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Abstract

Long-form videos that span across wide tempo-001
ral intervals are highly information redundant002
and contain multiple distinct events or entities003
that are often loosely related. Therefore, when004
performing long-form video question answer-005
ing (LVQA), all information necessary to gen-006
erate a correct response can often be contained007
within a small subset of frames. Recent lit-008
erature explore use of large language models009
(LLMs) in LVQA benchmarks, achieving ex-010
ceptional performance, while relying on vision011
language models (VLMs) to convert all visual012
content within videos into natural language.013
Such VLMs often independently caption a large014
number of frames uniformly sampled from long015
videos, which is not efficient and can mostly be016
redundant. Questioning these decision choices,017
we explore optimal strategies for key-frame018
selection that can significantly reduce these019
redundancies, namely Hierarchical Keyframe020
Selector. Our proposed framework, LVNet,021
achieves state-of-the-art performance at a com-022
parable caption scale across three benchmark023
LVQA datasets: EgoSchema, NExT-QA, and024
IntentQA, while also demonstrating a strong025
performance on videos up to an hour long in026
VideoMME. Our code will be released publicly.027

1 Introduction028

Video understanding is a long-standing vision prob-029

lem (Aggarwal and Ryoo, 2011) with numerous030

real-world applications. It has been traditionally031

studied even before the era of differentiable rep-032

resentation learning, with hierarchical approaches033

focusing on longer videos (Allen and Ferguson,034

1994; Ivanov and Bobick, 2000; Shi et al., 2004;035

Hongeng et al., 2004; Ryoo and Aggarwal, 2006).036

Today, video understanding research involving the037

language modality is particularly popular, with038

tasks such as video question answering that involve039

generating human-style conversations in response040

to questions regarding videos (Tapaswi et al., 2016;041

Zeng et al., 2017; Xu et al., 2017).042

Higher & Leftward is better

Figure 1: LVNet achieves state-of-the-art performance
on EgoSchema subset while utilizing only a fraction of
captioned frames. In particular, LVNet obtains its high-
est accuracy of 68.2% with 12 captions (VLM calls),
outperforming VideoAgent and VideoTree, models us-
ing a similar-scale captions, by +8% and +5.7% (more
details in Section 4.3).

Recent popularity of vision-language models 043

(VLMs), particularly approaches connecting large 044

language models (LLMs) to vision architectures 045

(Liu et al., 2023; Li et al., 2023b; Dai et al., 2023), 046

has resulted in significant improvements across vi- 047

sual question answering (VQA) tasks. These mod- 048

els demonstrate exceptional performance within 049

the image domain, and their video variants (Yu 050

et al., 2023; Papalampidi et al., 2023; Maaz et al., 051

2023) perform similarly on shorter videos, yet 052

demonstrate limited performance on long-form 053

video benchmarks (Mangalam et al., 2023; Ka- 054

hatapitiya et al., 2024; Rawal et al., 2024). This 055

can be attributed to the nature of long-form video 056

benchmarks, which require both temporal sequence 057

awareness and causal reasoning. An alternate line 058

of works (Zhang et al., 2023; Wang et al., 2023; 059

Kahatapitiya et al., 2024; Wang et al., 2024b) adapt 060

LLMs that contain strong reasoning abilities for 061

this task, using image VLMs to generate per-frame 062

natural language descriptions, followed by video 063

question answering purely within the language do- 064

main. However, these methods employ expensive 065

VLMs to caption a large number of uniformly sam- 066

pled frames. Such a design choice leading to high 067
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compute expense, is questioned in (Buch et al.,068

2022; Ranasinghe et al., 2024; Wang et al., 2024b),069

and is the key motivation for our exploration of key070

frame selection, i.e. identifying a minimal set of071

frames most useful for correctly answering a given072

video-question pair.073

Therein, we propose LVNet, a framework074

containing a novel Hierarchical Keyframe Selector075

(HKS) that performs efficient key-frame selection076

followed by VLM and LLM for caption and077

answer generation as illustrated in Fig. 2. Aligned078

with prior work (Zhang et al., 2023; Wang et al.,079

2024d,b), the per-frame captions are processed080

with a powerful LLM to generate correct answers081

for a given video-question pair. As shown in Fig. 1,082

LVNet achieves strong performance using a small083

set of keyframes from the HKS. The scope of this084

work focuses on optimizing the prior two stages.085

We summarize our key contributions as follows:086

087

1. Hierarchical Keyframe Selector (HKS): The088

proposed HKS consists of three submodules for089

efficient keyframe selection.090

(a) Temporal Scene Clustering (TSC)091

• Performs non-uniform frame sampling by clus-092

tering visually similar frames.093

• Reduces redundancy in long videos while cap-094

turing key scenes.095

• A lightweight module for efficient filtering of096

dense frames.097

(b) Coarse Keyframe Detector (CKD)098

• Generates keywords representing atomic activ-099

ities using the given query and an LLM.100

• Assigns confidence scores to frames based on101

keyword relevance.102

• Samples high-confidence frames for improved103

interpretability over visual-only selection.104

(c) Fine Keyframe Detector (FKD)105

• Refines frame selection by combining multiple106

frames using visual templating and a VLM.107

• Enables higher-level reasoning and natural108

language-based selection.109

• Achieves better accuracy than CKD’s keyword-110

based selection.111

2. Zero-Shot Long-Form Video Understanding:112

Our framework operates zero-shot without requir-113

ing video-level training. This makes it highly effi-114

cient for long-form video understanding.115

Proposed LVNet achieves state-of-the-art results116

compared to models utilizing similar number of117

captions on three long-form video question answer-118

ing benchmarks— EgoSchema, NExT-QA, and In-119

tentQA(Sec. 4.2). This demonstrates strong perfor-120
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Figure 2: (top) Overview: LVNet uses a Hierarchical
Keyframe Selector (HKS) module to select keyframes,
followed by VLM & LLM for caption and answer gen-
eration. (below) HKS Module processes dense frames
with lighter modules and progressively exploits heavier,
more performance-oriented modules on smaller subsets
of frames to ensure efficient computation.

