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ABSTRACT

The semantic similarity between sample expressions measures the distance between
their latent ‘meaning’. Such meanings are themselves typically represented by textual
expressions, often insufficient to differentiate concepts at fine granularity. We propose
a novel approach whereby the semantic similarity among textual expressions is based
not on other expressions they can be rephrased as, but rather based on the imagery
they evoke. While this is not possible with humans, generative models allow us to eas-
ily visualize and compare generated images, or their distribution, evoked by a textual
prompt. Therefore, we characterize the semantic similarity between two textual ex-
pressions simply as the distance between image distributions they induce, or ‘conjure.’
We show that by choosing the Jensen-Shannon divergence between the reverse-time
diffusion stochastic differential equations (SDEs) induced by each textual expression,
this can be directly computed via Monte-Carlo sampling. Our method contributes a
novel perspective on semantic similarity that not only aligns with human-annotated
scores, but also opens up new avenues for the evaluation of text-conditioned genera-
tive models while offering better interpretability of their learnt representations.

1 INTRODUCTION

Semantic similarity is about comparing data not directly, but based on their underlying ‘concepts’ or
‘meanings’. Since meanings are most commonly expressed through natural language, various methods
have attempted to compute them in this space. Words have been often compared based on the occurrences
of other words that surround them, and images have likewise been compared ‘semantically’ by using the
text captions that describe them.

While measuring semantic similarity comes natural to humans who share significant knowledge and ex-
perience, defining semantic similarity for trained models is non-trivial since text can often be ambiguous
or open to multiple (subjective) interpretations. On the other hand, visual elements often transcend com-
munication barriers and allow for comparison at finer granularity. Comparing images is also relatively
simple – unlike words, pixel values do not depend on distant knowledge or context.

Hence, instead of comparing images by the captions which describe them, we propose the converse:
comparing textual expressions in terms of the images they conjure. In other words, we propose an
expanded notion of meaning that is purely “visually-grounded”. This would be hard if not impossible
for humans, since the process requires visualizing and comparing ‘mental images’ each individual can
conceive, but it is straightforward for trained models.

We propose to leverage modern image generative models, in particular the class of text-conditioned
diffusion models, for this purpose. By doing so, the semantic similarity between two text passages can
simply be measured by the similarity of image distributions generated by a model conditioned on those
passages.

There is a technical nugget that needs to be developed for the method to be viable, which is how to
compare diffusions in the space of images. To address this, we propose to leverage the Jensen Shannon
Divergence between the stochastic differential equations (SDEs) that govern the flow of the diffusion
model, which we will show to be computable using a Monte-Carlo sampling approach.

We will show that our simple choice of distance already leads to results comparable to zero-shot ap-
proaches based on large language models. To validate our proposed definitions, we further run ablation
studies over several components of our method, demonstrating robustness to specific choices of diffusion
models and their inference algorithms.
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Figure 1: We illustrate the process of conjuring semantic similarity between textual expressions “Snow
Leopard” and “Bengal Tiger”. We denoise each sequence of noisy images (middle row of both halves of
figure) with both prompts (top and bottom row of both halves of figure). Our method can be interpreted
as taking the Euclidean distance between the resulting images in the two rows. The sequences of noisy
images are obtained with either of the two text expressions (top / bottom halves of Figure) starting from
a Gaussian prior (t = T ). Observing cells highlighted in red, we see that the model converts pictures of
Snow Leopards into Bengal Tigers by changing their characteristic spotted coats into stripes, and adding
striped textures to the animal’s face (top half of Figure), and conversely converts Bengal Tigers into
Snow Leopards by changing their characteristic stripes into spotted coats (bottom half of Figure). This
enables interpretability of their semantic differences via changes in their evoked imageries.

