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ABSTRACT

Deep learning models often suffer from a lack of interpretability due to polyse-
manticity, where individual neurons are activated by multiple unrelated semantics,
resulting in unclear attributions of model behavior. Recent advances in monoseman-
ticity, where neurons correspond to consistent and distinct semantics, have signifi-
cantly improved interpretability but are commonly believed to compromise accu-
racy. In this work, we challenge the prevailing belief of the accuracy-interpretability
tradeoff, showing that monosemantic features not only enhance interpretability but
also bring concrete gains in model performance of robustness-related tasks. Across
multiple robust learning scenarios—including input and label noise, few-shot learn-
ing, and out-of-domain generalization—our results show that models leveraging
monosemantic features significantly outperform those relying on polysemantic
features. Furthermore, we provide empirical and theoretical understandings on the
robustness gains of feature monosemanticity. Our preliminary analysis suggests
that monosemanticity, by promoting better separation of feature representations,
leads to more robust decision boundaries under noise. This diverse evidence high-
lights the generality of monosemanticity in improving model robustness. As a
first step in this new direction, we embark on exploring the learning benefits of
monosemanticity beyond interpretability, supporting the long-standing hypothesis
of linking interpretability and robustness.

1 INTRODUCTION

A long-standing problem of deep learning is the so-called “black-box” nature. People find that an
important factor for its lack of interpretability is feature polysemanticity, where a single neuron (a
dimension of feature maps) is activated by multiple irrelevant semantics (Arora et al., 2018; Olah
et al., 2020), preventing clear attributions of neural behaviors. Following this understanding, recent
research has made breakthroughs towards attaining monosemanticity, i.e., neurons corresponding
to consistent semantics (monosemantic), which dramatically improves model interpretability; see a
comparison in Figure 1(a). They achieve this through architectural designs (Elhage et al., 2022a; Wang
et al., 2024) or post-training explanation modules (Cunningham et al., 2024), and have successfully
scaled to visual backbones (e.g., ResNet) and large language models (LLMs, e.g., Claude, GPT, and
Gemma), discovering many intriguing phenomena and applications (Templeton, 2024; Gao et al.,
2024; Lieberum et al., 2024; Wang et al., 2024).

However, these works on monosemanticity suggest an inevitable “accuracy-interpretability” tradeoff:
monosemantic features, although more interpretable, come at the sacrifice of expressive power and
underperform polysemantic features at prediction accuracy. For example (Gao et al., 2024) observe
that the sparse autoencoders significantly enhance the monosemanticity of language models while
obtaining inferior performance in downstream prediction tasks. (Elhage et al., 2022b) show that
monosemantic representations indicate lower model performance in reconstruction tasks with a toy
model. (Cunningham et al., 2024) exhibit a negative correlation between the expressive power and
monosemanticity. This widely accepted belief limits the applications of monosemanticity techniques
to only interepretability-related domains. In this paper, we aim to push this boundary one step
forward by demonstrating that monosemanticity can also bring significant gains on practical model
performance beyond interpretability.

In particular, we discover a widely appearing phenomenon, that monosemantic features are much
more robust compared to polysemantic features, across multiple scenarios related to “robustness”.
One such scenario is learning with noise. Real-world data are often imperfect with low-quality input
and mislabeling, manifested in the form of various data noises and distribution shifts. We find that
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(a) Illustration of Activated Samples on A Polysemantic (Left) and
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(b) Test Accuracy (%) of Classifiers Learned
upon Polysemantic and Monosemantic Fea-
tures on Different Scenarios

Figure 1: A comparison between polysemantic (Contrastive Learning) and monosemantic features
(Non-negative Contrastive Learning, Sparse Autoencoder) pretrained on ImageNet-100. We consider
noisy labels (90 % noise rate) and Gaussian input noise (0.6 stdev); see more details in Appendix A.4.

under either input or label noises, learning a classifier upon (pretrained) monosemantic features can
attain much higher accuracy (e.g., +13.7% top-1 accuracy under 90% label noise) than polysemantic
features, as shown in Figure 1(b). This feature-centric result also offers a new perspective to noisy
learning where existing studies primarily focus on robust learning objectives (Wang et al., 2019a;
Song et al., 2020).

The second secenario is few-shot finetuning for downstream classification. Today’s large visual
backbones often need to be finetuned on a small amount of downstream labeled data, where models
easily overfit and deteriorate. We find that monosemantic finetuning, i.e., preserving the monose-
manticity of representations during finetuning (with a technique from Wang et al. (2024)), can attain
much higher accuracy under few-shot data compared to vanilla polysemantic finetuning (e.g., +3.9%
top-1 accuracy with 10% samples). The same method also works for finetuning with noisy data or
training from scratch.

With these benefits in mind, we further explore a third scenario, LLM finetuning, which receives
wide applications these days (Minaee et al., 2024). Pretrained LLMs need to be carefully finetuned
on small-scale language data for different purposes, e.g., instruction following and certain abilities
(e.g., reasoning), while avoiding conflicting and forgetting. Since LLMs do not have a natural
representation space like visual models, we devise a simple sparse variant of LoRA (an efficient
tuning method), named MonoLoRA, to encourage the monosemanticity of the updates of all features.
We show preliminary evidence that when finetuning an aligned LLM (Llama-2-7b-chat) on SST-2
(a classification task) and Dolly (instruction following task), MonoLoRA better preserves model
alignment while improving task performance.

