Fast attention mechanisms: a tale of parallelism
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Abstract

Transformers have the representational capacity to simulate Massively Parallel
Computation (MPC) algorithms, but they suffer from quadratic time complexity,
which severely limits their scalability. We introduce an efficient attention mecha-
nism called Approximate Nearest Neighbor Attention (ANNA) with sub-quadratic
time complexity. We prove that ANNA-transformers (1) retain the expressive power
previously established for standard attention in terms of matching the capabilities
of MPC algorithms, and (2) can solve key reasoning tasks such as Match2 and
k-hop with near-optimal depth. Using the MPC framework, we further prove that
constant-depth ANNA-transformers can simulate constant-depth low-rank trans-
formers, thereby providing a unified way to reason about a broad class of efficient
attention approximations.

1 Introduction

The transformer [57] has become the dominant neural architecture in deep learning due to its ability
to select and compose complex information structures from large inputs [1}, (19, [24)], which in turn
enables capabilities such as “in-context learning” [13]] that are crucial for downstream applications.
At the core of transformers is the attention mechanism, which leverages parallelism to gain important
advantages over non-parallel architectures (e.g., recurrent nets), including training stability [46]]
and representational power [[11, 131} 141} 145152, |55 160]]. One recently highlighted advantage comes
from a coarse theoretical relationship between transformers and the Massively Paralle]l Computation
(MPC) model [33]] that captures the power of large-scale distributed computing frameworks like
MapReduce [17]: efficient MPC algorithms can be simulated by small-size transformers, and vice
versa [53, 55]]. This correspondence suggests that a broad class of computational tasks can be
efficiently solved by transformers.

Despite these advantages, transformers suffer from a key limitation: the quadratic time complexity
of (standard) attention with respect to input size, which is likely to be unavoidable in the worst-
case [2, 3, 134]]. To address this limitation, a growing body of work proposes alternatives to the
attention mechanism that are more computationally efficient (e.g., sub-quadratic time). These
alternatives employ a variety of techniques, ranging from low-rank approximation [18, |14} 16} 32} 58]
to efficient nearest neighbor search [27} 35, 51} [64]. Although many of these techniques show
promising empirical performance, it is unclear whether they preserve the representational advantages
of attention.
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In this work, we study a particular efficient (sub-quadratic time) attention mechanism, called Approx-
imate Nearest Neighbor Attention (ANNA), and we prove that ANNA retains key representational
advantages of standard attention over non-parallel architectures. We additionally prove that ANNA-
transformers can simulate a class of attention mechanisms based on low-rank approximation. In
doing so, we provide a unified way to reason about low-rank and nearest neighbor approaches to
efficient attention.

1.1 Standard transformers and MPC

Prior work [53] 155]] established a coarse relationship between standard transformers and MPC by
proving the following (for any constant § € (0,1)):

1. For any MPC algorithm with inputs of size N that uses R rounds (of computation and commu-
nication), O(NN') machines, and O(N¢) words of local memory per machine (for some constant
e € (0,1)), there is an equivalent transformer of width O(N*?) and depth O(R). (By width, we
mean number of heads per layer times the embedding dimension.)

2. For any transformer operating on inputs of size N that has L layers and width O(N¢) (for
some constant ¢ € (0, 1)), there is an equivalent MPC algorithm that uses O(L) rounds, O(N?)
machines, and O(N¢*?) words of local memory per machine.

Notice that the “loss” in the number of rounds or depth is only a constant factor, and the “loss”
in the local memory size or width is only a O(N?) factor (where § > 0 can be arbitrarily small).
Consequently, these results were sufficient to give new results about transformer representational
power (e.g., for various graph reasoning tasks [53}155]]), and also give a (conditional) logarithmic-
depth lower bound for transformers that solve a multi-hop reasoning problem called k-hop [55].

However, there is a important gap in the MPC algorithm for simulating a transformer (Item [2] above):
it may use up to N? machines. This gap suggests the possibility that transformers are strictly more
powerful than MPC algorithms, so the relationship established in prior work is very coarse. Moreover,
this gap is likely to be inevitable. Indeed, when the local computation in an MPC algorithm is fast
(say, polynomial-time), and the local memory size is N for small £ € (0, 1), then a single round of
MPC on M machines can be simulated on a sequential machine in roughly M N©() time. However,
evaluation of attention over N inputs is believed to require at least N2~ time (for every constant
0 > 0) on a sequential machine [2,[3}134]]. So any such MPC algorithm that simulates attention in

O(1) rounds should use N2~9~9() machines.

This gap naturally leads us to the following question: Is there an alternative attention mechanism that
more tightly captures the computational power of MPC?

1.2 Our contributions

We prove that ANNA-transformers more sharply capture the power of MPC algorithms than standard
transformers do, and in particular avoid the aforementioned gap in prior works’ characterization of
transformers using MPC [53}[55]. The core ANNA mechanism is designed to perform c-approximate
nearest neighbor search [30, 38]] for a given set of N “queries” against a database of N “key-value”
pairs. Here ¢ > 1 is a parameter of the ANNA mechanism that, for the purpose of this present
informal description, should be thought of as being at least a large positive constant (e.g., ¢ > 10).
Throughout, N denotes the input size.

Theorem 1.1 (Informal version of Theorems[d.1|and4.2). Fix any constants €,6 € (0, 1) and ANNA
parameter ¢ > 1. For any R-round MPC algorithm with N¢ words of local memory, there is an
equivalent O(R)-layer ANNA-transformer of width O(N<+°). For any L-layer ANNA-transformer
with width N¢, there is an equivalent O(L)-round MPC algorithm that uses N°t° words of local
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memory and N'=5+t00/¢) machines.

Observe that Theorem I.1|essentially mirrors Items[I]and [2]in Section [I.T|except for the resources
needed by the MPC algorithm in Item[2} the local memory stays the same, but the number of machines
required can be strongly sub-quadratic (and in fact, close to linear) in N. This gives a positive answer
to the question at the end of Section



We also study efficient attention mechanisms based on low-rank approximation, and by leveraging
Theorem|1.1} we prove that ANNA-transformers have at least the same representational power.

Theorem 1.2 (Informal version of Theorem[@.4). For any L-layer low-rank attention transformer,
there is an equivalent O(L)-layer ANNA-transformer (of comparable width).

Finally, we illustrate the power of ANNA-transformers on two concrete reasoning tasks (Match2 [52]
and k-hop induction heads [12} [55]]). We give theoretical constructions of ANNA transformers
for these tasks that nearly match the efficiency achievable by standard transformers (Theorems[5.2]
and [5.6), and we also show empirically that ANNA-transformers can be trained to approximately
solve these tasks (Section [5.3)).

1.3 Other related works

The representational power of standard attention is relatively well understood from a variety of
perspectives. This includes: universal approximation properties in the large depth/width limit [22} 44}
59,163, ability to recognize formal languages [10, 2541} 156 62], computational bounds in terms
of circuit classes [28} 139,41 143]] and other parallel computation models (discussed below) [53} 55],
and bounds for specific compositional tasks [12, 15,136} 41} 49} 54]. In general, these and other prior
works do not consider the representational power of transformers based on efficient (sub-quadratic
time) alternatives to attention. The exceptions are works that give lower bounds for low-rank attention
and sparse attention [55} [61]], sequential architectures [[11} 31}, 45} 52, |60]], more generally, any
mechanism that can be evaluated in sub-quadratic time [2} 3, 34]. What is missing in these prior
works, however, is a characterization (and, in particular, upper bounds) for an efficient architecture.

Massively Parallel Computation (MPC) [5, 19} 20} 23| 29} [33]] is a model of parallel computing
intended to capture the power of MapReduce [17] and other large-scale distributed computing
frameworks. Many works, including those that originally helped to define the MPC model, gave
efficient algorithms for a variety of basic data and graph processing tasks. A connection between
MPC and circuit models was given by [50] and used to formalize a barrier on proving lower bounds
for certain graph problems (e.g., connectivity) in MPC. Nevertheless, certain conjectured lower
bounds in MPC are widely believed (e.g., the 1-vs-2 cycle conjecture [29]]) and have been used to
establish conditional lower bounds for other problems [21]. The same conjectured lower bounds have
also been used to establish depth lower bounds for transformers via the aforementioned relationship
between MPC and transformers [[53] 55]].

Our main result for ANNA-transformers has an analogue in the context of message-passing graph
neural networks (GNNs). The computational power of such GNNGs is characterized by the CONGEST
model of distributed computing [48] (a refinement of LOCAL (7,140} 47]). This fact was established
by [42] and in turn used to give upper- and lower-bounds on the size of GNNs needed to solve
various graph problems (e.g., subgraph detection). The GNN/CONGEST equivalence is almost
immediate, since the communication network is fixed by the input graph in both models, and the model
definitions are semantically and syntactically similar. In contrast, while the layered representations of
transformers are reminiscent of the alternation between communication and computation rounds in
MPC, the “communication patterns” themselves are dynamic, and this dynamism greatly complicates
the simulation of MPC algorithms by either standard transformers or ANNA-transformers.

The ANNA mechanism that we study is inspired by many prior efficient attention mechanisms [e.g.,
27,135 164] based on locality-sensitive hashing [30]], which is one of the key techniques for nearest
neighbor search. Some of these mechanisms have guarantees about the quality of approximation
under structural assumptions on the attention matrix they are meant to approximate. The motivation
of our analysis is largely orthogonal: we instead seek to characterize the representational power of
ANNA-transformers in terms of other well-understood models of parallel computation. We further
compare the capabilities of LSH-based efficient attention to other sub-quadratic alternatives, including
those based on low-rank approximations of self-attention matrices [[16} 132, 58]

2 Preliminaries

2.1 Standard attention and transformers

We first define the (standard) attention mechanism and transformers.



Definition 2.1 (Attention). A (standard) attention head Attng g v is specified by query, key, value
embedding functions Q, K,V : R* — R™. On input X € RV*4 it computes

Attng r¢ v (X) = softmax(Q(X)K(X)")V(X) € RN*™

where Q, K, V, and softmax are applied row-wise. We say N is the context length, and m is the
embedding dimension. The rows of Q(X) (resp., K(X), V(X)) are the queries (resp., keys, values).
Ifgi = Q(X)i, kj = K(X);, and v; = V(X);, then the i-th row of Attng v (X) is

3 exp({qi, k;))
Atth,KV(X)Z = Zwi7jvj7 Where wi}j — P4, 7

= SN exp({gi ki)

An H-headed attention layer f: RN*d — RN*4 consists of attention heads (Attng, r, v, )i, and
m x d matrices (Wp,)fL | ; it computes f(X) = Zthl Attng, x, v, (X)Wh.

Definition 2.2 (Transformer). An L-layer transformer T is specified by attention layers f1, ..., fL :
RN*d s RNX gnd an output function 1 : R — R%. Given input X € RN*? define

XO:=X and XU .= f,(x“VY fort=1,...,L

The output of T on input X is (X F)) with ) being applied row-wise.

