System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

E.4 Motor Cortex Recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

F Additional Figures 19

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

G Experiment Details 22

G.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

G.2 Figure Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

G.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

G.4 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

A ADDITIONAL RELATED WORKS

Several meta-learning approaches have been developed for few-shot adaptation, including gradient-
based methods (Finn et al., 2017; Li et al., 2017; Nichol & Schulman, 2018; Zintgraf et al., 2019).
Amongst these, LEO (Rusu et al., 2019) shares the same idea of meta-learning in low-dimensional
space of parameter embeddings. However, gradient-based approaches require fine-tuning during
test-time, and have had limited success for meta-learning dynamics. Similar to our work (Cotler
et al., 2023a) also learns an embedding space of dynamics learned from trained RNNs, however, we
are interested in learning dynamics directly from data. Some methods for learning generalizable
dynamics been previously proposed—DyAD (Wang et al., 2022) adapts across environments by
neural style transfer, however it operates on images of dynamical systems, LEADS (Yin et al., 2021)
learns a constrained dynamics function that is directly added to some base dynamics function, and
CoDA (Kirchmeyer et al., 2022) which learns task-specific parameter changes conditioned on a low-
dimensional context similar to our approach. However, these approaches were applied in supervised
settings on low-dimensional systems whereas we operate in an unsupervised setting.

B PROOF-OF-CONCEPT EXPERIMENT

1-shot Performance. We evaluated the generalization performance of our approach on a new dataset
with ωM+1 = 4.1, which was not included in the training set, by using 1 training trajectory to train
a new read-in network, ΩM+1 and likelihood pM+1

ϕ . After training, the model displayed similar
prediction performance on the new dataset (r2k=50 = 0.94± 0.001) (Fig. 8).

0 100 200

reconstructed predicted

time

True Observations
1-shot performance

Figure 8: (Top) True observa-
tions on new data with ω =
4.1 and (Bottom) the corre-
sponding reconstructed and
predicted observations after
aligning to the trained model.

No Model Mismatch. Here, we investigated the performance of our
approach when there is no mismatch between the proposed gener-
ative model and the true system. For this experiment, we generated
synthetic data from the model trained on M = 20 datasets. We used
the observations from validation trials till t = 100 to infer the em-
bedding, ei, and latent state, zit . We subsequently used the dynamics
model to generate latent trajectories of length 250, zit+1:t+250 and
mapped them back to the observations via the learned likelihood
function. We re-trained a model with the same architecture while
keeping the likelihood readout and read-in parameters fixed since
the likelihood could arbitrarily flip the direction of the flow field.

Similar to the ground truth generative model, the inferred embedding
co-varied with the different velocities (Fig. 9A, left). Further, the
model recovered the correct topology of the ground truth dynamics
(Fig. 9B), reflected in the forecasting performance on held out test
trials (Fig. 9A, right).

Multi-Session CEBRA. We evaluate the performance of multi-
session CEBRA, an approach for inferring latents by integrating datasets. This variant of CEBRA is
designed to learn invariant latent features across datasets, and has not been evaluated on recordings
with variations in underlying dynamical features. In this experiment, we fit M = 20 datasets using
CEBRA and post-hoc trained a generative model with shared dynamics and dataset-specific likelihood
functions, since it does not learn a generative model. After training CEBRA on these datasets, we
observed that the model recovered oscillatory latent trajectories; however, these trajectories were
jagged and did not capture the characteristics of the true latents (Fig. 10A). Next, we trained a
generative model using these latent trajectories. We observed that the learned dynamical system
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Figure 9: A. (Left) Samples from the inferred embedding (see eq. 16) after training on trajectories
generated from our model overlaid on the ground truth embeddings. (Right) Forecasting performance
of the trained and ground truth model on held out trials. B. Ground truth dynamics generated from an
embedding sample and the corresponding recovered dynamics.

managed to capture a global limit-cycle like structure (Fig. 10B, left). However, this limit cycle
also contained a fixed-point like structure causing rapid slow-down or noise-induced oscillations,
capturing the characteristics of the latent trajectories inferred by CEBRA. Due to this behavior, we
observed poor forecasting and reconstruction of observations (Fig. 10B, right).
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Figure 10: A. Example latent trajectories from two datasets (Top) and inferred latent trajectories from
Multi-Session CEBRA trained on M = 20 datasets. B. The dynamics learned by a generative model
trained on the latent trajectories (Left). Example reconstructed and predicted observations on the two
datasets by using the learned generative model (Middle). The k-step prediction r2 of the forecasted
observations for M = 20 datasets.

