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Abstract

We propose HyperIV, a novel approach for real-
time implied volatility smoothing that eliminates
the need for traditional calibration procedures.
Our method employs a hypernetwork to gener-
ate parameters for a compact neural network that
constructs complete volatility surfaces within 2
milliseconds, using only 9 market observations.
Moreover, the generated surfaces are guaranteed
to be free of static arbitrage. Extensive exper-
iments across 8 index options demonstrate that
HyperIV achieves superior accuracy compared
to existing methods while maintaining computa-
tional efficiency. The model also exhibits strong
cross-asset generalization capabilities, indicating
broader applicability across different market in-
struments. These key features – rapid adapta-
tion to market conditions, guaranteed absence
of arbitrage, and minimal data requirements –
make HyperIV particularly valuable for real-time
trading applications. We make code available at
https://github.com/qmfin/hyperiv.

1. Introduction
The implied volatility surface is a fundamental concept in
options pricing. Market participants prefer to quote prices in
terms of implied volatilities, as these values are more stable
over time and provide an exact transformation to option
prices. These implied volatilities serve as crucial inputs for
more sophisticated models, which are then used to value
exotic derivatives, determine margin requirements, and pro-
vide liquidity in options markets. At its core, constructing
an implied volatility surface involves converting discrete
option price quotes into a continuous, smooth surface that
spans all possible combinations of strike prices and maturi-
ties. This process is commonly known as implied volatility
smoothing. The construction faces several key challenges:
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(i) the surface must be arbitrage-free, thus simply interpolat-
ing or extrapolating from potentially arbitrageable quotes
does not work; (ii) the model requires frequent recalibration
to reflect market movements, requiring computational effi-
ciency; (iii) at higher frequencies, the limited availability of
high-quality option prices is often the bottleneck, especially
for fitting the tails of volatility curves. These practical con-
straints have historically favoured simple parametric models
(Gatheral, 2004; Gatheral & Jacquier, 2014; Hendriks &
Martini, 2019; Mingone, 2022; Zaugg et al., 2024) over
machine learning approaches (Ackerer et al., 2020; Zheng
et al., 2021; Bergeron et al., 2021; Ning et al., 2023; Gonon
et al., 2024).

In this paper, we introduce a more challenging and practi-
cally demanding problem: constructing implied volatility
surfaces using extremely sparse observations (fewer than
10 contracts) at high frequency (e.g., one-minute interval).
This setting better reflects real-world trading conditions,
where only a small set of options is actively traded with
reliable prices at any given moment, and where surfaces
must be generated within milliseconds for time-sensitive
applications. To address this challenge, we propose Hy-
perIV, a hypernetwork-based method that constructs implied
volatility surfaces for new market conditions in 2 millisec-
onds, after training on historical data. We validate HyperIV
through extensive experiments on both one-minute inter-
val and end-of-day data across diverse assets, including
major U.S. indices (S&P 500, NASDAQ 100) and interna-
tional indices (MSCI World, MSCI Emerging Markets). Our
evaluation encompasses over 150,000 surfaces and 50 mil-
lion data points, demonstrating the model’s robustness and
generalization capabilities. The results show that HyperIV
achieves superior accuracy compared to existing methods
while maintaining computational efficiency and arbitrage-
free properties.

1.1. Literature Review

Implied volatility smoothing has been extensively studied,
with approaches generally falling into two categories (Home-
scu, 2011). The first category comprises indirect methods
that initially fit a model for option prices, typically driven
by underlying asset dynamics such as (local) stochastic
volatility models (Heston, 1993; Hagan et al., 2002), Levy
processes (Madan et al., 1998; Kou, 2002; Carr et al., 2002),
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or rough volatility models (Christian Bayer & Gatheral,
2016; El Euch & Rosenbaum, 2018; Gatheral et al., 2018).
These methods then convert the fitted price surface to an
implied volatility surface through the inverse Black-Scholes
formula, using root-finding algorithms. The second category
consists of direct methods that employ specific closed-form
representations, either through carefully designed functions
(Gatheral, 2004; Gatheral & Jacquier, 2014; Hendriks &
Martini, 2019; Mingone, 2022; Zaugg et al., 2024) or uni-
versal function approximators like neural networks (Ackerer
et al., 2020; Zheng et al., 2021; Bergeron et al., 2021; Ning
et al., 2023; Gonon et al., 2024). Direct methods have gained
greater adoption due to their easier calibration and faster exe-
cution. For simpler models, such as the Stochastic Volatility
Inspired (SVI) approach (Gatheral, 2004) and its extensions
(Gatheral & Jacquier, 2014; Guo et al., 2016; Hendriks &
Martini, 2019; Martini & Mingone, 2022), ensuring absence
of arbitrage can be achieved through constraints on the pa-
rameter space (Fukasawa, 2010; Homescu, 2011; Cohort
et al., 2019). However, these methods may fail when market
conditions fall outside the scope of their chosen functions.
For instance, very short-term options markets can exhibit
W-shaped volatility curves (Glasserman & Pirjol, 2023),
which some models struggle to capture. Neural network-
based methods offer greater flexibility in addressing such
challenges. Ackerer et al. (2020) proposed a hybrid ap-
proach where a neural network corrects simpler methods
(e.g., SVI). However, enforcing no-arbitrage conditions on
neural networks is more complex, typically requiring care-
ful architecture design, auxiliary loss functions, and data
augmentation techniques (Zheng et al., 2021). Additionally,
these machine learning methods generally assume dense ob-
servations and require longer calibration time compared to
simpler models. For constructing complete implied volatil-
ity surfaces from extremely sparse data, the Longitude al-
gorithm (Zetocha, 2022) addresses strike interpolation and
extrapolation for individual maturities by employing the
Neri-Schneider entropy maximisation algorithm (Neri &
Schneider, 2012), and then handles maturity extrapolation
through time translation of log-normal cumulative distribu-
tion functions. This concept of transforming distributions
across maturities was further developed in (Zetocha, 2023)
using an optimal transport-inspired framework for generat-
ing arbitrage-free transformations of an implied volatility
surface. Building on these approaches, (Cao et al., 2024)
further investigated the theoretical foundations, particularly
the ‘One-X property’ and its role in establishing conditions
to eliminate calendar arbitrage. They also explored the use
of Log Gaussian Mixtures (as opposed to simpler Log Gaus-
sian distributions) for better capturing complex volatility
features like W-shapes.

