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ABSTRACT

Inspired by Well-initialized Lottery Ticket Hypothesis (WLTH), which provides
suboptimal fine-tuning solutions, we propose a novel fully fine-tuned continual
learning (CL) method referred to as Soft-TransFormers (Soft-TF). Soft-TF se-
quentially learns and selects an optimal soft-network or subnetwork for each task.
During sequential training in CL, Soft-TF jointly optimizes the weights of sparse
layers to obtain task-adaptive soft (real-valued) networks or subnetworks (binary
masks), while keeping the well-pre-trained layer parameters frozen. In inference,
the identified task-adaptive network of Soft-TF masks the parameters of the pre-
trained network, mapping to an optimal solution for each task and minimizing
Catastrophic Forgetting (CF) - the soft-masking preserves the knowledge of the
pre-trained network. Extensive experiments on Vision Transformer (ViT) and CLIP
demonstrate the effectiveness of Soft-TF, achieving state-of-the-art performance
across various CL scenarios, including Class-Incremental Learning (CIL) and
Task-Incremental Learning (TIL), supported by convergence theory.

1 INTRODUCTION

Continual Learning (CL), also known as Lifelong Learning (Thrun, 1995; Rusu et al., 2016; Zenke
et al., 2017; Hassabis et al., 2017), is a learning paradigm where a series of tasks are learned sequen-
tially. The principle objective of continual learning is to replicate human cognition, characterized
by the ability to learn new concepts incrementally throughout one’s lifespan. An optimal continual
learning system could facilitate a positive forward and backward transfer, leveraging the knowledge
gained from previous tasks to solve new ones, while also updating its understanding of previous tasks
with the new knowledge. However, achieving continual learning is challenging due to the occurrence
of catastrophic forgetting or catastrophic interference (McCloskey & Cohen, 1989), a phenomenon
where the performance of the model on previous tasks deteriorates significantly when it learns new
tasks. This can make it challenging to retain the knowledge acquired from previous tasks, ultimately
leading to a decrease in overall performance. To address the issue of catastrophic forgetting during
continual learning, numerous conventional approaches have been proposed on Convolutional Neural
Networks (CNNs), which can be broadly classified as follows: (1) Regularization-based meth-
ods (Kirkpatrick et al., 2017a; Chaudhry et al., 2020; Jung et al., 2020; Titsias et al., 2020; Mirzadeh
et al., 2021) aim to keep the learned information of past tasks during continual training aided by
sophisticatedly designed regularization terms, (2) Rehearsal-based methods (Rebuffi et al., 2017;
Riemer et al., 2018; Chaudhry et al., 2019a;b; Saha et al., 2021) utilize a set of real or synthesized
data from the previous tasks and revisit them, and (3) Architecture-based methods (Mallya et al.,
2018; Serrà et al., 2018; Li et al., 2019; Wortsman et al., 2020; Kang et al., 2022; 2023) propose to
minimize the inter-task interference via newly designed architectural components.

Developing neural network models that leverage large-scaled pre-trained models. i.e., Vision Trans-
former (ViT) (Dosovitskiy et al., 2020) and Contrastive Language-Image Pre-training (CLIP) (Radford
et al., 2021) leads to a new paradigm shift referred to as (4) Prompt-based methods in Continual
Learning (CL). Prompt-based methods learn continual representations to provide fixed pre-trained
transformers with additional instruction. Notably, while L2P (Wang et al., 2022c) stands out as the
seminal work that bridges the gap between prompting and continual learning, DualPrompt (Wang
et al., 2022b) introduces an innovative approach to affixing complementary prompts to the pre-trained
backbone, thereby enabling the acquisition of both task-invariant and task-specific instructions.
Additionally, other notable contributions in this field encompass DyTox (Douillard et al., 2022),
S-Prompt (Wang et al., 2022a), CODA-P (Smith et al., 2023b), ConStruct-VL (Smith et al., 2023a),
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Figure 1: Soft-TransFormers (Soft-TF): the objective is to design a fully fine-tuned model that
works well across multiple continual learning settings with incurring task-wise soft network training
of attention and feed forward networks, leveraged by WLTH.
ST-Prompt (Pei et al., 2023), and LGCL (Khan et al., 2023). Recently, Qiao et al. (2024) investigated
prompt-projection for better generalized continual learners.

With prior developments of representational research, current prompt-based models can be fine-tuned
using trained prompts to improve their performance on sequential tasks, and the fixed pre-trained
backbone can consistently provide unforgettable base session knowledge. However, prompt-based
models come with several disadvantages and limitations. First, the effectiveness of prompt-based CL
heavily relies on the quality and design of the sample or task-relevant prompts. Poorly trained prompts
could lead to suboptimal performance or tend to be biased. Second, managing and maintaining a
large set of prompts can become cumbersome and unmanageable as the number of tasks increases.
Lastly, prompt tuning is not as flexible as full fine-tuning. The only prompt-tuning of the pre-trained
model cannot capture all the nuances of uncorrelated sequential tasks even though leveraging the
well-initialized model pre-trained on large-scale datasets since the well-initialized model provides
global solutions rather than task-specific solution. These disadvantages help make informed decisions
about when and how to use prompt-based models and explore alternative methods like full fine-tuning
or hybrid approaches for more robust and flexible prompt-based continual learning performance.

To overcome the limitations of conventional prompt-based methods, the central focus of this work
is to pinpoint the most optimal winning ticket or fine-tuning representations of frozen pre-trained
networks such as Transformers in continual learning scenarios. We focus on two main issues when
sequential full fine-tuning the pre-trained foundation models: (1) Catastrophic Forgetting (CF) and
(2) parameter-efficient fine-tuning CL model. To deploy a practical model to deal with the two
points, we suggest a new paradigm for Continual Learning (CL), named Well-initialized Lottery
Ticket Hypotehesis:

Well-initialized Lottery Ticket Hypothesis (WLTH). A well-initialized dense neural network
contains globally minimal solutions that can retain the prior class knowledge while providing room
to learn the new class knowledge through isolated fine-tuning of the networks or subnetworks.

Leveraged by the WLTH, this work proposes a new Soft-TransFormer (Soft-TF) to address fine-tuning
with minimal CF, as shown in Figure 1. We could find task-specific soft-networks or subnetworks
based on well-trained frozen transformer parameters that incrementally learn task-adaptive weights
associated with each task scenario.

Our contributions can be summarized as follows:

• Inspired by Well-initialized Lottery Ticket Hypothesis (WLTH), we propose a novel continual
learning method referred to as Soft-TransFormers (Soft-TF), which learns compact task-specific
soft-networks or subnetworks from well pre-trained parameters for each task.
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• Extensive experiments demonstrate the Soft-TF leads to better generalized continual models
than baselines such as DualPrompts, achieving state-of-the-art performances on various class-
incremental learning (CIL) and task-incremental learning (TIL) scenarios, as shown in Figure 2.
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Figure 2: Radar Chart of Comparisons in terms of average accuracy and forgetting between baselines and our
SOTA method (Soft-TF). DualPrompt-PGP (Qiao et al., 2024) and DualPrompt-WSN (Kang et al., 2022) (c%
sparsity) are baselines for prompt tuning and subnetworks. ACC refers to the average accuracy metric (higher
is better). FOR refers to the forgetting metric (lower is better). Different scale standards are adopted for two
metrics on benchmark datasets.

2 RELATED WORKS

Continual Learning (McCloskey & Cohen, 1989; Thrun, 1995; Kumar & Daume III, 2012; Li
& Hoiem, 2016) is the challenge of learning a sequence of tasks continuously while utilizing
and preserving previously learned knowledge to improve performance on new tasks. Four major
approaches have been proposed to tackle the challenges of continual learning, such as catastrophic
forgetting. One such approach is Regularization-based approaches (Kirkpatrick et al., 2017a;
Chaudhry et al., 2020; Jung et al., 2020; Titsias et al., 2020; Mirzadeh et al., 2021), which aim
to reduce catastrophic forgetting by imposing regularization constraints that inhibit changes to the
weights or nodes associated with past tasks. Rehearsal-based approaches (Rebuffi et al., 2017;
Chaudhry et al., 2019a;b; Saha et al., 2021; Deng et al., 2021; Sun et al., 2023; Sarfraz et al., 2023;
Mai et al., 2021; Lin et al., 2023; Aljundi et al., 2019; Caccia et al., 2021; Chaudhry et al., 2019c;
Liang & Li, 2024; Buzzega et al., 2020) store small data summaries to the past tasks and replay them
during training to retain the acquired knowledge. Some approaches in this line of work (Shin et al.,
2017; Aljundi et al., 2019) accommodate the generative model to construct the pseudo-rehearsals for
previous tasks. Architecture-based approaches (Mallya et al., 2018; Serrà et al., 2018; Li et al., 2019;
Wortsman et al., 2020; Kang et al., 2022; 2023; 2024b;a) use the additional capacity to expand (Xu
& Zhu, 2018; Yoon et al., 2018), dynamic representation (Yan et al., 2021; Singh et al., 2020) or
isolate (Rusu et al., 2016) model parameters, preserving learned knowledge and preventing forgetting.
Rehearsal and architecture-based methods have shown remarkable efficacy in suppressing catastrophic
forgetting but require additional capacity for the task-adaptive parameters (Wortsman et al., 2020)
or the replay buffers. Recently, Prompt-based approaches, an emerging transfer learning technique,
harnesses a fixed function of pre-trained Transformer models. This empowers the language model to
receive additional instructions for enhancing its performance on downstream tasks. Notably, while
L2P (Wang et al., 2022c) stands out as the seminal work that bridges the gap between prompting and
continual learning, DualPrompt (Wang et al., 2022b) introduces an innovative approach to affixing
complementary prompts to the fixed pre-trained backbone. Here, we introduce a new approach to
update the fixed pre-trained parameters through learnable sparse networks under the convergence
theory, maximumly enabling the acquisition of task-invariant and task-specific instructions.