C HOPF BIFURCATION SYSTEMS

For all embedding conditioned approaches, we set de = 1 and learned a rank-1 change to the dynamics
for our approach. Our approach successfully learned both dynamical regimes present in the datasets
and the embedding distribution encoded differences in these dynamics with high certainty given
limited time bins on test trials(Fig. 11A, B). While all approaches performed well on reconstructing
observations on these datasets, our approach and the Embedding-Input outperformed other multi-
session baselines on forecasting (Fig 11C). We also evaluated the generalization performance of all
methods on the 2 held-out datasets as a function of training data used for training the read-in network
and observed similar trends as demonstrated by the reconstruction and k-step = 20 r2 on test trials
from these datasets, shown in Table 2.

Reconstruction Forecasting
ns = 1 ns = 8 ns = 1 ns = 8

Ours 0.85 ± 0.054 0.89 ± 0.04 0.64 ± 0.1 0.69 ± 0.07
Linear-Adapter 0.84 ± 0.059 0.89 ± 0.04 -0.1 ± 0.34 0.55 ± 0.08
Single Session 0.8 ± 0.054 0.88 ± 0.044 0.27 ± 0.08 0.77 ± 0.03
Shared Dynamics 0.83 ± 0.068 0.89 ± 0.04 0.32 ± 0.08 0.32 ± 0.04
Embedding-Input 0.86 ± 0.049 0.89 ± 0.04 0.61 ± 0.09 0.56 ± 0.11

Table 2: Few-shot reconstruction and forecasting performance (k-step=20) for held-out datasets in C
where ns is the number of trials used for learning the dataset specific read-in network and likelihood.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0 30 60
time

A.

0 60 120

0

1.5

3

0.5

0.75

1

0 3015

0.5

1

time

e

B.

C.

time

Our Method

Single Session

Linear Adapter
Shared Dynamics

Embedding Input

True

Ours

Example
Observations

Performance on
Training Tasks

Figure 11: A. Example observations along with the reconstructed and predicted observations from
our approach for the fixed point (Top) and limit cycle (Bottom) dynamical regimes. B. Samples from
the embedding as a function of the number of time bins in the test trials for 4 example datasets. C.
Reconstruction (Top) and forecasting (Bottom) performance of all approaches on the datasets used
for pretraining.

D ALTERNATIVE INFERENCE AND LEARNING APPROACHES

While we focus on the DKF method for performing inference in the main text, we evaluate the
efficacy of our proposed generative model with alternative inference and learning schemes.

D.1 VARIATIONAL SMC

We considered the variational sequential monte carlo (VSMC) framework proposed by Naesseth et al.
(2018) for learning and inference. VSMC is a combination of variational inference and sequential
Monte Carlo (SMC) (Doucet et al., 2001), allowing for optimization of the parameters of the proposal;
for simplicitiy, unlike traditional SMC, no resampling was performed after every time step, t. Given
N samples from the encoder, i.e., z11:T , . . . , z

N
1:T , VSMC optimizes the following lower bound to the

log marginal likelihood,

log p(x1:T ) = log

∫ T∏
t=1

p(zt |zt−1)p(xt |zt)dz1:T ≥ L̃vsmc =

T∑
t=1

Eq(zt)

[
log

(
1

N

N∑
i=1

wi
t

)]
,

(19)where,

wi
t =

p(xt |zit)p(zit |zit−1)

q(zit |x1:T )
. (20)

As the proposed formulation requires inference of the dynamical embedding, e—which is constant
over time—we have to modify VSMC as it non-trivial to infer constants in state-space models using
SMC (Doucet et al., 2001). We can express the log marginal likelihood of the proposed generative
model as

log p(x1:T ) = log

∫
p(e)

T∏
t=1

p(zt |zt−1, e)p(xt |zt)dz1:T de, (21)

= log

∫
p(e)de

∫ T∏
t=1

p(zt |zt−1, e)p(xt |zt)dz1:T , (22)

= log

∫
p(e)p(x1:T |e)de, (23)

= log

∫
q(e)

p(e)

q(e)
p(x1:T |e)de, (24)

= logEq(e)

[
p(e)

q(e)
p(x1:T |e)

]
. (25)
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Applying Jensen’s inequality to (25),

log p(x1:T ) ≥ Eq(e)