mance and generality of our approach. 121

2 Related Work 122

Video Question Answering: Visual question an- 123

swering (VQA) involves generating open-ended 124

textual content conditioned on an image and natu- 125

ral language query (Agrawal et al., 2015). Its video 126

variant, Video-VQA (Yu et al., 2019a) replaces im- 127

ages with videos. Multiple early datasets focus 128

on querying objects or events based on referential 129

and spatial relations (Xu et al., 2017; Zeng et al., 130

2017; Yu et al., 2019a). Later tasks require explicit 131

temporal understanding of sequential events (Lei 132

et al., 2018, 2020; Yu et al., 2019b). More recent 133

datasets focus on longer videos containing multiple 134

actions and scenes spread over wide time inter- 135

vals (termed long-form videos) (Xiao et al., 2021; 136

Li et al., 2022). Referred to as long-form video 137

question answering (LVQA), these benchmarks are 138

constructed to specifically test strong causal and 139

temporal reasoning (Xiao et al., 2021) over long 140

temporal windows (Mangalam et al., 2023). Some 141

works tackling such video VQA tasks leverage 142

graph networks to model cross object / event re- 143

lations (Hosseini et al., 2022; Xiao et al., 2022a,b). 144

A more recent line of works integrate LLMs to 145

tackle this task (Zhang et al., 2023; Wang et al., 146

2023; Kahatapitiya et al., 2024; Wang et al., 2024b; 147

Ranasinghe et al., 2024; Wang et al., 2024d; Fan 148

et al., 2024) utilizing the strong reasoning skills of 149

LLMs. A common aspect is the use of a vision lan- 150

guage model (VLM) to convert frame level visual 151

information into natural language. This in turn is 152
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Feature Ours VA Tr. VT

(effective selection)
Uses non-uniform sampling ✓ ✓ ✓ ✓

Scene continuity-based selection ✓ ✗ ✗ ✓

Robust to initial frames ✓ ✗ ✓ ✓

Fine-grained visual refinement ✓ ✗ ✗ ✗

(compute efficient)
Lightweight feature extraction ✓ ✗ ✗ ✗

Single pass inference ✓ ✗ ✗ ✗

Table 1: LVNet exhibits unique features compared
to VideoAgent (VA) (Fan et al., 2024), Traveler (Tr.)
(Shang et al., 2024) and VideoTree (VT) (Wang et al.,
2024e). See Appendix A.5 for details.

input to the LLM which makes a final prediction.153

Unlike these methods, LVNet incorporates a154

unique Hierarchical Keyframe Selector that pro-155

gressively reduces the number of keyframe candi-156

dates. Lighter modules are applied to dense frames,157

while heavier, more performance-focused modules158

are applied to a small subset of filtered frames.159

Additionally, LVNet does not require video-level160

training, unlike earlier supervised approaches.161

Frame Selection in Videos: The task of frame162

selection in videos has been long explored in video163

(Davis and Bobick, 1997; Zhao et al., 2017) with164

more recent works focused directly on long-form165

video question answering (Buch et al., 2022; Wang166

et al., 2024e; Fan et al., 2024). Most similar to167

our work is (Wang et al., 2024b) which employs168

an LLM based strategy for video frame selection.169

However, our LVNet differs with several unique170

features as summarized in Table 1.171

3 Method172

In this section, we present our training-free173

(i.e. zero-shot) framework for long-form video QA,174

LVNet. Videos are a dense form of data with even175

a few seconds long clip being composed of 100s176

of frames (individual images). In the case of long-177

form videos, this frame count is even greater. How-178

ever, the information necessary to answer a given179

question is often contained in a handful of those180

frames. Our framework tackles this challenge of181

selecting an optimal and minimal set of informa-182

tive frames. We refer to this as keyframe selection.183

Given such a set of useful frames, we also establish184

optimal strategies for extracting their information185

using modern large language models (LLMs), tak-186

ing into account their sequential nature.187

Our proposed LVNet comprises of three compo-188

nents: a Hierarchical Keyframe Selector (HKS), a189

Vision Language Model (VLM), and a Large Lan-190

guage Model (LLM) as illustrated in Figure 2. The191

HKS, an efficient, hierarchical keyframe selector, 192

is the core contribution of our work. First, the 193

model processes 900 uniformly sampled frames 194

and clusters them into distinct scenes Next, it ex- 195

tracts keywords from a given natural language 196

query via LLM and selects the frames most relevant 197

to those keywords. Finally, the selected frames are 198

described in natural language by a more powerful 199

and computationally intensive VLM. Finally, an 200

LLM processes the language descriptions of the 201

selected frames to answer a given query. 202

3.1 Background 203

Recent approaches utilizing LLMs for long video 204

question answering (LVQA) (Zhang et al., 2023; 205

Wang et al., 2023; Kahatapitiya et al., 2024; Ranas- 206

inghe et al., 2024; Wang et al., 2024b) can be 207

viewed as a composition of three sequential stages: 208

a) frame selection, b) VLM based frame captioning, 209

and c) LLM based answer generation. Note that 210

the complexity of each stage varies across methods 211

given their focus on different aspects of the LVQA 212

task (e.g. frame selection in some is simply uniform 213

sampling). In our work, we also follow this struc- 214

ture, but we focus on improving the frame selection 215

stage. Under such a framework, our proposed HKS 216

can serve as plug-in modules to replace the frame 217

selection stage and the later two stages are similar 218

to these prior works. 219

3.2 Architecture 220

Consider a video, x ∈ RT×C×H×W with T, C, 221

H, W for frames, channels, height, width respec- 222

tively and its paired natural language query q. 223

Also consider a frame in x at timestamp t as 224

x[t] ∈ RC×H×W . Our goal is to output a response, 225

referred as r, suitable for the given query q based 226

on information contained in the video x. 227

Our LVNet processes a given video-query (x,q) 228

pair to output a response, r̂. The HKS module 229

initially processes this video-query pair, selects 230

T ′ keyframes, and outputs a deterministically sub- 231

sampled video x′ ∈ RT ′×C×H×W . Each of these 232

T ′ frames is then passed through the captioning 233

stage of our VLM to generate a set of natural lan- 234

guage descriptions, D = {d1, d2, ...dT ′} where 235

di describes the frame x′[i]. Finally, the LLM 236

processes all descriptions D and the query q to 237

generate response r̂. We illustrate this overall ar- 238

chitecture in Figure 2. 239
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Figure 3: Qualitative example: We illustrate a challenging long-video QA scenario from EgoSchema (Mangalam
et al., 2023). We consider an input of 900 frames, which first get clustered into scenes and subsampled to retain
around 390 frames. Next, the Coarse Keyframe Detector selects only 32 frames out of them, based on the alignment
with keywords (Here, keywords are extracted based on answer options, via an LLM). Such coarse keyframes are
then ranked based on the combination of confidence value and temporal span, and grouped into four sets, each
containing eight frames. These sets are then processed through visual templating (i.e. simple concatenation across
space) and fed into a VLM for Fine Keyframe Detection, resulting in just 12 frames.