Prompt-based CL. With recent advances in Vision Transformers (Khan et al., 2022) and prompt-
based fine-tuning in NLP (Li & Liang (2021)), Wang et al. (2022c) have shown that interacting
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with an ImageNet pre-trained model via prompt learning is a promising approach, L2P (Wang
et al., 2022c) for continual learning (DualPrompt (Wang et al., 2022b), DyTox (Douillard et al.,
2022), S-Prompt Wang et al. (2022a), CODA-P (Smith et al., 2023b), ConStruct-VL Smith et al.
(2023a), ST-Prompt (Pei et al., 2023), and LGCL (Khan et al., 2023)). Recently, Prompt Gradient
Projection (PGP) (Qiao et al., 2024), a small set of learnable orthogonal parameters, is appended to
the input and enables quick adaptation of a frozen ImageNet pre-trained model to new streaming
tasks. Their analysis shows that directly leveraging the pre-trained vision-language model without
introducing any learnable parameters is a simple yet promising approach to continual learning. The
PGP adopted a joint vision-language model like CLIP (Radford et al., 2021) for continual learning,
which presents multiple advantages. It enables catering for practical scenarios with no well-defined
task identities and boundaries, and the model is required to adapt to streaming data dynamically in
a task-agnostic manner. However, prompt-based models come with several disadvantages. Poorly
trained prompts could lead to suboptimal performance or tend to be biased. Moreover, prompt tuning
could not capture all nuances of uncorrelated sequential tasks. These disadvantages lead to exploring
alternative methods like full fine-tuning or hybrid approaches for more robust and flexible prompt-
based model performance. In this work, to alleviate these issues, we investigate a fullly fine-tuning of
well-pre-trained transformers on training soft networks and finding competitive subnetworks.

3 PREREQUISITES

We start with conventional prompt-based continual learning methods using Vision Transformer
(ViT) (Dosovitskiy et al., 2020) and Contrastive Language-Image Pre-training (CLIP) (Radford et al.,
2021) in Class Incremental Learning (CIL) and Task Incremental Learning (TIL) scenarios.

3.1 PRELIMINARIES

Problem Statement. Continual Learning (CL) involves training deep neural networks (DNN)
on time-variant data represented as a sequence of tasks, D = {D1, · · · ,DT }. Each t-th task,
Dt = {(xt

i, y
t
i)

nt
i=1} consists of nt tuples where xt

i ∈ Xt is an input sample and yti ∈ Yt is the
corresponding label. When a task Xt arrives, a model fθ is trained for the current task, while data
from previous tasks is inaccessible. This work focuses primarily on class incremental learning (CIL),
in which the task-ID is not given during inference.

Soft & Subnetworks have been explored in continual learning through two notable approaches. One
approach, known as supermasks (Wortsman et al., 2020), produces outputs by p = f(x,w ⊙m),
where ⊙ denotes elementwise multiplication. In this method, the weights w remain fixed at their
initialization, with bias terms set to 0 and other parameters initialized to ±c with equal probability
where the constant c is the standard deviation of the corresponding Kaiming normal distribution (He
et al., 2015). Another line of work includes WSN (Kang et al., 2022) and SoftNet (Kang et al., 2023),
which jointly learn the model weights w and task-adaptive subnetworks m. The parameter-efficient
reusable subnetworks are obtained by iteratively selecting the top-c% of the weights based on an
importance score s at each layer. WSN has primarily demonstrated its effectiveness in Convolutional
Neural Networks (CNNs). However, its pruning mechanism for pre-trained Transformers, such as
ViT, remains unexplored. To discover the competitive sparseness in Transformers, we detail the
WSN-style task-adaptive fine-tuning and the learnable soft-networks m of Transformers, presenting
these adaptations for the first time with empirical observations. The soft-networks originate from
learned parameters distributed with µ ≈ 1.0 & various variances, as stated in Figure 6.

3.2 PROMPT-BASED CLASS INCREMENTAL LEARNING (CIL)

A simple yet effective prompt-based (prompt-tuning) CIL model: Learning to Prompt (L2P) (Wang
et al., 2022c) is first proposed. In this model, a prompt p, a tiny set of trainable tokens combined
with image features, is fed into the Vision Transformer (ViT) to help the model resist forgetting. To
select suitable prompts for task-specific training, L2P utilizes a prompt pool P containing numerous
prompt-key pairs, {pt, kt}Tt=1, where pt ∈ R1×D represents the t-th task prompt, kt represents the
t-th coresponding task key, and T is the total number of prompt-key pairs.

Building on L2P, DualPrompt (Wang et al., 2022b) divided the prompts into expert (E-) prompts
and general (G-) prompts for distinct features learning. DualPrompt also replaced prompt-tuning
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with prefix-tuning, which was successfully proven in NLP. DyTox (Douillard et al., 2022) designed
a novel task attention block that utilized task tokens to infer task identifiers. Coda-Prompt (Smith
et al., 2023b) replaced the prompt pool with a decomposed prompt, represented by a weighted sum
of learnable prompt components, which optimized itself in an end-to-end fashion, providing high
plasticity. LGCL (Khan et al., 2023) introduced text information into the learning of prompt pool,
improving performance without any additional learnable parameters.

Recently, Qiao et al. (2024) introduced Prompt Gradient Projection (PGP), which applies an orthogo-
nal condition on the prompt gradient to reduce forgetting via the self-attention mechanism in ViT
effectively. Although various prompt-based continual learners have demonstrated state-of-the-art
performance, they do not explicitly model task-specific fine-tuning and forgetting within the continual
learning framework. In this work, we address task-specific fine-tuning and gradient-based task
identification in CIL and TIL scenarios by leveraging prompt-tuning and learnable sparse networks.
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... ...

Learnable
Classifier

End	position
of	

E-Prompt Value

Key

G-Prompt

Query-function	
MatchEncode

...

......

...

Prompting	function

Output	of	MSA
layer

-th	learnable	Soft	MSA	layer

	Soft	Feed	Forward	Networks

Query-function	
Match

Figure 3: Soft-TransFormers (Soft-TF): At training time, the E-Prompt and the Soft-network are
selected according to task identity, and the selected G-Prompt, E-Prompt, and the Soft-networks
(Soft-Attention and Feed Forwards) are trained together with a classifier. At test time, an input is
transformed by a query function (Prompt ID) or task identifier (Gradient ID) to match the closest task
key kt, E-prompt et and Soft-networks m{K,Q,V }

t . Note task identifier is depicted in Section 5.

4 TRANSFORMER WITH LEARNABLE SUBNETWORKS

In this section, we explain how Soft-TransFormers (Soft-TF) leverage learnable soft-networks to train
sequential tasks while keeping the well-pretrained model parameters fixed. To introduce our novel
Soft-TF and provide a clearer understanding, we draw on a partial explanation of DualPrompt.

4.1 SOFT-MSA LAYERS

To address the task-specific fine-tuning of the pre-trained model, such as ViT, this work proposes
a new Soft-TransFormer (Soft-TF), as illustrated in Figure 1. The proposed Soft-TF consists of a
conventional neural network, like a multilayer transformer with multihead attention and forward
networks. Using well-trained transformer parameters, we could discover task-specific soft-networks,
as depicted in Figure 3. The Soft-TF incrementally learns model weights and task-adaptive soft-masks
with well-pre-trained and soft-network parameters m.

Given a pre-trained parameter θ and learnable soft-parameters m, Soft-ViT is represented as fθ⊙m,
consisting of N consecutive soft-MSA layers. We extend the notation by denoting the input embed-
ding feature of the l∗-th learnable soft-MSA layer as h(l∗), where l∗ = 1, 2, . . . , N , and l∗ can refer
to either the G-Prompt layer lg or the E-Prompt layer le. Note that while the pre-trained parameters θ
remain fixed, the soft-parameters m are updated to provide task-specific solutions.