[
log

(
p(e)

q(e)
p(x1:T |e)

)]
, (26)

log p(x1:T ) ≥ Eq(e) [log p(x1:T |e)] + Eq(e) [log p(e)]− Eq(e) [log q(e)] . (27)

As expectations respect inequalities, we can lower bound Eq [log p(x1:T |e)] using the VSMC lower-
bound (19), leading to the following lower-bound that we optimize

log p(x1:T ) ≥ Eq(e)

[
L̃vsmc

]
+ Eq(e) [log p(e)]− Eq(e) [log q(e)] , (28)

log p(x1:T ) ≥
T∑

t=1

Eq(zt|e)q(e)

[
log

(
1

N

N∑
i=1

wi
t(e)

)]
+ Eq(e) [log p(e)]− Eq(e) [log q(e)] , (29)

where,

wi
t(e) =

p(xt |zit)p(zit |zit−1, e)

q(zit |x1:T , e)
. (30)
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Figure 12: A. Samples from the learned embedding distribution using VSMC (Top) and dVBF
(Bottom). B. Behavior decoding performance from reconstructed (Left) and forecasted trajectories
(Right) using the two inference methods with a single session generative model vs aligning to our
pretrained generative model.

D.2 DEEP VARIATIONAL BAYES FILTER

We additionally considered the DVBF framework proposed in (Karl et al., 2016) for performing
learning and inference. This framework explicitly ties the inference network to the generative model
by forcing the samples from the inference network through the dynamical systems model. In our
implementation, we defined the inference network as follows,

qβ(u
i
t | ȳi1:T , eib) = N (ui

t |µβ(concat[ȳib,t:T , e
i
b]), σ

2
β(concat[ȳib,t:T , e

i
b])),

where qβ encoded the observations backward in time and was parametrized by an RNN to infer
the parameters of the Gaussian distribution, ut ∼ q(ut). The latent trajectory for each dataset was
subsequently sampled as,

zit = fθ,ei(z
i
t−1) +Q1/2ui

t.

Parameters of the generative model and inference networks were learned jointly by optimizing the
following ELBO,

L =
∑
i

∑
t

Eqα,β
[log p(yit |zit)]− Eqβ [DKL(q(ut)||p(ut))]− [DKL(qα(q

i)||p(e))], (31)

where p(ut) ∼ N (0, I).
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E DATA GENERATION DETAILS

E.1 LIMIT CYCLE

For the experiments in Sections 2, 3.3, we simulated data from the following system of equations,

ṙ = r(1− r)2,

θ̇ = ωi,

zi1 = r cos θ + 5dWt, zi2 = r sin θ + 5dWt,

where ωi, i ∈ {1, · · · ,M} is the dataset specific velocity and dWt is the Wiener process. Specifically,
for the experiment with M = 2 datasets, we set ω1 = 2 and ω2 = 5; for the experiment with M = 20
datasets, we uniformly sampled 20 values for ωi between 0.25 and 5. For each value of ωi, we
generated 128 latent trajectories for training, 64 for validation and 64 for testing, each of length
T = 300, where we used Euler-Mayurama with ∆t of 0.04 for integration. Observations were
generated according to yit ∼ N (Cizit, R) where R = 0.01 ∗ I and the elements of the readout matrix
Ci were sampled from N (0, I/

√
dz); the dimensionality of the observations varied between 30 and

100. with R ∼ N (0, 0.01), where the dimensionality of the observations varied between 30 and 100.

For testing the one-shot performance of the model, we generated a new dataset with ωM+1 = 4.1,
which was not included in the training set, where 1 trial was used to train a new read-in network,
ΩM+1.

In Figure 9 A, we show the inferred embedding and k-step r2 on the observations from the test trials.

E.2 HOPF BIFURCATION

Latent trajectories were generated from the following two-dimensional dynamical system,

ż1 = z2 + 5dWt, ż2 = −z1 + (µi − z21)z2 + 5dWt, (32)

where the parameter µi controls the topology of the dynamics. Specifically, when µi < 0, this system
follows fixed point dynamics, and when µ > 0 the system bifurcates to a limit cycle.

We uniformly sampled M = 21 values of µi between -1.5 and 1.5, and for each µi, we generated 128
trajectories for training and 64 for testing, each trajectory was T = 350. Observations were generated
according to yit ∼ N (Cizit, R) where R = 0.01 ∗ I and the elements of the readout matrix Ci were
sampled from N (0, I/

√
dz); the dimensionality of the observations varied between 30 and 100. For

evaluating few-shot performance, we generated two additional novel datasets where µM+1 = −0.675
and µM+2 = 1.125 (both values were not included in the training set).