Implied volatility models contain free parameters that re-
quire calibration before deployment. This calibration proce-

dure mirrors model training in machine learning, typically
involving iterative optimisation from randomly initialised
parameters. Deep learning approaches have emerged to
accelerate this calibration procedure. Hernandez (2016) pi-
oneered a direct mapping from prices/implied volatilities
on a rectangular mesh grid of moneyness and maturity to
model parameters. In an inverse approach, Liu et al. (2019);
Benth et al. (2021); Blanka Horvath & Tomas (2021) map
model parameters to prices/implied volatilities, necessitat-
ing a lightweight second-stage optimisation on the neural
network inputs (equivalently, model parameters). A key
limitation of these approaches is their reliance on fixed mon-
eyness and maturity grids, which rarely align with actual
market observations. More recent work by Bayer et al.
(2019); Yang & Hospedales (2023); Baschetti et al. (2024)
addresses this by adopting a point-wise approach that ac-
cepts continuous inputs for moneyness and maturity rather
than using fixed grid positions. Our method builds upon
these calibration acceleration techniques, eliminating the
need for repeated calibration after the initial model training.
While similar to (Hernandez, 2016), our approach differs in
two key aspects: first, we employ a hypernetwork architec-
ture (Ha et al., 2016) where one neural network generates
parameters for a more compact network that models implied
volatility surface more accurately and flexibly; second, we
handle a variable-sized set of option contracts with continu-
ous moneyness and maturity values, rather than requiring
fixed-grid data. Alternative calibration-free methods have
been proposed by Bergeron et al. (2021) and Gonon et al.
(2024). However, these approaches have not been validated
in sparse data scenarios, and adapting them to this new
setting needs non-trivial modifications, as we discuss in
Section 4.2.

Our technical approach leverages hypernetworks (Ha et al.,
2016), which utilise one neural network to generate the
parameters of another. This architecture has demonstrated
remarkable success across various domains, particularly in
implicit neural representations (Sitzmann et al., 2020) where
networks learn continuous mappings from coordinates to
signals. Recent work by Mundinger et al. (2024) showcases
hypernetworks’ capability in representing PDE solution op-
erators, suggesting their potential for financial applications.
The connection between implied volatility smoothing and
implicit neural representations emerges naturally: both do-
mains involve mapping from low-dimensional coordinates
(moneyness-maturity pairs or spatial coordinates) to func-
tion values (volatilities or signal intensities).

1.2. Contributions

We make three main contributions. First, we introduce a new
problem setting that echoes few-shot learning in machine
learning, constructing complete implied volatility surfaces
from fewer than 10 data points. Second, we develop a
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hypernetwork-based method that generates arbitrage-free
implied volatility surfaces within 2 milliseconds. Third, we
perform comprehensive experiments on over 150,000 sur-
faces and 50 million contracts, demonstrating our method’s
superior performance compared to several baselines adapted
to the same setting.

2. Preliminaries
Options are financial contracts that provide the holder with
the right, but not the obligation, to buy (call option) or sell
(put option) an underlying asset at a specific price (strike
price) on a designated future date (maturity date). The
underlying assets for options can include indices, stocks,
currencies, commodities, and other financial derivatives
(e.g., futures or even options themselves). These instruments
are primarily used to hedge against price movements of the
underlying asset. The two main categories of options are
European and American options. European options permit
exercise only on the maturity date, while American options
allow exercise at any time before maturity. These options
are primarily traded on exchanges, such as the Chicago
Board Options Exchange (CBOE). There also exist exotic
options (e.g., Barrier Options), which are typically traded in
the over-the-counter (OTC) market. In this study, we focus
on European options with underlying assets consisting of
indices, given their widespread market presence.

Notations We introduce the notations used throughout this
paper. For a given option contract, we use K to denote its
strike price, t for its annualised time to maturity, S for the
current price of the underlying asset, and F for the forward
price of the underlying asset, calculated as F = (S−D)ert,
where r represents the risk-free interest rate and D denotes
the dividend. While r, D and F are time-dependent, we
omit this dependency for notational simplicity. The vari-
ables (K, t, S, r,D) are directly observable from the market.
However, there exists ambiguity in the option’s price due
to the presence of both bid and ask prices. In this work, we
define the option price V as the mid-point between the best
bid and best ask price. Finally, we define the log forward-
moneyness as k = log(KF ).

The Black-Scholes model was the first widely used method
for pricing European options, characterised by a single pa-
rameter – volatility σ ∈ R+ under the risk-neutral measure.
For a European option, the model estimates the theoretical
price through the following closed-form formula:

V (k, t, F, r, δ|σ) = e−rtF
(
δΦ (δd+ (k, t|σ))− δekΦ (δd− (k, t|σ))

)
(1)

where d±(k, t|σ) = 1
σ
√
t

(
−k ± 1

2σ
2t
)
. Here δ = 1

represents a call option, δ = −1 represents a put op-
tion, and Φ(·) denotes the cumulative distribution func-
tion of the standard normal distribution. The parame-

ter σ is typically calibrated by minimising the squared
differences between the model predicted prices and the
observed market prices for a finite set of option con-
tracts {(k1, t1, F1, r1, δ1, V1), (k2, t2, F2, r2, δ2, V2), . . . ,
(kN , tN , FN , rN , δN , VN )}, i.e., through the optimisation:

σ = argmin
σ

1

N

N∑
i=1

(V (ki, ti, Fi, ri, δi|σ)− Vi)
2 (2)

The assumption of constant σ is unlikely to hold in real
markets, thus limiting the effectiveness of the Black-Scholes
model. However, if we reduce Eq. 2 to a single option
contract, we can determine the unique σ that matches the
option price exactly (up to machine precision):

σi = argmin
σ

(V (ki, ti, Fi, ri, δi|σ)− Vi)
2 (3)

The solution exists and is unique because the derivative of
V with respect to σ (known as Vega in option Greeks) is
strictly positive. This σi serves as a proxy for option price
Vi and is referred to as implied volatility. Using σi instead
of Vi offers three key advantages: (i) it eliminates the need
to treat put and call options separately, as the implied volatil-
ity remains identical for both types with matching strike and
maturity; (ii) implied volatility exhibits less dependence on
the underlying asset price and provides a more numerically
stable range for modelling purposes; (iii) both the shape and
level of the implied volatility surface demonstrate remark-
able stability, with stylised features such as the volatility
smile remaining consistent across different time periods and
option contracts.

Implied volatility smoothing refers to the process of con-
structing a smooth surface that maps pairs of moneyness (k)
and maturity (t) to implied volatility (σ), using data from
a finite number of option contracts. This process typically
involves a parametric function σθ and requires solving the
following optimisation problem:

min
θ

1

N

N∑
i=1

(σθ(ki, ti)− σi)
2 (4)

In practice, implied volatility errors of the same magni-
tude can lead to significantly different pricing errors across
different moneyness values. To address this, practitioners
often use Vega-weighted loss functions. An alternative ap-
proach is to minimise errors directly in the price space by
transforming the implied volatilities back to option prices:

min
θ

1

N

N∑
i=1

(V (ki, ti, Fi, ri, δi|σθ(ki, ti))− Vi)
2 (5)

The parametric function σθ(·) cannot be arbitrarily speci-
fied, as it must meet certain constraints to prevent arbitrage
opportunities, which we will examine in detail in Sec. 3.3.
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3. Methodology
3.1. Problem Setting

Eq. 4 is generally not considered a challenging problem
under conventional settings for two main reasons: (i) the
parameter space of σθ is relatively modest, ranging from
just a few parameters (Gatheral & Jacquier, 2014) to several
hundreds (Zheng et al., 2021) or thousands (Ackerer et al.,
2020) – a scale that is considered small in the deep learning
era; (ii) most studies use end-of-day (EOD) data for their
experiments. For widely traded options, such as the S&P500
index option, EOD data typically contains tens of thousands
of contracts, providing sufficient data for model training.
Additionally, computational time is less critical since the
model needs to be trained/calibrated only once per day.