To summarize the contributions of this work, we propose an approach for evaluating semantic similarity
between text expressions that is grounded in the space of visual images. Our method has a unique
advantage over traditional language-based methods that, in addition to providing a numerical score, it
also provides a visual expression, or ‘explanation’, for comparison, enabling better interpretability of the
learnt representations (Figure 1). Additionally, our method is the first to enable quantifying the alignment
of semantic representations learnt by diffusion models compared to that of humans, which can open up
new avenues for the evaluation text-conditioned diffusion models. Finally, we note that our approach can
be used to derive many possible variants based on the metric used to compare images, which we leave
for future exploration.

2 RELATED WORKS

Text-Conditioned Image Generative Models. We begin by briefly surveying the literature on text-
conditioned image generation. Goodfellow et al. (2020) proposed the Generative Adversarial Network
(GAN), a deep learning-based approach for image generation. Mirza & Osindero (2014) proposed a
method for conditioning GANs based on specified labels. Works such as VQ-VAE (Van Den Oord et al.,
2017) and VQ-VAE-2 (Razavi et al., 2019) also built upon the foundational works of Variational Auto
Encoders (VAEs) (Kingma, 2013) to learn discrete representations used to generate high quality images,
among other outputs, when paired with an autoregressive prior. DALL-E (Ramesh et al., 2021) has also
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been developed as an effective text-to-image generator leveraging autoregressive Transformers (Vaswani,
2017).

Our work focuses on diffusion models (Sohl-Dickstein et al., 2015), which have achieved state-of-the-art
results among modern image generation models. These models can be viewed from the perspective of
score-based generative models (Song et al., 2020b), which represent the distribution of data via gradi-
ents, and are sampled from using Langevin dynamics (Welling & Teh, 2011). Diffusion models have
been trained by optimizing the variational bound on data likelihood (Ho et al., 2020). Modeled as
stochastic differential equations (Song et al., 2020b), the same training objective has also been shown
to enable maximum-likelihood training under specific weighing schemes (Song et al., 2021). Diffusion
models have also demonstrated strong results on conditional image generation tasks. Sohl-Dickstein
et al. (2015) and Song et al. (2020b) showed that gradients of a classifier can be used to condition a
pre-trained diffusion model. Dhariwal & Nichol (2021) introduced Classifier-guidance, which achieved
state-of-the-art results in image synthesis at the time it was released. Song et al. (2020a) introduced
Denoising Diffusion Implicit Models (DDIM), greatly accelerating the process of sampling from trained
diffusion models as compared to DDPM (Ho et al., 2020). Karras et al. (2022) presented a unified view of
existing diffusion models from a practical standpoint, enabling develop improved sampling and training
techniques to obtain greatly improved results.

Semantic Space of Generative Models. The Distributional Hypothesis (Harris, 1954) forms the basis
for statistical semantics, characterizing the meaning of linguistic items based on their usage distribu-
tions. This is also closely related to Wittgenstein’s use theory of meaning (Wittgenstein, 1953), often
popularized as “meaning is use”. Many methods have been developed in machine learning and Natural
Language Processing (NLP) literature to compute these semantic spaces, including Word2Vec (Mikolov
et al., 2013). In light of modern Large Language Models (LLMs), Liu et al. (2023) defined the space
of meanings for autoregressive models to be the distribution over model continuations for any input se-
quence. This has been used to define notions of semantic distances and semantic containment between
textual inputs. Achille et al. (2024) further defined conceptual similarity between images by projecting
them into the space of distributions over complexity-constrained captions, producing similarity scores
that strongly correlate with human annotations. Soatto et al. (2023) generalizes these definitions by con-
sidering meanings as equivalence classes, where partitions can be induced by either an external agent or
the model itself. Vector-based representations such as those obtained from CLIP Radford et al. (2021),
or in general any sentence embedding model (Devlin et al., 2018; Opitz & Frank, 2022) have also been
defined specifically for the computation of semantic distances. Such representations, however, are often
difficult to interpret.