G-prompt. g ∈ RLg×D with sequence length Lg and embedding dimension D, is a shared parameter
for all tasks. G-Prompt is attached to the lg-th MSA layer to transform h(lg) via a prompting function
as follows:

h(lg)
g = fprompt

θ (g,h(lg)), (1)

where fprompt
θ defines the approach for attaching the prompt to the hidden embeddings.
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E-prompt & Soft-networks. e = {et}Tt=1 is a set of task-dependent parameters, where et ∈ RLe×D

has as sequence length of Le and the same embedding dimension D as the G-prompt, and T is the
total number of tasks. Unlike the shared G-prompt, each et is associated with a task-specific key
kt ∈ RD, which is also a learnable parameter aimed at capturing representative features of a task.
For an input example from the t-th task, to attach E-prompt to the le-th soft-MSA layer, we apply the
prompting function in a similar way:

h(le)
e = fprompt

θ⊙m (et,h
(le)). (2)

4.2 PROMPTS WITH LEARNABLE SUBNETWORKS

G- and E-prompts, along with learnable soft-networks, encode specific types of instructions during
training with the backbone and work together to guide the model’s predictions during inference. We
have demonstrated the method for attaching prompts and learnable soft-networks to a single soft-MSA
layer. Similarly to the approach taken in DualPrompt (Wang et al., 2022b), we also investigate layers
of E-prompts with learnable soft-networks m, while utilizing the layers designated for G-prompts.

Layers of G- and E-Prompts. We use the multilayered extension of both types of prompts: g =

{g(lg)}endg

lg=startg
, where g(lg) ∈ RLg×D represents the G-prompt attached to the lg-th MSA layer.

Similarly, we define et = {e(le)t }ende

le=starte
for the le-th conventional MSA layer. In this configuration,

the G-prompt g(lg) is attached from the startg-th to the endg-th conventional MSA layers, and
the E-prompt e(le)t is attached to the [starte, ende]-th soft-MSA layers, ensuring that there is no
overlap between them. In our experiments, we follow the lg /∈ [starte, ende] (lg = [1, 2]) settings
used in DualPrompt and empirically search for the optimal [starte, ende] layers for the learnable
subnetworks through ablation studies.

Learnable Soft-networks. The prompting function fprompt
θ⊙m determines how prompts (p) are

combined with fine-tuned soft (θ ⊙ m) embedding features. From another perspective, fprompt
θ⊙m

directly influences the interaction between high-level instructions in the prompts and low-level
representations. Therefore, we believe that a well-designed prompting function, along with task-
specific parameters, is crucial for optimizing overall continual learning performance.

Specifically, applying a prompting and fine-tuning function fprompt
θ⊙m can be seen as modifying the

inputs to the soft-MSA layers. Let the input to the soft-MSA layer be h ∈ RL×D, and denote the
input query, key, and values for the soft-MSA layer as hQ, hK , and hV , respectively. A soft-MSA
layer is defined by the following equation:

MSA(hQ,hK ,hV ) = Concat(h1, · · · ,hi, · · · ,hn)w
O ⊙mO

where hi = Attention(hQ(w
Q
i ⊙mQ),hK(wK

i ⊙mK),hV (w
V
i ⊙mV )),

(3)

where wO
i ,w

Q
i ,w

K
i , and wV

i are fixed projection matrices while mO,mQ,mK , and mV are
learnable parameters. s is the number of heads. In ViT, hQ = hK = hV . Here, we define a unified
prompt parameter with a sequence length of Lp, such as p ∈ RLp×D for a single-layered G- or
E-prompt.

4.3 FINE-TUNING ON WELL-INITIALIZED PARAMETERS

In this framework, we concatenate the prompts pt and the embedding sequence xt, i.e., inputs from
t-th task, along the embedding dimension: zt = [pt;xt]. With the weights of wQ ⊙mQ,wK ⊙
mK ,wV ⊙ mV , the soft-transformer takes query (qt = (wQ ⊙ mQ)zt) and key (kt = (wK ⊙
mK)zt) as input of the soft-MSA layer. The soft-attention matrix is then given by:

at = softmax

(
qtk

T
t√

D/n

)
(4)

where we focus on qtk
T
t = (wQ ⊙ mQ)zt and zT

t (w
K ⊙ mK)T . First, the trainable prompt

parameters can be denoted as:

zt · zT
t =

[
pt

xt

]
[pt xt] =

[
ptp

T
t ptx

T
t

xtp
T
t xtx

t
t

]
(5)
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Second, the trainable soft-attention layer’s parameters with mQ and mK are as follows:
mQ · ptp

T
t · (mK)T ,

mQ · xtp
T
t · (mK)T ,

mQ · ptx
T
t · (mK)T ,

mQ · xtx
T
t · (mK)T .

 (6)

where wQ and wK are frozen and unchanged during training and test.

4.4 THE OPTIMIZATION OF SOFT-TRANSFORMERS

The overall process of the Soft-TransFormers (Soft-TF) during training and testing is described as
Algorithm 1 and Algorithm 2. We denote the architecture with attached prompts as fg,et,mt

. The
input x of the t-th task is transformed using fg,et,mt

and then passed to the classification head fϕ,
parameterized by ϕ, for prediction. Finally, we train the two prompts, the task keys, the soft-attention
parameters, and the newly-initialized classification head in an end-to-end manner:

min
g,et,mt,kt,ϕ

L(fϕ(fg,et,mt
(x)), y) + λLmatch(x,kt), x ∈ Dt, (7)

Here, L represents the cross-entropy loss, and Lmatch(x,kt) = γ(q(x),kt) denotes the matching loss,
where q(x) = f(x)[0] corresponds to the feature vector associated with the [class] token (Dosovitskiy
et al., 2020; Wang et al., 2022b), and γ is the cosine similarity. The scalar λ serves as a balancing
factor between the losses; here, we follow the same DualPrompt setting as a baseline.

Analysis of Soft-TF for Convex-Lipschitz Functions. To analyze the convergence rate of the
Soft-Transformer, we focus on the case of convex-Lipschitz functions. Let w∗ = {g∗, e∗t ,m

∗
t } be

any vector, and let B be an upper bound on ||w∗|| when w(1) = 0, or w(1) is an initial state. It is
helpful to consider w∗ as the minimizer of f(w), although the following analysis applies to any w∗.

We derive an upper bound on the sub-optimality of our solution relative to w∗, specifically f(w̄)−
f(w∗), where w̄ = 1

T

∑T
t=1 w

(t). By the definition of w̄ and applying Jensen’s inequality, we obtain
the following (see Appendix A.1 stated in detail):

f(w̄)− f(w∗) = f

(
1

T

T∑
t=1

w(t)

)
− f(w∗)

≤ 1

T

T∑
t=1

(
f(w(t))

)
− f(w∗)

=
1

T

T∑
t=1

(
f(w(t))− f(w∗)

)
.

(8)

For every t, because of the convexity of f , we have that

f(w(t))− f(w∗) ≤
〈
w(t) −w∗,∇f(w(t))

〉
(9)

Combining the preceding, we obtain

f(w(t))− f(w∗) ≤ 1

T

T∑
t=1

〈
w(t) −w∗,∇f(w(t))

〉
(10)

To bound the right-hand side of the above formula, we rely on the following lemma:

Lemma 4.1. Let v1, · · · ,vt, · · · ,vT be an arbitrary sequence of vectors, such as the t-th task gradi-
ents vt = ∇f(w)t. Consider any algorithm with a well-initialized (well pre-trained Transformer
from WLTH) starting point w(1) ̸= 0 and an update rule of the form:

w(t+1) = w(t) − ηvt (11)

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

satisfies with ||w(1) −w∗||2 = ||w(T+1) −w∗||2
T∑

t=1

〈
w(t) −w∗,vt

〉
≤ 1

2ηm
||w(T+1)

m −w∗||2 + ηm
2

T∑
t=1

||vt||2

<
1

2ηp
||w(T+1)

p −w∗||2 + ηp
2

T∑
t=1

||vt||2
(12)

where wm ̸= wp since m is learnable parameters in Soft-TransFormers. Specifically, we could
assume that wm = (wQ⊙mQ) ·xpT · (wK ⊙mK)T and wp = (wQ⊙1Q) ·xpT · (wK ⊙1K)T

of Equation 6 and wQ,wK are here frozen pre-trained parameters. For every Bm < Bp < B, ρ > 0

where Bm = ||w(T+1)
m −w∗|| and Bp = ||w(T+1)

p −w∗||, if for all t we have that ||vt ≤ ρ|| and

we set η ≈ ηm ≈ ηp =
√

B2

ρ2T with large enough T , then for every w∗ with ||w(T+1) −w∗|| ≤ B

we have
1

T

T∑
t=1

〈
w(t) −w∗,vt

〉
≤ Bmρ√

T
<

Bpρ√
T

<
Bρ√
T
. (13)

5 EXPERIMENTS

We validate our method on several benchmark datasets against continuous learning baselines in
Class-Incremental Learning (CIL) and Task-Incremental Learning (TIL).