In this work, we present a more challenging scenario – fitting
the implied volatility surface using one-minute interval data
with only a small set of observed contracts (typically fewer
than 10). This setting better reflects real-world option trad-
ing conditions, where within any given minute, only a few
hundred contracts might be available, and even fewer will
have reliable prices (indicated by reasonably small bid/ask
spreads). The model must generate the surface within mil-
liseconds, making traditional neural network training or
fine-tuning approaches less practical. Specifically, we pro-
pose a model of the following form:

σθ(k, t) = fθ(k, t|Z) (6)

where Z = {(k1, t1, σ1), (k2, t2, σ2), . . . } represents a ref-
erence set containing fewer than 10 elements. The model
parameter θ can be trained using historical data and remains
fixed during deployment.

3.2. A Hypernetwork Approach

We propose to model fθ(k, t|Z) using a hypernetwork (Ha
et al., 2016). Specifically, a hypernetwork, denoted as gθ(·),
takes a set as input and outputs a flattened vector. This
flattened vector is split, and each segment is reshaped appro-
priately so that a compact network that models the implied
volatility surface, hω(·), can utilise them as its parameters.
Finally, this compact network produces the estimated im-
plied volatility for any pair of (k, t) within the considered
domain. This procedure is represented as follows:

ω = gθ(Z) σ = hω(k, t) (7)

Here, gθ(·) can be any neural network that handles sets (Za-
heer et al., 2017), meaning the order of option contracts in
Z does not affect the output. In this work, we choose to
use a Transformer encoder (Vaswani et al., 2017) without
positional embedding, in the spirit of (Lee et al., 2019), and
apply mean pooling over the sample axis. The design re-
quirements for hω(·) are as follows: (i) its output must be

F t r K V k σ ∆

1 3827.08 0.0192 0.0399 3755 17.00 -0.0190 0.2100 -0.2519
2 3827.08 0.0192 0.0399 3825 42.40 -0.0005 0.2056 -0.4867
3 3827.08 0.0192 0.0399 3900 15.00 0.0189 0.1955 0.2471
4 3836.34 0.0822 0.0411 3675 39.45 -0.0430 0.2335 -0.2498
5 3836.34 0.0822 0.0411 3840 92.15 0.0010 0.2148 0.5061
6 3836.34 0.0822 0.0411 4000 28.30 0.0418 0.1936 0.2343
7 3853.73 0.2384 0.0439 3575 74.40 -0.0751 0.2512 -0.2503
8 3853.73 0.2384 0.0439 3855 163.40 0.0003 0.2209 0.5203
9 3853.73 0.2384 0.0439 4125 50.40 0.0680 0.1917 0.2483

Table 1. A snapshot of the reference set Z

non-negative, achieved by using a softplus activation func-
tion in the last layer; (ii) it must satisfy the arbitrage-free
constraints, which are detailed in Sec. 3.3. We found that a
simple multi-layer perceptron (MLP) with two hidden lay-
ers, each containing 16 neurons, performs well after initial
experimentation. Notably, this network has only 337 param-
eters. The architectures of gθ(·) and hω(·) are described in
detail in Appendix A.

The trainable parameters reside solely within the hyper-
network gθ(·), as the parameters for the implied volatility
surface network are generated on-the-fly rather than being
trained. The objective function is formulated as:

min
θ

1

M

M∑
j=1

1

N (j)

N(j)∑
i=1

(
hω(j)(k

(j)
i , t

(j)
i )− σ

(j)
i

)2
(8)

where ω(j) = gθ(Z(j)). In this expression, j iterates over
the number of intervals in a historical period, and i iterates
over the number of option contracts within a given interval,
while Z(j) represents a small set of option contracts for that
interval. While the reference set Z could be constructed
through any consistent rules, we select 9 contracts that are
closest to {at-the-money, 25 ∆ Call, 25 ∆ Put} × {7 days,
1 month, 3 months} in this work. The rationale behind
this selection is that these options correspond to the most
liquid contracts in our datasets, ensuring price reliability1.
A snapshot of the reference set can be found in Table 1.

After training, the model can generate a complete implied
volatility surface for any new reference set Z through a
single forward pass of the hypernetwork. This allows real-
time implied volatility smoothing for new market conditions
without further optimisation.

3.3. Arbitrage-free Constraints

The implied volatility surface network (k, t)
hω−−→ σ must

comply with arbitrage-free constraints, as discussed earlier.
A fundamental requirement in option pricing theory is that
the model must be free of static arbitrage – trading strategies

1Here, ∆ refers to the derivative of the option price with respect
to the underlying asset’s price. A 25 ∆ implies that a $1 increase
in the underlying asset will lead to an approximate $0.25 increase
in the call option price or $0.25 decrease in the put option price.
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that guarantee a positive profit with non-zero probability
while having zero probability of loss (Carr et al., 2003).
There are two cases: calendar spread arbitrage and butterfly
arbitrage. The absence of calendar spread arbitrage implies
the monotonicity of option prices with respect to maturity,
while the absence of butterfly arbitrage implies the corre-
sponding density is non-negative.