At last, we attempt to offer a deeper understanding of the robustness gains of monosemanticity.
Empirically, we compare the salient features of different classifiers, observing that the more robust
classifiers tend to depend on more monosemantic features. Theoretically, as a preliminary step,
we compare polysemantic and monosemantic features under a toy model proposed in Elhage et al.
(2022b). The theory suggests that because monosemantic features have better separation of features,
they are less prone to overfitting to noise, leading to more robust decision boundaries compared to
polysemantic features.

In summary, this work challenges the common “accuracy-interpretability” tradeoff by demonstrating
the potential of feature monosemanticity to bring clear gains in model accuracy of robustness-related
tasks. These gains manifest themselves in various aspects of “learning robustness” that we can think
of: input noise, label noise, out-of-domain data, few-shot image data, and few-shot language data.
The diverse set of evidence strongly indicates that feature monosemanticity provides a general sense
of robustness compared to polysemantic features, echoing with the long-lasting hypothesis on the
relationship between better feature interpretability and better robustness (e.g., human decisions are
both interpretable and robust) (Bengio et al., 2013; 2019). As a first step in this direction, we believe
that it will embark on more intriguing discoveries and understandings on the learning benefits of
monosemanticity beyond interpretability.
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2 PRELIMINARY & RELATED WORK

Polysemanticity and Superposition Hypothesis. Across various domains, many previous studies
(Nguyen et al., 2016; Mu & Andreas, 2020; Olah et al., 2020) have consistently observed that a feature
dimension in the neural networks is usually activated with multiple unrelated semantics. Researchers
define this phenomenon as the feature polysemanticity. In contrast, when each dimension is activated
with a single latent natural concept, the features are denoted as monosemantic features. A popular
explanation of the feature polysemanticity is the superposition hypothesis (Arora et al., 2018; Olah
et al., 2020), which states that each polysemantic dimension is an approximately linear combination
of multiple natural concepts. To verify that, Elhage et al. (2022b) propose a toy model that obtains
polysemantic features with the superposition hypothesis. Comparing polysemantic and monosemantic
features, there exists a common belief that monosemantic features exhibit better interpretability at the
cost of downstream performance (Cunningham et al., 2024; Elhage et al., 2022b). However, in this
paper, we challenge this trade-off, finding that monosemantic features also show superiority when the
performance is evaluated on robustness tasks.

Methods to Attain Feature Monosemanticity. To enhance the feature interpretability, researchers
propose several methods to obtain monosemantic features. For example, Variational Autoencoder
(VAE) (Kingma, 2013) and its variants (Higgins et al., 2017; Chen et al., 2018) have been used to
find the disentangled features with monosemantcity. However, the performance of these methods in
real-world tasks like image classification and natural language understanding is quite unsatisfactory.
Recently, researchers have tried to attain monosemanticity with minimal influence on performance.
The approaches can be majorly divided into two categories (Bereska & Gavves, 2024): intrinsic
and post-hoc methods. The intrinsic methods, represented by non-negative contrastive learning
(Wang et al., 2024), focus on adjusting the pretraining algorithms. While the post-hoc methods
apply downstream modifications on learned features. For example, the sparse autoencoder, which
reconstructs the features from a sparse bottleneck layer, has recently shown impressive monoseman-
ticity in various models (Ng et al., 2011; Gao et al., 2024). Different from existing works, our paper
1) analyzes the monosemanticity from a totally new perspective, i.e., we observe the relationship
between monosemanticity and robustness; 2) challenges the widely-believed interpretability-accuracy
trade-off in realistic and widely appearing scenarios; 3) introduces a new theoretical perspective to
analyze the monosemanticity; 4) proposes new implementations to enhance monomsenaticity in large
language models.

Robustness Learning. In the development of deep learning models, robustness is a critical measure
for evaluating the quality of features (Wang et al., 2021; Xu et al., 2021; Muhammad & Bae, 2022).
The evaluation of robustness involves various task scenarios. Common conditions include assessing
the robustness of features against noisy labels (Song et al., 2022), distribution shifts (Yang et al.,
2024), overfitting (Ying, 2019), etc. In this paper, we analyze the robustness from a new perspective,
i.e., we evaluate the influence of monosemanticity in different robustness tasks. For learning with
noisy labels, we apply the symmetric label noise to the training samples, i.e., with a probability η
(noise rate), the labels of samples are uniformly flipped to the other classes. For robustness against
distribution shifts, we apply various shifts, such as Gaussian noise, uniform noise, and real-world
distribution shifts (Wang et al., 2019a; Geirhos et al., 2018) to the validation samples. For robustness
against overfitting, we finetune the vision and language models with fewer samples and evaluate the
validation performance.

3 THE ROBUSTNESS GAINS OF MONOSEMANTICITY

In this section, we compare polysemantic with monosemantic features across three different robust
learning scenarios commonly encoutered in the foundation model regime: first, noisy linear probing
on pretrained features (either polysemantic or monosemantic); second, noisy and few-shot finetuning
from pretrained weights; third, finetuning LLMs on small-scale supervised data.