In contrast to these works, Bender & Koller (2020) argues that training on language alone is insufficient
to capture semantics, which they argue requires a notion of “communicative intents” that are external to
language. In this paper, we explore a notion of meaning that is grounded in the distribution of evoked
imageries, and present a simple algorithm to compute interpretable distances in this space for the class
of text-conditioned diffusion models.

Evaluation and Interpretation of Diffusion Models. Common metrics used to evaluate diffusion
models are, among many others, the widely-used FID (Heusel et al., 2017) score, Kernel Inception Dis-
tance (Bińkowski et al., 2018), and the CLIP score (Hessel et al., 2021). Despite these choices, Stein et al.
(2024) recently discovered that no existing metric used to evaluate diffusion models correlates strongly
with human evaluations. While existing evaluations often focus on the quality and diversity of gener-
ations, our method is the first to evaluate semantic alignment of the representations learnt by diffusion
models. Several techniques have also been developed to interpret the generation of diffusion models.
Kwon et al. (2022); Park et al. (2023) edit the bottleneck representations within the U-Net architecture
of diffusion models for semantic image manipulation. Gandikota et al. (2023) identifies low-rank direc-
tions corresponding to various semantic concepts, and Li et al. (2023) shows that diffusion models can
be used for image classification. Kong et al. (2023a;b) frame diffusion models using information theory,
improving interpretability of their learnt semantic relations. Orthogonal to these works, our method en-
ables visualizing the semantic relations between textual prompts in natural language learnt by diffusion
models via the distributions over their generated imageries.
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Algorithm 1 Conjuring Semantic Similarity
Require: Diffusion model sθ, Prompts y1, y2, Monte-Carlo steps k

Initialize d = 0
for i = 1 . . . k do

xT ← Sample from initial distribution π
x̂T , . . . , x̂0 ← Denoise xT conditioned on y1
x̃T , . . . , x̃0 ← Denoise xT conditioned on y2
d← d+ 1

T

∑T
t=1 ∥sθ(x̂t, t|y1)− sθ(x̂t, t|y2)∥

2
2

d← d+ 1
T

∑T
t=1 ∥sθ(x̃t, t|y1)− sθ(x̃t, t|y2)∥

2
2

end for
return d/k ▷ Return similarity score

3 METHOD

We will present a short preliminary on (conditional) diffusion models in Section 3.1, and derive our
algorithm for computing semantic similarity in Section 3.2.

3.1 PRELIMINARY

Our derivations will leverage Song et al. (2020b)’s the SDE formulation of diffusion models when viewed
from the lens of score-based generaive modeling. In particular, a (forward) diffusion process {x(t)}Tt=0
can be modeled as the solution to the following SDE:

dx = f(x, t)dt+ g(t)dwt

with drift coefficient f : Rd × R 7→ Rd and (scalar) diffusion coefficient g : R 7→ R, where wt is
standard Brownian motion. We constrain the timesteps t such that t ∈ [0, T ], where x(0) represents
the distribution of “fully-denoised” images generated by the diffusion model. We also assume that
by construction, the prior at time T is known and distributed according to x(T ) ∼ π, where often
π = N(0, I).

Once trained, we can view text-conditioned diffusion models as a map sθ(x, t|y) parameterized by θ
and conditioned on a textual prompt y ∈ Y that is used to approximate the score function (Song et al.,
2020b), where sθ(·, t|y) : Rd 7→ Rd and Y is the set of textual expressions. As such, each conditional
model sθ(x, t|y) defines a reverse-time SDE given by:

dx = [f(x, t)− g(t)2sθ(x, t|y)]dt+ g(t)dw̄t (1)

where w̄t is the Brownian motion running backwards in time from t = T to t = 0. For ease of notation,
we will denote µθ(x, t, y) := [f(x, t)− g(t)2sθ(x, t|y)].