3.3 Hierarchical Keyframe Selector240

We now describe our proposed Hierarchical241

Keyframe Selector (HKS) module. As illustrated242

in Figure 2, our proposed HKS comprises of three243

sequential submodules, each reducing the frame244

count to Ta, Tb, and Tc = T ′ respectively.245

Temporal Scene Clustering (TSC): The role of246

TSC is to perform visual content aware preliminary247

frame sampling. The established approach for pre-248

liminary frame selection is uniform sampling (lim-249

ited to at most 200 frames). In contrast, TSC pro-250

cesses 900 to 1800 uniformly sampled frames to ex-251

tract per-frame visual features using a lightweight252

deep neural network (ResNet-18) followed by a253

clustering procedure to identify n non-overlapping254

frame sets. Within each of the n sets, we uniformly255

sample≤ τ frames obtaining a total of Ta ≤ τ ×n.256

Our iterative clustering procedure is outlined in257

Algorithm 1. It calculates pairwise distances be-258

tween all frames accounting for intra-frame local259

information using the extracted per-frame features,260

followed by n iterative frame similarity based clus-261

tering operations. A single cluster could contain262

just one frame or significantly more based on frame263

feature similarities, leading to a non-uniform sam-264

pling of frames across the entire video. This allows265

more frames to be sampled from the information266

heavy temporal regions of videos.267

Coarse Keyframe Detector (CKD): Unlike TSC 268

in the prior stage, CKD reasons across both visual 269

and language modalities (using the paired textual 270

query, q) to further sub-sample Ta into Tb frames. 271

CKD contains three elements: keyword generation 272

strategy, dual-encoder image-text model, and simi- 273

larity based confidence assignment algorithm. Key- 274

word generation utilizes the given query, q, along- 275

side hand-crafted templating operations or an LLM 276

to select or generate suitable keywords. The dual- 277

encoder image-text model uses a spatially aware 278

contrastive language image pre-training (CLIP) net- 279

work from (Ranasinghe et al., 2023). For confi- 280

dence assignment, we construct an algorithm as 281

outlined in Algorithm 2 which processes two lists, 282

one of frames and one of keywords, and then cal- 283

culates their pairwise likelihood of occurrence to 284

assign each frame a confidence value (that reflects 285

its usefulness to answer the query, q). See Ap- 286

pendix A.3 for more details. 287

For a single query, there can be multiple regions 288

in a video that are highly informative but not useful 289

or relevant in answering that query. A single query 290

can also contain multiple different concepts and 291

attributes that must be given attention to construct 292

a correct answer: the keyword generation attempts 293

to capture each of these distinct attributes. On 294

the visual modality, a single frame will also encode 295

multiple concepts and attributes. Our design choice 296
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for the spatially aware CLIPpy dual-encoder VLM297

from (Ranasinghe et al., 2023) is motivated by this298

nature of individual frames. Finally, confidence299

assignment takes into account these multiple modes300

of information within each frame and the query to301

suitably assign confidence scores to each frame302

that reflects its query relevance. We also highlight303

how the confidence scores are directly linked to304

the related keyword (i.e. reason that makes the305

frame relevant), leading to better interpretability306

and the ability to perform further keyword-based307

refinement in later stages.308

Fine Keyframe Detector (FKD): In the prior CKD309

stage, cross-modal selection utilizes a dual-encoder310

VLM that is constrained by the set of keywords pro-311

vided and performs limited reasoning at frame level.312

In contrast, FKD uses a visual templating module313

to combine multiple frames and uses VLM to gen-314

erate open-ended natural language output through315

higher-level reasoning. The input in this stage is316

the set of Fb frames, with each frame having an317

assigned confidence score and keyword.318

Our visual templating module partitions the Tb319

frames into sets of 8 ordered by their confidence320

scores, arranges frame sets as grids to form a321

collage-style image, and annotates that image with322

visually identifiable tags corresponding to each323

frame. We further illustrate this process in Fig-324

ure 3 (see Visual Templating column). Each of325

these visual templated images also contain a sub-326

set of keywords that correspond to their 8 images.327

These resulting visual templated images along with328

a prompt containing their associated keywords and329

instructions to select a frame subset based on valid330

association between keywords and images (see Ap-331

pendix A.4 for details) are input to the VLM. The332

output of the VLM is used to select a subset of333

each 8 image group. These frames are collected334

as output of the FKD stage, overall resulting in Tc335

frames.336

The purpose of the initial visual templating mod-337

ule is to allow reasoning across a set of frames338

using the image-text VLM (which is trained to pro-339

cess a single image at time). This partitioning of340

the input Tb frames is performed based on confi-341

dence scores from the prior stage and timestamps.342

The eight frames with top confidence scores are343

grouped into the first visual template, followed344

by the next eight and so forth. This ensures the345

VLM selects both high confidence concepts and346

low confidence concepts, accounting for biases and347

weaknesses in our CKD stage. After that, we tem-348

porally reorder some image sets with low confi-349

dence scores to cover keyframes distributed across 350

long-range segments, while the sets with high con- 351

fidence scores concentrate on keyframes in short- 352

range segments. A total of 16 low-score frames are 353

temporally reordered in this process. The algorithm 354

is described in Algorithm 3 and the prompting tech- 355

nique is explained in Appendix A.4. Our intuition 356

is that such a mechanism allows one to best uti- 357

lize the complementary strengths of two different 358

VLMs from CKD and FKD stages for better frame 359

selection overall. 360

4 Experiments 361

In this section, we first discuss our experimental 362

setup followed by quantitative evaluations com- 363

paring to existing baselines and ablations of our 364

proposed components. We then present qualitative 365

results for our method and outline some limitations 366

of our approach. 367

4.1 Experimental Setup 368

Datasets: Given the training free nature of our 369

framework, we do not utilize any video datasets for 370

training. Datasets are used purely for evaluation. 371

We select three benchmark video visual question 372

answering datasets focused on long-form videos 373

for this purpose: EgoSchema (Mangalam et al., 374

2023), NExT-QA (Xiao et al., 2021), and IntentQA 375

(Li et al., 2023a). In addition, to further highlight 376

the strength of our approach on longer videos, we 377

include results on VideoMME’s long split(Fu et al., 378

2024). These datasets are public available and can 379

be used freely for academic research. The first 380

dataset, EgoSchema, consists of 5031 questions 381

and each video lasts three-minute and have multiple 382

choice question. The second dataset, NExT-QA, is 383

another rigorously designed video question answer- 384

ing benchmark containing questions that require 385

causal & temporal action reasoning, and common 386

scene comprehension to correctly answer. These 387

questions are further classified as Causal (Cau.), 388

Temporal (Tem.), and Descriptive (Des.) and we 389

evaluate on its validation set containing 4996 ques- 390

tions over 570 videos. The third dataset, IntentQA, 391

is based on NExT-QA videos corresponding to tem- 392

poral and causal reasoning quetions. It consists 393

of 16k multiple-choice questions which are classi- 394

fied as Why?, How? or Before/After (B./A.). The 395

fourth dataset, VideoMME, consists of very long 396

videos—some up to one hour long, with an average 397

duration of 44 minutes, and provides 900 Q&A. 398

Model Choices & Hyperparameters: For the 399

HKS module, we use the ResNet-18 (He et al., 400
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Model EgoSchema NExT-QA IntentQA