3.1 MONOSEMANTIC FEATURES ARE ROBUST UNDER LINEAR PROBING

Foundation models typically have two training phases: 1) self-supervised learning (SSL) on massive
unlabeled data, and 2) supervised finetuning on small human-labeled data (classification, instruction
following, or specific tasks). In fact, since SSL-pretrained features contain rich semantics, learning
a simpler linear classifier on top, known as linear probing (LP), can often attain competitive
performance to fully supervised ones (Chen et al., 2020). Therefore, we start with this simplest setting
for comparing the robustness of polysemantic and monosemantic pretrained features. Specifically,
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Table 1: Linear probing accuracy and gain (%) of polysemantic and monosemantic representations
on ImageNet-100 and CIFAR-100 under different rates (%) of label noise (0 (clean label) to 90).
Dataset Features 0 10 30 60 90

Poly 54.6±0.2 53.2±0.2 52.1±0.4 49.5±0.2 35.4±0.3
Mono(SAE) 54.5±0.1 53.9±0.2 53.0±0.3 50.6±0.4 38.0±0.1

-0.1 +0.7 +0.9 +1.1 +2.6
Mono(NCL) 52.8±0.4 54.2±0.3 52.7±0.2 51.5±0.2 45.0±0.2

CIFAR-100

-1.8 +1.0 +0.6 +2.0 +9.6
Poly 66.8±0.2 63.3±0.2 60.1±0.2 54.9±0.4 34.5±0.2
Mono(SAE) 66.1±0.2 65.2±0.2 60.7±0.2 58.6±0.1 45.7±0.2

-0.7 +1.9 +0.6 +3.7 +11.2
Mono(NCL) 66.8±0.2 65.5±0.1 63.8±0.2 60.8±0.2 48.1±0.2

ImageNet-100

+0.0 +2.2 +3.7 +5.9 +13.6

we consider a standard linear probing setting, where we first pretrain features on unlabeled data and
then learn a linear classifier on top with noisy labeled data.

3.1.1 METHODS FOR FEATURE MONOSEMANTICITY

Among existing interpretability research, there are two categories of methods to attain monoseman-
ticity: 1) intrinsic methods, where pretrained features are intrinsically monosemantic; 2) post-hoc
methods, where we apply additional techniques to decode (polysemantic) pretrained features to
monomsemantic ones. Here, we consider two representative methods for each paradigm.

Intrinsic Monosemanticity with NCL. Many previous works have tried to train interpretable features
by adding sparsity regularization (Tibshirani, 1996) or identifiability constraints (Zhang et al., 2024b);
but they hardly scale to large-scale data with competitve performance. A recent work, NCL (non-
negative contrastive learning) (Wang et al., 2024), as a modern counterpart to NMF (non-negative
matrix factorization) (Lee & Seung, 1999), attains high sparsity and monosemanticity while having
minimal influence on final performance. Specifically, NCL adopts the following InfoNCE loss (Oord
et al., 2018) with non-negative feature outputs:

LNCL(f) = −Ex,x+ log
exp(f+(x)

⊤f+(x
+))

exp(f+(x)⊤f+(x+)) +
1
M

∑M
i=1 exp(f+(x)

⊤f+(x
−
i )

, (1)

where (x, x+), (x, x−) are the positive and negative pairs in contrastive learning, f+(x) = σ(f(x)),
σ is an activation function and f is the original neural network. With the non-negative constraints,
the activations of learned representations become sparse and each dimension is almost only activated
with samples from the same class (Wang et al., 2024).

Post-hoc Monosemanticity with SAE. Another approach is to apply downstream modification on
pretrained neural networks. Sparse autoencoders (SAEs) (Ng et al., 2011) find wide success in
attaining monosemanticity in language models (Templeton, 2024; Gao et al., 2024; Lieberum et al.,
2024). SAEs reconstruct the original outputs of pretrained networks from a sparse bottleneck layer.
To be specific, the encoder and decoder are defined as:

z(x) = topK((Wenc(f(x)− bpre)),

f̂(x) = Wdecz(x) + bpre.
(2)

where f(x) is the representation of input x; Wenc, Wdec, bpre and benc are the parameters of
SAE; topK is a sparse activation function proposed by Gao et al. (2024) that only preserves the
top K elements; and the SAE training loss is the reconstruction of original features, i.e., LSAE =

Ex∥ ˆf(x)− f(x)∥2. As a result, the sparse latent feature z(x) has much better monosemanticity than
the original feature f(x).

3.1.2 EXPERIMENTS

Setup. For the baseline, we pretrain a ResNet-18 (He et al., 2016) backbone with the widely-used
contrastive framework SimCLR (Chen et al., 2020) on CIFAR-100 and ImageNet-100. In comparison,
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(c) Real-world Distribution Shift

Figure 2: The evaluation of robustness against input distribution shifts on ImageNet-100. Monose-
mantic representations (SAE, NCL) exhibit improvements in the robustness against different kinds of
distribution shifts.

we use Non-negative Contrastive Learning (Wang et al., 2024) and Sparse Autoencoder (Gao et al.,
2024) to represent two primary strategies for obtaining monosemantic features, i.e., improve the
pretraining algorithm and apply downstream modification. For Non-negative Contrastive Learning
(NCL), we follow the default SimCLR settings, with the addition of a non-negative constraint using
the ReLU function. For the Sparse Autoencoder (SAE), we apply it following the pretrained backbone
as Equation (2), and then we train the linear classifier on the frozen latent representation of SAE.
More details can be found in Appendix A.1.