In this paper, we consider the context length [V (the number of input tokens) as the principal scaling
parameter. This reflects the modern paradigm of long-context LLLMs, where the context-length can
exceed 10% [19], enabling book-length textual inputs. Consequently, we typically want the size
parameters m, H, and L to be sub-linear in N (and L ideally constant). The O(N?) runtime of
attention therefore remains the main bottleneck of the transformer architecture.

Following [55]], we allow the element-wise operations (Qp, K, Vi, ) to be arbitrary functions
(limited only by bit-precision; see [55, Appendix A.1]). Therefore, we can view a transformer as a
computational model that alternates between arbitrary per-token computation, and communication
between tokens. This motivates a connection to massively parallel computation, defined next.

2.2 Massively Parallel Computation

The Massively Parallel Computation (MPC) framework [29] models computation on large inputs by
a distributed computing system that alternates between rounds of local computation and rounds of
restricted all-to-all communication. We formally state the definition of MPC protocols (with sublinear
memory) as follows.

Definition 2.3 (MPC). For constants ~y,e > 0, an R-round (vy,€)-MPC protocol specifies the
following computation on inputs of N words (where a word is p = ©(log N) bits, represented by an
element of Za» ) by P = ©(NY7=¢) machines, each with local memory s = O(N¢) words:

1. Initially, the input is arbitrarily distributed across the first [%] machines.

2. In each round, each machine prepares, as an arbitrary function of its local memory, messages to
send to other machines. The total size of messages prepared by any machine is at most s words.

3. At the end of each round, the messages are placed in the local memory of the intended recipients.
The protocol ensures that the messages received by any machine has total size at most s words.

4. After the R-th round, the output is stored in the memory of the first f%] machines.

We say an MPC protocol © computes a function f : 75, — 75, if for any X € 7Y, 7(X) = f(X),
where w(X) is the output of w with the input X.

The primary measure of complexity considered in this paper is the number of rounds R. The round
complexity of numerous classical algorithmic problems is well understood. For example, there are
simple MPC protocols for graph connectivity (O(log V) rounds) and sorting (O(1) rounds) [20].

'Such assumptions are necessary for establishing the equivalence with the MPC model, since the MPC model
allows arbitrary computation on the local memory for each machine. That said, many concrete MPC algorithms
do have a simple local algorithm which can be simulated by a small MLP.



3 Approximate Nearest Neighbor Attention

In this section, we introduce Approximate Nearest Neighbor Attention (ANNA), an attention mech-
anism inspired by the approximate nearest neighbor (ANN) search problem. We first outline the
approximate nearest neighbor search problem and present locality-sensitive hashing (LSH), a core
technique for ANN (Section [3.T). We then formally define ANNA and provide a sub-quadratic time
algorithm based on LSH for computing ANNA with theoretical guarantees (Section [3.2)).

3.1 Approximate nearest neighbor and locality sensitive hashing

We first define the Approximate Nearest Neighbor (ANN) search problem.

Definition 3.1 (ANN search problem [30, 38l). Given a dataset D of N points lying in a metric
space Y and parameters c,r > 0, build a data structure that, given a query q € Y within distance at
most r from D, returns any point in D that is within distance cr from q.

In the modern machine learning setting, we want to develop fast algorithms for ANN search in the
high-dimensional metric space with sub-linear query time. A well-known tool that achieves this
runtime and provable approximation guarantees is locality sensitive hashing (LSH). For simplicity,
we assume the metric space is m-dimensional Euclidean space.

Definition 3.2 (Locality Sensitive Hashing [30]). Fix a parameter r > 0, an approximation factor
¢ > 1 and a set U. Then a family H of hash functions h : R™ — U is (r, cr, p1, p2)-sensitive if the
following holds for any x,y € R™:

e if ||z — y|| < then Pryey|h(z) = h(y)] > p1, and
s if ||z —yll > cr, then Prpey[h(z) = h(y)] < po.

The family H is called an LSH family with quality p = %.

A typical LSH-based algorithm can solve the ANN search problem with space O(N'*#) and query
time O(N®), and p can be as small as 1/c? [4].

3.2 Transformer based on Approximate Nearest Neighbor Attention

We first define a family of models where only tokens with sufficiently “neighborly” queries and keys
attend to one another and then provide an efficient implementation of a subset of this class. ANNA
attention units treat attention query vectors as queries to approximate nearest neighbor search and key
vectors as data points. ANNA retrieves and weights value vectors according to approximate nearest
neighbor thresholds. The following definition formalizes this family of models.

Definition 3.3 (ANN Attention). An Approximate Nearest Neighbor Attention (ANNA) mechanism
ANNAg kv with query, key, and value embedding functions Q, K,V : R? — R™ and (non-
negative) parameters v, c, 0, n, is a (possibly randomized) mechanism that performs the following
computation on an input X € RV*4;

N
ANNAg v (X); == Zwmuj foralli € [N],

J=1
for some non-negative weights w; ; > 0 with Zj w; ; = 1 that satisfy the following. With probability
at least 1 — ), for all i € [N],
e w;; > 0=k € N(g,cr)

1
* kj € Nlai,m) = wij > (R =—TaT

where i := Q(X )i, ki := K(X)i, v; := V(X)s, and N'(q, t) == {k € {k;}}_ : [lg — k|| < t}.

We define ANNA layers and ANNA transformers in a completely analogous fashion as (standard)
attention layers and transformers are defined (Definitions 2.1 and [2.2).



Algorithm 1 ANNA implementation with LSH family 7, ¢ hash tables, and z hash functions/table

Input: Input X € RV*d
Output: ANNA output for each of the query.
1: Letgq; = Q(X)l, k; = K(X)Z, and v; = V(X)l forall i € [N]
2: foru =1to /¢ do > Preprocessing phase
3 Sample z hash functions Ay, 1, hy,2, - - -, Ry, 2 id.d. from H.
4 Create empty hash table 7, indexed by hash codes (below).
5: for each key-value pair (k;,v;) do
6.
7
8

Compute hash code gu(k ) = (hu,1(kj), huo(ky), ... ha 2 (Kj)).
if T, (g (k;)] is empty, then T, (g, (k;)] := (v}, 1) elseT [gu(k])] += (vj,1).
: Initialize a dictionary attn < {(¢1,0), (¢2,0),...,(gn,0)}

9: for each query ¢; do > Query phase
10: Vgum — 0; count < 0
11: for u=1to/do
12: Compute hash code g,,(¢;) = (hu,1(qi); - - -, hu,2(qi))
13: if T,[9.(¢:)] = (v, a) is not empty, then vy, += v and count += a
14: attn[g;] <+ vgm/count

15: return attn

The parameters 7, ¢ have the same semantics as in ANN search. The parameter ¢ captures how much
“attention weight” is spread over keys that are not r-near neighbors of a query. The failure probability
7 allows for randomization, which is typical of ANN search algorithms like LSH.

The above definition represents a set of constraints that all ANNA units must satisfy rather than a
specific algorithmic implementation. As a result, a wide variety of models satisfy the definition,
including softmax attention with bounded query and key vectors, and Exact-Match Attention (EMA)
where w; ; > 0 if and only if ¢; = k;. Not all such models admit computationally efficient
implementations. To identify sub- quadratlc ANNA models, we present an LSH-based implementation
of ANNA that computes satisfying weight vectors w; ; for specific choices of parameters , ¢, £, 7.

We define a hash function family G = {g : p € R? + (h1(p), ha(p), ..., h.(p)) € U* | h; €
‘H, Vi € [z]} and sample ¢ hash functions, g1, ..., g, from G independently and uniformly at
random, giving ¢ hash tables. Each hash code corresponds to a hash bucket in the hash table and each
hash bucket maintains a sum of v’s and count of k’s that falls into this bucket. We preprocess all the
key, value pairs by storing them in the hash tables. For each (k;,v;), ¢ € [N], compute the hash codes
of ki, g1(ki),g2(ki), ..., ge(k;), and update the sum and count for the buckets corresponding to
g1(ki), g2(ki), - .., ge(k;) respectively. For each query ¢;, 7 € [N], search and retrieve all the values
and counts from g1 (¢;), g2(qi), - - - , g¢(q;). Then compute the averaged value by summing up all the
values in the £ buckets, divided by the sum of counts. See Algorithm [I|for the details.

Theorem 3.4 (LSH algorithm guarantee for ANNA). Fixc > /3, LSH family H that is (v, cr, py, pa)-
sensitive with quality p < 1/3, { = ©(N3Plog N), and z = O(logy p, IV). Then Algorithm|I|(with
H, £, and z) implements an ANNA mechanism with parameters r,c,{ and n = O(1/N173¢).

We leave the full proof of Theorem [3.4] to Appendix [A] The total runtime of Algorithm [I] is
O(mN3rlog, /pe NV ), assuming sampling from the LSH family and evaluating a hash function
requires O(m) time and the numerical inputs to Algorithm [I] are specified with p = ©(log N) bits of
precision. The total space used is O(mN'+37) bits.

Remark 3.5. The memory complexity of Algorithm[l|can be further improved to O(mN ) bits with
the same time complexity by storing only one hash table with each entry keeping track of the value
for each query. See Algorithm 2] for the detailed implementation in Appendix[A]

Remark 3.6. The weight w; ; depends on the number of hash collisions between q; and k;, and is
typically a function of the distance A := ||q; — k;||. For example, if we use the random hyperplane

LSH from [6]], then w; j < exp(—A?log(m)/(4 — A?)).

In the remainder of this paper, our ANNA-based constructions are meant to refer to their efficient
implementation by Algorithm [T with a suitable choice of r and arbitrarily large c.



4 Efficient transformers and MPC

We prove a sharp equivalence between ANNA-transformer and MPC in the regime of sub-linear local
memory and sub-quadratic number of machines (Sections [.T]and[4.2). We also show that ANNA
subsumes alternative low-rank sub-quadratic attention mechanisms. (Section {.3).

4.1 ANNA-transformer can simulate MPC

The following theorem shows that any R-round MPC protocol with sub-linear local memory can be
simulated by an ANNA-transformer with O(R) layers and sub-linear number of heads and embedding
dimension. The full proof of Theorem[4.1]is in Appendix

Theorem 4.1 (ANNA simulates MPC). Fix constants 0 < € < & < 1. For any deterministic
R-round (g,e)-MPC protocol 7, there exists an ANNA-transformer T with L = O(R) layers,
H = O(N'=9)/4) heads per layer, and embedding dimension m = O(N<'), such that T (input) =
7(input) for all input € ZL.