3.2 CONSTRUCTION

Given two textual prompts y1 and y2, we obtain two separate diffusion SDEs in the space of images
using eq. (1), which are given by

dx1 = µθ(x1, t, y1)dt+ g(t)dw̄t (2)
dx2 = µθ(x2, t, y2)dt+ g(t)dw̄t (3)

We assume the standard conditions for existence and uniqueness of their solutions, in particular for all
t ∈ [0, T ] we have E

[
∥x(t)∥22

]
≤ ∞, and for all y ∈ Y and x, x′ ∈ Rd, there exists constants C,D

such that ∥µθ(x, t, y)∥2 + ∥g(t)∥2 ≤ C(1 + ∥x∥2) and ∥µθ(x, t, y)− µθ(x
′, t, y)∥2 ≤ D∥x− x′∥2. We

further assume Novikov’s Condition holds for all pairs y1, y2 ∈ Y , in particular we are guaranteed the
following: E

[
exp

(
1
2

∫ T

0
∥µθ(x, t, y2)− µθ(x, t, y1)∥22dt

)]
<∞.

Since our goal is to define a semantic distance between textual prompts y1 and y2 by comparing the
distributions over images that they conjure, we can achieve this by computing a discrepancy function
between the respective SDEs that they induce. In particular, we will use the Jensen–Shannon (JS) diver-
gence, which is simply the symmetrized Kullback–Leibler (KL) divergence between two SDEs. In the
following, we show how this divergence can be computed via a Monte-Carlo approach.
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Denote the path measures associated with eq. (2) and eq. (3) respectively to be P1 and P2. Then, the KL
divergence between the two SDEs are defined via

DKL(P2||P1) = −EP2
log

(
dP1

dP2

)
where dP1

dP2
is the Radon-Nikodym derivative. By Girsanov theorem (Girsanov, 1960), we can compute

this derivative as the stochastic exponential given by

exp

(∫ T

0

− 1

g(t)
(µθ(x, t, y1)− µθ(x, t, y2)) dw̄t −

1

2

∫ T

0

1

g(t)2
∥µθ(x, t, y1)− µθ(x, t, y2)∥22dt

)

Novikov’s Condition guarantees that this term is a Martingale so, following the approach of Song et al.
(2021), the KL divergence between the two SDEs can be simplified as

DKL(P2||P1) =
1

2
EP2

[∫ T

0

1

g(t)2
∥µθ(x, t, y1)− µθ(x, t, y2)∥22dt

]

=
1

2
EP2

[∫ T

0

g(t)2∥sθ(x, t|y1)− sθ(x, t|y2)∥22dt

]
We can symmetrize to form our desired distance function:

dours(y1, y2) := JSM(P1||P2) =
1

2
DKL(P2||P1) +

1

2
DKL(P1||P2)

which, ignoring constants, can be written as

dours(y1, y2) = Et∼unif([0,T ]),x∼ 1
2pt(x|y1)+

1
2pt(x|y2)

[
g(t)2∥sθ(x, t|y1)− sθ(x, t|y2)∥22

]
where pt(·|y) is the distribution of noisy images at timestep t. Similar to how losses at different timesteps
are weighted uniformly in the training of real-world diffusion models (e.g. Lsimple proposed by Ho et al.
(2020)), we set g(t) to be constant, in particular g(t) = 1, to simplify our algorithm such that it does not
have to be tailored specifically to each choice of scheduler.

We can compute this resulting semantic distance using Monte-Carlo by discretizing the timesteps to
t ∈ {1, . . . , T}. In particular, this is computed in practice via sampling an initial noise vector x(T ) ∼ π,
and denoising it with both y1 and y2 to obtain a sequence of samples xt’s, and computing the difference
in predictions ∥sθ(xt, t|y1) − sθ(xt, t|y2)∥22 at each denoising timestep. We describe this process in
Algorithm 1.

4 EXPERIMENTS

We describe implementation details in Section 4.1, empirical validation for our definitions in Section 4.3,
and ablations in Section 4.4.