5.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate our method mainly on 1) 10/20-Split-CIFAR100 (Krizhevsky et al., 2009),
constructed by splitting the 100 classes into 10 tasks/20 tasks. 2) 10-Split-TinyImageNet (Abai
& Rajmalwar, 2019), constructed by splitting the 200 classes into 10 tasks. 3) 10-Split-ImageNet-
R (Hendrycks et al., 2021), constructed by splitting the 200 classes into 10 tasks. To show our
effectiveness, we additionally compare our method with the baselines on 5-Split-CUB200 and
10-Split-TinyImageNet. The detailed experimental settings are depicted in the Supplementary.

Implementation. For fair comparisons, we set L2P (Wang et al., 2022c), DualPrompt (Wang et al.,
2022b), CLIP (Radford et al., 2021), and PGP (Qiao et al., 2024) as our baselines. We follow
experimental settings Qiao et al. (2024) entirely.

Baselines. To validate the powerfulness of our method, we compare our results with various CIL
baselines including ICaRL (Rebuffi et al., 2017), BiC (Wu et al., 2019), DER++ (Buzzega et al.,
2020), LWF (Li & Hoiem, 2017), EWC (Kirkpatrick et al., 2017b), DER+MCG (Cai et al., 2023),
and DualPrompt-PGP (Qiao et al., 2024). In addition, we investigate subnetwork solutions such as
WSN (Kang et al., 2022) (obtained by selecting top-c% of weight scores while fixing pre-trained
parameters) and SoftNet (Kang et al., 2023) (acquired by selecting top-c% of weight scores as
major tickets while setting 100.0 − top-c% as minor tickets) in Vision Transformers (ViT) using
prompt tuning methods. We adopt average accuracy (ACC) and forgetting (FOR) as our validation
metrics (Wang et al., 2022b; Qiao et al., 2024).

Task Inference. At the inference time, we infer task identity for arbitrary pieces of task samples x
for finding the proper task nuances and demonstrating full fine-tuning results. We summarize the
following two methods:

• Prompt ID: For a test example x, we simply choose the best matched task index via
argmintγ(q(x),kt).

• Gradient ID: To infer the task identity, we follow SupSup’s one-shot task inference (Wortsman
et al., 2020). In short, we assign each learned subnetwork mt a weight αt such that

∑
t αt = 1

and αt = 1/T > 0 when evaluating all seen tasks. Given an example data point of batch x ∈ b to
classify, we can compute the loss as L = H(fprompt

θ⊙(
∑

t αtmt)
(x)) wherefprompt

θ (x) is the pre-trained
model which outputs logits and H is the entropy function. From here our inferred task is simply
t̂ = argmint

∂H
∂αt

.
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Table 1: Performances of Class Incremental Learning (CIL) in terms of accuracy and forgetting on
10/20-Split-CIFAR100 and 10-Split-ImageNet-R. Exemplar means the total buffer size for rehearsal
methods.

10-Split-CIFAR100 20-Split-CIFAR100 10-Split-ImageNet-R
Method Exemplar Task ID ACC(↑) Forget(↓) ACC(↑) Forget(↓) ACC(↑) Forget(↓)

BiC 5,000 - 81.42 17.31 73.02 6.23 64.63 22.25
DER++ 5,000 - 83.94 14.55 - - 66.73 20.67
iCaRL 5,000 - 66.00 5.33 78.02 5.80 - -

DER+MCG 2,000 - 67.62 14.64 65.84 13.72 - -
BiC 1,000 - 66.11 35.24 63.12 21.89 52.14 36.70
DER++ 1,000 - 61.06 39.87 - - 55.47 34.64
iCaRL 1,000 - 61.25 14.19 71.32 15.98 - -

FT - - 33.61 86.87 33.52 53.69 28.87 63.80
EWC - - 47.01 33.27 36.73 35.19 35.00 56.16
LWF - - 60.69 27.77 39.12 57.91 38.54 52.37

L2P∗ - Prompt ID 83.77 6.63 71.29 13.96 60.44 9.00
L2P-PGP∗ - Prompt ID 84.34 5.59 76.12 13.26 61.40 8.03
L2P-PGP-Soft-TF - Prompt ID 86.26 4.79 76.17 15.77 69.80 5.13
L2P-PGP-Soft-TF - Gradient ID 86.46 4.87 77.67 15.84 69.56 5.28

DualPrompt-PGP - Prompt ID 86.92 5.35 83.74 7.91 69.34 4.53
DualPrompt-PGP-Soft-TF - Prompt ID 92.41 2.44 95.14 1.90 74.65 4.39
DualPrompt-PGP-Soft-TF - Gradient ID 92.92 2.34 95.89 1.64 81.45 2.89
DualPrompt - Prompt ID 86.50 5.77 82.98 8.20 68.13 4.46
DualPrompt-Soft-TF - Prompt ID 91.77 3.37 94.43 2.02 74.70 6.46
DualPrompt-Soft-TF (SOTA) - Gradient ID 97.87 0.21 99.05 0.24 82.38 0.59
Upper-Bound of Soft-TF - - 93.90 - 93.90 - 80.21 -

Table 2: Performances of Class Incremental Learning (CIL) in terms of Pretained-dataset
(ImageNet-21K, SAM, DINO) and Task-IDs on 10-Split-CIFAR100 and 5-Split-CUB200.

10-Split-CIFAR100 5-Split-CUB200
Method Pretrained-dataset Task ID ACC(↑) Forget(↓) ACC(↑) Forget(↓)

DualPrompt ImageNet-21K Prompt ID 86.50 5.77 82.02 4.23
DualPrompt-PGP ImageNet-21K Prompt ID 86.92 5.35 82.46 3.76
DualPrompt SAM Prompt ID 86.11 6.08 82.02 4.73
DualPrompt DINO Prompt ID 64.18 23.81 50.88 10.10

DualPrompt-Soft-TF ImageNet-21K Prompt ID 92.42 2.44 76.17 9.04
DualPrompt-Soft-TF (SOTA) ImageNet-21K Gradient ID 97.87 0.21 87.93 0.66
DualPrompt-Soft-TF (SOTA) SAM Gradient ID 97.87 0.21 87.93 0.66
DualPrompt-Soft-TF DINO Gradient ID 84.50 12.27 69.79 10.93

Upper-Bound of Soft-TF - - 93.90 - 85.56 -

5.2 PERFORMANCES

Performances of Soft-TF on CIL. We compare our Soft-TransFormers (Soft-TF) with state-of-the-art
CIL baselines, as shown in Table 1. Our Soft-TF significantly outperforms all baselines and upper-
bounds of Soft-TF, including L2P and DualPrompt, in both accuracy and forgetting measurements.
The performance gain of Soft-TF is especially notable in DualPrompt-based learning compared to
L2P, suggesting the importance of global prompt-tuning and multi-head attention prompt-tuning in
DualPrompt. Additionally, task-identity inference using Gradient-ID is crucial for achieving full
fine-tuning results in CIL. To demonstrate the effectiveness of Soft-TF, Figure 2(a) presents a radar
chart comparing DualPrompt-PGP and Soft-TransFormers across four benchmark datasets.

Well-initialized LTH (WLTH) on CIL. To demonstrate the efficacy of our proposed method on
Well-initialized Lottery Ticket Hypothesis (WLTH) backbones, we evaluate our Soft-TransFormers
(Soft-TF) by extending two distinct pre-trained models, ViT-DINO and ViT-SAM (Caron et al., 2021;
Chen et al., 2021). As shown in Table 2, we tested our method on the 10-Split-CIFAR100 and
5-Split-CUB200 datasets using three pre-trained ViTs: ImageNet-21K, DINO, and SAM, further
validating the effectiveness of our approach on non-ImageNet datasets (Krizhevsky et al., 2009; Wah
et al., 2011). Surprisingly, when initialized with ImageNet-21K and SAM, DualPrompt-Soft-TF with
ImageNet-21K achieved the same performance levels. Moreover, DualPrompt-Soft-TF outperformed
all baselines, i.e., DualPrompt-PGP, on both benchmark datasets, indicating that well-initialized
weights provide better generalization in continual learning scenarios.

CLIP on CIL and TIL. We conduct our experiments on the 10-Split-CIFAR100 dataset under both
Class Incremental Learning (CIL) and Task Incremental Learning (TIL) settings, as shown in Table 3.
The results demonstrate that CLIP-Prompt-Soft-TF-L[1-12] significantly improves performance in
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Table 3: Comparisons of Soft-TF with baselines based on CLIP model on 10-Split-CIFAR100. ∗
denotes our reproduced results.