Calendar spread arbitrage We denote the non-discounted
call option price from the Black-Scholes model as Ṽ =
ertV = F

(
Φ(d+(k, t|σ))− ekΦ(d−(k, t|σ))

)
. An im-

plied volatility surface is free of calendar spread arbitrage
if, for all k ∈ R and t ∈ R+, the derivative of Ṽ with respect
to t is non-negative. Defining b(k, t) = ϕ(d−(k,t|σ(k,t)))

σ(k,t)
√
t

,
where ϕ(·) represents the probability density function of the
standard normal distribution, we obtain:

∂Ṽ

∂t
=

K

2
b(k, t)σ(k, t)

(
σ(k, t) + 2t

∂σ(k, t)

∂t

)
(9)

This leads to the following constraint:

σ(k, t) + 2t
∂σ(k, t)

∂t
≥ 0 ∀k ∈ R and t ∈ R+ (10)

Butterfly arbitrage An implied volatility surface is free
of butterfly arbitrage if the corresponding density is valid,
meaning it is non-negative and integrates to one for all time
slices:

p(k, t) ≥ 0 ∀k ∈ R and t ∈ R+ (11)∫ +∞

−∞
p(k, t)dk = 1 ∀t ∈ R+ (12)

where p(k, t) is obtained by twice differentiating Ṽ with re-
spect to strike price K and applying the change-of-variable
K → k:

p(k, t) =
∂2Ṽ

∂K2

∂K

∂k
= b(k, t)g(k, t) (13)

where the function g(k, t) is given by: g(k, t) =(
1− k

σ(k,t)
∂σ(k,t)

∂k

)2
−

(
tσ(k,t)

2
∂σ(k,t)

∂k

)2
+

tσ(k, t)∂
2σ(k,t)
∂k2 . Based on Eq. 10, 11, and 12, we

introduce an auxiliary loss function:

min
θ

1

|T |
∑
t∈T

(
1

|K|
∑
k∈K

(
ℓ1(k, t) + ℓ2(k, t)

)
+ ℓ3(t)

)
(14)

Here, T represents an ordered set of evenly spaced time-to-
maturity samples over [0.01, 2] and K denotes an ordered set
of evenly spaced log moneyness samples over [−1.5, 1.5].
The notation | · | represents the cardinality of a set. The
individual terms of the auxiliary loss function are defined
as:

ℓ1(k, t) = max

(
0,−σ(k, t)− 2t

∂σ(k, t)

∂t

)
(15)

Index Interval Start End Interval # Options #

SPX 1-min 2023-01-03 2023-08-31 65,151 9,606,502
NDX 1-min 2023-01-03 2023-08-31 64,963 7,315,928
SPX 1-day 2013-01-02 2023-08-31 2,650 17,728,464
NDX 1-day 2013-01-02 2023-08-31 2,681 10,432,080
RUT 1-day 2013-01-02 2023-08-31 2,685 6,155,780
VIX 1-day 2013-01-02 2023-08-31 1,652 388,182

MXWLD 1-day 2015-06-08 2023-08-31 2,023 1,524,585
MXEF 1-day 2015-06-08 2023-08-31 2,029 1,040,392

Table 2. Dataset Statistics

ℓ2(k, t) = max(0,−g(k, t)) (16)

ℓ3(t) = (Trapz(p(·, t),K)− 1)2 (17)

where Trapz(·) denotes the numerical integral using the
trapezoidal rule. Empirically, we have found that it is not
necessary to tune the weight of Eq.14 when added to Eq.8,
as this auxiliary loss will approach zero in the end. Since
Eq. 14 depends on a specific reference set Z , we apply it to
each reference set within a batch individually.

4. Experiments
4.1. Dataset

We conduct our experiments using two different time inter-
vals: one-minute and one-day (end-of-day). For the one-
minute interval data, we consider index options on S&P 500
(SPX) and NASDAQ 100 (NDX). For the one-day interval
data, we additionally include Russell 2000 (RUT), CBOE
Volatility Index (VIX), MSCI World Index (MXWLD), and
MSCI Emerging Markets Index (MXEF). We filter out in-
the-money options, options with prices lower than $0.1, and
options with maturities longer than 2 years. The details
regarding data volume after pre-processing can be found in
Table 2.

Train-Test Split For the one-minute interval data, we train
the model using data before 2023-08-01 and test on the sub-
sequent intervals. For the one-day data, we train the model
using data before 2023-01-01 and test on the remaining
intervals. While each asset-interval has its own dedicated
model, totalling 8 models, we also examine the generaliza-
tion across assets in Sec. 4.5.

4.2. Baseline Methods

While our problem setting is new, several existing methods
can be adapted to address it. Some deep learning approaches
like those of (Ackerer et al., 2020; Zheng et al., 2021) re-
quire calibration/training for each time interval from scratch,
making them impractical for our scenario due to their param-
eter complexity, since we have only 9 observed data points.
Therefore, we focus on the following adaptable methods:

SSVI Hernandez (2016) proposed to map option prices
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Model SSVI VAE GNO HyperIV

Model Param. # - 332,289 102,529 243,153
Imp. Vol. Surf. Param. # 4 - - 337
Training Time (s) - 2.87 5.08 2.82
Training Memory (MiB) - 9,743 77,815 821
Testing Time (ms) 13.11 0.34 7.86 2.09
Testing Memory (MiB) 0.47 673 2,275 532

Table 3. Model parameters and computational costs

to parameters of an established mathematical finance
model (single-factor Hull-White model in their original
work) using a neural network. In theory, it can be adapted
to predict the parameters of an implied volatility model
(e.g., SSVI), however, since calibrating SSVI with 9
option contracts takes comparable time to the forward
pass of neural network, we opt to use SSVI directly.
Specifically, we employ SSVI’s power-law parameterisation
to model the total implied variance: w(k, t|ς, η, γ, ρ) =
ς2t
2

(
1 + ρη(ς2t)−γk +

√
(η(ς2t)−γk + ρ)2 + 1− ρ2

)
and the implied volatility is computed as σ(k, t) =√

w(k,t)
t .

VAE Bergeron et al. (2021) introduced a method that maps
implied volatilities from a fixed grid of deltas and maturities
to latent variables. These latent variables are then combined
with moneyness-maturity pairs through a decoder to predict
the corresponding implied volatilities. This approach can
be viewed within the framework of Eq. 6 where Z is not
a set of tuples {(k1, t1, σ1), (k2, t2, σ2), . . . } but rather a
vector of volatilities z = [σ1, σ2, . . . ], since the coordinates
(ki, ti) remain consistent across intervals. In our implemen-
tation, we upscaled their network architecture to match the
parameter count of other baselines, which led to signifi-
cant performance improvements. Unlike the original study
which focused on foreign exchange markets where fixed-
grid options are readily available, index options require us
to create virtual options since they do not trade on a fixed
grid. We provide the details of this virtual grid creation in
Appendix B.

GNO Gonon et al. (2024) leveraged graph neural
operators (Li et al., 2020) to map observed data
{(k1, t1, σ1), (k2, t2, σ2), . . . } to a smoothed surface. In
their original work, all contracts are treated equally, with the
reference set encompassing all observed option contracts in
a given interval. To adapt this method to our setting, we limit
the reference set to those 9 selected contracts and modify
the graph construction as follows: (i) reference set contracts
form a fully connected directed graph; (ii) each reference
contract has directed edges pointing to all non-reference
contracts; (iii) non-reference contracts neither point back
to reference contracts nor connect to other non-reference
contracts. This graph architecture guarantees that the pre-
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Figure 1. Implied volatility smoothing from sparse data. Red stars
denote the 9 reference option contracts, blue dots represent test
contracts held out from training, and the grey surface illustrates
the volatility surface constructed by HyperIV using the reference
data.
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Figure 2. The slices of implied volatility surface

diction for any given (k, t) pair depends exclusively on the
reference set Z , with complete independence from other
queried points on the volatility surface.