4.1 IMPLEMENTATION DETAILS

We use Stable Diffusion v1.4 (Rombach et al., 2022), a text-conditioned diffusion model, for all our
experiments. For sampling, we use classifier-free guidance (Ho & Salimans, 2022) with guidance scale
of 7.5, and sample using the LMS Scheduler (Karras et al., 2022). We specify image sizes to be 512×512,
but note that Stable Diffusion v1.4 uses latent diffusion, as such model predictions are in practice of
dimension 64×64. We compute the Euclidean distance directly in this space. However, for visualization
experiments such as in Figure 1, we decode the predictions using the VAE before plotting them. We set
T = 10 in our experiments to ensure computational feasibility, after ablating over other choices in
Table 3. We perform all our experiments with a single RTX 4090 GPU, and each Monte-Carlo step takes
around 2.0s to complete in our naive implementation.

As a technicality, while we model the denoising direction term specified in the reverse-time SDE in
eq. (1) as the (text-conditioned) model output sθ(·|y), the exact implementation varies depending on
the text-conditioning method used. However, we note that in the case of classifier-free guidance, the
resulting distance computed using the model output as sθ(·|y) is equivalent to that computed using
classifier-guidance directions up to proportionality.
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Table 1: Comparison with zero-shot methods on Semantic Textual Similarity benchmarks. ∗; †; ‡ indicate
results taken from Ni et al. (2021); Gao et al. (2021); Liu et al. (2023) respectively. Expectedly, our
zero-shot approach does not perform as well as embedding models such as CLIP (Radford et al., 2021)
and SimCSE-BERT (Gao et al., 2021), which are trained specifically for semantic comparison tasks.
Nevertheless, semantic structures extracted from text-conditioned diffusion models (StableDiffusion)
using our method are still relatively aligned with that of human annotators, rivaling those extracted from
autoregressive Large Language Models while outperforming encoder-based language models such as
BERT (Devlin et al., 2018).

STS-B STS12 STS13 STS14 STS15 STS16 SICK-R Avg

Contrastive-Trained Embedding Models

CLIP-ViTL14‡ (Radford et al., 2021) 65.5 67.7 68.5 58.0 67.1 73.6 68.6 67.0 ± 4.3
IS-BERT† (Zhang et al., 2020) 56.8 69.2 61.2 75.2 70.2 69.2 64.3 66.6 ± 5.7
SimCSE-BERT† (Gao et al., 2021) 68.4 82.4 74.4 80.9 78.6 76.9 72.2 76.3 ± 4.6

Zero-Shot Encoder-based Models

BERT-CLS∗ (Devlin et al., 2018) 16.5 20.2 30.0 20.1 36.9 38.1 42.6 29.2 ± 9.6
BERT-mean∗ (Devlin et al., 2018) 45.4 38.8 58.0 58.0 63.1 61.1 58.4 54.8 ± 8.3
BERT Large-mean∗ (Devlin et al., 2018) 47.0 27.7 55.8 44.5 51.7 61.9 53.9 48.9 ± 10.2
RoBERTa Large-mean∗ (Liu et al., 2019) 50.6 33.6 57.2 45.7 63.0 61.2 58.4 52.8 ± 9.6
ST5-Enc-mean (Large)∗ (Ni et al., 2021) 56.3 28.0 52.6 41.4 61.3 63.6 59.5 51.8 ± 11.9
ST5-Enc-mean (11B)∗ (Ni et al., 2021) 62.8 35.0 60.2 47.6 66.4 70.6 63.6 58.0 ± 11.5

Autoregressive Models (Meanings as Trajectories (Liu et al., 2023))

GPT-2‡ 55.2 39.9 42.6 30.5 52.4 62.7 62.0 49.3 ± 11.2
GPT-2-XL‡ 62.1 43.6 54.8 37.7 61.3 68.2 68.4 56.5 ± 11.1
Falcon-7B‡ 67.7 56.3 66.5 53.0 67.4 75.5 73.5 65.7 ± 7.7
LLaMA-13B‡ 70.6 52.5 65.9 53.2 67.8 74.1 73.0 65.3 ± 8.3
LLaMA-33B‡ 71.5 52.5 70.6 54.6 69.1 75.2 73.0 66.6 ± 8.5