Class Incremental Task Incremental
Method Task ID ACC(↑) Forget(↓) ACC(↑) Forget(↓)

CLIP Prompt ID 73.76 5.60 92.69 2.34
CLIP-PGP Prompt ID 79.47 4.23 93.00 1.58

CLIP∗ Prompt ID 74.60 7.75 93.59 2.80
CLIP-PGP∗ Prompt ID 74.63 7.76 93.67 2.83

CLIP-Prompt Prompt ID 70.27 12.95 93.36 3.07
CLIP-Prompt-Soft-TF-L[3,4,5] Prompt ID 71.58 7.73 95.29 1.12
CLIP-Prompt-Soft-TF-L[3,4,5] Gradient ID 76.77 5.59 95.29 1.12

CLIP-Prompt-Soft-TF-L[1-12] Prompt ID 72.28 3.44 96.83 0.44
CLIP-Prompt-Soft-TF-L[1-12] (SOTA) Gradient ID 85.90 3.07 96.83 0.44

both settings, indicating that our Soft-TF with Gradient ID is also effective in vision-language models,
thereby broadening its applicability.

5.3 ABLATION STUDIES

Layer-wise Inspections. We analyze the layer-wise performance of Soft-Transformer with respect
to L2P and DualPrompt on the 10-Split-CIFAR100 dataset to identify the optimal configurations,
as shown in Figure 4. Our observations reveal that the global prompt in DualPrompt influences
Soft-Transformer’s performance differently in L2P and DualPrompt settings. In L2P-PGP, the
best performance was achieved with Soft-TransFormers applied to the lower layers ((a) L2P-Soft-
TF-L[1,2]-PGP), whereas in DualPrompt, the higher layers ((b) DualPrompt-Soft-TF-L[10,11,12])
yielded the best results. Notably, DualPrompt-Soft-TF-L[10,11,12] without PGP demonstrated
impressive performance, achieving almost zero forgetting (0.21). These findings suggest that our
approach could significantly enhance the effectiveness of large-scale Transformer models in continual
learning scenarios.
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L2P-PGP
L2P-Soft-L[3]-PGP
L2P-Soft-L[1,2]-PGP

1 3 5 7 10
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DualPrompt-L[3,4,5]
DualPrompt-Soft-L[3,4,5]
DualPrompt-Soft-L[10,11,12]

(a) L2P-PGP v.s. Soft-Transformer (b) DualPrompt v.s. Soft-Transformer

Figure 4: Layer-wise(L[∗]) Performances of Soft-TF on 10-Split-CIFAR100. Note that L[9,10,11]
denotes Soft-TransFormer of 9, 10, 11 Layers.

6 CONCLUSION

Inspired by Well-initialized Lottery Ticket Hypothesis (WLTH) that provides suboptimal fine-tuning
solutions, we proposed a novel fully fine-tuned continual learning (CL) method referred to as
Soft-TransFormers (Soft-TF), which sequentially learns and selects an optimal soft-network or
subnetwork for each task. In training, Soft-TF jointly learned the sparse layer’s weights in CL to
obtain task-adaptive soft(real-valued)-networks or subnetworks (binary masks) while freezing the
well-pre-trained layer parameters. In inference, the identified task-adaptive network of Soft-TF, which
masks the parameters of the pre-trained network, maps to an optimal solution associated with each
task, minimizing Catastrophic Forgetting (CF)—the soft masking was immune to the pre-trained
network’s knowledge forgetting. Extensive experiments demonstrated the power of Soft-TF (Vision
Transformer and CLIP) and show state-of-the-art performances with convergence theory in various
CL scenarios, i.e., Class-Incremental Learning (CIL) and Task-Incremental Learning (TIL).
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A APPENDIX

A.1 ANALYSIS OF SOFT-TRANSFORMERS (SOFT-TF)

Analysis of Soft-TransFormers for Convex-Lipschitz Functions. To analyze the convergence rate
of the Soft-TransFormers (Soft-TF), we limit ourselves to the case of convex-Lipshitz functions along
with the analysis (Shalev-Shwartz & Ben-David, 2014). Let w∗ = {g∗, e∗t ,m

∗
t } be any vector or an

optimal solution and let B be an upper bound on ||w∗|| when w(1) = 0. It is convenient to think of
w∗ as the minimizer of f(w), but the analysis that follows holds for every w∗.

We would like to obtain an upper bound on the sub-optimality of our solution with respect to w∗,
namely, f(w̄)− f(w∗), where w̄ = 1

T w
(t). From the definition of w̄, and using Jensen’s inequality,

we have that

f(w̄)− f(w∗) = f

(
1

T

T∑
t=1

w(t)

)
− f(w∗)

≤ 1

T

T∑
t=1

(
f(w(t))

)
− f(w∗)

=
1

T

T∑
t=1

(
f(w(t))− f(w∗)

)
.

(14)

For every t, because of the convexity of f , we have that

f(w(t))− f(w∗) ≤
〈
w(t) −w∗,∇f(w(t))

〉
(15)

Combining the preceeding we obtain

f(w(t))− f(w∗) ≤ 1

T

T∑
t=1

〈
w(t) −w∗,∇f(w(t))

〉
(16)

To bound the right-hand side we rely on the following lemma:

Lemma A.1. Let v1, · · · ,vT be an arbitrary sequence of vectors. Any algorithm with an well
initialization (pre-trained model) w(1) ̸= 0 and an update rule of the form

w(t+1) = w(t) − ηvt (17)
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satisfies with ||w(1) −w∗||2 = ||w(T+1) −w∗||2

T∑
t=1

〈
w(t) −w∗,vt

〉
≤ 1

2η
||w(T+1)

m −w∗||2 + η

2

T∑
t=1

||vt||2

<
1

2η
||w(T+1)

p −w∗||2 + η

2

T∑
t=1

||vt||2

<
1

2η
||w(T+1) −w∗||2 + η

2

T∑
t=1

||vt||2

(18)

where wm ̸= wq since m is learnable parameters in Soft-TransFormers. Specifically, we could
assume that wm = (wQ⊙mQ) ·xpT · (wK ⊙mK)T and wp = (wQ⊙1Q) ·xpT · (wK ⊙1K)T

of Equation 6. For every Bm < Bp < B, ρ > 0 where Bm = ||w(T+1)
m − w∗|| and Bp =

||w(T+1)
p −w∗||, if for all t we have that ||vt ≤ ρ|| and if we set η =

√
B2

ρ2T , then for every w∗ with

||w(T+1) −w∗|| ≤ B we have

1

T

T∑
t=1

〈
w(t) −w∗,vt

〉
≤ Bmρ√

T
<

Bpρ√
T

<
Bρ√
T
. (19)

Proof. Using algebraic manipulations (completing the square), we obtain:

〈
w(t) −w∗,vt

〉
=

1

η

〈
w(t) −w∗, ηvt

〉
=

1

2η

(
−||w(t) −w∗ − ηvt||2 + ||w(t) −w∗||2 + η2||vt||2

)
=

1

2η

(
−||w(t+1) − ηvt||2 + ||w(t) −w∗||2

)
+

η

2
||vt||2,

(20)

where the last equality follows from the definition of the update rule. Summing the equality over t,
we have

T∑
t=1

〈
w(t) −w∗,vt

〉
=

1

2η

T∑
t=1

(
−||w(t+1) − ηvt||2 + ||w(t) −w∗||2

)
+

η

2

T∑
t=1

||vt||2 (21)

The first sum on the right-hand side is a telescopic sum that collapses to

||w(1) −w∗||2 = ||w(T+1) −w∗||2 (22)

Plugging this in Equation, we have

T∑
t=1

〈
w(t) −w∗,vt

〉
=

1

2η

T∑
t=1

(
−||w(t+1) − ηvt||2 + ||w(t) −w∗||2

)
+

η

2

T∑
t=1

||vt||2

≤ 1

2η
||w(1) −w∗||2 + η

2

t∑
t=1

||vt||2

=
1

2η
||w∗||2 + η

2

T∑
t=1

||vt||2,

(23)

where the last equality is due to the definition w(1) = 0. This proves the first part of the lemma. The
second part follows by upper bounding ||w|| by B, ||vt|| by ρ, deciding by T , and plugging in the
value of η.

In terms of Soft-TransFormers wm = (wQ ⊙mQ) · xpT · (wK ⊙mK)T of Equation 6, we have
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T∑
t=1

〈
w(t) −w∗,vs

t

〉
=

1

2η

T∑
t=1

(
−||w(t+1) − ηwt||2 + ||w(t) −w∗||2

)
+

η

2

T∑
t=1

||vt||2

≤ 1

2η
||w(1) −w∗||2 + η

2

t∑
t=1

||vt||2
(24)

where vt is an arbitrary t-th vector and w(1) ̸= 0 since wQ and qK are pre-trained parameters.

however, in term of prompt wp = (wQ ⊙ 1Q) · xpT · (wK ⊙ 1K)T , we have

T∑
t=1

〈
w(t) −w∗,vp

t

〉
=

1

2η

T∑
t=1

(
−||w(t+1) − ηwt||2 + ||w(t) −w∗||2

)
+

η

2

T∑
t=1

||vt||2

≤ 1

2η
||w(1) −w∗||2 + η

2

t∑
t=1

||vt||2
(25)

where vt is an arbitrary t-th vector of prompt and w(1) ̸= 0 since (w ⊙ 1)Q and (w ⊙ 1)K are
pre-trained parameters, wQ and wK , respectively.