The computational characteristics of SSVI, VAE, GNO, and
HyperIV are summarised in Table 3. The training time refers
to the runtime for one SGD step for a batch of 128 inter-
vals, with each interval containing 16 option contracts. The
total training duration spans 500 epochs, with each epoch
processing all intervals in batches of 128. The testing time
refers to the runtime for constructing the implied volatility
surface using a new, unseen reference set and evaluating
over a uniform grid of 100 moneyness (k) and 100 maturity
(t) values, totalling 10,000 points. All training and testing
procedures are executed on a NVIDIA A100 GPU with 80G
VRAM, with the exception of SSVI, which runs on an Intel
Xeon CPU.

4.3. Qualitative Results

We begin with an illustration of the generated implied volatil-
ity surface using SPX end-of-day data on the first testing
day (03-Jan-2023). The grey surface in Fig. 1 (left) is con-
structed using only the 9 reference contracts shown in Ta-
ble 1. Despite these contracts covering only a small region
of log moneyness and maturity, the surface demonstrates
excellent fit to the unobserved data, as illustrated in Fig. 1
(right). Further validation is provided in Fig. 2, where we
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Index Interval SSVI VAE GNO HyperIV

SPX 1-min 0.0283 0.0222 0.0140 0.0167
NDX 1-min 0.0273 0.0258 0.0162 0.0156
SPX 1-day 0.0312 0.0162 0.0085 0.0075
NDX 1-day 0.0498 0.0493 0.0117 0.0113
RUT 1-day 0.0566 0.0414 0.0133 0.0107
VIX 1-day 0.2771 0.0826 0.1345 0.0336
MXWLD 1-day 0.0511 0.0651 0.0362 0.0166
MXEF 1-day 0.0551 0.0697 0.1040 0.0172

Table 4. Testing MAE (Implied Volatility)

Index Interval SSVI VAE GNO HyperIV

SPX 1-min 3.2698 3.6925 2.2398 2.5115
NDX 1-min 15.2799 17.3612 10.2187 10.0043
SPX 1-day 6.6257 4.0799 1.7349 1.6736
NDX 1-day 25.8445 32.2850 7.7103 7.2159
RUT 1-day 2.9377 4.5851 1.3467 0.9554
VIX 1-day 0.5256 0.1734 0.2889 0.0771
MXWLD 1-day 2.9746 8.7424 3.2839 1.6886
MXEF 1-day 3.1641 5.7376 11.6957 1.7596

Table 5. Testing MAE (Price)
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Figure 3. Left: the slices of total implied variance σ2t – the ab-
sence of crossed lines suggests no calendar spread arbitrage. Right:
the inferred density from implied volatility surface – the absence
of negative values suggests no butterfly arbitrage.

plot several surface slices corresponding to maturities with
reference contracts. The volatility smiles are accurately re-
covered even without observations for tails, confirming that
the hypernetwork has successfully learned the stylised facts.

To verify the absence of static arbitrage, we examine two
key aspects. First, Fig. 3 (left) displays the total implied
volatilities (w = σ2t) across multiple maturities. According
to Eq. 10, total implied volatility should increase monoton-
ically with maturity to prevent calendar spread arbitrage,
which is confirmed in Fig. 3. Second, we analyse the in-
ferred density (Eq. 13) for the same set of maturities in
Fig. 3 (right). The non-negative nature of these densities
rules out butterfly arbitrage.

4.4. Quantitative Results

To evaluate the performance of HyperIV and other baselines,
we compute the test mean absolute error (MAE) for both im-
plied volatilities and option prices, with results summarised
in Table 4 and Table 5. HyperIV achieves superior perfor-
mance across all assets except for minute-level SPX data,
where GNO performs better. Notably, HyperIV demon-
strates remarkable stability across all datasets, while SSVI
fails on VIX and GNO fails on both VIX and MXEF. It is
worth highlighting that SSVI, despite having only four pa-
rameters, outperforms VAE (300K parameters) on MXWLD
and MXEF.

VAE GNO HyperIV

SPX→NDX 0.0257 0.0185 0.0223
NDX→SPX 0.0315 0.1272 0.0349

Table 6. Generalization (MAE) on one-minute interval data

To
From

SPX NDX RUT VIX MXWLD MXEF

SPX 0.0075 0.0154 0.0124 0.1810 0.0159 0.0284
NDX 0.0186 0.0113 0.0170 0.1874 0.0202 0.0355
RUT 0.0157 0.0134 0.0107 0.1927 0.0164 0.0299
VIX 0.6082 0.5606 0.2028 0.0336 0.5377 0.2922
MXWLD 0.0242 0.0230 0.0232 0.1821 0.0166 0.0203
MXEF 0.0335 0.0267 0.0309 0.1643 0.0221 0.0172

Table 7. Generalization (MAE) on one-day interval data of Hy-
perIV

To investigate the sources of errors, we partition each dataset
into 160 two-dimensional bins (10 maturity intervals × 16
log moneyness intervals), ensuring approximately equal
numbers of contracts per bin. Fig. 4 displays the mean im-
plied volatilities and mean absolute errors from different
models across these bins. Fig. 4 reveals a clear correla-
tion between error magnitude and implied volatility value,
with larger errors concentrated in regions of higher implied
volatilities (e.g., short maturities and extremely small strikes
in the top-left corner). VIX and MXEF exhibit notably dif-
ferent implied volatility distributions compared to other
assets, with significant values in the top-right corner (short
maturities and extremely large strikes), explaining the poor
performance of baseline models on these two assets. In
contrast, HyperIV maintains strong performance across all
regions. Additional analysis of aggregated errors over time,
log moneyness, and maturity intervals is provided in Ap-
pendix C, confirming these findings.

4.5. Further Analysis

Generalization We investigate the cross-asset generaliza-
tion by examining whether a model trained on one asset
can effectively estimate implied volatilities for another asset.
Results are summarised in Table 6 and Table 7, with addi-
tional baseline comparisons provided in Appendix D. For
minute-level data, GNO exhibits strong SPX→NDX gener-
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Figure 4. Mean values grouped by log moneyness and maturity. The log moneyness is increasing from left to right and the maturity is
increasing from top to bottom. The assets are (top-down) SPX, NDX (1-min), SPX, NDX, RUT, VIX, MXWLD, MXEF (1-day).

alization but fails catastrophically in the reverse direction
(NDX→SPX). Both VAE and HyperIV demonstrate robust
bidirectional performance across directions. For end-of-day
data, HyperIV exhibits robust generalization across most
assets, with the notable exception of VIX – an expected
limitation given the significant domain gap. Remarkably,
excluding VIX, HyperIV’s generalization performance in
any-to-any transfer scenarios surpasses that of SSVI cali-
brated directly on the target datasets.