Text-Conditioned Diffusion Models (StableDiffusion)

Initial Timestep Prediction 55.8 46.7 53.4 47.2 54.3 57.9 56.0 53.0 ± 4.1
Final Timestep Prediction 64.9 41.6 56.4 51.0 65.2 60.2 58.9 56.9 ± 7.7
Direct Output Comparison 57.0 44.7 45.6 43.3 58.5 56.2 53.5 51.3 ± 6.0
Conjuring Semantic Similarity (KL-Div) 69.1 56.9 60.6 59.5 71.5 65.7 64.8 64.0 ± 4.9
Conjuring Semantic Similarity 70.3 57.9 61.0 60.8 73.6 67.9 66.0 65.4 ± 5.3

4.2 BASELINES

While there exists no comparable baselines for quantifying semantic similarity in text-conditioned diffu-
sion models at the time of writing, we present several derivatives of our method below which are directly
comparable against:

Prediction at initial timestep: We compare the one-step predicted noise vector at the initial denoising
timestep. This is defined as dinitial := Ex∼π

[
∥sθ(x, T |y1)− sθ(x, T |y2)∥22

]
.

Prediction at final timestep: We compare the predicted noise vector at the final denoising timestep.
This is defined as dfinal := Ex∼ 1

2p0(x|y1)+
1
2p0(x|y2)

[
∥sθ(x, 0|y1)− sθ(x, 0|y2)∥22

]
.

Direct output comparisons: For the same initial condition, we directly compute the differ-
ence between the images produced by the two different labels. This is defined as doutput :=

Ex∼π

[
∥ψθ(x|y1)− ψθ(x, |y2)∥22

]
, where ψθ(·|y) : Rd 7→ Rd represents the full reverse diffusion pro-

cess from the noise prior π at time T to the output distribution at time 0.

KL-Divergence: We evaluate the non-symmetrized version of our method, computed via
the KL divergence between the SDEs obtained from different prompts: dours-KL(y1, y2) :=
Et∼unif([0,T ]),x∼pt(x|y1)

[
g(t)2∥sθ(x, t|y1)− sθ(x, t|y2)∥22

]
Using the same parameters as our proposed method, we implement all baselines via Monte-Carlo sam-
pling.
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4.3 EMPIRICAL VALIDATION

While our work defines a notion of semantic distance grounded in evoked imagery, the validity of this
definition hinges on its use as a measure of similarity that aligns with humans’. In particular, we should
expect our definition to produce measurements of similarity that agree often with human annotators
(which can be viewed as “ground-truth”).

To quantify this, we use the Semantic Textual Similarity (STS) (Agirre et al., 2012; 2013; 2014; 2015;
2016; Cer et al., 2017) and Sentences Involving Compositional Knowledge (SICK-R) (Marelli et al.,
2014) datasets, containing pairs of sentences each labelled by human annotators with a semantic simi-
larity score ranging from 0-5. We then use our method to compute the image-grounded similarity score,
and measure their resulting Spearman Correlation with the annotations.

Interestingly, our experiments in Table 1 show that our visually-grounded similarity scores exhibit sig-
nificant degrees of correlation with that annotated by humans. While, expectedly, our method presently
lags behind embedding models trained specifically for semantic comparison tasks, we show that our
visually-grounded similarity scores can rival that produced by existing large language models up to 33B
in size. Since our work is the first to formalize and evaluate semantic alignment for this class of condi-
tioned diffusion models, we have also included results from baselines with which our approach is directly
comparable against. Our method convincingly outperforms all baseline methods for evaluating semantic
similarity in diffusion models. As a remark, we note the large standard deviations in these scores across
datasets for all methods, suggesting that what matters for validation purposes is that our distances corre-
late significantly with that of annotators, rather than obtaining “state-of-the-art” alignment scores since
‘ground truth’ is fundamentally subjective in each of these benchmarks.