Therefore, we have from ||w(1) −w∗||2 = ||w(T+1) −w∗||2

T∑
t=1

〈
w(t) −w∗,vp

t

〉
≤ 1

2ηm
||w(T+1)

m −w∗||2 + ηm
2

t∑
t=1

||vt||2

<
1

2ηp
||w(T+1)

p −w∗||2 + ηp
2

t∑
t=1

||vt||2

<
1

2η
||w(T+1) −w∗||2 + η

2

T∑
t=1

||vt||2

(26)

where ||w(1)
m − w∗||2 < ||w(1)

p − w∗||2 since all m are learnable parameters. For every Bm <

Bp < B, ρ > 0 where Bm = ||w(T+1)
m − w∗|| and Bp = ||w(T+1)

p − w∗||, if for all t we have

that ||vt ≤ ρ|| and if we set η ≈ ηm ≈ ηp =
√

B2

ρ2T with large enough T , then for every w∗ with

||w(T+1) −w∗|| ≤ B we have

1

T

T∑
t=1

〈
w(t) −w∗,vt

〉
≤ Bmρ√

T
<

Bpρ√
T

<
Bρ√
T
. (27)

A.2 EXPERIMENTAL DETAILS

For fair comparisons with the baselines (Wang et al., 2022c;b; Qiao et al., 2024), we use ViT
B/16 (Dosovitskiy et al., 2020) pre-trained on ImageNet-21K as our image encoder, which is kept
frozen during training. We train and test on a single Quadro RTX 8000-48GB GPU for baselines and
our Soft-TransFormers with Adam optimizer with β1 = 0.9 and β2 = 0.999.

We adhere to the experimental settings outlined by Qiao et al. (2024) to validate our method’s
effectiveness. When comparing our approach with L2P-PGP and Soft-Transformer on the 10/20-Split-
CIFAR100 and 10-Split-TinyImageNet datasets, we train the network for 5 epochs with a batch size
of 16 and set the prompt length to 5. For the 10-Split-ImageNet-R dataset, we use 50 epochs, a batch
size of 16, and a prompt length of 30. In comparison with DualPrompt-PGP and Soft-TransFormers
on the 10/20-Split-CIFAR100 dataset, we train the network for 20 epochs with a batch size of 24 and
set the expert prompt length to 5. For the 10-Split-TinyImageNet dataset, we use 5 epochs, a batch

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

size of 24, and an expert prompt length of 5. For the 10-Split-ImageNet-R dataset, we set the epochs
to 50, the batch size to 24, and the expert prompt length to 20. Additionally, in all benchmark data
sets, the general prompt length is set to 5, and the location inserted into the prompt is kept consistent.

For CLIP-PGP and Soft-TransFormers, we configure a single trainable image prompt that is shared
across all tasks within the vision encoder. For the text encoder, following the approach of Qiao et al.
(2024), we set a trainable text prompt for each class, which is only trained on the corresponding task.
In our comparisons with CLIP-PGP and Soft-TransFormers on the 10-Split-CIFAR100 dataset, we
set the image prompt length to 5, the number of epochs to 5, and the batch size to 32.

Table 4: Performances of Class Incremental Learning (CIL) in terms of accuracy and forgetting on
10/20-Split-CIFAR100 and 10-Split-ImageNet-R. Exemplar means the total buffer size for rehearsal
methods.

10-Split-CIFAR100 20-Split-CIFAR100 10-Split-ImageNet-R
Method Exemplar Task ID ACC(↑) Forget(↓) ACC(↑) Forget(↓) ACC(↑) Forget(↓)

BiC 5,000 - 81.42 17.31 73.02 6.23 64.63 22.25
DER++ 5,000 - 83.94 14.55 - - 66.73 20.67
iCaRL 5,000 - 66.00 5.33 78.02 5.80 - -

DER+MCG 2,000 - 67.62 14.64 65.84 13.72 - -
BiC 1,000 - 66.11 35.24 63.12 21.89 52.14 36.70
DER++ 1,000 - 61.06 39.87 - - 55.47 34.64
iCaRL 1,000 - 61.25 14.19 71.32 15.98 - -

FT - - 33.61 86.87 33.52 53.69 28.87 63.80
EWC - - 47.01 33.27 36.73 35.19 35.00 56.16
LWF - - 60.69 27.77 39.12 57.91 38.54 52.37

L2P∗ - Prompt ID 83.77 6.63 71.29 13.96 60.44 9.00
L2P-PGP∗ - Prompt ID 84.34 5.59 76.12 13.26 61.40 8.03
L2P-PGP-Soft-TF - Prompt ID 86.26 4.79 76.17 15.77 69.80 5.13
L2P-PGP-Soft-TF - Gradient ID 86.46 4.87 77.67 15.84 69.56 5.28

DualPrompt - Prompt ID 86.50 5.77 82.98 8.20 68.13 4.46
DualPrompt-Soft-TF-L[3,4,5] - Prompt ID 91.77 3.37 94.43 2.02 74.70 6.46
DualPrompt-Soft-TF-L[3,4,5] - Gradient ID 93.76 1.83 95.38 1.73 82.15 2.20

DualPrompt-WSN-L[10,11,12], c=80.0% - Gradient ID 97.41 0.18 90.25 9.08 74.83 0.91
DualPrompt-WSN-L[10,11,12], c=81.0% - Gradient ID 97.50 0.21 96.72 2.21 74.21 1.41
DualPrompt-WSN-L[10,11,12], c=82.0% - Gradient ID 97.67 0.27 96.44 1.62 75.02 0.92
DualPrompt-WSN-L[10,11,12], c=83.0% - Gradient ID 97.62 0.25 97.77 0.63 76.33 1.77
DualPrompt-WSN-L[10,11,12], c=87.0% - Gradient ID 97.51 0.27 97.68 0.75 77.96 1.02
DualPrompt-WSN-L[10,11,12], c=90.0% - Gradient ID 97.46 0.38 98.09 0.65 78.80 0.47

DualPrompt-Soft-TF-L[10,11,12] - Gradient ID 97.87 0.21 99.05 0.24 82.38 0.59
DualPrompt-PGP - Prompt ID 86.92 5.35 83.74 7.91 69.34 4.53
DualPrompt-PGP-Soft-TF-L[3,4,5] - Prompt ID 92.41 2.44 95.14 1.90 74.65 4.39
DualPrompt-PGP-Soft-TF-L[3,4,5] - Gradient ID 92.92 2.34 95.89 1.64 81.45 2.89
Upper-Bound of DualPrompt - - 90.85 - 90.85 - 79.13 -
Upper-Bound of Soft-TF - - 93.90 - 93.90 - 80.21 -

Table 5: Random initialized Performances of Class Incremental Learning (CIL) in terms of
accuracy and forgetting on 10-Split-CIFAR100. Note "w/o FF" denotes "Soft fine-tuning without
FeedForward (FF)" networks.

10-Split-CIFAR100
Method Pretrained-Dataset Task ID Random Initialization ACC(↑) Forget(↓)

DualPrompt-Soft-TF-L[10,11,12] w/o FF ImageNet-21K Prompt ID Xavier 90.59 3.85
DualPrompt-Soft-TF-L[10,11,12] w/o FF ImageNet-21K Prompt ID Kaiming 90.72 3.63
DualPrompt-Soft-TF-L[10,11,12] w/o FF ImageNet-21K Prompt ID Normal 90.45 3.78
DualPrompt-Soft-TF-L[10,11,12] w/o FF ImageNet-21K Prompt ID Uniform(1.0, 1.0) 92.35 2.98
DualPrompt-Soft-TF-L[10,11,12] w/o FF ImageNet-21K Gradient ID Uniform(1.0, 1.0) 98.05 0.25
Upper-Bound of Soft-TF 93.90 -

Random initialization. Random initialization of Soft-Transformer’s weights plays a critical role
when leveraging well-pretrained models like Vision Transformers (ViTs). The optimal training point
is the parameters of a well-pretrained model. Among the initialization methods, Uniform initialization
for Soft-TransFormer satisfies this requirement effectively. To validate these claims, we analyze the
impact of common random initialization methods, including Xavier, Kaiming, Normal, and Uniform
Initialization, as shown in Table 5. The results demonstrate that the same well-initialization point
leads to independent optimal task performance, particularly with Gradient ID inference. Furthermore,
this ablation study strengthens our Soft-TF with state-of-the-art-perfomances inspired by the Well-
initialized Lottery Ticket Hypothesis (WLTH).

Training & Test Time. To clearly illustrate the time complexity of Soft-TF, we present the training
and testing times for 10/20-Split-CIFAR100 and 10-Split-ImageNet-R, as shown in Table 6. As the
number of trainable parameters in Soft-TF increases, training and testing time complexities grow
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Table 6: Performances of Class Incremental Learning (CIL) in terms of Soft parameters, training,
and test time on 10/20-Split-CIFAR100 and 10-Split-ImageNet-R. Note "w/o FF" denotes "Soft
finetuning without FeedForward (FF)" networks.