Proof sketch. In fact, we show that the special case of ANNA-transformer whose approximation
factor ¢ — oo and r = 0 is already suffice to simulate MPC. In such case, ANNA for each query is
equivalent to finding only the keys that exactly match the query; we call this Exact-Match Attention
(EMA), and formally define it in Appendix [B]

In our simulation, we treat each input token as the local machine, and all the local computation is
handled by the element-wise functions @), K, V. The bulk of the proof is to handle the message
delivery between machines using EMA. By Proposition 24 of [S3], we can assume that each machine
only sends messages to at most & = O(NN?) machines for some § < . We assign a unique positional
encoding or identifier to each machine, and this encoding serves as a unique key to retrieve the
message in each machine. The high level idea is to create a query for each machine and a key for each
destination machine and the associated value is the embedding of the message sent to the destination
machine in the protocol. Since each machine can send at most & messages to other machines, we
create « EMA heads and each head is responsible for one outgoing message for all the N machines.
Each machine retrieves the message sent to them by having a query in each head. Since the messages
are averaged together, we use the same embedding mechanism from Lemma 3.2 of [55]] to allow error
correction in the element-wise operations. O

This gives us a sub-quadratic time reduction from MPC to ANNA-transformer: i.e., the communica-
tion process can be implemented in near linear time, whereas it is quadratic for standard attention.
In addition, this ties ANNA-transformer in the existing MPC hierarchy [S3]]: any problem solvable
by an R-round, O(N¢)-memory MPC protocol can be solved by O(R)-layer ANNA-transformer
with mH = O(N<*+?), for some § > 0. For example, following Theorem 3.1 of [26], O(1)-layer
ANNA-transformer can solve 3-SUM with mH = O(N1/2+9),

4.2 MPC can simulate ANNA-transformer

The following theorem (proved in Appendix [C) shows that any L-layer ANNA-transformer (as
implemented by Algorithm can be simulated by a O(L)-round MPC protocol. Since Algorithmis
randomized, it uses a random seed to sample the hash functions from the LSH family. The simulation
assumes access to the random seeds needed for all layers in the ANNA-transformer.

Theorem 4.2 (MPC simulates ANNA). Fix constants 0 < € < & < 1. For any L-layer ANNA-
transformer T (as implemented by Algorithm|l) with mH = O(N¥), there exists a O(L/(e’ — €))-
round MPC protocol m with local memory s = O(N¢') and P = O(N*+=¢'+*/*\ machines such
that m(input) = T'(input) for all input € Z2,.

Observe that the number of machines used in the simulation of the ANNA-transformer can be strongly
sub-quadratic (and in fact, close to linear when c is large). In contrast, the simulation of a standard
transformer from [55]] requires N2 machines. As previously discussed (Section , this shows that
ANNA-transformer more sharply characterizes efficient MPC protocols than standard transformers do.
On the other hand, by Theorem 4.2} round-complexity lower bounds for MPC directly imply depth
lower bounds for ANNA-transformers. This argument was used in [S3] to establish (conditional)



depth lower bounds for standard transformers on problems such as graph connectivity and k-hop
induction heads; these lower bounds also hold for ANNA-transformers.

4.3 ANNA-transformer can simulate low-rank transformers

As mentioned in Section [T} there are many proposals for efficient attention alternatives. In this
section, we focus on the sub-quadratic alternatives based on low-rank approximations of the attention
matrix. Specifically, we ask the following: what problems are intrinsically easy for ANNA but hard
for low-rank approximation attention, and vice versa?

Definition 4.3 (Low-rank attention). A low-rank attention is specified by two feature maps
Q',K' : RY — R" for some r < N (with the intention of approximating softmax(Q(X)K (X)")
by Q'(X)K'(X)T). On input X € RN*? it computes Q'(X)K'(X)"V(X) by first computing
K'(X)"V(X) € R™™, and then left-multiplying by Q' (X).

Note that [53] gives a lower bound of any low-rank attention for the k-hop problem. Later in Section5]
we give a construction of O(log k)-depth ANNA-transformer solving k-hop, and this directly gives
a type of problem that is easy for ANNA but hard for low-rank attention. However, is there any
problem that is easy for low-rank attention but hard for ANNA?

The following theorem answers the question by showing any L-layer low-rank attention-transformer
can be simulated by a O(L)-layer ANNA-transformer. So, under the time and parameter-efficient
regime (sub-linear rank and embedding dimension), low-rank attention-transformer is no stronger
than ANNA-transformer.

Theorem 4.4 (ANNA simulates low-rank attention). For constants 0 < € < ¢’ < 1, any low-rank
attention based transformer with depth L, rank r, embedding dimension m and rm = O(N¥¢) can
be simulated by an ANNA-transformer with depth O(L), number of heads H = O(N'=9)/4) and
embedding dimension m = O(N€¢ ).

We prove Theorem by first using O(L/(¢’ — ¢))-round MPC to simulate L-layer low-rank
transformer, and then Theorem give us the simulation of L-layer low-rank transformer with
ANNA-transformer through MPC. The full proof is given in Appendix

Other efficient attention mechanisms based on nearest neighbor search. Reformer [35] is
another efficient attention based on LSH. In Reformer, the input tokens are sorted by their (scalar)
hash values. Then, this sorted list is split into equal-sized chunks, each containing only O(1)-many
tokens. Standard attention is applied within each chunk. We show that the expressive power of
Reformer must come from the sorting operation: without sorting, the restriction of attention within
each constant-size chunk prevents Reformer from even computing basic functions like “average” with
O(1) layers (regardless of the embedding dimension); details are given in Appendix@

KDEformer [64] and HyperAttention [27]] approximate softmax attention matrices as a sum of a
sparse matrix and a low-rank matrix. They use LSH techniques to find sparse elements (i.e., heavy
elements in the attention matrix) and low-rank attention for the remaining components. Theorem [4.4]
indicates this low-rank part does not substantially increase the representational power.

5 ANNA-transformer for reasoning tasks

In this section, we study ANNA-transformer on two concrete reasoning tasks: Match2 [52]] and k-hop
[55]. These tasks are benchmarks for evaluating the reasoning capabilities of transformers, and they
separate different neural architectures in terms of their representational strengths.

5.1 ANNA-transformer solves Match2

The Match?2 task [52]] measures the ability of a model to associate paired elements with one another.
We show that a single ANNA mechanism can solve Match?2.

Definition 5.1 (Match2). Given an input sequence X = (z1,...,xn) € [M|N for some M <
poly(N), the i-th output of Match2(X) is 1{3j . x; + ; = 0 mod M} for all i € [N].

Theorem 5.2. For any N,M = NOW, there exists an ANNA-transformer T with one layer, one
attention head, and embedding dimension 1 such that T(X) = Match2(X) for all X € [M]".



5.2 ANNA-transformer solves k-hop

The induction heads (a.k.a. associative recall) task [18] is a reasoning task that predicts the next token
by completing the most recent bigram. It has been identified as an important mechanism for the
emergent “in-context learning” ability of LLMs.

Definition 5.3 (Induction heads). Let ¥ be a finite alphabet and w € XN . For each i € [N, define
o(w,7) =max{{0} U{j e N:j <i,wj_1 =w;}}.
The induction head task is to compute, for each 1 <1 < N, the value of Wer (wy,3)-

For example, let ¥ = {a, b, c} and w = aabcbabca. Then w, (,,9) = b because the 9th token is a,
and the last occurrence of a before position 9 (which is in position 6) is followed by b.

The following theorem shows that our ANNA-transformer can solve induction heads problem using
constant number of layers and sub-linear embedding dimension and number of heads.

Theorem 5.4. Fix constants 0 < ¢ < &' < 1. There exists an ANNA-transformer T with L = O(1)
layers, H = O(N(EI_E)M) heads per layer, and embedding dimension m = O(Nel) such that
T(w)i = We(w,), Vi € [N], forallw € &N,

We prove Theorem [5.4] (in Appendix [F2) by constructing a constant-round MPC algorithm for
induction heads, and then applying Theorem [4.1]to convert it into an ANNA-transformer.

The induction heads task was generalized by [55] to a k-step variant called “k-hop”.

Definition 5.5 (k-hop induction heads). Let ¥ be a finite alphabet and w € X, Let 0% (w, ) denote
a k-fold composition of o(w, -) from the previous definition. The k-hop induction head task is to
compute Wk (o ;) for each 1 < i < N.

Using the same example where ¥ = {a, b, c}, w = aabcbabca and k = 2, we have W, (5(w,9)) = @
because the last occurrence of b before position 7 is followed by a.

As was done in [53], we construct a O(log k)-round MPC algorithm for k-hop using function
composition, thus yielding a logarithmic depth scaling for ANNA-transformers on this task.

Theorem 5.6. Fix constants 0 < ¢ < &' <1, any k € N and alphabet ¥ with |S| = O(N). There
exists an ANNA-transformer T with L = O(log k) layers, H = O(NE'=2)/%) heads per layer, and
embedding dimension m = O(N*') such that T(w); = Wyk (.3, Vi € [N}, for all w € »h,

The full construction is given in Appendix[F2] We note that while prior works have given transformer
constructions for k-hop [12, 155] (and Match2 [52]]), these results do not directly imply ANNA-
transformers constructions, given the differences in the architectures.

Prior work [S5]] showed that multi-layer recurrent nets and low-rank sub-quadratic attention [16, [32]]
are unable to solve k-hop unless the depth is Q(k) or their memory size/embedding dimension
is Q(N/kS). On contrast, ANNA-transformer achieves both O(log k)-depth and sublinear (in N)
width. In this sense, the k-hop task separates ANNA-transformer from these other efficient neural
architectures.

5.3 Experiments on Match2 and induction heads

We empirically test the performance of ANNA-transformer on the Match2 and induction heads
tasks. Experimental details are given in Appendix [G Since Algorithm [I] is not differentiable,
we train a softmax version of attention as a surrogate, and then distill from the trained model
to an ANNA-transformer (based on Algorithm (1| with angular LSH [6]). Our softmax attention
normalizes all the queries and keys in Q(X) and K (X) to have unit norm, and computes softmax (/3 -
Q(X)K(X)")V(X) with a tunable temperature parameter 3 > 0.

The Match2 dataset is generated the same way as [37]] with context length N = 32 and upper bound
M = 37. One-layer ANNA-transformers are able to achieve zero error with £ = 8 hash tables and
z = 1 hash function per table. See Figure lalfor the detailed performance. For induction heads, we
use the dataset from [55]] with number of hops £ = 1, context length N = 100 and alphabet size
|2| = 4. A two-layer ANNA-transformer achieved highly nontrivial error with £ = 32 hash tables
and z = 2 hash functions per table; with more hash tables, the error rate was as low as 0.1. See
Figure|1b|for the detailed results.
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Figure 1: All errors are averaged over 10 runs. (a) Error rate on Match2: x-axis denotes the number
of hash tables ¢, and different colors correspond to different numbers z of hash functions per hash
table. (b) Error rate on induction heads: Rows correspond to the number of hash tables in the first
layer, columns correspond to the number of hash tables in the second layer. The reported error rate is
the best achieved over the choice of z € {1,2,3,4}.

6 Conclusion and future work

In this work, we propose a more efficient class of neural architecture, the ANNA-transformers, which
not only preserve the representational power of standard transformer characterized by the MPC
framework but also yield a tighter equivalence with the MPC model. Furthermore, we show that
constant layers of ANNA-transformers can simulate constant layers of low-rank transformer, and can
solve reasoning tasks such as Match2 and k-hop tasks in near-optimal depth.