We further remark that in most existing text-conditioned diffusion models, the representation structures
that can be captured by our method are limited by those learnt by text-encoder models such as CLIP
(Radford et al., 2021), since these encoders are often used to pre-process textual prompts. In light of
this, the experiments also suggest that our method can be an effective metric to quantify how well repre-
sentation structures learnt by these text-encoders have been distilled to the resulting diffusion model. We
explore this in the following section, where we study how faithfully learnt semantic relations between
words transfer from text-encoders to the full diffusion model.

In Figure 2, we also qualitatively evaluate our method on measuring semantic similarity between various
words. From the resulting pairwise similarity matrices, we can observe that words are closer in terms
of their common hypernym class tend to cluster together, showing that our method can effectively cap-
ture word taxonomies. For instance, nouns that describe types of dogs cluster together, and nouns that
describe types of marine animals similarly form another cluster. These two clusters are separate, in the
sense that distances of words across these clusters are large than those within each cluster.

4.4 EMPIRICAL ANALYSIS

In this section, we run ablation studies using the STS-B dataset as a benchmark to explore the design
space of our method, and improve its computational efficiency. We further analyze the failure modes of
diffusion models through comparing semantic alignment of words belonging to different parts of speech.

Prior over timestep distribution. In our algorithm, we placed a uniform prior over timesteps
{1, . . . , T}. In Figure 3, we show that this simple choice works best when evaluated on alignment
with human annotators on STS-B, as compared to other choices such as considering only a uniform prior
over the subset {T ′, . . . , T} (cumulative from T ′ to T ) where T ′ ≤ T , or a Direc delta on any particular
timestep T ′ ∈ {1, . . . , T} (pointwise).

Number of Monte-Carlo Steps. The computational feasibility of our method depends on the number
of Monte-Carlo steps (i.e. k in Algorithm 1) required to produce a reliable approximate of the desired
distance. We ablate over choices of k ∈ {1, . . . , 5} in Figure 3 and show that the deviation of scores
when evaluated on the STS-B dataset is small (±0.77) across different choices of k. This finding is
promising, as it implies that our method can be computationally efficient, requiring only a small number
of Monte-Carlo iterations to converge.

Choice of Stable Diffusion Model. On the right of Figure 3, we also show that our results are relatively
consistent across several versions of Stable Diffusion models, including Stable Diffusion XL and Stable
Diffusion 3 Medium.
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Figure 2: Qualitative evaluation of conjured semantic similarity. (Left) shows that nouns cluster based on
shared hypernym classes: Dogs (puppy, poodle, dalmatian, pug) form a visible cluster in the top-left 4x4
block, while marine animals (whale, shark, dolphin, sealion) form another cluster in the bottom-right
4x4 block. (Right) shows that the same pattern holds for flying-related action verbs (elevate, ascend,
soar, glide) v.s. negative stative verbs (disappoint, grieve, worry, regret).
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Figure 3: (Left:) We ablate over different choices of priors over timesteps – a uniform distribution over
timesteps {T ′, . . . , T} where T ′ ≤ T = 10, represented by the blue line (cumulative), and the Direc
Delta on any particular timestep T ′ ∈ {1, . . . , T}, represented by the orange line (pointwise). We show
that a uniform prior over all timesteps gives the best results. The same plot also ablates over the number
of Monte-Carlo samples, k ∈ {1, . . . , 5}, where we conclude that only few iterations are required for
convergence. (Right:) We further ablate over different choices of diffusion models, and show that results
remain relatively consistent across the tested choices.