Cap. Acc. (%) Cap. Acc. (%) Cap. Acc. (%)

Vamos (Wang et al., 2023) - 48.3 - - - -
IG-VLM (Kim et al., 2024) - 59.8 - 68.6 - 65.3
VideoLLaMA 2 (Cheng et al., 2024) - 53.3 - - - -
InternVideo2 (Wang et al., 2024c) - 60.2 - - - -
Tarsier (Wang et al., 2024a) - 61.7 - 79.2 - -
VIOLET (Fu et al., 2023) 5 19.9 - - - -
mPLUG-Owl (Ye et al., 2023) 5 31.1 - - - -
VideoAgent (Wang et al., 2024b) 8.4 54.1 8.2 71.3 - -
MVU (Ranasinghe et al., 2024) 16 37.6 16 55.2 - -
MoReVQA (Min et al., 2024) 30 51.7 16 69.2 - -
VFC (Momeni et al., 2023) - - 32 51.5 - -
SeViLA† (Yu et al., 2024) 32 22.7 32 63.6 32 60.9
ProViQ (Choudhury et al., 2023) 60 57.1 60 64.6 - -
VideoTree (Wang et al., 2024e) 62.4 61.1 (56) 73.5 (56) 66.9
FrozenBiLM (Yang et al., 2022) 90 26.9 - - - -
LifelongMemory (Wang et al., 2024d) 90 62.1 - - - -
TraveLER (Shang et al., 2024) (101) 53.3 (65) 68.2 - -
LangRepo (Kahatapitiya et al., 2024) 180 41.2 90 60.9 90 59.1
LLoVi (Zhang et al., 2023) 180 50.3 90 67.7 90 64.0

LVNet (ours) 12 61.1 12 72.9 12 71.7

Table 2: Long Video Evalation: LVNet achieves state-of-the-art accuracies of 71.7%, 61.1%, and 72.9% on
EgoSchema, NExT-QA, and IntentQA datasets respectively using just 12 frames compared to models using a
similar number of captions. Models are ordered based on number of captions processed per video. Models with
video-caption pretraining or utilizing significantly more captions than 12 frames used by LVNet are de-emphasized
in grey or downplayed in light green to ensure fair comparison. Numbers in parentheses () indicate the maximum
number of frames used. See Sec. A.2 in appendix for detailed results.

Metric Category VideoAgent VideoTree LVNet

Avg. Frames ↓ - 24.6 98.0 24.0

Acc.(%) ↑

Knowledge 52.2 60.7 63.0
Film & TV 42.5 52.5 45.0

Sports Comp. 42.7 48.6 48.0
Artistic Perf. 47.5 51.6 53.0
Life Record 44.7 49.5 45.0
Multilingual 36.6 40.0 53.0

Average 46.4 53.1 52.4

Table 3: Evaluating on Very Long Videos. Compari-
son of LVNet (ours) with VideoAgent and VideoTree
on the long split of VideoMME. LVNet uses the fewest
frames while achieving the highest accuracy in three
out of six categories and ranking second in overall per-
formance, slightly below the best score. In the table,
bold indicates the best performance, while underlined
represents the second-best performance.

2016a) for the TSC, CLIP-B/16 (Ranasinghe et al.,401

2023) for the CKD and GPT-4o for the FKD. We se-402

lect ResNet-18 and CLIP-B/16 due to their smaller403

models sizes—0.01B and 0.12B, respectively–404

which are significantly lighter compared to GPT-4o,405

whose model size is expected to be on the scale of406

100B-1T. This makes them well-suited for filter-407

ing dense frames efficiently. In line with previous408

state-of-the-art work (Wang et al., 2024d; Zhang409

et al., 2023; Wang et al., 2023), we employ GPT410

API, especially GPT-4o, for both VLM and LLM.411

This choice is driven by its cost-effectiveness and412

lighter computational requirements compared to413

GPT-4. GPT-4o is used as the VLM for generating 414

captions and as the LLM for answering questions in 415

our framework. We run TSC and CKD on a single 416

NVIDIA RTX A5000, which takes approximately 417

two hours to process 500 questions. We use the 418

default hyperparameters for each vision/language 419

module, as we only perform inference, and set the 420

LLM temperature to 0 to ensure reproducibility. 421

Also, We use single run for our experiments. 422

4.2 Evaluation 423

Quantitative Results: We evaluate LVNet on 424

the EgoSchema, NExT-QA, and IntentQA dataset 425

and present our results in Table 2. Models with 426

video-caption pretraining are de-emphasized in 427

grey to ensure fairness with image-level pertain- 428

ing. Models utilizing significantly more captions 429

than the 12 frames are downplayed in light green 430

to consider caption efficiency. For EgoSchema, we 431

achieve 61.1% on the fullest, the highest among 432

the models utilizing approximately 12 captions. 433

This result outperforms VideoAgent, the next best 434

model using 8.4 captions, by +7%, is on par with 435

VideoTree while using only 1/5 of the captions, and 436

outperforms TraveLER by +7.8% while utilizing 437

only 12% of the captions. 438

We next evaluate on the NExT-QA dataset. This 439

dataset has a particular focus on both temporal and 440

casual reasoning based question-answer pairs. Our 441
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Model Avg. Frames ↓
6.4 8 8.1 8.4 10.7 11 12 16 62.4 69.5

VideoAgent 58.4 - 63.2 60.2 60.8 57.4 - - - -
VideoTree - - - - - - 62.5 - 66.2 67.0
LVNet - 64.4 - - - - 68.2 67.8 - -

(a) Frame Caption Count Ablation: Compared to VideoAgent
(Wang et al., 2024b) and VideoTree (Wang et al., 2024e), LVNet
(ours) is more stable with consistently better performance. All
models are based on either GPT-4o or GPT-4.

Templating Order Acc.

Temporal 65.2
Confidence 67.6
Hybrid (both) 68.2

(b) Visual Templating:
Combination of confidence-
based & temporal ordering
gives the best performance.

TSC CKD FKD Acc.

✗ ✗ ✗ 62.6
✓ ✗ ✗ 64.5
✓ ✓ ✗ 65.8
✓ ✓ ✓ 68.2

(c) HKS Ablation: LVNet
accuracy consistently im-
proves with each HKS sub-
module.