There are some interesting directions we leave for future work. While our ad hoc training method was
effective as a proof-of-concept, it is desirable to develop a principled training method that directly
optimizes the performance of an ANNA-transformer (or a differentiable variant thereof), rather than
that of a surrogate model. Also, our empirical validation was limited to small synthetic datasets;
extending these experiments to large-scale, real-world benchmarks is a promising next step.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: We summarized all the results and contribution of the main paper in the our results
section in the introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in the
paper.

* The abstract and/or introduction should clearly state the claims made, including the contribu-
tions made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

* Itis fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We have all the assumptions in the preliminaries part and briefly discuss the limitation
about training in the last paragraph.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]
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Justification: We have all the assumptions applicable to all the theorems in the preliminaries
part and theorem-specific assumptions in the theorem statement. We have all the proofs in the
Appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

» The proofs can either appear in the main paper or the supplemental material, but if they appear
in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the experimental details in the Appendix[G] Our main claims only
focus on theoretical properties and experiments do not serve as the main contribution.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived well by
the reviewers: Making the paper reproducible is important, regardless of whether the code and
data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

» While NeurIPS does not require releasing code, the conference does require all submissions to
provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
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Answer:

Justification: We will try to clean up the code and provide open access for the camera-ready
version. Our main claims only focus on theoretical properties and experiments do not serve as the
main contribution.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code,
unless this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).
* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
Justification: We provide these design choices in the Appendix [G|
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

e The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: All the error reported are averaged over 10 runs and the variance is very small.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of the
mean.
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8.

10.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [Yes]
Justification: We used 2 GPUs and provide the type of the GPU in Appendix [G|
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experi-
mental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: All the experiments are in the toy theoretical setting, and the data are all synthetic
data which don’t involve any human.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

 The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA]

Justification: Our work focus understanding the theoretical properties of the computational model
we proposed. We see the societal impart to be minimal.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.
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* The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: [NA]

Justification: Our experiments are on synthetic data, at most 2 layer small transformers, and do
not have any pre-trained model.

Guidelines:

* The answer NA means that the paper poses no such risks.

» Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

» We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: We used the dataset from [55]. We cite this paper in the experiment section and
follow the license.

Guidelines:

» The answer NA means that the paper does not use existing assets.

» The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

New assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: we do not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA]
Justification: This is a theory paper and do not involve any human subject.
Guidelines:
» The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

¢ Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA]
Justification: This is a pure learning theory paper and do not involve these.
Guidelines:
» The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

* For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: LLMs are only used to assist writing and editing the paper.
Guidelines:

* The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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A  Proof of Theorem 3.4

We restate Theorem [3.4] here, which gives the theoretical guarantee for Algorithm [T}

Theorem A.1 (LSH algorithm guarantee for ANNA; Theorem [3.4). Fix ¢ > V3, LSH family H
that is (r, cr, p1, p2)-sensitive with quality p < 1/3, £ = ©(N°Plog N), and z = ©(log; ;,,, N).
Then Algorithm([I|(with H, ¢, and z) implements an ANNA mechanism with parameters r, c,{ and
1n=O0(1/N'"%)]

Proof. Our algorithm applies for the regime with large approximation factor, i.e., ¢ > /3. Since
we only want the nearest neighbors within distance cr with the query point, we want to bound the
probability of two points with distance greater than cr to fall into the same bucket. Consider the family
G with Prycc[g(z) = g(y)] < %4, if |z — y|| > cr. Then for each bucket, the expected number of

collision (x, y fall into the same bucket and ||z —y|| > cr)is less than N - Pryeclg(z) = g(y)] < %%

— N2°*
Therefore, by Markov’s inequality, for each bucket, with probability greater than 1 — %, there is

no collision within the bucket. Then, by union bound over all the non-empty bucket (there are at
0.1

most N of them), with probablity greater than 1 — ==, there is no collision in one hash table. By

[30], 2 = O(log; ,,, V), i.e., each hash function g € G is composed of O(log; /,,, IV) hash functions
sampled from the LSH family 7, which suffices to achieve Pryeci[g(z) = g(y)] < %+ whenever
[z —yll > cr.

On the other hand, since the probability of collision is very small, the success probability (when

lz —y|| <), namely p = Pryeclg(z) = g(y)] = N 37 (recall that p = }gé };i;), is also somewhat
small. However, we can boost the success probability by using multiple hash tables. Let £ denote the
number of hash tables. Then for each ¢;, the probability of its r-nearest neighbor k (k € N (g;, 7))
falls into different bucket with g; for all £ tables is upper bounded by (1 — p)*. By union bound over
all possible nearest neighbors and all ¢;’s, the failure probability is bounded by N2(1 — p)*. Assume
we want the failure probability to be less than some § > 0, then we want N2(1 — p)¢ < 4. Taking
logarithm of both sides, and using a Taylor expansion of log(1 — ) for sufficiently small x, we find
that £ = O(N?/(log N + log 1/8)) suffices for success probability 1 — §.

Therefore, by union bound over all £ hash tables, with probability 1 — %, there is no collision
in all the hash tables, which implies w; ; = 0 if |[k; — ¢;|| > cr. By setting § = 315, we
get £ = O(N>log N). Hence, the total failure probability 7 is bounded by § + %= which is

N1-%
O(1/N'=3¢).

If [|k; — g;|| < r, from the guarantee above, we know that k; collides with ¢; at least once in the
¢ hash bucket. This implies w; ; > 1 /count, where count is the number of all the collisions in the
¢ hash buckets that g; retrieves. In the worst case, all the k¥ € A (g;) collides with ¢; in all £ hash
tables except for k; only colliding once. Therefore, count < (N(g;) — 1) - £, and this gives us

1
Wij 2 Ng)-DeF1 M

Runtime and memory usage. One can see that for each query, we need to evaluate
O(N?3*log, /pe NV ) hash functions and compute sum of m-dimensional vectors, so the total run-

time is O(mN1*3 log, /pe NV ). During the preprocessing, we need to store N hash tables and

the sum of values, each with at most N buckets, so the total memory is O(m N 37 log N) bits. In
fact, the space used can be further improved to O(mN log N) bits. Instead of maintaining ¢ hash
tables, one can just store 1 hash table of size O(mN log N) with each entry responsible for tracking
the values for each query. For each round of hashing (¢ rounds in total), hash all queries using the
hash functions and creates empty buckets for them. Then, hash each key, and if the key hashes to
an existing query bucket, its value is added (along with a count). After processing keys, each query
accumulates the values and counts from its corresponding bucket. We give the memory-efficient
implementation in Algorithm 2]

?Optimal (data-oblivious) LSH schemes achieve p = 1/c* + o(1) [4]]. Since we assume ¢ > /3, the failure
probability 1/poly(N) decreases to zero with N.
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Algorithm 2 Linear memory ANNA implementation with LSH family H, ¢ hash tables, and z hash
functions/table

Input: Input X € RV*d
Output: ANNA output for each of the query.

1: Letg; = Q(X)Z, k; = K(X),, and v; = ( ) for all ¢ € [N]

2: Initialize an array of tuples A, and A[i] « (0,0), Vi € [N].

3: foru=1to/do

4 Sample z hash functions Ay, 1, hy,2, - . - ; Ry, 11.d. from H.

5 Create empty hash table 7, indexed by hash codes of queries (below).
6: for each query ¢; do
7.
8

Compute hash code ¢y, (q;) = (hy,1(qi), -5 hu,2(q:))-
Create an entry in T, indexed by ¢, (g;) and T}, [g.(g:)] < (0,0).

9: for each key-value pair (k;,v;) do

10: Compute hash code gu(k ) = (hui(kj), hu2(kj), ..o ha 2 (k).
11: if T, (g, (k;)] exists in T,, then Tu [gu(k )] + (vj, 1)

12: for each query ¢; do

13: Ali] += Tu[gu(a:)]

14: Initialize a dictionary attn < {(q1,0), (¢2,0),...,(qn,0)}.
15: for each query ¢; do
16: attn « A[i][0]/A¢][1]

17: return attn

B ANNA-transformer can simulate MPC

Our simulation of MPC using ANNA-transformers uses only a special case of ANNA, which we call
Exact Match Attention (EMA). In EMA, we require the key to be exactly the same as the query for it
to be considered in the attention matrix. We show that this special case already suffices to simulate
MPC.

Definition B.1 (EM Attention). Let X € RN*? be the input embedding, Q, K,V : RV*d —, RNxd
be query/key/value embedding functions. For any query q, let N'(q) = {k; € K : k; = q}. For each
query q;, the Exact Match attention computes

|N((h Z Uj it NV(gi) # 0
EMAk v (g;) = JEN (a)
0 otherwise.

EMA layer and EMA-transformer are defined analogously. To see that EMA is a special case of
ANNA, notice that in ANNA, we can set r = 0,c — oo and w; ; = m such that it becomes
exactly the same as EM attention. EMA also admits a near linear-time algorithm: sort all the keys
first (using a lexicographic ordering) in time O(dN log N) and space O(dN); at query time, perform
binary search in time O(dlog V) per query.

We first give a simulation that directly simulates the R-round (e, e)-MPC using L = R + 1 layers
but large embedding dimensions to showcase the core idea of the proof.

Theorem B.2 (EMA simulates MPC). For constant 0 < € < 1, any deterministic R-round MPC pro-
tocol w with N machines with s = O(N¢) words local memory, there exists an EMA-transformer T
with depth L = R+ 1, number of heads H = O(N¢), and embedding dimension m = O(N°¢ log N),
such that T(input) = 7(input) for all input € ZL,.

Proof. For any R-round MPC protocol 7 with NV machines that maps the input to output, we define
the intermediate steps for local computation phase and message transimission phase. We denote the in-
put to all the machines before the local computation as MachineIn;,MachineIn,,...,MachineIng,
and denote the information after deterministic local computations (Localli,)rem ic] as
MachineQut,,MachineOuty,...,MachineOutg, where MachineOutl = Locall(MachineIn?).
In the communication (message transimission) phase, we need to route the messages to the correct
machines ie from MachineOut, to MachineIn, ;.
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In our simulation, each token input to the EMA-transformer plays the role of a machine in the
MPC protocol. We simulate the local computation functions (Locali)re[R],ie[N] by the element-wise
functions Q(+), K(+), V(+) in the architecture. Therefore, the simulation process can be partitioned
into 3 different parts:

1. Initialization. The input feeded into EMA-transformer is distributed in the N tokens, and we
need to transfer than into the first [ 2] tokens/machines to match MachineIn;.

2. Routing (message transmission). After the local computation in each round r, we need to
communicate the messages from MachineQut, to MachineIn, ;.

3. Final output. The MPC output is distributed in the first (%W tokens/machines, and we need to
distributed them back to the N tokens.

The following 3 lemmas construct the elements for each of these 3 parts.