Auxiliary Loss While our approach does not provide hard
guarantees for arbitrage-free conditions, the auxiliary losses
remain notably small: approximately 10−8 during training
and 10−6 during testing. The calendar spread arbitrage
(Eq. 15) and positive density function (Eq. 16) constraints

are strictly enforced, as demonstrated by these near-zero
loss values. The primary residual error arises from the
integrate-to-one constraint (Eq. 17), reflecting minor nu-
merical inaccuracies inherent to trapezoidal integration. In
practice, market realities like transaction costs render any
residual arbitrage opportunities economically unexploitable,
with additional safeguards from standard risk management
protocols further mitigating operational risks. This approach
of using an auxiliary loss to promote arbitrage-free surfaces
is common in contemporary deep learning models (Ackerer
et al., 2020; Zheng et al., 2021; Gonon et al., 2024), unlike
simpler parametric models such as SSVI, where arbitrage-
free conditions are typically guaranteed by analytically con-
straining the model’s parameter space.
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4.6. Limitation

Interpretability Unlike SSVI, our method lacks trans-
parency and interpretability. It has a significantly smaller
number of parameters (337) in the implied volatility surface
network, but these parameters do not carry meaningful in-
terpretations or provide actionable insights for traders, as
SSVI’s parameters do. This limitation could be partially ad-
dressed through certain architecture designs of the implied
volatility model, such as a mixture of SVI/SABR models
instead of MLP.

Computational Cost While SSVI only needs basic CPU,
our method requires modern GPU or NPU. When using an
M2 chip instead of an A100 GPU, inference time increases
from 2 ms to 8 ms for HyperIV, from 8 ms to 300 ms for
GNO, and from 0.34 ms to 15 ms for VAE. Interestingly,
SSVI performs better on the M2 chip (from 13 ms to 10 ms)
due to better single-core performance.

Data Accessibility Due to licence restrictions, we cannot
redistribute the data used for model training. Academic
researchers may access the end-of-day data through their
institution’s subscription to WRDS (which includes Option-
Metrics). Minute-level data is considerably more expensive
and presents greater preprocessing challenges. Theoreti-
cally, our method can be verified using synthetic data, which
can be generated at any desired frequency.

5. Conclusion
We present a novel approach to implied volatility smoothing
that effectively addresses the challenges of sparse data and
real-time computational constraints. The proposed model,
HyperIV, demonstrates how hypernetworks can accurately
capture complex implied volatility patterns while simultane-
ously enforcing arbitrage-free conditions and maintaining
computational efficiency. Future research directions include
explicitly incorporating historical data and modelling tem-
poral dynamics in implied volatility surfaces.

Acknowledgements The authors would like to thank Vin-
cent Zhao at Winton for initially highlighting the problem
setting of fitting the implied volatility surface using sparse
data, and for insightful discussions throughout this research.

Impact Statement
The democratisation of options trading through platforms
like Robinhood, which has dramatically increased retail
investor participation, underscores the critical need for effi-
cient volatility surface smoothing tools. HyperIV provides a
streamlined solution where practitioners need only execute
a single forward pass on available option quotes to gen-
erate a complete arbitrage-free implied volatility surface –
eliminating traditional optimisation and hyperparameter tun-

ing. While hypernetwork training incurs substantial upfront
computational costs (still significantly lower than baseline
methods), the elimination of frequent recalibration reduces
long-term operational overhead. This efficiency extends to
environmental sustainability, as reduced computational de-
mands translate into lower energy consumption for real-time
trading systems.
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A. Architecture
A.1. Neural Network for Implied Volatility Surface

Our model for the implied volatility surface maps coordinates (k, t) to volatility σ through three fully connected layers. The
first two layers employ hyperbolic tangent activation functions, while the final layer uses a softplus activation function to
ensure positive outputs. This architecture contains 337 parameters in total. The PyTorch implementation is shown below:

iv_network = torch.nn.Sequential(
torch.nn.Linear(2, 16), torch.nn.Tanh(),
torch.nn.Linear(16, 16), torch.nn.Tanh(),
torch.nn.Linear(16, 1), torch.nn.Softplus()

)

A.2. Hypernetwork

The hypernetwork functions as a set embedding network that transforms data from dimension [B,M,D] to [B,P ]. Here, B
represents the batch size, M denotes the number of elements in each set (set to 9 in our implementation), D indicates the
number of features per instance (3 features: k, t, and σ for each option contract in the reference set), and P corresponds to
the number of parameters in our implied volatility surface network (337 as specified above).

The network architecture consists of several sequential transformations. Initially, a fully-connected layer maps each option’s
features to H hidden neurons ([B,M,D] → [B,M,H]). These representations then pass through multiple transformer
encoder layers, enabling cross-communication between set elements while maintaining dimensionality ([B,M,H] →
[B,M,H]). The transformer’s output is then averaged across the set dimension ([B,M,H] → [B,H]), and a final fully-
connected layer produces the desired parameter vector ([B,H] → [B,P ]). Notably, the absence of positional embeddings
in the transformer encoder ensures the network’s output remains invariant to the ordering of set elements. The PyTorch
implementation follows below.

class SetEmbeddingNetwork(nn.Module):
def __init__(self, input_dim, output_dim, num_heads=2, num_layers=2,

hidden_dim=128):↪→

super(SetEmbeddingNetwork, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.attention_layers = nn.ModuleList(

[nn.TransformerEncoderLayer(
d_model=hidden_dim,
nhead=num_heads,
dim_feedforward=hidden_dim,
batch_first=True,
dropout=0,
activation="relu")

for _ in range(num_layers)])
self.fc2 = nn.Linear(hidden_dim, output_dim)

def forward(self, x):
x = self.fc1(x)
for layer in self.attention_layers:

x = layer(x)
x = x.mean(dim=1)
x = self.fc2(x)
return x
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F t r K V k σ ∆

1 3827.0768 0.0192 0.0399 3755 17.0000 -0.0190 0.2100 -0.2519
2 3827.0768 0.0192 0.0399 3825 42.4000 -0.0005 0.2056 -0.4867
3 3827.0768 0.0192 0.0399 3900 15.0000 0.0189 0.1955 0.2471
4 3836.3443 0.0822 0.0411 3675 39.4500 -0.0430 0.2335 -0.2498
5 3836.3443 0.0822 0.0411 3840 92.1500 0.0010 0.2148 0.5061
6 3836.3443 0.0822 0.0411 4000 28.3000 0.0418 0.1936 0.2343
7 3853.7277 0.2384 0.0439 3575 74.4000 -0.0751 0.2512 -0.2503
8 3853.7277 0.2384 0.0439 3855 163.4000 0.0003 0.2209 0.5203
9 3853.7277 0.2384 0.0439 4125 50.4000 0.0680 0.1917 0.2483