Method ViT-B/12 (85.8M) 10-Split-CIFAR100 20-Split-CIFAR100 10-Split-ImageNet-R
DualPrompt # Train Params. Task ID Train (sec.) Test (sec.) Train (sec.) Test (sec.) Train (sec.) Test (sec.)

DualPrompt 0.00M Prompt ID 12.12K 76 11.60K 78 13.10K 47
PGP 0.00M Prompt ID 12.21K 76 13.12K 78 13.33K 47

Soft-TF-L[12] w/ only ATTN 1.76M Gradient ID 12.18K 129 13.30K 113 13.35K 65
Soft-TF-L[12] w/ only ATTN 1.76M Prompt ID 12.18K 78 13.30K 80 13.35K 48

Soft-TF-L[12] w/o FF 2.31M Gradient ID 12.24K 103 13.40K 132 13.42K 66
Soft-TF-L[11,12] w/o FF 4.62M Gradient ID 12.95K 115 14.38K 146 14.23K 73
Soft-TF-L[10,11,12] w/o FF 6.93M Gradient ID 13.71K 130 15.51K 163 15.08K 82
Soft-TF-L[10,11,12] w/o FF 6.93M Prompt ID 13.87K 80 15.60K 104 15.35K 52

LoRA-L[10,11,12] w/o FF, r=4 0.06M Prompt ID 11.95K 77 11.71K 79 14.34K 48
LoRA-L[10,11,12] w/o FF, r=24 0.32M Prompt ID 12.03K 78 15.10K 100 15.02K 50
LoRA-L[10,11,12] w/o FF, r=500 6.91M Prompt ID 13.24K 79 15.89K 105 15.09K 53

Adapter-L[10,11,12] w/ FF, r=1 0.09M Prompt ID 12.44K 84 12.40K 81 14.40K 50
Adapter-L[10,11,12] w/ FF, r=4 0.36M Prompt ID 12.80K 85 15.35K 105 14.68K 51
Adapter-L[10,11,12] w/ FF, r=75 6.91M Prompt ID 13.66K 88 15.72K 106 15.50K 53

Table 7: Performances of Class Incremental Learning (CIL) in terms of Soft parameters,
Accuracy, and Forget on 10/20-Split-CIFAR100 and 10-Split-ImageNet-R. Note "w/o FF" denotes
"Soft finetuning without FeedForward (FF)" networks.

Method ViT-B/12 (85.8M) 10-Split-CIFAR100 20-Split-CIFAR100 10-Split-ImageNet-R
DualPrompt # Train Params. Task ID ACC(↑) Forget(↓) ACC(↑) Forget(↓) ACC(↑) Forget(↓)

DualPrompt 0.00M Prompt ID 86.50 5.77 82.98 8.20 68.13 4.46
PGP 0.00M Prompt ID 86.92 5.35 83.74 7.91 69.34 4.53

Soft-TF-L[12] w/ only ATTN 1.76M Gradient ID 97.17 0.40 98.09 0.54 72.31 3.94
Soft-TF-L[12] w/ only ATTN 1.76M Prompt ID 94.59 1.12 96.96 1.02 71.13 4.93

Soft-TF-L[12] w/o FF 2.31M Gradient ID 96.84 0.55 97.81 0.57 81.18 1.31
Soft-TF-L[11,12] w/o FF 4.62M Gradient ID 97.58 0.34 98.65 0.43 83.09 0.42
Soft-TF-L[10,11,12] w/o FF 6.93M Gradient ID 98.05 0.25 98.96 0.23 83.70 0.53
Soft-TF-L[10,11,12] w/o FF 6.93M Prompt ID 92.35 2.98 97.40 0.57 76.62 5.30

LoRA-L[10,11,12] w/o FF, r=4 0.06M Prompt ID 82.19 4.33 93.74 2.07 70.91 9.11
LoRA-L[10,11,12] w/o FF, r=24 0.32M Prompt ID 86.77 4.27 95.65 1.04 69.81 10.30
LoRA-L[10,11,12] w/o FF, r=500 6.91M Prompt ID 82.00 4.33 92.14 2.02 43.51 13.21

Adapter-L[10,11,12] w/ FF, r=1 0.09M Prompt ID 86.38 4.87 85.61 5.04 70.95 4.31
Adapter-L[10,11,12] w/ FF, r=4 0.36M Prompt ID 86.53 4.52 85.66 5.00 70.82 4.90
Adapter-L[10,11,12] w/ FF, r=75 6.91M Prompt ID 86.45 4.61 84.75 5.11 70.55 4.74

accordingly. While the testing time complexity of Gradient ID increased by approximately 1.6 times
across the three benchmark datasets, it consistently improved task performance on all benchmarks.
The corresponding performance metrics are detailed in Table 7.

We investigate the most parameter-efficient and gradient-based task inference methods, as shown in
Table 8 and Table 9. Our findings reveal that the 3-shot Gradient ID inference cost (using samples
within a mini-batch) with the last layer (Soft-TF-L[12]) is approximately 1.1 times that of Prompt ID,
maintaining comparable efficiency while delivering superior performance. Note that m-batch denotes
mini-batch.

Table 8: Performances of Class Incremental Learning (CIL) in terms of Soft parameters, training,
and test time on 10/20-Split-CIFAR100 and 10-Split-ImageNet-R. Note "w/o FF" denotes "Soft
finetuning without FeedForward (FF)" networks.

Method ViT-B/12 (85.8M) 10-Split-CIFAR100 20-Split-CIFAR100 10-Split-ImageNet-R
DualPrompt # Train Params. Task ID Train (sec.) Test (sec.) Train (sec.) Test (sec.) Train (sec.) Test (sec.)

DualPrompt 0.00M Prompt ID 12.12K 76 11.60K 78 13.10K 47
PGP 0.00M Prompt ID 12.21K 76 13.12K 78 13.33K 47

Soft-TF-L[12] w/o FF 2.31M Prompt ID 12.24K 79 13.40K 80 13.42K 48
Soft-TF-L[12] w/o FF 2.31M Gradient ID, 3-shot 12.24K 88 13.40K 90 13.42K 57
Soft-TF-L[12] w/o FF 2.31M Gradient ID, 5-shot 12.24K 94 13.40K 98 13.42K 61
Soft-TF-L[12] w/o FF 2.31M Gradient ID, 7-shot 12.24K 95 13.40K 108 13.42K 62
Soft-TF-L[12] w/o FF 2.31M Gradient ID, m-batch 12.24K 103 13.40K 132 13.42K 66

Soft-TF-L[10,11,12] w/o FF 6.93M Prompt ID 13.87K 80 15.60K 104 15.35K 52
Soft-TF-L[10,11,12] w/o FF 6.93M Gradient ID, 3-shot 13.71K 96 15.51K 106 15.08K 63
Soft-TF-L[10,11,12] w/o FF 6.93M Gradient ID, 5-shot 13.71K 96 15.51K 109 15.08K 74
Soft-TF-L[10,11,12] w/o FF 6.93M Gradient ID, 7-shot 13.71K 106 15.51K 119 15.08K 75
Soft-TF-L[10,11,12] w/o FF 6.93M Gradient ID, batch 13.71K 130 15.51K 163 15.08K 82

Comparisions of Soft-TF with LLMs. To demonstrate the effectiveness of Soft-TF, we compare
Soft-TF against LLM fine-tuning methods such as Adapters (Houlsby et al., 2019) and LoRA (Hu
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Table 9: Performances of Class Incremental Learning (CIL) in terms of Soft parameters,
Accuracy, and Forget on 10/20-Split-CIFAR100 and 10-Split-ImageNet-R. Note "w/o FF" denotes
"Soft finetuning without FeedForward (FF)" networks.