Robustness Against Label Noise. When evaluating the robustness against label noise, we train a
linear classifier following the frozen pretrained encoders, where the labels are uniformly flipped to
the other classes with a probability η (noise rate). As shown in Table 1, when the linear classifiers are
trained on the samples with clean labels, monosemantic and polysemantic features exhibit comparable
performance. However, in the presence of label noise, both NCL and SAE significantly outperform
across various datasets. Especially, when the noise rates are aggressive, the improvements are
substantial, with NCL showing a 13.7% improvement on ImageNet-100 and a 9.2% improvement on
CIFAR-100 under 90% noisy labels. The results are consistent with the results in toy models and
further verify that monosemnatic features obtain stronger robustness against label noise.

Robustness Against Distribution Shifts. For evaluating the resilience of features to distribution
shifts, we evaluate three types of shifts, including random input noise, random Gaussian noise, and
real-world distribution shifts (Wang et al., 2019a; Geirhos et al., 2018; Hendrycks & Dietterich, 2019)
on ImageNet-100 datasets. The models and classifiers are trained on the clean ImageNet-100 dataset
while their classification performance is evaluated with noisy samples. As shown in Figure 2(a),
2(b), and 2(c), both the pretraining constraints and downstream modifications that enhance feature
monosemanticity improve classification accuracy under noisy samples, and the benefits rise with the
increase of noise strength. The results suggest that the monosemantic features can also enhance the
robustness against various noises applied in inputs.

3.2 MONOSEMANTIC FEATURES ARE ROBUST UNDER FEW-SHOT AND NOISY FINETUNING

In practice, fully finetuning a large pretrained model on downstream labeled data can often achieve
better performance than linear probing, but it also easily overfits if there is only a few amount of
labeled data. Here, we compare standard finetuning (polysemantic) to monosemantic finetuning.

3.2.1 METHODS FOR MONOSEMANTIC FINETUNING

Standard Finetuning. For the baseline, we consider a common finetuning setting, i.e., we pretrain
the encoders with contrastive learning on unlabeled ImageNet-100 and then learn a linear classifier on
labeled Imagenet-100 with the cross-entropy loss: LCE(f) = Ex,y log

exp(f(x)⊤wy)∑C
c=1 exp(f(x)⊤wc)

, where f is
the encoder network and wc is the linear classifier weight of the related label. Unlike linear probing,
we train classifiers on the pretrained representations without clipping the gradient of encoders.

Non-negative Tuning. According to NCL (Wang et al., 2024), replacing the original cross-entropy
(CE) loss used in the supervised learning process with the non-negative cross-entropy (NCE) loss will
maintain monosemanticity during supervised learning. Thus, we use it as a monosemantic finetuning
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Figure 3: The robustness of the models finetuned with polysemanticity (CE) and monosemanticity
(NCE) under different noises on ImageNet-100. Attaining monosemanticity during the finetuning
process enhances the robustness across various tasks.

strategy. To be specific, NCE applies non-negative transformation to the representations f(x), i.e.,

LNCE(f) = Ex,y log
exp(f+(x)

⊤wy)∑C
c=1 exp(f+(x)

⊤wc)
, (3)

where f+(x) = σ(f(x)) with a non-negative activation function, e.g., ReLU. By respectively
finetuning contrastive pretrained models with CE and NCE objectives, we compare the robustness of
polysemantic and monosemantic features across two different tasks: few-shot finetuning and noisy
label finetuning.

3.2.2 EXPERIMENTS

Few-shot Finetuning. As the finetuning process usually involves fewer training samples, a crucial
challenge for feature robustness is preventing overfitting on small training datasets. To evaluate the
performance of polysemantic and monosemantic features during few-shot finetuning, we respectively
use 10%, 20%, 50% and the entire training set of ImageNet-100 to finetune the pretrained repre-
sentations with CE and NCE objectives. As shown in Figure 3(a), 3(b), the monosemantic features
exhibit lower training accuracy but higher validation accuracy in few-shot finetuning, and the
advantages grow when the training set becomes smaller, which implies that the monosemanticity
helps representations to be less likely to overfit the training set in the downstream task.

Noisy-label Finetuning. We also evaluate robustness against label noise in finetuning tasks on
ImageNet-100. During the finetuning process, the labels of training samples are uniformly flipped to
the other classes with a probability η (noise rate). As shown in Figure 3(c), non-negative finetuning
leads to significant gains under label noise that keep growing with the increase of the noise rate.
Notably, monosemantic features exhibit at most 11.9% improvement under large noise rate.

These empirical results indicate that maintaining feature monosemanticity during the finetuning
process can bring better learning robustness against overfitting and label noise.