We first show the message transmission part of MPC can be simulate by the EMA-transformer. Recall
that after r rounds of local computation, each machine ¢ has a set of messages it wants to send to
other machines, denoted by MachineOut} = {(Msgl,._,,dest) : dest € sent®}, where sent® is
the set of machine indices that machine ¢ will sent the message to and Msg2 .. is the message machine
1 send to machine dest. After the message communication phase, each machine ¢ has the set of
messages it receives from other machines, denoted by MachineIn! , = {(Msg,Src) : (Msg, i) €
MachineQut$*°}. Since each machine can only send/receive s words, we have D ;. coons [Msg| <
sand ) (Msg, 1) EMachineQutse Msg| < s for all machine i. We call this process the routing process of
MPC. The following lemma shows that each routing round of MPC can be simulated by one layer of
EMA-transformer.

Lemma B.3 (Routing). For any R-round MPC protocol w having q machines each with local memory
s and any r € [R — 1], there exists an EMA-transformer route, with H = O(s) heads and
m = O(log q) for Q and K, m = O(s® log q) for V that takes input X = MachineIn, and produces
output route, (X) = MachineIn, ;.

Proof. Follow the assumption in [55], we encode the local computation into the element-wise
operations Q(-), K(-), V(-) of transformer. The main part of the proof will focus on using EMA to
route MachineOut, to MachineIn, ;.

We assign a unique positional encoding or identifier to each machine ¢, denoted by p;. This can
be done with O(log q) bits. This encoding serves as a unique key to retrieve the message in each
machine. The high level idea is to create a query for each machine ¢ and a key for each dest € sent;
and the associated value is the message Msg3, ., sent to dest in the protocol. Since each machine can
send at most s messages to other machines, we create s EMA heads and each head is responsible for
one message for all the ¢ machines. Each machine retrieves the message sent to them by having a
query in each head. Because each query can attend only to perfectly matching keys, each distinct
outbound message must be passed by a different attention head, but multiple inbound messages may
be received by the same attention head.

Specifically, let Q", K", V" be the query, key, value embedding after the machine local computation
for each head h € [s]. Set ¢/* = p; for all h, so

Pi
1
Q1:Q2:~--:QS: p2
a
Pq
Let k' = paesy; for dest] € sent® = {dest],dest], ..., dest}}, where dest] is the destination

machine index for the jth word message that machine ¢ sends. The key matrices are constructed as
follows:

T T
p$esti p-rgesté p$esté
D, 2 T D, 2
K= || k2= |Pees | g o | TR
T
T p q T
pdest‘li dest, pdestg
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Let v/ be some embedding of (Msgt__..,dest{, 1), denoted by v/" = emb?(Msg’__,.,dest}, i) for
h h
some emb? defined later, and

emb} (Msg}iesti ,dest}, 1) emb$ (Msgilesté ,destl 1)
1 (M2 2
) eme(Msgdes,Cf7 dest?,2) . emb$ (Msgﬁestﬁ, dest?2,2)
V = . ? et V( = .
emb}l(Msggest?, dest{, q) emb§(Msgg, ,q, destd, q)

By such construction of @, K, V, in our EMA, each query will retrieve the average value of the
messages whose key exactly matches the query. However, by setting the value matrix this way, we
might corrupt the message when there are more than one k € K" that are equal to the same query.
To solve this problem, we can apply the same multiple hashing-based encoding in Lemma 3.2 from
[55]], which encodes each message in multiple fixed locations generated by a sparse binary matrix
and have an extra “validity bit” indicating whether the message is corrupted or not. We restate an
adapted version of their Lemma 3.2 here.

Lemma B.4 (Lemma 3.2 of [55]; message encoding in sparse averaging). For any message size
A € N, message count bound o € N, there exist an encoding function ¢ such that ¢ takes in
(Msg,..i,dest}, 1) defined above where the size of it is bounded by A for all i € [q] and h € [o]

and encodes it into emb? (Msgcilest}il7 desti, i) € R® with m = O(a*Alog q), and a decoder function

¢ such that ¢ takes in the output of the EMA with Q, K,V defined above and decodes it into
(Msgiesti, dest},i).

Let rcvd! = {srci,srcs,...,srcl}, where srcj is the jth source machine index that machine i

receives message from. Because |sent?| < s and |rcvd?| < s, in each head of EMA, there are at
most s values get retrieved and averaged for each query. Thus, here we can just apply Lemma B.4]
with « = A = s, which gives us an embedding dimension bound m = O(s® log q). O

We then show with one layer EMA-transformer, we can properly initialize the setup of MPC by
converting Input = (input,, inputs, ..., input,) to MachineIn,, the input before the first round
of MPC computation, ie the input is distributed evenly on the first [ | machines.

Lemma B.5 (Initialization). For any R-round MPC protocol m having q machines each with local
memory s and n-word input, there exists an EMA-transformer init with H = 1 head, m = O(log q)
Jor Q, K and m = O(s) for V that takes input and outputs init(input) = MachineIn,.

Proof. The input should be distributed accross each machine 1 < i < [%] with MachineIni =
{(inputiay, idx) : idx € s(i—1)+1,...,min{n, si}}. Let ¢;, = [2] be the number of machines
to store the initial input. Since the input given to init are n tokens (here we treat each token as a
machine), we need to rearange the memory so that the input is distributed on the first ¢;,, tokens.

Same as before, we use the positional encoding p; to be the unique identifier for each machine. We
create a key value pair for each input token and the key corresponds to the identifier of the machine

that input,,, goes to and the value be (input,,,,idx). Also, create a query for each machine
For each machine ¢ € [¢;,,], define the query embedding ¢; = p;,
/]
)
Q=1 .
;
Qin

For each token input,4,, idx € [n], let destiq, = [22*] be the machine storing the token, define
the key embedding Kiax = Paest,qy

T

pdest1
T

pdestg

K =

T
pdestn
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Let# = idx mod s. For each token input,g,, idx € [n], define the value embedding viq4y € R
to be (input, ., idx) in the 2¢’ — 1, 2¢’-th entry and 0 in all other entry,

input, 1 0 0 0 ... 0 0
0 0 input, 2 0 ... 0 0
V= 0 0 0 0 0 ... input, s
input_,, s+1 0 0 0 0 0
By setting the value matrix like this, we can avoid corrupting the messages. O

Last, we show that with an additional one layer EMA-transformer, we can map the final round
MachinelIng to the output of MPC protocol where the output is store in the first [ 2 | machines.

Lemma B.6 (Final Output). For any R-round MPC protocol ™ having q machines each with local
memory s and n-word input, there exists an EMA-transformer out with H = 1 head, m = O(log q)
Jor Q,K and m = O(s) for V that takes MachineIny and outputs out(MachineIng), =
m(input) = output.

Proof. First, the element-wise operations can compute MachineOuty from MachineIng. The output
is distributed accross each machine 1 <i < [2] = g,,; With memory of machine i be output® =
{(output,,,, idx) : idx € s(1 —1)+1,...,min{n, si}}. Then, we just need to retrieve the output
tokens from all the g,,,; machines and distribute them back to n tokens. This step does the inverse
job of init. We create a query for each token output, 4, for all idx € [n]. Let srciax = [22X] be the
machine token output, 4, is in.

For each token output idx € [n], define the query embedding Giax = Psreiy,»

idx»
T

psrcl
T

psrC2

Q p—
Psrc,

For each machine ¢ € [g,,¢], create a key k; = p;,

Gout

The value associates with each key ¢ is the memory MsgOut, stored in each machine ¢. Define the
value embedding v; = Msg0ut;,

MsgOut,
MsgOut,
V= .
MsgQut,
By choosing a proper element-wise function ¢, out(MachineIng); ; = output;. O

The theorem follows from stacking the elements from these three lemmas. Each lemma gives us a
single layer of the final EMA-transformer 7" with embedding dimension m = O(N°¢log N):

T = out orouteg_; ©0---oroute; o0 init O]

Remark B.7 (General (v, €)-MPC). The above simulation works the same for (v, €)-MPC by padding
max (0, O(N'Y=¢) — N)) empty chain-of-thought tokens in the input.

Remark B.8 (Number of heads). The standard transformer can simulate MPC using the same
embedding dimension but only 1 attention head [53|55|]. Here the EMA needs O(N¥¢) heads, and we
leave how to improve the number of heads for future work.
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Since EM attention is a special case of ANN attention with » = 0 and ¢ — oo, the simulation of
MPC with ANNA-transformer naturally follows from Theorem [B.2]

Corollary B.9 (ANNA simulates MPC). For constant 0 < ¢ < 1, any deterministic R-round
MPC protocol ™ with N machines with s = O(N¢) words local memory, there exists an ANNA-
transformer T with depth L = R + 1, number of heads H = O(N¢), and embedding dimension
m = O(N>¢log N), such that T (input) = 7(input) for all input € ZL,.

Theorem [B.2] only gives us an MPC simulation in the sublinear local memory regime when s =
O(N'/5=9) for any § > 0. However, a lot of MPC protocol algorithms require s = Q(N1/2) local,
such as MPC algorithm for 3-SUM [26] and algorithms for graphs [53]]. The above simulation using
EMA -transformer does not yield a sublinear embedding dimension. [53] further gives a simulation
of MPC with sublinear local memory using transformer with sublinear embedding dimension by
simulating one round of MPC protocol with O(1) layers of transformer, instead of just one layer.
Their improvement also applies here.

Theorem B.10 (EMA simulates MPC with improved embedding dimension). For constant 0 < € <
¢’ < 1, any deterministic R-round MPC protocol 7 with N machines with s = O(N¢) words local

memory, there exists an EMA-transformer of depth L = O(R), number of heads H = O(N = %)
and embedding dimension m = O(N<') such that T(input) = 7 (input) for all input € Z.

Proof. The proof relies on simulating any MPC protocol by a restricted version of MPC protocol
[53] which limits the number of machines each machine can send message to. Then, use a modified
version of Theorem [B.2]to simulate this restricted version of MPC.

Definition B.11 (Definition 3 of [33]). For constants v,e,p > 0, a (v, &, p)-MPC protocol is a (v, €)-
MPC protocol with an additional constraint: in each round, each machine can only send/receive
messages from k = O(n?) machines, while the total size of messages it can send and receive is still
s = O(NF¥). We refer to k as the communication capacity.

(53] gives a construction that simulates a R-round (v, €)-MPC protocol with O(R)-round (v, €, p)-
MPC protocol. We restate their proposition here.

Lemma B.12 (Proposition 24 of [33]}; (v, €, p)-MPC simulates (v, e)-MPC). For constants v, > 0
and p € (0,e/2), if function f can be computed by an R-round (v, e)-MPC, it can also be computed

by a O(R(lpitw)Q)—round (v, €, p)-MPC protocol.

Therefore, we just need to simulate (v, €, p)-MPC protocol using our EMA-transformer. The simu-
lation follows the same recipe as Thereom [B.2] where we have the initialization, message passing
and final output phase. Since the initialization and output of (v, &, p)-MPC follow the same rule as
(v,&)-MPC, we only need to modify the message passing part of the simulation which corresponds to
the routing Lemma|B.3

Lemma B.13 (EMA simulates (v, €, p)-MPC). For constant 0 < p < € < 1, any deterministic R-
round MPC protocol 7 with N machines with s = O(N*¢) words local memory and communication
capacity k = O(NP), there exists an EMA-transformer of depth L = R + 1, number of heads
H = O(NP") and embedding dimension m = O(N¢+*"1log N) such that T(input) = 7(input)
for all input € Z%),.