Table 4: Ablation study on EgoSchema (Mangalam et al., 2023): We evaluate different design decisions of our
framework on EgoSchema 500-video subset for zero-shot VQA.

approach achives state-of-the-art performance on442

this benchmark outperforming prior work among443

the models utilizing approximately 12 captions.444

In fact, our LVNet outperforms VideoAgent by445

+1.6%.446

In the IntentQA dataset. LVNet outperforms447

all prior work, including the de-emphasized mod-448

els with video-caption pretraining and the down-449

played models utilizing significantly more captions450

than 12 frames. In fact, LVNet shows a substantial451

improvement of +4.8% over the next best model,452

VideoTree, while using only 13% of the captions453

(12 vs. 90).454

Lastly, Table 3 presents the performance of455

LVNet on VideoMME’s long split, which consists456

of videos up to one hour long and compare it to457

other models using keyframe selection methods.458

Our method (LVNet) demonstrates strong perfor-459

mance while utilizing only 24 frames, significantly460

fewer than VideoTree’s 98 frames. LVNet outper-461

forms VideoAgent by +6.0% overall and achieves462

the highest accuracy in three out of six categories:463

Knowledge, Artistic Performance, and Multilin-464

gual. While VideoTree maintains a slight overall465

lead, LVNet’s ability to achieve comparable ac-466

curacy while processing only one-quarter of the467

frames highlights its efficiency in handling very468

long videos. To ensure a fair comparison, all mod-469

els utilize GPT-4o.470

Given the generative nature of VQA tasks as471

well as the limited availability and noisy nature of472

fully-annotated video VQA corpora, building gen-473

eralizable fully-supervised models are challenging474

for these tasks. Nevertheless, we highlight how our475

zero-shot and video level training-free framework476

is competitive with the best supervised approaches477

on this dataset. This indicates the promise of utiliz-478

ing pretrained models, especially those equipped479

with extensive world knowledge and reasoning480

skills from alternate modality specific learning (i.e.481

in our cases image domain VLMs and language482

domain LLMs).483

Qualitative Analysis of Hierarhical Keyframe 484

Selector: We compare the open-ended responses 485

of LVNet and the uniform sampling method in Fig- 486

ure 4 to understand the effectiveness of the hier- 487

archical keyframe selector in LVNet. The frames 488

chosen by LVNet and the naive uniform sampling 489

method are indicated by blue and red checkmarks 490

in the images, respectively. LVNet selects frames at 491

5, 69, and 135 seconds by executing the hierarchi- 492

cal keyframe selector and generates captions based 493

on those frames. When we feed the concatenated 494

captions to the LLM to answer the given question: 495

"Based on the video, what are the three main types 496

of tools that C uses..." in an open-ended manner, 497

the output identifies two main activities: welding 498

torches and measuring tapes, among the three main 499

activities described in Option 3 (welding handle, 500

hammer, and measuring tape), which is the correct 501

answer. This leads LVNet to choose the correct 502

option. 503

In contrast, the uniform sampling method se- 504

lects frames at 0, 16, and 32 seconds and generates 505

captions based on those frames. Similarly, when 506

we feed the concatenated captions to the LLM to 507

answer the same question, the output identifies 508

only one activity—welding tools—resulting in the 509

selection of the incorrect option. This example 510

highlights the importance of keyframe selection 511

and demonstrates the effectiveness of hierarchical 512

keyframe selection in LVNet. 513

4.3 Ablations 514

In this section, we present ablations on key de- 515

sign decisions such as the sorting order in FKD, 516

the number of frames for captions, and the effect 517

of different components in HKS. In all ablations, 518

we use a subset of EgoSchema (Mangalam et al., 519

2023), composed of 500 videos. Additional abla- 520

tions about Choice of LLM and Effect of Patch Size 521

on Keyword Matching in CKD are in Appendix A.1 522

7



… holding a 

welding torch …

… …

A person is using 

a hacksaw…
A person is working 

on unwrapping…

0 5 16 32 69 135

A person is welding

or soldering …
C is using a 

power tool …
…They are manipulating 

a measuring tape …

LLM Output:

LVNet (Ours): Based on the video, the three main types of tools used are welding torches, pliers, and measuring tapes…

Uniform Sampling: The three main types of tools used are hacksaws, welding tools, and power tools…

Time(s):

Caption:

GT (option 3): The three main types of tools that c uses are a welding handle, a hammer, and a measuring tape…

Prompt: {Concatenated Captions from       or        }. I request you to answer the following question based on the preceding descriptions in 

less than 50 words. Question: Based on the video, what are the three main types of tools that c uses, and how do their roles in shaping the iron 

differ from one another?

Figure 4: Open-ended Responses from LVNet vs Uniform Sampling: The frames chosen by LVNet and the naive
uniform sampling method are indicated with blue and red checkmarks, respectively. LVNet identifies both welding
torches and measuring tapes, choosing the correct option, whereas uniform sampling only detects welding tools
and selects the incorrect answer. The blue, red, and purple highlights correspond to the three main activities in the
video—welding a handle, using a hammer, and using a measuring tape, respectively.

Visual Templating Order: In visual templating,523

prioritizing frames by keyword confidence scores524

followed by reordering low-confidence frames525

based on timestamp proves more effective than526

using confidence scores or temporal order alone,527

as shown in Table 4b. In this hybrid approach,528

high-confidence frames capture short but impor-529

tant segments of the video, while low-confidence530

keyframes, which are crucial but visually challeng-531

ing for keyword matching, are temporally ordered532

to cover broader segments. This hybrid approach533

outperforms solely temporal ordering and solely534

confidence-based ordering by +3% and +0.6%, re-535

spectively.536

Number of Frame Captions: We performed an537

ablation study on the number of frame captions,538

comparing our approach to VideoAgent (Wang539

et al., 2024b) and VideoTree (Wang et al., 2024e)540

under similar low caption settings. As shown in541

Table 4a, LVNet achieves the highest accuracy of542

68.2% with 12 captions, outperforming VideoA-543

gent (8.4 frames) and VideoTree (12 frames) by544

+8% and ∼+5.7%, respectively. We compare545

LVNet with VideoAgent+GPT-4o (8.1 frames) and546

VideoTree+GPT-4o (69.5 frames,×5.8 more), both547

using GPT-4o for a fair comparison and LVNet out-548

performs them by +5% and +1.2%, respectively.549

Effect of Hierarchical Keyframe Modules: Ta-550

ble 4c demonstrates the impact of incrementally551

adding the temporal scene clustering (TSC), coarse 552

keyframe detector (CKD), and fine keyframe de- 553

tector (FKD) modules. Without any of these mod- 554

ules, the model relies on uniform sampling and 555

achieves 62.6%. When TSC is added and 12 frames 556

are selected uniformly, the accuracy increases to 557

64.5%. Adding both TSC and CKD raises the ac- 558

curacy to 65.8%. Finally, incorporating all three 559

modules—TSC, CKD, and FKD—into the model, 560

which is LVNet, results in an accuracy of 68.2%. 561

This demonstrates the importance of including all 562

modules in LVNet for optimal performance. 563

5 Conclusion 564

We proposed a novel approach for Long-form 565

Video Question Answering (LVQA) that achieves 566

state-of-the-art performance compared to the model 567

using the similar-scale captions across 3 bench- 568

marks datasets. Our Hierarchical Keyframe Se- 569

lector demonstrates the effectiveness of keyframe 570

selection in understanding a very long-form video 571

QA. Additionally, we highlight the zero-shot capa- 572

bility for long-form video comprehension of our 573

LVNet framework, which requires no video-level 574

training. Our experiments showcase its significant 575

advantage over previous methods. 576
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Limitations577