Table 8. A snapshot of the reference set Z for SSVI, GNO, and HyperIV

F t r K V k σ ∆

1 3827.0768 0.0192 0.0399 3746.5496 18.7273 -0.0213 0.2333 -0.2500
2 3827.0768 0.0192 0.0399 3827.0768 43.7309 0.0000 0.2070 0.5057
3 3827.0768 0.0192 0.0399 3896.9478 14.8118 0.0181 0.1900 0.2500
4 3836.3443 0.0822 0.0411 3669.8340 40.9677 -0.0444 0.2419 -0.2500
5 3836.3443 0.0822 0.0411 3836.3443 90.5037 0.0000 0.2070 0.5118
6 3836.3443 0.0822 0.0411 3983.0089 29.7121 0.0375 0.1866 0.2500
7 3854.9641 0.2466 0.0440 3573.3798 75.0444 -0.0758 0.2494 -0.2500
8 3854.9641 0.2466 0.0440 3854.9641 156.2998 0.0000 0.2070 0.5205
9 3854.9641 0.2466 0.0440 4117.5128 49.7415 0.0659 0.1842 0.2500

Table 9. A snapshot of virtual options for VAE

B. Virtual Options for VAE
SSVI, GNO, and HyperIV can handle continuous data inputs, only requiring the selection of the closest available option
contracts from the market. In our implementation, while we target 90-day maturity for options indexed (7,8,9), the actual
contracts have 87-day maturity. Similarly, ATM options have log-moneyness (k) values close to, but not exactly, zero. For
the 25-delta options, we select contracts with delta values nearest to -0.25 for puts and 0.25 for calls. All options presented
in the table represent actual market contracts. The reference set Z for the specific example in Table 8 is:

Z = {(−0.0190, 0.0192, 0.2100), (−0.0005, 0.0192, 0.2056), (0.0189, 0.0192, 0.1955),

(−0.0430, 0.0822, 0.2335), (0.0010, 0.0822, 0.2148), (0.0418, 0.0822, 0.1936),

(−0.0751, 0.2384, 0.2512), (0.0003, 0.2384, 0.2209), (0.0680, 0.2384, 0.1917)}

While the ordering of triplets (k, t, σ) within Z is flexible, the component order within each triplet must be maintained.

In contrast to GNO and HyperIV, VAE requires fixed-grid data inputs. To accommodate this requirement, we employ
arbitrage-free interpolation (Cohort et al., 2019) to generate virtual options with precise k = 0 for ATM options at desired
maturities. The interpolation process determines both implied volatilities and corresponding prices, as shown for indices 2,
5, and 8 in Table 9. Subsequently, we optimise k values to achieve exact delta targets: -0.25 for put options (indices 1, 4, 7)
and 0.25 for call options (indices 3, 6, 9). For this particular example, the VAE input takes the form of an ordered 9-element
vector:

z = [0.2333, 0.2070, 0.1900, 0.2419, 0.2070, 0.1866, 0.2494, 0.2070, 0.1842] (18)

Unlike the previous case, the order of elements in this vector must strictly follow a specific (∆, t) grid pattern: starting with
7-day options (25 ∆ Put, ATM, 25 ∆ Call), followed by 30-day options in the same delta sequence, and concluding with
90-day options in the same pattern.