Proof. For the initialization and final output part, we just use the same init and out constructed in
Lemma|B.5|and Lemma[B.6] In the routing part (Lemma|[B.3), because |sent?| < k, [rcvd?| < k,
we only need k heads and in each head of EMA, there are at most k keys matching each query and
thus at most k values get averaged for a single query. Therefore, we can apply Lemma with
a = kand A = s, leading to an embedding dimension m = O(N**%7log N). This gives us a new
route,. with reduced number of heads and embedding dimension for each round r.

Likewise, we stack the 3 building blocks of one-layer EMA-transformer and have an (R + 1)-layer
EMA transformer
T = out o route; , o---oroute) oinit

and this finishes the construction for the lemma. O
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Let p = min(e/2, (¢' — €)/4). In this setting, v = . By Lemma|B.12| we can simulate the R-round
(v,6)-MPC by an R’ = O(M)-round (v,€, p)-MPC. Then, by Lemma [B.13} we can

min(e2,(e’—¢)?)
simulate this R’-round (v, £, p)-MPC by an R’ 4+ 1-layer EMA transformer with O(N?) heads and
embedding dimension O(N+4"log N) = O(N<'). O

Again, the improved simulation result of ANNA-transformer follows from Theorem

Corollary B.14 (ANNA simulates MPC with improved embedding dimension). For constant 0 < & <
¢’ < 1, any deterministic R-round MPC protocol 7 with N machines with s = O(N¢) words local

E,*E

memory, there exists an ANNA-transformer of depth L = O(R), number of heads H = O(N "1 )
and embedding dimension m = O(N<') such that T (input) = 7(input) for all input € Z1).

C MPC can Simulate ANNA -transformer

As a warm-up, we first simulate EMA-transformers using MPC, and then generalize it to the
simulation of ANNA-transformers.

Theorem C.1 (MPC simulates EMA). Fix constants 0 < ¢ < ¢’ < 1. For any L-layer EMA-
transformer T with mH = O(N¥), there exists a O(E,L:)-round MPC protocol m with local
memory s = O(N€') and P = O(N't<=¢") machines such that 7(input) = T(input) for all
input € ZL.

Proof. We first show how to use MPC to simulate one layer of EMA-transformer. In the high level,
for each token x;, we have a token Machine ¢ which is responsible for computing the key, query and
value embedding for x; and other element-wise computation on x;. The main bulk of the proof is to
search for the exact matching keys for each query and send the averaged values associated with the
matching keys to the token machines. In order to do this, we sort all the key and value pairs (k;, v;)
in the order defined by the key. We divide the sorted key and value pairs into buckets such that each
bucket contains the same keys. For each bucket, we have a “meta-info" machine to store the indices
of the machines that contains the keys in the bucket. We then compute the averaged values within
each bucket and store the averaged value into the “meta-info" machine and propagate the value to all
the queries that match with the key.

To begin with, let X’ denote the space of query and key, and we define a comparator < over X in order
to sort. Without loss of generality, we just define it to be the lexicographical ordering comparator.
Based on this comparator, we define a query ranking permutation of [N] by o = (01,02,...,0N)
and a key ranking permutation of [N] by ¢’ = (01, 0%, ..., 0% ) such that

qdl <CI02<"‘<QJN
andkgzl <kgé<'-'<k53\/

For the“meta-info" machine, we use a uniform hash function i : X — [N] to map queries and keys
to their corresponding “meta-info" machine. Recall that for a uniform hash function h, P(h(a) =
h(b)) = %, forany a,b € X and a # b. Therefore,

P(3i such that the size of bucket h(g;) > s)
< P(3s different elements fall into one bucket)

N\ 1 1 1
< <= =—
~\s/)Ns sl Ne'l

With high probability, each “meta-info" machine is responsible for at most s keys or queries.

We divide the machines into different types and summarize the role of each type of machine here:

* For ¢ € [N], Machine i is the roken machine for ;. This machine performs all the element-wise
computation for token 7. Specifically, it computes the query, key, value embeddings ¢;, k;, v; and
element-wise operations after the attention layer.
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* For i € [[mN/s]], Machine (7, Q) is a data structure machine for sorting queries and storing
the th chunk of the sorted list of queries after sorting. In other words, let n, = |s/m] be
the number of queries each machine can store and, at the end of sorting, machine (%, () stores

{qa(i,l).nq+17 s 7q0'7',»nq }

e For i € [2mN/s], Machine (i, KV) is a data structure machine for sorted list of
key and value pairs. In other words, let ny = |s/2m] be the number of key and
value pairs each machine can store and, at the end of sorting, machine (i, KV) stores

)}

For i € [N], Machine (4, hy) is the “meta-info" machine for the queries whose hash value is .
Let h, = {q;]j € [N], h(g;) = i}. This machine stores the location information of ¢ € h/, in the
sorted list. Specifically, for all ¢ € hfl, this machine stores the start machine index, i.e. (start, Q)
where start = arg minj{q € Machine (j, @)}, and the end machine index, i.e. (end, Q) where
end = arg max;{¢q € Machine (j,Q)}.

{<kaéi—1)~nq+1’Uazi—1)~nq+1)’ ) (kag_nq , Ug!

ing

* For i € [N], Machine (i, hy,) is the “meta-info" machine for the keys whose hash value is 7. Let
hi = {k;|j € [N], h(k;) = i}. This machine stores the location information of k € hj, in the
sorted list. Specifically, for all k € hf], this machine stores the start machine index, i.e. (start, KV)
where start = arg minj{k € Machine (j, K'V')}, and the end machine index, i.e. (end, Q) where
end = argmax;{k € Machine (j, K'V')}.

* The auxiliary machines needed for message propagation.

We proceed to discuss the MPC protocol for computing the output of one layer single head EM-
attention transformer. In the first round, (same as the token dispersion stage of [55]]), route each token
x; to its corresponding token machine i.

In the second round, each token machine ¢ computes the query, key value embedding ¢; = Q(x;), k; =
K(z;),v; = V(x;) and sends (g;, 7) to the sorting query data structure machine ([mi/s], Q) and
(ki,v;,1) to the sorting key data structure machine ([2mi/s], KV).

Then, sorting query data structure machines ((¢, Q) for all i € [mN/s]) sorts the queries. Sorting in
MPC has been well studied, and this can be done in constant number of rounds [23]].

Lemma C.2 (MPC Sorting). There exists an MPC protocol with local memory s = O(N 5/) that can
sort N items and each item has size O(N¢),e < &' in O(=*=) rounds with O(N'*¢~<") machines.

g —e

After sorting, for each ¢ € [IN], we need to send the location information of ¢;, ie which data structure
machines contains g;, to its “meta-info” machine (h(g;), hq). The idea is to build an > -ary tree
structure to aggregate the information and each query data structure machine is a leaf node of this
tree. Recall that each machine (i, Q) stores the queries S = {qg(ifl)_nq t1- s oy, 1+ 1f S contains

the start and end of a particular query vector ¢;, then (¢, Q) sends a message (q;, (4, @)) to machine
(h(q1), hq). Machine (7, Q) also sends the first and last query to its parent machine in the tree, i.e.
sends the messages (qg(i_l)_an , (4, Q), first) and (qgi,nq , (i, @), last). After the parent node collects
all the messages from the leaf node, it then does the same as its child: if it contains the start and end
of a certain query g, it sends to the location information (the first and last machine that store it) of the
query to its corresponding “meta-info” machine (h(q), hy), and it sends the first and last query and
their location information to its parent machine. This is done recursively, and since there are [mN/s]
query data structure machines in total, the depth of this ;> -ary tree is O(log, ,,, mN/s) = O(-),

e'—e

which means O (== ) rounds and O(mN/s) machines suffice.

e'—e

We do the same for (k,v) pairs. The sorting data structure machines (¢, K'V') sort the (k, v) pairs
based on the order of k. As before, we build a 2fn -ary tree to send the location information to the
“meta-info” machine of each key. The different part from query is that we combine the values that
have the same key. For each machine in the 5>--ary tree, it computes the averaged value associated
with each key it contains and sends the averaged value to the corresponding “meta-info” machine. In
particular, for each k;, the ‘meta-info” machine for &;, (h(k;), hy), contains the information (k;, )
where @ is the average of v;’s such that k; = k;.
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Next, the “meta-info” machines of query and key need to exchange information to retrieve the
corresponding value for each query. Each (i, hy) sends the (k, ) pairs it has to the machine (¢, hy).
Then, each (i, h,) machine matches the ¢ and k, and sends the associated value o to the g. Note
that this step can be done by back propagating the ->--ary tree constructed for sending the location
information of ¢ to (h(g), hy). In other words, we can just reverse the message sending direction in
this tree. Therefore, each query in the query data structure machine receives the value it retrieves and
from each query data structure machine (4, )), we can send the retrieved value for each query to its
corresponding token machine, which is the inverse of the second round.

To summarize, the total rounds needed is O(

—1—) and the number of machines needed is O(mN/s) =
O(N'+e ’5'). To make this work for H heads, we can create I copies of this and each copy runs
in parallel. Since mH = O(N¢), the bounds for number of rounds and machines still hold. By
creating this MPC simulation for each of the L-layers, we stack them in the order of layers yielding

the complete simulation for L-layer EMA-transformer. O

Next, we generalize the above algorithm and proceed to simulate the ANN attention that can be
computed by Algorithm[I] Since Algorithm[I]is a randomized algorithm, we assume that the MPC
protocol shares all the random seeds needed for all the layers of ANNA-transformer.

Theorem C.3 (MPC simulates ANNA). Fix constants 0 < ¢ < ¢’ < 1. For any L-layer ANNA-
transformer T (as implemented by Algorithm|l)) withmH = O(N¥), there exists a O(L/(e' — €))-
round MPC protocol m with local memory s = O(N¢') and P = O(N*+=¢'+*/*\ machines such
that m(input) = T'(input) for all input € Z2,.

Proof. The high level idea of simulating ANNA-transformer is very similar to simulating EMA. We
have the same kinds of machines as before. The biggest difference is that, instead of having one hash
table for queries and keys, we now have ¢ hash tables, one for each round of hashing, and we sort the
queries and keys based on the hash values of queries and keys. Again, we first outline different types
of machines we will use.

* For i € [N], machine i is the foken machine for x;. This machine performs all the element-wise
computation for token 7. Specifically, it computes the query, key, value embeddings ¢;, k;, v; and
element-wise operations after the attention layer.

e Fori € [[mN/s]],t € [¢], machine (i, @, h') is a data structure machine for sorted queries for
the ¢-th hash table and the i-th chunk of the sorted list of queries, where the ordering of sorting is
based on g;(g) from Algorithm I}

e Fori € [2mN/s], Machine (i, KV, ht) is a data structure machine for sorted list of key and value
pairs for the ¢-th hash table and the i-th chunk of the sorted list of key and value pairs, where the
ordering of sorting is based on g; (k).