Despite the effectiveness of LVNet, as demon-578

strated by benchmark experiments and comprehen-579

sive ablations, our study has certain limitations,580

which we discuss below.581

• First, we acknowledge that we are unable to eval-582

uate LVNet and other models with all available583

VLMs or LLMs due to computational constraints584

and high costs. However, we carefully select585

GPT-4o, a state-of-the-art LLM, for our main586

experiments and provide ablation studies com-587

paring various LLMs (e.g. GPT-3.5, GPT-4, and588

GPT-4o) to other models to ensure a fair perfor-589

mance comparison, as presented in Table 4a and590

Table A.5a.591

• Our hierarchical keyframe selector consists of592

three components: TSC, CKD, and FKD. While593

we demonstrated the effectiveness of each com-594

ponent in Table 4c, we did not have the time or595

resources to develop a unified module that could596

replace all three. Although this is beyond the597

scope of this paper, exploring a more efficient598

implementation that integrates these three mod-599

ules into a single model would be an interesting600

direction for future research.601

• Like any LLM-based approach, LVNet is sensi-602

tive to prompting. To ensure the transparency,603

we provide examples of these prompts in Fig-604

ure 4 and Figure A.6. We also plan to release605

the code to enable further exploration by other606

researchers.607

• Finally, we acknowledge that, as our approach608

is zero-shot, any inherent limitations or biases in609

the pretrained models may persist in the outputs610

of LVNet.611
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Appendix872

A.1 Additional Ablations873

In this section, we present additional experiments874

conducted to inform the LVNet’s design. We have875

tested different LLMs and experimented with vari-876

ous scales of the visual feature map.877

LLM Acc. (%)

GPT-3.5 61.0
GPT-4 65.4
GPT-4o 68.2

(a) Choice of LLM: We con-
sider different options for our
LLM for video QA. GPT-4o
performs the best

Patch Size Acc. (%)

1x1 63.6
7x7 66.2
14x14 68.2

(b) Effect of Patch Size in
CKD: A larger patch size
in Keyword Matching per-
forms better.

Table A.5: Additional ablations experiments on
EgoSchema (Mangalam et al., 2023): We evaluate differ-
ent design decisions of our framework on EgoSchema
500-video subset for zero-shot VQA. Default setting is
highlighted.

Choice of LLM: Table A.5a shows that GPT-4o878

outperforms both GPT-4 and GPT-3.5 by +2.8%879

and +7.2%, respectively. Given that GPT-4o is880

more cost-effective and lightweight compared to881

GPT-4, we have selected it as our default LLM.882

Effect of Patch Size on Keyword Matching in883

CKD: Table A.5b shows the effect of the scales884

of the patch sizes in the CKD. Since keywords can885

represent activities spanning the entire image or886

confined to a small region, we adjust the resolution887

of the visual feature map output from the spatially888

aware contrastive image pre-training (CLIP) net-889

work (Ranasinghe et al., 2023) to match keywords.890

Our findings show that higher resolutions lead to891

better accuracy. In LVNet, we use a 14×14 feature892

map and determine the confidence level of the key-893

word by selecting the maximum value between the894

14×14 patches and the keyword’s text embedding.895

A.2 Extended results on NExT-QA and896

IntentQA897

We present extended zero-shot evaluation results898

on NExT-QA in Table A.6, comparing LVNet with899

prior zero-shot models across different task cate-900

gories: causal, temporal, and descriptive reasoning.901

Models are ordered based on the number of cap-902

tions processed per video, highlighting the trade-903

offs between caption efficiency and performance.904

LVNet achieves state-of-the-art performance905

with an overall accuracy of 72.9%, outperform-906

ing most models while using only 12 captions per907

video. Notably, it attains 75.0% on causal reason- 908

ing, which is the highest among all models eval- 909

uated. For temporal reasoning, LVNet achieves 910

65.5%, remaining competitive despite using signif- 911

icantly fewer captions than models like VideoTree 912

(56 captions) and LangRepo (90 captions). In de- 913

scriptive reasoning, LVNet reaches 81.5%, match- 914

ing VideoTree while processing significantly fewer 915

captions. 916

Compared to VideoAgent, the closest competing 917

model in terms of caption efficiency (8.4 captions), 918

LVNet demonstrates a substantial performance gain 919

across all categories, with a +2.8% improvement 920

in overall accuracy. While models like VideoTree 921

and TraveLER show strong performance, they pro- 922

cess significantly more captions (56 and 65, respec- 923

tively), indicating that LVNet achieves a superior 924

balance between efficiency and accuracy. 925

We present extended zero-shot evaluation results 926

on IntentQA in Table A.7, comparing LVNet with 927

prior zero-shot models across different reasoning 928

categories: Why?, How?, and B.A. (Before/After). 929

Models are ordered based on the number of cap- 930

tions processed per video, highlighting the balance 931

between caption efficiency and performance. 932

LVNet achieves an overall accuracy of 71.7%, 933

outperforming all models while using only 12 cap- 934

tions per video. It achieves 75.0% on the Why? cat- 935

egory, 74.4% on the How? category, and 62.1% on 936

the B.A. category. Compared to VideoTree, which 937

processes 56 captions and achieves an overall ac- 938

curacy of 66.9%, LVNet outperforms it by +4.8% 939

while using significantly fewer captions. Similarly, 940

LangRepo and LLoVi, which process 90 captions, 941

achieve overall scores of 59.1% and 64.0%, re- 942

spectively, further demonstrating LVNet’s caption 943

efficiency. 944

To ensure fairness, models that utilize video- 945

caption pretraining or process substantially more 946

captions than LVNet are de-emphasized in grey 947

or downplayed in light green in Table A.6. This 948

highlights the effectiveness of LVNet in achieving 949

high accuracy while maintaining computational ef- 950

ficiency. 951

A.3 Algorithms in Detail 952

Our algorithms are presented in full detail in Al- 953

gorithm 1, Algorithm 2, and Algorithm 3. TSC in 954

Algorithm 1 extracts per-frame visual features us- 955

ing ResNet-18, followed by an iterative clustering 956

procedure to identify n non-overlapping frame sets. 957

Within each of the n sets, we uniformly sample≤ τ 958

frames, obtaining a total of Ta ≤ τ×n frames. For 959
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LLM (Predict)

LLM (Self Reflect)
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`

Question: Identify a recurring action in the video

z

LVNet (Ours): Use of their phones VideoAgent: Use of their hands 

`

120s

180s

0s

Histogram of Frames

Keyframes directly related to phone in the answer Keyframes not related to the answer

Figure A.5: Comparison of Keyframe Selection: Comparison of LVNet and VideoAgent in keyframe selection
for video question answering. LVNet refines frames through a multi-stage process (TSC, CKD, FKD) to form a
non-uniform keyframe distribution, capturing relevant moments tied to the query. In contrast, VideoAgent relies on
uniform sampling and LLM-based frame selection, which fails to focus on crucial keyframes, leading to incorrect
predictions. The final keyframe distributions illustrate LVNet’s ability to retrieve meaningful frames directly related
to the answer, while VideoAgent selects irrelevant frames.