12



HyperIV: Real-time Implied Volatility Smoothing

0 50 100 150
Timestamp Index

0.02

0.04

0.06

M
AE

SSVI VAE GNO HyperIV Implied Volatility

0.12

0.14

0.16

0.18

0.20

Im
pl

ie
d 

Vo
la

til
ity

MAE by Time for SPX-Min

3 2 1 0
Log Moneyness

0.0

0.2

0.4

M
AE

SSVI VAE GNO HyperIV Implied Volatility

0.25

0.50

0.75

1.00

Im
pl

ie
d 

Vo
la

til
ity

MAE by Log Moneyness for SPX-Min

0.0 0.5 1.0 1.5
Maturity

0.02

0.04

M
AE

SSVI VAE GNO HyperIV Implied Volatility

0.15

0.20

0.25

Im
pl

ie
d 

Vo
la

til
ity

MAE by Maturity for SPX-Min

0 50 100 150
Timestamp Index

0.02

0.04

0.06

M
AE

SSVI VAE GNO HyperIV Implied Volatility

0.200

0.225

0.250

0.275

Im
pl

ie
d 

Vo
la

til
ity

MAE by Time for NDX-Min

1.00 0.75 0.50 0.25 0.00 0.25 0.50
Log Moneyness

0.00

0.05

0.10

0.15

M
AE

SSVI VAE GNO HyperIV Implied Volatility

0.2

0.3

0.4

0.5

Im
pl

ie
d 

Vo
la

til
ity

MAE by Log Moneyness for NDX-Min

0.0 0.5 1.0 1.5
Maturity

0.02

0.04

0.06

M
AE

SSVI VAE GNO HyperIV Implied Volatility

0.20

0.22

0.24

0.26

0.28

Im
pl

ie
d 

Vo
la

til
ity

MAE by Maturity for NDX-Min

0 50 100 150
Timestamp Index

0.000

0.025

0.050

0.075

0.100

M
AE

SSVI VAE GNO HyperIV Implied Volatility

0.22

0.24

0.26

0.28
Im

pl
ie

d 
Vo

la
til

ity

MAE by Time for SPX

3 2 1 0 1
Log Moneyness

0.0

0.2

0.4

M
AE

SSVI VAE GNO HyperIV Implied Volatility

0.25

0.50

0.75

1.00

Im
pl

ie
d 

Vo
la

til
ity

MAE by Log Moneyness for SPX

0.0 0.5 1.0 1.5 2.0
Maturity

0.00

0.05

0.10

M
AE

SSVI VAE GNO HyperIV Implied Volatility

0.22

0.24

0.26

0.28

Im
pl

ie
d 

Vo
la

til
ity

MAE by Maturity for SPX

0 50 100 150
Timestamp Index

0.02

0.04

0.06

0.08

M
AE

SSVI VAE GNO HyperIV Implied Volatility

0.26

0.28

0.30

0.32

Im
pl

ie
d 

Vo
la

til
ity

MAE by Time for NDX

1.5 1.0 0.5 0.0 0.5
Log Moneyness

0.00

0.25

0.50

0.75

1.00

M
AE

SSVI VAE GNO HyperIV Implied Volatility

0.2

0.4

0.6

0.8

1.0

Im
pl

ie
d 

Vo
la

til
ity

MAE by Log Moneyness for NDX

0.0 0.5 1.0 1.5 2.0
Maturity

0.00

0.05

0.10

0.15

M
AE

SSVI VAE GNO HyperIV Implied Volatility

0.25

0.30

0.35

0.40

Im
pl

ie
d 

Vo
la

til
ity

MAE by Maturity for NDX

0 50 100 150
Timestamp Index

0.00

0.05

0.10

M
AE

SSVI VAE GNO HyperIV Implied Volatility

0.250

0.275

0.300

0.325

0.350

Im
pl

ie
d 

Vo
la

til
ity

MAE by Time for RUT

1.5 1.0 0.5 0.0 0.5
Log Moneyness

0.0

0.1

0.2

0.3

0.4

M
AE

SSVI VAE GNO HyperIV Implied Volatility

0.2

0.4

0.6

0.8

Im
pl

ie
d 

Vo
la

til
ity

MAE by Log Moneyness for RUT

0.0 0.5 1.0 1.5 2.0
Maturity

0.000

0.025

0.050

0.075

0.100

M
AE

SSVI VAE GNO HyperIV Implied Volatility

0.225

0.250

0.275

0.300

0.325

Im
pl

ie
d 

Vo
la

til
ity

MAE by Maturity for RUT

0 50 100 150
Timestamp Index

0.00

0.25

0.50

0.75

1.00

M
AE

SSVI VAE GNO HyperIV Implied Volatility

0.9

1.0

1.1

Im
pl

ie
d 

Vo
la

til
ity

MAE by Time for VIX

1.0 0.5 0.0 0.5 1.0 1.5 2.0
Log Moneyness

0.0

0.5

1.0

1.5

M
AE

SSVI VAE GNO HyperIV Implied Volatility

0.5

1.0

1.5

Im
pl

ie
d 

Vo
la

til
ity

MAE by Log Moneyness for VIX

0.0 0.2 0.4 0.6
Maturity

0.0

0.1

0.2

0.3

0.4

M
AE

SSVI VAE GNO HyperIV Implied Volatility

0.8

1.0

1.2

Im
pl

ie
d 

Vo
la

til
ity

MAE by Maturity for VIX

0 50 100 150
Timestamp Index

0.05

0.10

M
AE

SSVI VAE GNO HyperIV Implied Volatility

0.20

0.25

0.30

Im
pl

ie
d 

Vo
la

til
ity

MAE by Time for MXWLD

0.4 0.2 0.0 0.2
Log Moneyness

0.0

0.2

0.4

0.6

0.8

M
AE

SSVI VAE GNO HyperIV Implied Volatility

0.2

0.4

0.6

0.8

Im
pl

ie
d 

Vo
la

til
ity

MAE by Log Moneyness for MXWLD

0.0 0.2 0.4 0.6 0.8 1.0
Maturity

0.0

0.1

0.2

0.3

M
AE

SSVI VAE GNO HyperIV Implied Volatility

0.2

0.3

0.4

0.5
Im

pl
ie

d 
Vo

la
til

ity

MAE by Maturity for MXWLD

0 50 100 150
Timestamp Index

0

1

2

M
AE

SSVI VAE GNO HyperIV Implied Volatility

0.20

0.25

0.30

Im
pl

ie
d 

Vo
la

til
ity

MAE by Time for MXEF

0.4 0.2 0.0 0.2 0.4
Log Moneyness

0.0

0.5

1.0

1.5

2.0

M
AE

SSVI VAE GNO HyperIV Implied Volatility

0.5

1.0

1.5

2.0

Im
pl

ie
d 

Vo
la

til
ity

MAE by Log Moneyness for MXEF

0.0 0.2 0.4 0.6 0.8 1.0
Maturity

0.0

0.1

0.2

0.3

M
AE

SSVI VAE GNO HyperIV Implied Volatility

0.2

0.3

0.4

0.5

0.6

Im
pl

ie
d 

Vo
la

til
ity

MAE by Maturity for MXEF

Figure 5. Absolute errors aggregated by Time / Log Moneyness / Maturity. The Y-axis on the right is for implied volatility.

C. MAE by Time, Log Moneyness, Maturity
To analyse the sources of error, we aggregate the absolute errors across different intervals of time, log moneyness, and
maturity in Fig. 5. The first column provides insight into model stability over time. HyperIV demonstrates the most
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consistent performance across all assets. GNO also performs well generally, with exceptions in VIX and a single outlier in
MXEF. While SSVI and VAE show stable performance, their accuracy falls short of both GNO and HyperIV.

The second column illustrates model performance across different ranges of log moneyness (strike prices). The results
reveal a clear positive correlation between errors and implied volatility levels. All models struggle with extreme values of
log moneyness, with SSVI and VAE showing particular sensitivity to these cases.

The third column presents model performance across different maturity ranges. While less pronounced than the moneyness
effect, there remains a notable relationship between implied volatility and errors. All models face challenges in fitting very
short maturities, consistent with our findings in Fig. 4 of the main paper. HyperIV maintains consistent performance across
all maturities except very short ones, though minute-level data exhibits inherently higher noise levels.
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To
From

SPX NDX RUT VIX MXWLD MXEF

SPX 0.0162 0.0444 0.0454 0.2600 0.0508 0.0636
NDX 0.0392 0.0493 0.0526 0.2461 0.0584 0.0650
RUT 0.0308 0.0422 0.0414 0.2435 0.0481 0.0551
VIX 0.6901 0.5960 0.6433 0.0826 0.6170 0.5640
MXWLD 0.0355 0.0573 0.0631 0.2702 0.0651 0.0783
MXEF 0.0502 0.0570 0.0607 0.2242 0.0661 0.0697

Table 10. Generalization (MAE) on one-day interval data of VAE

To
From

SPX NDX RUT VIX MXWLD MXEF

SPX 0.0085 0.0133 0.0146 0.0471 0.0291 0.0797
NDX 0.0136 0.0117 0.0175 0.0568 0.0468 0.0812
RUT 0.0142 0.0127 0.0133 0.0587 0.0440 0.0765
VIX 65.0678 322.2718 305.4467 0.1345 885.5610 200.7394
MXWLD 0.0196 0.0196 0.0192 0.0508 0.0362 0.0621
MXEF 0.0285 0.0279 0.0319 0.0529 0.1592 0.1040

Table 11. Generalization (MAE) on one-day interval data of GNO

D. Further Results on Generalization
We extend our analysis by examining the generalization capabilities of VAE and GNO across different assets. The results
reveal that models trained on standard assets fail to generalize to VIX, and conversely, models trained on VIX perform
poorly on other assets. This limitation is expected given the distinct implied volatility distribution of VIX compared to other
assets.

Interestingly, we observe that models trained on larger datasets sometimes outperform those trained specifically on smaller
datasets (such as MXWLD and MXEF). This phenomenon suggests that VAE and GNO benefit significantly from increased
training data. In contrast, HyperIV does not exhibit such data dependency, maintaining consistent performance regardless of
training dataset size. This distinction highlights a key advantage of HyperIV: its effectiveness in less liquid markets where
extensive training data may not be available.

15