3.3 MONOSEMANTIC LORA FOR LARGE LANGUAGE MODELS

In Section 3.2.2, we show that maintaining feature monosemanticity during supervised finetuning can
be much more resistant to overfitting. This favorable property suggests that monosemanticity can
also benefit Large Language Model (LLM) finetuning of widely applications today. Existing LLM
training has two stages: 1) pretraining on large-scale unlabeled data, and 2) supervised finetuning (or
post-training) on small-scale data. Since LLMs are very large and labeled data are small, overfitting
becomes a severe issue in LLM finetuning (VM et al., 2024; Zhang et al., 2024a). Given that LLMs,
unlike supervised classifiers, do not have a natural representation space and they are more prone to
overfit due to the large model size, we extend LoRA, a standard efficient finetuning method, to have a
more monosemantic update per layer by prompting sparsity in its update.

3.3.1 METHODS FOR MONOSEMANTIC LLM FINETUNING

Low-rank Adaptation (LoRA). LoRA (low-rank adaptation) is a de facto method for finetuning
LLM weights a lower cost by factorizing it into low-rank weights. Specifically, for each LLM weight
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W0 ∈ Rd×k, we can reparameterize the fine-tuned weight as ∆W = AB, where A ∈ Rd×r, B ∈
Rr×k are two low-rank matrices (with r ≪ min(d, k)) actually being learned during finetuning.
After finetuning, the updated output of the linear layer with weight W becomes

y = WLoRAx = (W0 +∆W )x = W0x+∆Wx = W0x+ABx. (4)

The LoRA weights can be used separately or merged back to model weights.

Monosemantic LoRA. Inspired by non-negative finetuning (Section 3.2.1), we add non-negative
constraints inside LoRA modules to better promote feature monosemanticity:

y = WMonoLoRAx = W0x+∆W (x) = W0x+ σ(Aσ(Bσ(x))), (5)

where σ is the non-negative transformation (ReLU by default). Compared to Equation 4, the
MonoLoRA update encourages the low-rank weights to yield sparse updates that help prevent
overfitting.

3.3.2 EXPERIMENTS

When evaluating, we consider a common scenario related to robustness in large language model
fine-tuning. Specifically, during the fine-tuning process, the large language models often compromise
the already learned alignment, which leads to a security risk (Qi et al., 2023). In practice, we use
the Llama-2-7B-Chat (Touvron et al., 2023) as the aligned model and further finetune it with SST2
(Socher et al., 2013) as the review sentiment classification task and Dolly (Conover et al., 2023)
datasets as the dialogue generation task. To evaluate the security and alignment performance, we use
the ShieldGemma-9B (Zeng et al., 2024) and Beavertails-7B (Ji et al., 2024) models to evaluate the
alignment of model responses based on the response on Beavertails datasets (Ji et al., 2024). More
details of the parameters and the metrics can be found in Appendix A.3.

Table 2: Evaluation of LoRA and MonoLoRA with Llama-2-7B-Chat on SST2 and Dolly. SST2 is
evaluated by accuracy and Dolly is evaluated by RougeL. Alignment and Beavertails scores are the
lower the better.

Dataset Model ShieldGemma Alignment Scores (↓) Alignment
Sparsity

Task
Sparsity

Beavertails
(↓)

Task Perf.
(↑)Danger. Harass. Hate. Sex. Avg

SST2
Base 7.66 2.88 6.14 2.64 4.83 - - 20.90 88.65
LoRA 8.48 6.91 9.43 6.77 7.90 0 0 20.60 92.78
MonoLoRA 5.37 2.23 4.63 1.88 3.53 45.54 36.71 20.00 94.84

Dolly
Base 7.66 2.88 6.14 2.64 4.83 - - 20.90 10.21
LoRA 10.54 3.53 7.53 2.86 6.12 0 0 23.80 14.08
MonoLoRA 10.49 3.56 7.40 2.70 6.04 38.69 40.00 22.60 14.48

As shown in Table 2, the alignment of the monosemantic LoRA models is more resilient to overfitting
than that of normal LoRAs and in the meantime, they can achieve comparable fine-tuning task
performance. We evaluate the sparsity (zero value ratio) of the intermediate activations of the LoRA
and MonoLoRA models, which is the intrinsic sparsity of the LoRA module. The results suggest that
the monosemanticity at neuron levels can also improve the robustness of LLMs against overfitting
when finetuned with small-scale data.

4 UNDERSTANDING THE ROBUSTNESS GAINS OF MONOSEMANTICITY

In Section 3, we provide a comprehensive evaluation of the robustness gains of feature monoseman-
ticity across multiple scenarios. Yet, we do not have a fully clear understanding of why monosemantic
features are more robust. As a preliminary step to demystify this phenomenon, in this section, we
investigate the influence of monosemanticity on learned classifiers from both empirical (Section 4.1)
and theoretical (Sections 4.2 & 4.3) perspectives. For simplicity, we focus on the label noise scenario.

4.1 NOISY CLASSIFIERS PREFER MONOSEMANTIC FEATURES IN PRACTICE

To further understand the robustness improvements brought by monosemanticity, we investigate
the difference in the salient features of the robust and non-robust classifiers under noisy conditions.
Taking the linear classifier trained on ImageNet-100 with 90% noisy labels (Section 3.1)) as an
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(a) The most salient feature of the
lowest-accuracy class is polyse-
mantic.