E.3 DUFFING SYSTEM

1 -0.6 -0.2
-1.5

-0.1

a

b

Training Data Held-Out Data
Figure 13: (ai, bi) values used
to generate different datasets
from the Duffing system.

For the Duffing system described in 18, we set c = 1
10 and varied

values of a and b (shown in blue, Fig. 13) for generating 20 datasets.
We additionally used 11 datasets from C obtained by uniformly
sampling µ between -1.5 and 1.5. For few shot evaluation of various
approaches, we used two held-out datasets from the Duffing system
(shown in orange, Fig. 13), as well as a dataset from the Hopf
example generating by setting µ = −1.8. All empirical evaluation
was performed on 64 test trials from each dataset.

E.4 MOTOR CORTEX RECORDINGS

We binned the spiking activity in 20ms bins and smoothed it with a 25ms causal Gaussian filter to
obtain the rates for all datasets. We further removed neurons that had a firing rate of less than 0.1Hz
and aligned the neural activity to movement onset. We used 512 trials when available or 80 percent
of the trials, each of length 36, for training all methods.
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Figure 14: Inference Overview. A.1. Each recording yi1:T is projected into a common space ȳi1:T by
recording specific read-in networks Ωi : Rdyi → Rdȳ . A.2. After being projected in this common
space, the recording is processed by an RNN (qα) which infers the distribution over the dynamical
embedding. Note that the dynamical embedding is aggregated across trials belonging to the same
recording session. A.3. This inferred embedding is concatenated with ȳ1:T to obtain the latent state
trajectories for each recording via the encoder qβ , parametrized by a bi-directional RNN.
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Figure 15: (Left) Dynamics learnt by Linear-Adapter and (Right) Embedding-Input corresponding to
the example dynamics on the true system shown in Fig. 4A.
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Figure 16: (Left) True dynamics from example datasets used for pretraining in experiment 5.1. (Right)
Dynamics Learnt by different embedding-conditioned parametrizations.
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Figure 17: Samples from the embedding distribution as a function of the number of training trajecto-
ries on 3 seeds on held-out datasets from the Duffing system (denoted by orange, Fig. 13)
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Figure 20: A. Samples from the embedding distribution after training our approach using 2 CO
sessions from Sub C and M, and 2 Maze sessions from Sub Je and Ni. B. Reconstruction and
forecasting performance of the model on held out test trials relative to the Single Session models. C.
Few-shot reconstruction and forecasting performance on held out sessions and a new subject (Sub T).
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Figure 21: (Left) Grid points used for generating the latent dynamical trajectories and with the
inferred embedding distribution overlaid. The embedding of the CO session from Sub C used to infer
the initial condition of the latent state is highlighted in green. (Right) Single trials of the predicted
hand position and PC projections of the corresponding latent dynamics trajectories. The initial latent
state is denoted by the black points.
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Figure 22: Same as 21 but for a Maze session from Sub Je (highlighted in blue).
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G EXPERIMENT DETAILS

G.1 TRAINING

Since CAVIA (Concat) (Zintgraf et al., 2019), DYNAMO (Cotler et al., 2023a) and CoDA (Kirch-
meyer et al., 2022) have not been developed for joint inference and learning of dynamics, we use
our framework for inference with modifications to the parametrization of the embedding conditioned
dynamics function on all experiments. We used the official implementation of LFADS in PyTorch to
obtain the results reported in the paper (Sedler & Pandarinath, 2023).

For our method and CoDA, we restricted parameter changes to the input, Win, and hidden weights,
Whh. We additionally included the Frobenius norm on the embedding-conditioned weight change
∥hφ(e

i)∥P along with the ELBO (eq. 14) for both approaches.

Synthetic Experiments. For the results reported in C and 5.1, we used the Adam optimizer with
weight decay and a Cosine annealing schedule on the learning rate for pretraining all approaches.

Motor Cortex Recordings. We used the LAMB optimizer for pretraining all multi-session methods
on the motor cortex recordings and used Adam with weight decay for the single-session models, with
a Cosine annealing schedule on the learning rate in both cases. We also incorporated masking during
training for all approaches to encourage learning better latent dynamics. Specifically, we sampled the
latent state from the dynamics instead of the state inference network on randomly masked time bins
to compute the likelihood.