Method ViT-B/12 (85.8M) 10-Split-CIFAR100 20-Split-CIFAR100 10-Split-ImageNet-R
DualPrompt # Train Params. Task ID ACC(↑) Forget(↓) ACC(↑) Forget(↓) ACC(↑) Forget(↓)

DualPrompt 0.00M Prompt ID 86.50 5.77 82.98 8.20 68.13 4.46
PGP 0.00M Prompt ID 86.92 5.35 83.74 7.91 69.34 4.53

Soft-TF-L[12] w/o FF 2.31M Prompt ID 91.83 2.99 96.43 1.00 72.45 5.32
Soft-TF-L[12] w/o FF 2.31M Gradient ID, 3-shot 93.12 1.82 96.43 1.00 73.55 4.80
Soft-TF-L[12] w/o FF 2.31M Gradient ID, 5-shot 96.13 0.58 96.43 1.00 75.04 4.49
Soft-TF-L[12] w/o FF 2.31M Gradient ID, 7-shot 96.51 0.65 96.43 1.00 76.34 4.75
Soft-TF-L[12] w/o FF 2.31M Gradient ID, batch 96.84 0.55 97.81 0.57 81.18 1.31

Soft-TF-L[10,11,12] w/o FF 6.93M Prompt ID 92.35 2.98 97.40 0.57 74.62 5.30
Soft-TF-L[10,11,12] w/o FF 6.93M Gradient ID, 3-shot 93.92 1.62 97.40 0.57 74.99 4.21
Soft-TF-L[10,11,12] w/o FF 6.93M Gradient ID, 5-shot 97.37 0.53 97.40 0.57 77.40 2.91
Soft-TF-L[10,11,12] w/o FF 6.93M Gradient ID, 7-shot 97.76 0.51 97.40 0.57 79.33 3.57
Soft-TF-L[10,11,12] w/o FF 6.93M Gradient ID, m-batch 98.05 0.25 98.96 0.23 83.70 0.53

et al., 2021), as shown in Table 7. Under identical experimental conditions—including trainable
model parameters ( 6.9M per task), layers (L[10,11,12]), and Prompt ID—Soft-TF outperformed
other LLM-based fine-tuning approaches. The results highlight that directly updating well-pretrained
model parameters and prompt-tuning via Soft-TF is more effective than combining representations
through LoRA or learning representations with Adapters. Furthermore, we observed that Soft-TF and
the other methods exhibited comparable training and testing time complexity for the same number
of trainable parameters. Notably, single-layer fine-tuning using Soft-TF (with L[12]) surpasses
the performance of the baselines. These findings firmly establish Soft-TF as the most competitive
approach among strong LLM baselines (Adapters and LoRA) in the continual learning (CIL) scenario.

Sparsity of Transformer. We inspect the sparse solution through WSN as shown in Table 4, Table 10,
and Table 11. We found a suboptimal sparse solution (c=87.0 % on 10-Split-TinyImageNet) with
minimal CF through the inspections. This demonstrates the Rottary Ticket Hypothesis (RTH) in
transformers, a competitive sparse subnetwork in DenseNetwork. In addition, DualPrompt is the
lower-bound while DualPrompt-Soft-TF-∗ is the upper-bound, close to the optimal performances.
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Figure 5: Comparisions of Soft-TransFormers with Subnetworks on 10-Split-CIFAR100. Note
that L[10,11,12] denotes the fine-tuning layers of 10, 11, and 12.

Table 10: Performances of Subnetworks (WSN) in Class Incremental Learning (CIL) on 10-
Split-TinyImageNet.

TinyImageNet
Method Pretrained-Dataset Task ID ACC(↑) Forget(↓)

DualPrompt - Prompt ID 86.50 5.77

DualPrompt-WSN-L[10,11,12] C=80.0% Gradient ID 89.95 0.98
DualPrompt-WSN-L[10,11,12] C=81.0% Gradient ID 89.99 1.06
DualPrompt-WSN-L[10,11,12] C=82.0% Gradient ID 89.59 1.18
DualPrompt-WSN-L[10,11,12] C=83.0% Gradient ID 90.60 0.72
DualPrompt-WSN-L[10,11,12] C=85.0% Gradient ID 90.09 1.07
DualPrompt-WSN-L[10,11,12] C=87.0% Gradient ID 91.91 0.38
DualPrompt-WSN-L[10,11,12] C=90.0% Gradient ID 91.28 0.42
DualPrompt-WSN-L[10,11,12] C=93.0% Gradient ID 91.41 0.40
DualPrompt-WSN-L[10,11,12] C=95.0% Gradient ID 90.91 0.83

DualPrompt-Soft-TF-L[10,11,12] - Gradient ID 97.87 0.21
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Table 11: Performances of Class Incremental Learning (CIL) in terms of Soft parameters,
Accuracy, and Forget on 10/20-Split-CIFAR100 and 10-Split-ImageNet-R. Note "w/ only ATTN"
denotes "Soft finetuning only with attention (ATTN)" and FeedForward (FF) networks.

Method ViT-B/12 (85.8M) 10-Split-CIFAR100 20-Split-CIFAR100 10-Split-ImageNet-R
DualPrompt # Train Params. Task ID ACC(↑) Forget(↓) ACC(↑) Forget(↓) ACC(↑) Forget(↓)

DualPrompt 0.00M Prompt ID 86.50 5.77 82.98 8.20 68.13 4.46
PGP 0.00M Prompt ID 86.92 5.35 83.74 7.91 69.34 4.53

Soft-TF-L[12] w/ only ATTN 1.76M Gradient ID 97.17 0.40 98.09 0.54 72.31 3.94
Soft-TF-L[12] w/ only ATTN, WSN c=90% 1.58M Gradient ID 96.81 0.61 97.51 1.68 71.67 3.94

Peudo Codes. The overall process of the Soft-TransFormers (Soft-TF) during training and testing
is described as Algorithm 1 and Algorithm 2. We denote the architecture with attached prompts
as fg,et,mt

. The input x from the t-th task is transformed using fg,et,mt
and then passed to the

classification head fϕ, parameterized by ϕ, for prediction. Finally, we train the two prompts, the task
keys, the soft-attention parameters, and the newly-initialized classification head in an end-to-end
manner.

Algorithm 1 DualPrompt-Soft-TF at training time
1: Input: Pre-trained transformer-based backbone f , final classification layer fϕ,
2: number of tasks T , training set {{xi,t, yi,t}nt

i=1}
T
t=1, G-Prompt g, E-Prompt E = {et}Tt=1,

3: task keys K = {kt}Tt=1, soft-networks M = {mt}Tt=1 ,startg, endg, starte, ende,
4: prompting function fprompt

θ⊙m ,
5: number of training epochs of the t-th task Kt.
6: Initialize: ϕ, g,E,M ,K
7: for task t = 1, · · · , T do
8: Select the task-specific E-Prompt, soft-network et,mt and corresponding task key kt

9: Generate the prompted architecture fg,et,mt : attach g and et to startg-th to endg-th
10: and starte-th to ende-th soft MSA layers respectively, with fprompt

θ⊙m .
11: for batch es ∼ Kt do
12: Draw a mini-batch B = {(xi,t, yi,t)}li=1

13: for (x, y) in B do
14: Calculate the prompted feature by
15: Calculate the per sample loss Lx via
16: end for
17: Update ϕ, g,E,M ,K by back-propagation
18: end for
19: end for

Algorithm 2 DualPrompt-Soft-TF at test time
1: Given components: Pre-trained transformer-based backbone f , trained
2: K = {kt}Tt=1,M = {mt}Tt=1, startg, endg, starte, ende, prompting function fprompt

θ⊙m
3: Input: test example x from mini-batch b
4: Select task inference method: (1) Prompt ID or (2) Gradient ID
5: (1) Prompt ID:
6: Generate query feature q(x)
7: Matching for the index of E-Prompt via tx = argmintγ(q(x),kt)
8: (2) Gradient ID:
9: Assigning each learned subnetwork mt a weight αt such that

∑
t αt = 1 and αt = 1/T > 0.

10: Given x ∈ b to classify, we can compute our loss L = H(fprompt
θ⊙(

∑
t αtmt)

(x))

11: Matching for the index of E-Prompt via tx = argmint
∂H
∂αt

12: Select the task-specific E-prompt etx and learned subnetwork mtx

13: Generate the prompted architecture fg,etx ,mtx
:

14: Attaching g and etx to startg-th to endg-th
15: and starte-th to ende-th MSA layers respectively, with fprompt

θ⊙m .
16: Prediction: fg,etx ,mtx

(x)

Density of Parameters. We inspect the histogram density estimate of the last (12) layer’s parameters
of DualPrompt-Soft-TF: attention of QKV ((a) ATTN.QKV) and Projection ((b) ATTN.PROJ) and
multi-layer perception (MLP) of FC1 and FC2, as shown in Figure 6. ATTN’s QKV parameters
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have the largest variance among the parameter densities, while MLP-FC2’s are the smallest. From
this observation, we conclude that fine-tuning ATTN’s QKV is required to achieve optimal task
performance. In other words, QKV’s parameters are more critical than others.
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Figure 6: Layer-(L[12]) Histogram Density Estimates of DualPrompt-Soft-TF’s Parameters on
10-Split-CIFAR100.

Pre-trained Parameters v.s. Soft-TF. We inspect the histogram density estimate of the last (12)
layer’s parameters of pre-trained model and DualPrompt-Soft-TF: attention of QKV ((a) ATTN.QKV)
and Projection ((b) ATTN.PROJ) and multi-layer perception (MLP) of FC1 and FC2, as shown in
Figure 7. The most parameters of DualPrompt-Soft-TF are trained around zero-values. Particularly,
the difference between pre-trained model’s parameters and Soft-TF is distinctive at QKV module.

Public Source Code. All official source codes will be available soon.
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Figure 7: Layer-(L[12]) Histogram Density Estimates of Pre-trained Weight and DualPrompt-
Soft-TF’s Parameters on 10-Split-CIFAR100.
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