(b) The most salient feature of the
highest-accuracy class is monose-
mantic.
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(c) Correctly classified samples have
more monosemantic features.

Figure 4: Influence of feature monosemanticity on classification performance, where the classifier is
applied after a frozen contrastive encoder and trained with 90% noisy labels. (a), (b) respectively
draw the activated samples on the dimensions with the largest clssifier weight of the lowest-accuracy
and highest-accuracy classes on ImageNet-100. (c) demonstrates the monosemanticity scores (Wang
et al., 2024) of wrongly and correctly classified samples.

example, we start with respectively visualizing the dominant features for classes with the highest
and lowest accuracy. For each class, we find the feature dimension with the largest classifier weight
for the ground-truth label and visualize the top-activated samples along the dimension. As shown in
Figure 4(a), 4(b), we observe a clear difference: samples activated in the dimension related to the
lowest accuracy class (jeans) belong to different classes while samples activated in the dimension
related to the highest accuracy class (boathouse) share the same label, i.e., the classifier with higher
performance under label noise relies on a more monosemantic dimension.

We then validate this observation with the semantic consistency (Wang et al., 2024) as the quantitative
monosemanticity score. The semantic consistency calculates the proportion of activated samples
that belong to their most frequent class along a dimension. With a larger semantic consistency, the
dimension is more likely to be activated by the samples from the same class, i.e., the feature is more
monosemantic. To compare the robust and non-robust classifiers, we respectively draw the samples
that are wrongly and correctly classified by the classifiers learned on ImageNet-100 with 90% noisy
labels. For the embedding of each sample, we draw the dimension with the largest activation value
and calculate the semantic consistency.

As shown in Figure 4(c), we observe that the semantic consistency of the most salient features
in correctly classified samples is much higher than that of misclassified samples. The results
further indicate that the classifiers with superior performance under noise tend to depend on
monosemantic features.

4.2 REPLICATING MONOSEMANTICITY GAINS WITH THE SUPERPOSITION MODEL

To further establish a theoretical understanding of the robustness benefits brought by monosemanticity,
we introduce a toy model proposed by (Elhage et al., 2022b) for the simplicity of analysis. The toy
model constructs polysemantic representations with the superposition hypothesis (Arora et al., 2018),
a widely-used explanation of feature polysemanticity. The hypothesis states that a polysemantic
feature is an approximately linear combination of multiple latent semantics while a monosemantic
feature is the reconstruction of a single natural concept. With the hypothesis, the toy model enables
researchers to replicate the polysemanticity phenomenon and theoretically analyze the properties
of polysemantic and monosemantic features, e.g., occurrence conditions, learning dynamics, and
geometric structures (Lecomte et al., 2024; Marshall & Kirchner, 2024; Chen et al., 2023). In this
section, we start by introducing the setups and observing the robustness of different features on the
toy model.

Toy Model Setups. In practice, we follow the settings proposed by Elhage et al. (2022b) and evaluate
the robustness of polysemantic features on the toy model. Specifically, we assume each sample x
has n dimensions and each dimension represents a natural concept. As the features in real-world
datasets are usually sparsely activated (Olshausen & Field, 1997), we assume each dimension of a
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(a) Polysemantic dimensions correspond to multiple latent semantics.
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(b) Polysemantic features have worse
performance under noisy data.

Figure 5: The comparison between polysemantic and monosemantic features on the toy model
introduced by Elhage et al. (2022b) (n = 40, m = 20, S = 0.2). (a) demonstrates the Parameters
(W⊤W ) of monosemantic (Left) and polysemantic features (Right) on the Toy Model. (b) evaluates
the classification performance of features against different noises. The label noise denotes applying
90% noisy labels to the training samples and input noise denotes applying Gaussian noise to the
validation samples.

sample x has an associated sparsity S and let xi = 0 with probability S. If not zero, we let each
dimension be uniformly distributed between [0, 1]. When evaluating the performance, we consider
the classification tasks of natural concepts, i.e., the labels satisfy that y(x) = argmax

i
xi.

For the encoding network, we consider a linear model h = W⊤Wx, where W ∈ Rm×n, with m < n,
i.e., the hidden dimension is smaller than the input dimension. In practice, we use the reconstruction
of x as the training objective and obtain two kinds of learned features. As shown in Figure 5(a),
when the superposition does not occur, we observe that W⊤W is diagonal and has only m non-zero
elements, which means the model only captures m concepts and each dimension is monosemantic. In
contrast, when superposition happens, features obtain more concepts than the model dimensions and
different concepts are projected into the same dimension.

Noisy learning settings. To evaluate the robustness of features, we respectively add noise to the
labels and samples. For training with noisy labels, we denote the noise rate as η, where each label y
is uniformly switched to one of the other n− 1 labels with probability η. In experiments, we selected
an aggressive noise rate (90%). With labeled samples, we train a linear classifier following the frozen
features and evaluate the classification accuracy on a validation dataset without noisy labels. For
noisy sample validation, we train a linear classifier on the clean dataset and add the Gaussian noise to
the validation set samples.