 Fori € [N],t € [{], Machine (g:(¢;), hq,t) is the “meta-info" machine for the queries whose ¢-th
hash value is g;(¢;). Let hl,, = {q;|j € [N], g:(q;) = 9¢(¢;)}. This machine stores the location
information of ¢ € A, in the ¢-th hash table. Specifically, for all ¢ € h!_, this machine stores the
start machine index, i.e. (start, @, h*) where start = arg min;{q € Machine (j, Q, h*)}, and the
end machine index, i.e. (end, @, k') where end = arg max;{q € Machine (j, Q, h")}.

* Fori € [N],t € [{], Machine (g;(k;), hi, t) is the “meta-info" machine for the keys whose ¢-th
hash value is g;(k;). Let hj, = {k;|j € [N], g¢(k;) = g+(k:)}. This machine stores the location
information of k € hii in the ¢-th hash table. Specifically, for all k € h};i, this machine stores the
start machine index, i.e. (start, K'V, h*) where start = arg min;{k € Machine (j, KV, h*)}, and
the end machine index, i.e. (end, @, h') where end = arg max;{k € Machine (j, KV, h')}.

* The auxiliary machines needed for message propagation.

Like before, we still use each token machine to compute the embeddings ¢;, k;, v; € R™. Then,
each token machine need to send (g;,%) and (k;,v;,) to the data structure machines, machine
([mi/s], @, h') and machine ([2mi/s], KV, h') , forall t € {. Because { = N>, we use the = -ary
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tree to propagate the queries and keys to the corresponding data structure machines. This takes
O(=~) rounds and O(N'*3,*+¢=¢") machines.

e'—e

Then, for each query hash table ¢ € [¢], the data structure machines sort the queries based on the hash
value of the queries. Same as Theorem|C. 1| we use the > -ary tree to send the location information
of each hash bucket to its corresponding “meta-info”” machine. For each key, value pair hash table
t € [¢], the data structure machines sort the key, value pairs based on the hash value of the keys. After
that, use the 5 —-ary tree to propagate the information to the corresponding “meta-info” machine.
The difference from the EMA simulation is that each machine in this 5>--ary tree maintains the sum
of values whose key has the same hash values instead of the averaged value, and also maintains a

count of the number of keys. These can be done in O(*—) rounds and O(N'+3r+e=<"y number of
machines.

Next, the key “meta-info” machine send the sum of values and count to the corresponding query
“meta-info” machines, i.e. machine (g;(k;), hx,t) sends to machine (g;(¢;), hq,t). Each query
“meta-info” machine then follows the % -ary tree, broadcasting the sum of values and counts to the
queries in the hash table. finally, each query in the hash table needs to propagate the information
back to its original token machine. Since each token machine will receive message from ¢ = N3
machines, we again reverse the > -ary tree that send the query to each data structure machine. During
the aggregation, each machine in the > -ary tree still maintains the sum of values and the sum of
counts it receives. After receiving the sum of values and counts, each token machine 7 then calculates
ANNA(g;) = sum of the values divided by the counts.

The above simulates one layer of ANNA-transformer in O(ﬁ) rounds and using O(N 1+3P+5‘5/)

machines, where p = 1/c2. Therefore, by stacking the simulation for L layers, this gives O( E,E =)
rounds in total. To extend to H heads, we just need to instantiate the above simulation for H parallel

copies and because mH = O(e), the total number of rounds and machines still remains the same. [J

D ANN/EM Attention can simulate low-rank Attention via MPC

We simulate the low-rank attention using ANN attention by first giving a MPC algorithm for comput-
ing low-rank attention and then convert it to ANNA-transformer.

Theorem D.1 (ANNA/EMA simulates low-rank Attention). For constants 0 < € < &' < 1, any low-
rank attention based transformer with depth L, rank r, embedding dimension m and rm = O(N¥)

can be simulated by an EMA/JANNA-transformer with depth O(~—), number of heads H = O(N <y
and embedding dimension m = O(N°' log N).

Proof. We prove this theorem by first proving that any one-layer of low-rank attention can simulated
by constant number of rounds of MPC.

Lemma D.2 (MPC simulates low-rank Attention). For constants 0 < € < &' < 1, any one-layer
low-rank attention with rank r, embedding dimension m and rm = O(N¥¢) can be simulated by a

O(<A—=)-round MPC protocol with local memory s = O(N<") and O(N) machines.

'—e

Proof. Assume rm = O(N¢) and local memory of MPC s = O(N°¢') where € < £’. Same as what
we do in MPC simulating EMA, for each token x;, 7 € [N], we have a token machine 7 to compute
the embedding of z; but we need to compute it in the kernel space, i.e. ¢; = Q'(x;), k; = K'(z;)
and v; = V(x;). To compute K'(X )"V (X), recall that

N
K'(X)V(X)=> k]
i=1

We just need to compute the sum of N matrices of size r x m. Each token machine ¢ computes the
matrix k;v] and we construct a | >~ |-ary tree of machines to compute the sum. The leaves of the
tree are all the token machines and each node is responsible for computing the sum of | - | number

S
T
of matrices. We know from the previous simulation that the depth of the tree is O(—). After we

obtain the matrix M = K'(X)"V(X) € R"*™, in order to compute Q(X)K'(X)"V(X), we just
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need to propagate the matrix M to all the token machines. And each token machine ¢ computes g; M.
By reversing the direction of message propagation in the computing sum tree, we can propagate M to
all the token machines in O(2—) rounds. Therefore, we can simulate kernel attention with O(——)
rounds in total. O

For L layers of low-rank attention transformer, we construct the MPC for each layer using Lemma
and again we use the local computation of each token machine to simulate the element-wise
computation. We stack the L MPCs together, which has O(—£~) rounds. The theorem follows from

e'—e

applying Theorem[B.2]and Corollary O

Since the core of the proof is through MPC simulating low-rank Attention, we can also apply Theorem
[B.10]and Corollary [B.T4 which simulate MPC with better embedding dimension to get a improved
embedding dimension for simulating low-rank attention transformer.

Corollary D.3 (ANNA/EMA simulates low-rank Attention with improved embedding dimension).
For constants 0 < ¢ < € < 1, any low-rank attention based transformer with depth L, rank
r, embedding dimension m and rm = O(N¥) can be simulated by an EMA/ANNA-transformer

with depth O((
m = O(N®).

e/ —

GESE) ), number of heads H = O(N “7") and embedding dimension

L
e’—e)-min(e?,

E Discussion on Reformer

We formally define Reformer as a computational model here.

Definition E.1 (Reformer attention). Given query, key, value embeddings Q(X), K(X),V(X) €
RNX™ such that q; := k; = Q(X)[i,:] = K(X)[i,:],v; = V(X)[i, :], Reformer attention proceeds
as follows:

1. Apply a hash function h : R™ — U on {q1,...,qn};

2. Sort all q;’s (and thus k;’s) by h(q;) and partition all ¢;’s into chunks of size B < O(1), and let
1 (g;) be the label of the chunk that q; is in (the queries in each chunk can have different hash
values);

3. For each q;, only attend to k;’s such that they are in the same chunk.

The output embedding for q; is therefore

3 exp((¢i, k5))

jih! (kj)=h'(gqi) Z exp((gi, kj’))
3’k (k) =h'(q:)

'Uj.

We define f; : [N] — [N]Z as the function that specifies the set of keys each query should compute
inner product with in the ¢-th layer. From the Reformer constraints, we have Vi € [N]:

1. fe(i) = {ai1,az,...,ap} € [N]P is a set (no repetition).
2. i € foli).
3. Forany j € fo(i), fe(j) = fe(3).

In the ¢-th layer attention computation for each query ¢;, Reformer computes

exp((gs, k;))
jefzg(i) > exp((giskyr))

3’ € fe(d)

We first study a restricted version of Reformer that fix the communication pattern beforehand i.e. f,
is input-independent for all £ € [L], and show that it can not compute the sum of all the input tokens.
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Definition E.2 (SUM). Given input X = (x1,z2,...,25),2; € [M], and M = NOW), the
SUM task is defined as SUM(X) = Zfil x;. We say a Reformer T computes SUM if for all X,
T(X)x = SUM(X).

Here T'(X) y is the N-th output of T given the input X. One can choose any position to be the final
output position, and here WLOG we choose the last token to follow the autoregressive generation
model convention.

Proposition E.3. Fix L = O(1) and {fi}L_,. Any Reformer T with L layers and each layer the

attention pattern is specified by { fo}}_, can not compute SUM(X): there exists an X, |T(X)n —
SUM(X)| > ¢ forany 0 < e < M/2.

Proof. We denote each layer’s element-wise computation by {¢,}%_,. Let T*(X); denote the i-th
output of T" after ¢ layers of computation. We prove this proposition by induction.

Inductive hypothesis: 7%(X); is a function of at most B different x; € X.

Base case: / =1

TYX); = exp({gi, k;)) v
) jele(i) Z exp((gi, kj'))

J'€f1(3)
exp((Q(w:), K (z;))) v
V(z;)
jele:(i) > exp(Qw), K ()
j'efi(i)

= ¢1(Tayr Tagy- - - Tap) Wherefr (i) = {a1,...,ap}

which is a function of at most B x;’s in X.

Inductive step: consider

4 ¢
jefezm >0 e((QUT (X)), K(T (X)) )
'€ fes1()

= ¢Z+1(T€(X)a13 cee 7T€(X)GB) Wherefl(i) = {ala cee aB}
Since each T¢(X),, is a function of at most B variables from X, 7" (X); is a function of at most
B - B = B! variables from X.

Therefore, if T%(X); is a function of all {z1,..., 2y}, we need BY > N and thus L = Q(logz N).
In the case B = O(1) and L = O(1), T (X); is a function of BL < N variables. WLOG, consider
TE(X)y is a function of {zy,...,zp.}. Then, zgr,, can be any number in [M] that makes
T (X)n far from SUM(X). O

Therefore, if Reformer has any power, it must come from the sorting part, because the sorting
algorithm have access to the information of all the token inputs.

Although constant-layer Reformer can not compute SUM, one can easily show that one layer of
ANNA-transformer can compute SUM by setting v; = Nx; and ky = ko = --- = ky = g for all
i € [N], thereby retrieving all the v;’s and averaging them.

F ANNA-transformer Solves k-hop and Match2

F.1 ANNA/EMA-transformer Solves Match2

Theorem F.1. For any N,M = NOW, there exists an EMA-transformer T with one layer, one
attention head, and embedding dimension 1 such that T(X) = Match2(X) for all X € [M]".
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Proof. Given input X € [0, M]N*!. Let Q(X) = ¢(X)Q, K(X) = ¢(X)K,V(X) = ¢(X)V,
1)

) =
where Q, K,V are matrices in R?*!, Define ¢ by ¢(x) = (x and

o (-6l v ()

such that
T M — T 1
T2 M — T2 1
X)Q=| . | eX)K=| . |.ex)V=]|.
TN M — TN 1

As aresult, foreach 1 <7 < N, if there exists 1 < 5 < NN such that x; + z; = M, then
1
e N @i+ oy = MY

Otherwise, ((¢(X)Q)(¢(X)K)")[i,j] = 0forall 1 < j < N. Finally, we can calculate that if
{j € [N]:a;+x; = M}| #0, then

(@(X)Q)(D(X)K))i, j] =

1

EMA(G(X)Q, 00K, 00OV = (o 52 = 37

}“{] € [N] xitxy = M}‘ =1,

and if [{j € [N] : &; + ; = M }| = 0, then
EMA(6(X)Q, 6(X) K, 6(X)V)[i] = 0. O

That gives the same result for ANNA-transformers.