Aligning New Data. We pretrained all multi-session approaches for 3 seeds and picked the best
performing model to evaluate few-shot performance. When aligning new data to this pre-trained
model, we trained the dataset-specific read-in network, Ωi and likelihood functions piϕ for the new
dataset, in addition to the state noise, Qi, by optimizing the ELBO for new data (eq. 14). We used
Adam with weight decay for aligning, and additionally incorporated masking when aligning held-out
motor cortex datasets.

G.2 FIGURE GENERATION

Vector Field. We generated all the vector field plots for synthetic experiments by sampling random
points on a 2-D grid to obtain zt. We used the mean dynamics learned by the model to estimate the
velocity at zt as, zt−1 = fθ(zt)− zt. In the embedding-conditioned methods, we additionally used
the inference network, qα to estimate the dynamical embedding corresponding to each dataset, which
was used to conditionally generate the vector field plots.

We additionally align all learned vector field plots to the true system for ease of visual comparison
(Fig. 4A, 15, 16). We do do this by learning a linear transformation from the true latent trajectories to
the latent trajectories learned by the model. Note that we follow the same procedure when visualizing
latent trajectories inferred by multi-session CEBRA (Fig. 10A)

Context Interpolation. We fed the neural recordings up till movement onset time to the latent state
encoder, qβ , to obtain the latent state at movement onset, zt. We sampled points on a 2-D grid and
simulated the corresponding samples from the embedding distribution as e ∼ N (e, 0.1I). Given the
latent state at movement onset for a particular recording session, we were able to obtain different
dynamical trajectories by giving these embedding samples to the latent dynamics model fθ,e(zt)
along with zt. We used this procedure to obtain the results in in Fig. 7, 21 and 22.

G.3 METRICS

Synthetic Experiments. We report the r2 on observation reconstruction for test trials over the
entire length of the trial for all approaches. In order to evaluate the forecasting performance, we
use observations till time t and sample the corresponding latent trajectories, zi0:t, from the inference
network and the corresponding ei for the embedding-conditioned methods. We subsequently use
the learned dynamics model to generate K steps ahead from zit+1:t+K and map these generated
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trajectories back to the observations. The k-step r2 for each dataset is computed as,

r2k = 1−
∑M

i=1(yk − ŷk)
2∑M

i=1(yk − ȳ)2

where ȳ is the mean activity during the trial, and M is the number of test trials.

Motor Cortex Recordings. On the motor cortex experiments, we report behavior decoding from the
reconstructed and forecasted observations for all methods. Specifically, for each session, we trained a
linear behavior decoder from the neural observations to the hand velocity of the subject, assuming a
uniform delay of 100ms between neural activity and behavior for all sessions.

After training all methods, we use reconstructed observations from the test trials to evaluate the
behavior reconstruction r2. For evaluating the decoding performance from forecasted observations,
we used the first 13 time bins (around time till movement onset) to estimate the latent state and
embedding, and subsequently use the trained dynamics model to forecast the next 20 time bins. The
observations corresponding tp these forecasted trajectories were used to evaluate the prediction r2.

G.4 HYPERPARAMETERS

Synthetic Examples. We used the following architecture for pretraining all methods, with de = 1
for the Motivating example and Hopf bifurcating system, and de = 2 for the combined Duffing and
Hopf example.

• Inference network
– Ωi: MLP(dy

i

, 64, 8)

– qα: [GRU(16),Linear(16, 2× de)]

– qβ : [biGRU(64),Linear(128, 4)]

• Generative model
– fθ: MLP(2, 32, 32, 2)

– hϑ: MLP(de, 16, 16, (64 + 33)× dr)

– pϕi : [Linear(2, dyi)]

• Training
– lr: 0.005
– weight decay: 0.001
– batch size: 8 from each dataset

Motor Cortex Experiment.

• Inference network
– Ωi: MLP(dy

i

, 128,Dropout(0.6), 64)

– qα: [GRU(64),Linear(64, 2× de)]

– qβ : [biGRU(128),Linear(128, 60)]

• Generative model
– fθ: MLP(30, 128, 128, 30)

– hϑ: MLP(de, 64, 64, (256 + 158)× dr)

– pϕi : [Linear(30, dyi)]

• Training
– lr: 0.01
– weight decay: 0.05
– batch size: 64 trials from 20 datasets
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