Error Analysis. Here, we evaluate our method on word similarity datasets, categorized by the part of
speech (POS) from which the words originate. We use RG65 (Rubenstein & Goodenough, 1965) and
SimLex-999 (Hill et al., 2015) for our evaluation, which contains pairs of words and their semantic sim-
ilarity score as annotated by humans. The former consists of nouns, while the latter includes adjectives,
nouns, and verbs. Our analysis in Table 2 compares the representations learnt by the text encoder of the
diffusion model to that of the model itself (extracted via our approach). Interestingly, we observe that
while the semantic relations between nouns are largely preserved, the semantic relations between verbs
and adjectives tend to deteriorate after learning the reverse diffusion process for image generation.

5 DISCUSSION AND LIMITATIONS

Our method has several limitations. First, imageries might indeed not be sufficient to fully capture the
meaning of certain expressions, such as mathematical abstractions (like ‘imaginary numbers’) and meta-
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Table 2: We evaluate the spearman correlation between semantic similarity scores obtained via our
method, and that labeled by human annotators. We use the text encoder bottleneck of the StableDiffusion
model as the paragon. While the semantic properties of nouns are largely preserved from learning the
diffusion process, this comes at the expense of semantics of adjectives and verbs.

RG65 SimLex SimLex (Adj) SimLex (Noun) SimLex (Verb)

Paragon 77.5 34.2 40.6 42.8 10.3
StableDiffusion 60.2 20.5 34.0 30.0 -14.3

Table 3: Ablation on choices for T on the STS-B dataset: We show that variance with respect to the
choice of T is small, allowing semantic distances to be computed efficiently by using lower values.

T = 5 T = 10 T = 15 T = 20 T = 30 T = 50

Spearman Corr. 70.1 70.3 70.1 68.9 70.2 69.5

physical concepts (like ‘conscience’). Furthermore, many modern diffusion models use a pre-trained
text-encoder to pre-process textual prompts. This means that representation structures obtained from
the diffusion model outputs would be bottle-necked by those learnt by the text encoder. However,
this limitation can be mitigated by the development of better encoders, such as those based on LLMs
(BehnamGhader et al., 2024). Additionally, these encoder-based (vector) representations are often diffi-
cult to interpret, while our proposed method offers a way to visualize and interpret the learnt semantic
similarities between textual expressions. Lastly, computation costs also remain a key limitation of our
method, since it requires several inference passes through the diffusion model to compute a single se-
mantic similarity score, mitigated only partially by the conclusions of our ablation study on required
number of iterations.

Nevertheless, our method is the first to show that textual representations can be meaningfully compared
for diffusion models by “grounding” them in the space of conjured images. We introduce the first method
for evaluating semantic alignment of text-conditioned diffusion models. In particular, our work enables
not only qualifying (via visual ‘explanations’), but also quantifying the alignment of this resulting se-
mantic space with that of human annotators. Our method also enable fine-grained analysis of the failure
modes of existing diffusion models, pinpointing specific areas where they align poorly with human an-
notators. Our general framework of conjuring semantic similarity is applicable to the broader class of
image generative models, and we leave the exploration of applications beyond diffusion models to future
work.
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A ADDITIONAL VISUALIZATIONS
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Figure 4: “Merlion” vs “Mermaid Lion”: While both prompts express compositions of the same set of
objects, the model associates different meanings with “Merlion” as opposed to “Mermaid + Lion”, where
the former is associated to the mascot of Singapore, while the latter is a mermaid with hair resembling a
lion’s mane.
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Figure 5: “Bag of Chips” vs “Bag of Fries”: The interpretation of “chips” depends on cultural back-
ground (US vs UK), but the interpretation of “fries” is relatively non-ambiguous. Interestingly, this
observation can be visualized when computing semantic similarity with our method. We see that on the
left of the figure (second image column), the model attempts to convert a picture of chips (US) into fries
by changing the rounded textures into sharper rectangular ones, when denoised with “Bag of Fries”. On
the other hand, pictures of fries still remain relatively identifiable as fries (fifth image column) when
denoised using “Bag of Chips”.
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