Empirical Results. As shown in Figure 5(b), in the absence of noise, polysemantic features exhibit
better performance, which is expected as the superposition enables features to capture more concepts.
However, when there exists noise in the labels and samples, the situation changes significantly. The
feature without superposition shows improvements over that with superposition under both label
noise and input noise. The empirical results replicate the phenomenon where the monosemantic
features are more robust than polysemantic features.

4.3 THEORETICAL ANALYSES WITH THE SUPERPOSITION MODEL

After replicating the robustness gains of monosemanticity on the toy model, we then establish a
theoretical comparison between polysemantic and monosemantic features. For ease of theoretical
analysis, we consider a binary classification case in the toy model (n = 2, m = 1, S = 0.2). To be
specific, a sample x has two latent features x1, x2, and the model parameter W ∈ R1×2. When we
obtain the monosemantic features, the model output is νmono := x1. In contrast, when obtaining
polysemantic features, the model keeps more natural concepts than the representation dimension.
According to Elhage et al. (2022b), one common geometric structure of polysemantic features is
antipodal pairs formed by two concepts. Therefore, we assume the learned polysemantic feature to
be νpoly := x1 − x2.

For conciseness of expressions, we introduce the following notations on mean and variance for a given
feature representation ν. For a clean distribution without label noise, we denote the conditional means
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and variances by µi(ν) := E(ν|y = i), σ2
i (ν) := E((ν − µ0(ν))

2|y = i), i = 0, 1. For distinction,
for a noisy distribution, we use µ̃ and σ̃. Borrowing the concept from linear discriminant analysis
(LDA) (Fisher, 1936), we deem that a good linearly discriminative representation should have a
large distance between different classes whereas maintaining the intra-class variance as small as
possible, i.e. maximize ∆µ(ν) = |µ0(ν)− µ1(ν)| whereas minimizing σ2

0(ν) and σ2
1(ν). Therefore,

to quantitatively compare polysemantic and monosemantic representations, we use the criterion
J(ν) = ∆µ(ν)/(σ0(ν)σ1(ν)). A larger value of J(ν) indicates better linear separability.
Theorem 4.1 (Conditional means and variances of monosemantic & polysemantic features). Let
νmono = x1 and νpoly = x1 − x2. For conditional means, we have µ0(νpoly) < µ0(νmono)
and µ1(νpoly) < µ1(νmono), yet ∆µ(νpoly) > ∆µ(νmono). For conditional variances, we have
σ2
1(νpoly) = σ2

1(νmono) and σ2
0(νpoly) > σ2

0(νmono). Overall, we have J(νpoly) > J(νmono).

According to the LDA criterion, the polysemantic feature with a larger J(ν) is more linearly separable.
Intuitively, because the polysemantic embedding encodes information of both x1 and x2, it can do
better classification w.r.t. the labels depending on both features. However, when there exits label
noise, we observe a different situation.
Theorem 4.2 (Influence of label noise on linear seprarability). We denote the linear separability
criterion under noise as J̃(ν) = ∆µ̃(ν)/(σ̃0(ν)σ̃1(ν)). For noise rate η ∈ [0, 0.5),

J̃(νpoly)

J(νpoly)
≤ J̃(νmono)

J(νmono)
≤ 1. (6)

Meanwhile, we obtain J̃(νpoly) ≤ J̃(νmono) when η ∈ [0.25, 0.5).

As shown in Theorem 4.2, with the increase of noise rate, the linear separability (J(ν)) of both
polysemantic and monosemantic features becomes worse. However, J(νmono) decreases more
slowly. As a result, when the noise rate is aggressive enough (η ≥ 0.25), the monosemantic feature
exhibits better linear seperability than the polysemantic one. Moreover, in Appendix B.3, we show
that input noise has a similar influence on linear separability. The theoretical results reveal that the
linear separability of monosemantic features is more robust than polysemantic ones in the toy model
settings, which leads to better performance in tasks under noise. As a preliminary step, we believe
that the examples can inspire further theoretical analysis of the relationship between monosemanticity
and model robustness in more realistic situations, such as fine-tuning scenarios.

5 CONCLUDING REMARKS

Recent work has made significant strides in enhancing model interpretability by promoting feature
monosemanticity through various techniques. However, a prevailing belief in the literature posits an
accuracy-interpretability tradeoff, suggesting that achieving monosemantic features for better inter-
pretability necessarily compromises prediction accuracy. In this study, we have challenged this notion
by demonstrating the advantages of monosemanticity beyond interpretability alone. Specifically,
we found that monosemantic features are significantly more robust to various types of distribution
shifts, including input noise, label noise, and real-world out-of-domain inputs. Additionally, we have
shown that maintaining feature monosemanticity during fine-tuning serves as an effective regularizer,
reducing model overfitting in few-shot settings, noisy environments, and during large language
model (LLM) fine-tuning. We also provide an in-depth analysis of the benefits of monosemantic
features from both theoretical and empirical aspects. These diverse sources of learning robustness
collectively indicate that monosemantic features have a general sense of robustness, resonating with
its benefits in interpretability. Therefore, rather than viewing monosemanticity as a necessary cost for
interpretability, we advocate for embracing and exploring the multiple learning advantages it offers.
We believe our work, as a pioneering effort in this direction, will inspire future research to investigate
these possibilities further.