13



Model Cap. Cau. (%) Tem. (%) Des. (%) All (%)

IG-VLM (Kim et al., 2024) - 69.8 63.6 74.7 68.6
Tarsier (Wang et al., 2024a) - - - - 79.2
VideoAgent (Wang et al., 2024b) 8.2 72.7 64.5 81.1 71.3
MVU (Ranasinghe et al., 2024) 16 55.4 48.1 64.1 55.2
MoReVQA (Min et al., 2024) 16 70.2 64.6 - 69.2
VFC (Momeni et al., 2023) 32 45.4 51.6 64.1 51.5
SeViLA† (Yu et al., 2024) 32 61.3 61.5 75.6 63.6
VideoTree (Wang et al., 2024e) (56) 75.2 67.0 81.3 73.5
ProViQ (Choudhury et al., 2023) 60 - - - 64.6
TraveLER (Shang et al., 2024) (65) 70.0 60.5 78.2 68.2
LangRepo (Kahatapitiya et al., 2024) 90 64.4 51.4 69.1 60.9
LLoVi (Zhang et al., 2023) 90 69.5 61.0 75.6 67.7

LVNet (ours) 12 75.0 65.5 81.5 72.9

Table A.6: Extended results on NExT-QA (Xiao et al., 2021). We compare LVNet against prior zero-shot models
across different reasoning categories: causal, temporal, and descriptive. LVNet achieves an overall accuracy of
72.9% while using only 12 captions per video, demonstrating strong performance across all reasoning types. Notably,
it outperforms all models in causal reasoning (75.0%) and matches the best performance in descriptive reasoning
(81.5%), despite processing significantly fewer captions than models like VideoTree (56 captions) and TraveLER
(65 captions). Models that utilize video-caption pretraining or process substantially more captions than LVNet are
de-emphasized in gray or downplayed in light green to ensure fairness in comparison. Numbers in parentheses ()
indicate the maximum number of frames used.

Model Cap. Why? (%) How? (%) B./A. (%) All (%)

IG-VLM (Kim et al., 2024) - - - - 65.3
SeViLA† (Yu et al., 2024) 32 - - - 60.9
VideoTree (Wang et al., 2024e) (56) - - - 66.9
LangRepo (Kahatapitiya et al., 2024) 90 62.8 62.4 47.8 59.1
LLoVi (Zhang et al., 2023) 90 68.4 67.4 51.1 64.0

LVNet (ours) 12 75.0 74.4 62.1 71.7

Table A.7: Extended results on IntentQA (Li et al., 2023a). We compare LVNet against prior zero-shot models
across different reasoning categories: Why?, How?, and B.A. (Belief/Action). LVNet achieves an overall accuracy of
71.7%, surpassing all models while using only 12 captions per video. It reaches 75.0% in the Why? category, 74.4%
in the How? category, and 62.1% in the B.A. category. Compared to VideoTree, which processes 56 captions and
achieves 66.9% accuracy, LVNet outperforms it by +4.8% while using significantly fewer captions. Additionally,
LVNet demonstrates superior reasoning-based performance compared to LangRepo (90 captions, 59.1%) and
LLoVi (90 captions, 64.0%). Models with video-caption pretraining or utilizing significantly more captions than 12
frames used by LVNet are de-emphasized in grey or downplayed in light green to ensure fairness with image-level
pretraining or highlight caption efficiency. Numbers in parentheses () indicate the maximum number of frames used.

example, LVNet sets ψ = 5, λ = 12, τ = 18, re-960

sulting in approximately n ∼ 25 and Ta ∼ 390961

on the EgoSchema dataset. CKD in Algorithm 2962

selects top L frames based on similarity/confidence963

scores, which are calculated using cosine similar-964

ity between frames and keywords with CLIP-B/16.965

LVNet employs L = 32, len(K) ≤ 25 on the966

EgoSchema dataset. FKD in Algorithm 3 sorts967

frames and their corresponding keywords by con-968

fidence scores, and reorder the K frames with the969

lowest scores temporally. It groups frames sequen-970

tially into visual templates, each consisting of N971

frames. From each template, the M frames and972

keywords most relevant among the N pairs are973

selected using GPT-4o. We set L = 32,K =974

16, N = 8,M = 3.975

A.4 Prompting: Fine Keyframe Detector 976

We prompt the VLM to select frames that are most 977

compatible with the list of given keywords. Each 978

template image contains 8 images, and their order 979

is described in language (e.g. top left to right, bot- 980

tom left to right) and the VLM outputs the selected 981

images according to our prompting as described in 982

Figure A.6. 983

A.5 Comparison with Other Keyframe 984

Selection Methods 985

We aim to highlight the main advantage of the Hi- 986

erarchical Keyframe Selector over other existing 987

keyframe selection methods. Models like VideoA- 988

gent, VideoTree, and TraveLER provide useful 989
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Algorithm 1: Temporal Scene Clustering
1: Require: ResNet-18 (He et al., 2016b)

pretrained on imagenet dataset f , frame
list Listframe, image index
list Listindex ∈ {1, . . . , N}, minimum number
of list length ψ, temperature λ, number of
sample τ , function to find index of x in list
w index(x, w), and function to sort
list sort(List)

2: for all imgi in Listframe do
3: Fi ← f(imgi)
4: Listfeat.insert(Fi)
5: end for
6: for all Fi in Listfeat do

7: Listdist ←
∑

y

∑
x

√
(Fi−Listfeat)2

x×y
8: Mdist.insert(Listdist)
9: end for

10: while length of Listindex > ψ do
11: Listsample ← ∅
12: Listδ ← ∅
13: i← Listindex.pop(0)
14: pi ← softmax(Mi

dist)
15: µpi , σpi ← mean(pi), std(pi)