Corollary F.2. For any N, M = N°W), there exists an ANNA-transformer T with one layer, one
attention head, and embedding dimension 1 such that T(X) = Match2(X) for all X € [M]N

F.2 ANN transformer Solves k-hop

We first show that ANNA transformers can solve induction head (1-hop).

Lemma F.3. Fix constants 0 < ¢ < &' < 1, and |3| < N. There exists an ANNA-transformer
T with L = O<+s)2) layers, H = O(N(ELE)/“) heads per layer, and embedding dimension

e-(e
m = O(N¢") such that T(w); = We(w,i) if o(w,i) # 0; T(w); = L, ifo(w,i) = 0Vi € [N], for
allw e ¥V,

Proof. We prove this lemma by designing a constant-round MPC algorithm with local memory
s = O(N¥) and N/s machines to solve 1-hop. Since |X| < N, each token can be embedded with
O(log N) bits (O(1) words). Denote the input w™ = (1, 29, ..., 7). The MPC algorithm works
as following:

1. For each z;, retrieve the next token ;41 and each token on the machine is stored as the embedding
of (.231‘, 1, Tiy1,% + 1).

2. Define a comparator < for the object (x;, %, x;11,% + 1). For two tuples (x;, 4, z;11,%+ 1) and
(.’L‘j7j,$j+1,j + ].), if x; 7é Tj, then z; < T = ((Ei,i7x7;+177; + 1) < (‘Tjaj7xj+17j + 1), if
r; =, thent < j = (JCi,i,af,'+1,i + 1) < (xj,j,a:j+1,j + 1). Sort (Jii, 1, Tig1,0 + 1) by the
comparator <.

3. Each token (z;,4,x;11,%¢ + 1) in the sorted list retrieves the token before it in the sorted list,
denoted by (z;, j, zj4+1,7 + 1). Update the embedding of token: if z; = x;, the embedding of
the token x; becomes (4, 7;41,j + 1) i.e. (4, Wy(w,s), o(w,1)); if w; # w;, then the embedding
of the token z; becomes (i, L, 0).

4. Send each (i, Wy (w,i), o(w, 7)) to the correct output machine [ £ 7 and output W (w,q) for token 4.
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For step 1, each machine only needs to send message to its neighbor machine: machine ¢ sends
message to machine ¢ — 1, and this only takes 1 round. In step 2, each tuple is only O(log ) bits,
so by Lemma the sorting takes O(%) rounds. In step 3, again each machine only needs to send
message to its neighbor machine: machine ¢ sends message to machine 7 + 1, and this only takes
1 round. In step 4, each machine for the sorted list sends at most s tuples stored in it to the correct
output machine which takes 1 round. Thus, the MPC algorithm has O(%) rounds in total.

Then, we convert this MPC algorithm to an ANNA-transformer. By Corollary [B.14] this gives us an

ANNA-transformer with number of heads H = O(N (' ~<)/4), embedding dimension m = O(N<")
and number of layers L = O(W) O

Now we show that ANNA-transformers can solve k-hop with O(log k) layers.

Theorem F4. Fix constants 0 < € < &’ < 1, |¥| < N and any k € N. There exists an ANNA-
transformer T with L = O( E, o7 + (5, 5)2) layers, H = O(N (e —s)/4) heads per layer; and
embedding dimension m = O(N<') such that T'(w); = Wok (i), Vi € [N], forall w € »h,

Proof. We prove this theorem by constructing an O(log k)-rounds MPC with s = O(N¢) local
memory and O(N/s) machines. We show that this MPC algorithm can compute k-hop by induction.

Let k = 18" k29 and k. = 32070 k;27, where k; € {0,1}.

Inductive hypothesis: after O(g) + 20 rounds of MPC computation, the token embedding for each
token ¢ encodes the information of this tuple

o2 (

(1, W2 (4 )5 w, 1), Wekey (19,5) 5 ke (w, 7))
Base case: ¢ = 0,k = 1 is implied by Lemma After step 3, we have (i, Wy (w i), 0 (W, 1)).
Now consider k = ¢ + 1. For each i, the machine (Machine [i/s]|) that contains

W e, 02 (W, 8), Wk 0 s 074 (w, 7)) sends the message (4,02 (w,4)) to machine that con-
a2 (w,i) oke(w,i)
0 0
tains o'’ (w, 1) as the first entry of the tuple which is machine [@] Machine [@] then
send the following tuple to machine [i/s]:
4 £ 4 14
(02 (w,i),waQe(w,gzz(wﬂ.)),02 (w, o (w7i)),wgkzz(w’ﬂe(wyi)yok:’f(w,02 (w,1)))
_ (022 (w, 1), Wyttt 4 o2 ohet2’ (w,4))

£ .
= (02 (w7l)7t17t27t3at4)

Since each machine has at most s tuples and the function o(w, ) is one-to-one except for L, the
number of messages each machine sends and receive is bounded by s. After machine [i/s] receiving
the above message, it update the tuple for the token ¢:

(w7 Z)? Wk, p+2¢ (w,3)?

1. if ky = 0, token 7 is updated as: (i, t1, b2, Wyk. (4 1y, 0" (w, 7))

2. if ky = 1, token ¢ is updated as: (i, t1, t2,t3,t4)

By definition, the embedding of token 7 now is:

of+1

(i7 W j2t+1 (w,i)” a (w7 Z)v W kq1 (w,i)? O-k:“—l (w7 7’))

The above inductive step only takes 2 rounds of MPC. Therefore, the total round is O(1) + 2(£ + 1).
When ¢ = |log k| + 1, this algorithm compute the output for k-hop.

Again, we can convert this MPC algorithm to an ANNA-transformer. By Corollary [B.T4] this
gives us an ANNA-transformer with number of heads H = O(N (" =e)/ %), embedding dimension
m = O(N¢") and number of layers L = O( s+ (logk ). O

e'—e)?

e (e’ —a)
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G Experimental details

Here are the details of the experimental setup. All the experiments are launched on 2 GPUs: NIVIDIA
Titan RTX and NVIDIA Titan Xp.

We train a modified version of the attention matrix and then distill from the trained model us-
ing ANNA implemented by the angular distance LSH family from [6]. Our softmax atten-
tion normalizes all the queries and keys in Q(X) and K (X) to have unit norm, and computes
softmax (8 - Q(X)K(X)")V(X) with a hyperparameter 5 > 0.

G.1 Match2 experiments

Dataset generation. Inspired by the way [37] generating data for Match3 task, a triple-wise version
of Match2, we generate the data for Match2 using the same algorithm but change to pair-wise relation
when computing the label. Each sample is a tuple (X,Y"), where X = (z1, 2, ...,zy), and each z;
is an integer sampled from {1,2,...,36}; Y = (y1,vy2,...,yn), andeach y; = 1{3j.2; + z; =
0 mod 37}. The sequence length N is set to 32. When sampling the data, we ensure that each batch
is balanced by having the distribution of one’s in Y the same: each batch has 4 bins and each bin
corresponds to each percentage [0, 25%), [26%, 50%), [50%, 75%), [75%, 100%)] of one’s in Y'; each
bin size is 1/4 of the batch size. See Algorithm for details.

Algorithm 3 Match2 Dataset Generation

Input: N = 32, M = 37, dataset size D
Output: Dataset of (X,Y") pairs

1: Initialize 4 empty bins for ones-percentage ranges: [0, 25), [25, 50), [50, 75), [75, 100]
2. N, + D/4

3: while total examples in bins < D /40 do

4: Sample X € {1,..., M}" uniformly at random
5: Calculate the percentage p of one’s in Y’

6: if size of the bin p is in < NV, then

7: Add (X,Y) to the correct bin

8: for each bin do

9: while size of bin < N, do
10: Randomly sample (X, Y") from bin
11: Sample permutation 7 over [0, ..., N — 1]
12: X* « X[r], Y* « Y[n]
13: Add (X*,Y™) to bin

14: Combine and shuffle all bins into final dataset
15: return Dataset

Training details. We trained 3 models with 5 € {0.1,1, 10} respectively, with Adam optimizer on
cross-entropy loss and learning rate 0.01. Each model has one layer, one attention head, embedding
dimension m = 64 and an MLP with width 4m and GeLU activation. The dataset size, batch size,
training steps are 10000, 32, 20000 respectively.

We apply ANNA with number of hash tables ¢ € {1,2,...,16} and number of hash functions for
each table z € {1,2,...,6} on all the 3 trained models, and 8 = 0.1 has the best performance (error
can be 0). Since the implementation of ANNA is randomized, for each combination of (¢, z), we run
10 times and report the averaged error over the 10 runs. See Figure |14 for plotted performance when
B = 0.1. In this setting, £ > 8, z = 1 can achieve 0 error on the test set with 256 test samples.

G.2 Induction heads experiments

Dataset generation. We use the data generation algorithm from [55]]. Each sample (X,Y") is of
the form X = (k, X') for k € {0, 1} for training samples and k = 1 for test samples, X’ € XV ~1,
Y =(0,Y”), where Y” is the k-hop label for X’. Here the sequence length N = 100 and alphabet
size |X| = 4.
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Training details. We trained 3 models with 8 € {0.1,1, 10} respectively, with Adam optimizer
on cross-entropy loss and learning rate 0.01. Each model has 2 layers, each layer with one attention
head, embedding dimension m = 128 and an MLP with width 4m and GeLU activation. We use
online training: at each training step, sample fresh new data to train. The batch size and training steps
are 32, 400000 respectively.

We apply ANNA on all the 3 trained models. For the first layer, the number of hash tables ¢ is chosen
from {32, 40,48, ...,96} and z is chosen from {1, 2, 3, 4}. For the second layer, the number of hash
tables £ is chosen from {4,8,12,...,32} and z is chosen from {1, 2, 3, 4}. When evaluating the test
error, we compute the error on all the tokens. Note that this is different from [55]], where they only
compute the error on the tokens whose induction head exists to avoid overestimating the performance
when £ is large and has a large fraction of null outputs. In our setting, £ = 1 which doesn’t have
many null outputs, and it is important for the model to learn when to output the null token.

We found 3 = 1 has the best performance, so we report it in Figure[Tb] Again, the errors are averaged
over 10 runs for each combinations and taken the minimum over z’s. One can see that 32 hash tables
in the first layer and 4 hash tables in the second layer already gives highly non-trivial performance:
the error rate is 0.2 over 100 samples and each sample has 100 token predictions, while random guess
would give 0.75 error rate. With more hash tables in the first layer, the error rate can go below 0.1.
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