16: β ← µpi − σpi

∑
i=0 e

1−i/λ

17: for all prob in pi do
18: if prob < β then
19: Listselected.insert(index(prob,pi))
20: end if
21: end for
22: for all γ in Listselected do
23: δ← γ th value in Listindex
24: Listδ.insert(δ)
25: Listindex.pop(γ)
26: end for
27: Listδ.insert(i)
28: Listsample← sample τ items from Listδ
29: sort(Listsample)
30: for all framej in Listframe do
31: if j in Listsample then
32: Outputs.insert(framej)
33: end if
34: end for
35: end while

comparisons, as they utilize keyframe selection990

mechanism with similar or different scale of frames.991

VideoAgent and TraveLER rely on uniform frame992

selection in the first iteration without analyzing993

the entire video even though they perform non-994

uniform sampling in the next iterations. They iden-995

tify important segments based solely on these ini-996

tial frames and the LLM’s response, which can be997

problematic if the initial uniformly selected frames998

are not representative of the entire video or if the999

LLM misinterprets the captions and prompts. In1000

such cases, the LLM might incorrectly identify1001

segments for further analysis. If the LLM fails1002

to pinpoint the correct segment initially, the entire1003

Algorithm 2: Keyword-Image Matching Pro-
cess in CKD

1: Require: keyword set K, image set I, total
length of selected image set L, function to
calculate similarity matrix sim(K, I), function
to sort similarity matrix and return indices
sort(S)

2: S← sim(K, I)
3: Ssorted, idxsorted ← sort(S)
4: Initialize Pbest as an empty list
5: Initialize Iselected as an empty set
6: while length of Iselected < L do
7: for k ∈ K do
8: for i ∈ I do
9: iindex ← idxsorted[k][i]

10: if iindex not in Iselected then
11: Pbest.insert(k, iindex)
12: Iselected.insert(iindex)
13: break
14: end if
15: end for
16: if length of Iselected ≥ L then
17: break
18: end if
19: end for
20: end while
21: return Pbest

process can break down because subsequent frames 1004

will be similar to the first set, leading the LLM to 1005

continuously select frames within or near the ini- 1006

tial segment. Additionally, for videos that are as 1007

challenging or more difficult than EgoSchema in 1008

terms of temporal complexity and activities, exist- 1009

ing keyframe selection models such as VideoAgent, 1010

VideoTree, and TraveLER may require numerous 1011

iterations by running heavy visual/language mod- 1012

els to finalize keyframes selection. This results in 1013

higher computational and latency costs, as it neces- 1014

sitates numerous runs of resource-intensive VLM 1015

and LLM models. 1016

In contrast, our method analyzes the entire video 1017

with high frame rates using a lightweight ResNet- 1018

18 (He et al., 2016a) and segments the video non- 1019

uniformly based on scene continuity. We then se- 1020

lect several frames in each segment by measuring 1021

feature similarity between frame features and key- 1022

words using the CLIP-B/16 (0.12B) (Ranasinghe 1023

et al., 2023) which is lighted than VideoAgent’s 1024

EVA-CLIP-8Bplus (8B). By reviewing the entire 1025

video and non-uniformly selecting keyframes based 1026

on scene continuity and similarity scores, these 1027

keyframes accurately represent the question-based 1028

important frames distribution in the entire video. 1029

Furthermore, we use VLM for a fine-grained selec- 1030

tion of keyframes, improving keyframe selection 1031
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Algorithm 3: Fine Keyframe Detection Pro-
cess (FKD)

1: Require: keyword set K, image set I, similarity
score list S, total length L, number of low
similarity indices K, number of frames per
visual template N , number of keyframes
selected per visual template M , function to sort
by similarity sort(S), function to order indices
temporally temporal_order()

2: idxsorted ← sort(S)
3: idxlow_sim ← idxsorted[−K :]
4: idxtemporal ← temporal_order(idxlow_sim)
5: idxfinal ← concatenate(idxsorted[:
−K], idxtemporal)

6: Iordered,Kordered ← I[idxfinal],K[idxfinal]
7: sets←

create_sets(Iordered,Kordered, L//N)
8: for each set ∈ sets do
9: Iselected ← select_top_M(set,M)

10: end for
11: return Iselected

when CLIP-B/16 struggles to understand detailed1032

atomic activities in the frames. By hierarchically1033

segmenting the video with different modules, the1034

resulting segments and keyframes are more reli-1035

able than those from VideoAgent. Even with more1036

challenging videos, our process only needs to go1037

through the video once to collect keyframes, main-1038

taining computational efficiency.1039

Figure A.5 visualizes the differences of1040

the keyframe selection mechanism bewtween1041

LVNet and VideoAgent. On the left, LVNet begins1042

with uniformly sampled frames and filters them1043

through multiple stages, resulting in a non-uniform1044

distribution of frames over time. First, the tempo-1045

ral scene clustering (TSC) selects somes frames1046

that represent temporally distinct activities. Next,1047

the coarse keyframe detector (CKD) targets frames1048

most relevant to the question. Finally, the fine1049

keyframe detector (FKD) further refines this selec-1050

tion to ensure the keyframes accurately capture the1051

activity in question. As a result, LVNet produces1052

12 frames, with 8 of them (67%) directly depict-1053

ing "usage of phones," which is the correct answer1054

and leads the model to select the right option. On1055

the right, VideoAgent also starts with the uniform1056

frames but relies on a LLM to request additional1057

frames. Since the initial frames do not capture1058

enough relevant content, the LLM again selects1059

frames uniformly, adding more irrelevant samples1060

that lack the crucial information about "usage of1061

phones." As a result, VideoAgent ultimately selects1062

the wrong option.1063
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Eight images, having egocentric perspectives, are juxtaposed, separated by a red vertical line and red
horizontal line. In the first row, the images from left to right are named as image_0, image_1, image_2,
image_3. In the second row, the images from left to right are named as image_4, image_5, image_6, image_7.
Here are images and their associated guess words: {image_0: drive screws,..., image_32: remove screws}.
Think step-by-step and list only the names of the 3 images most closely related to the guessed words. Do not
select blurry images in your answer. If none of the images correspond to the provided guess words, choose
any three images at random. Your answer should follow the JSON format shown below and should only
include the JSON result. Do not output any warnings or notes under any circumstances. Instead, adhere
strictly to the provided JSON format example.

{"image name": write reason for your selection in 10 words}

This is one example output format. {"image_0": "Person washing a plate; linked to dish cleaning.",
"image_2": "Person washing a bowl; linked to dish cleaning.", "image_6": "Person running water on a
sponge; related to dish cleaning}.

Image Input

Prompt

{"image_1": "Person working on a project", "image_4": "Person holding a
knife", "image_5": "Person sharpening a knife"}

VLM

Figure A.6: Prompt for Fine Keyframe Detection: The figure illustrates the input image, the prompt provided to
the VLM, and the output. The input image represents a visual template composed of eight frames, and the prompt
requests the three best frames along with their corresponding keywords. The output displays the top three selected
frames and their associated keywords.
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