6 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we elaborate on the details of our experiments and
theoretical analysis in the main paper and the appendix. In Section 3.1, 3.2, 3.3 of the main paper, we
respectively introduce the methods for capturing polysemantic and monosemantic features in linear
probing, finetuning vision models and finetuning LLMs. Furthermore, in Appendix A, we introduce
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the hyperparameters and implementation details of adopted methods, and the detailed settings of
the robustness evaluation, including input and label noise, few-shot learning, and out-of-domain
generalization. We will definitely release the codes after the acceptance. For theoretical results, we
introduce the toy models we used in Section 4.3 of the main paper and provide detailed proofs and
explanations for the theoretical comparison in Appendix B.
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A EXPERIMENT DETAILS

A.1 EXPERIMENT DETAILS FOR NOISY LINEAR PROBING

During the pretraining process, we utilize ResNet-18 (He et al., 2016) as the backbone and train the
models on CIFAR-100 and ImageNet-100. We pretrain the model for 200 epochs. The projector is a
two-layer MLP with a hidden dimension 16384 and an output dimension 2048. We train the models
with batch size 256 and weight decay 0.0001. When implementing NCL and SAE, we follow the
default settings of SimCLR. For NCL, we adopt ReLU as the activation function σ. For SAE, the
encoder and decoder are linear layers with 2048 input and output dimensions, and the number of
activated features in the hidden layer is 256.

During the linear evaluation, we train a classifier following the frozen backbone pretrained by different
methods for 50 epochs. For noisy label probing, we apply symmetric label noise when training the
linear classifiers, i.e., the labels are uniformly flipped to the other classes with the noisy rate. And for
random input noise, we train the linear classifiers on clean datasets, while applying different scales of
uniform noise and Gaussian noise to the validation sample. For real-world out-of-domain distribution
shifts, we use ImageNet-sketch and ImageNet-stylized datasets (Geirhos et al., 2018; Wang et al.,
2019a). As we pretrain the network on ImageNet-100, we select the samples of the corresponding
100 classes from these out-of-distribution datasets and evaluate the accuracy.

A.2 EXPERIMENT DETAILS FOR FEW-SHOT AND NOISY FINETUNING FROM PRERTRAINED
FEATURES

During the pretraining process, we utilize ResNet-18 (He et al., 2016) as the backbone and train the
models on ImageNet-100. We pretrain the model for 200 epochs. We use a projector which is a
two-layer MLP with hidden dimension 16384 and output dimension 2048. We pretrain the models
with batch size 256 and weight decay 0.0001. During the finetuning process, we train a classifier
following the backbone for 100 epochs respectively with standard and non-negative tuning, following
the default settings of finetuning. When implementing the non-negative tuning, we select the ReLU
function as the non-negative operator. For few-shot finetuning, we respectively random draw 10%,
20%, 50%, and 100$ training samples from the original ImageNet-100 training set. For noisy label
fine-tuning, we still apply symmetric label noise with different noise rates to the training samples.

A.3 EXPERIMENT DETAILS FOR MONOSEMANTIC LLM FINETUNING

Hyper-parameters We finetune the Llama-2-7b-Chat model in SST2 with 20 epochs, batch size 16
and learning rate 1e-4. we Lora with rank r = 8, scaling factor α = 4, and dropout rate 0.1 as default.
For Dolly, we finetune it 1 epoch (by common practice), with batch size 4. The LoRA module is
added to every query and value mapping module in the base model. For finetuning we use 5000
samples from the dataset. For inference, we use 1000 samples.

Security Scores: We use the ShieldGemma-9B (Zeng et al., 2024) and Beavertails-7B (Ji et al., 2024)
models to evaluate the alignment of model responses based on the response on Beavertails datasets (Ji
et al., 2024). The Bevertails-7B and ShieldGemma-9B are sheild models which can detect the unsafe
behaviors of models.

Prompt Template

Listing 1: SST-2 Prompt
Below is an instruction that describes a task.
Write a response that appropriately completes the request.

### Instruction:
Analyze the sentiment of the input, and respond only ’positive’ or ’negative’.

### Input:
{sentence}

### Response:

Listing 2: ShieldGemma Guideline
\"No Dangerous Content\": The prompt shall not contain or seek generation of content that harming oneself
and/or others (e.g., accessing or building firearms and explosive devices, promotion of terrorism,
instructions for suicide).
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\"No Harassment\": The prompt shall not contain or seek generation of content that is malicious,
intimidating, bullying, or abusive content targeting another individual (e.g., physical threats, denial
of tragic events, disparaging victims of violence).

\"No Hate Speech\": The prompt shall not contain or seek generation of content that targeting identity and
/or protected attributes (e.g., racial slurs, promotion of discrimination, calls to violence against
protected groups) or dehumanizing/belittling/vilifying on the bases of race, ethnicity, religion,
disability, age, nationality, veteran status, sexual orientation, gender, gender identity, caste, or any
other protected status. We do allow content that includes a reference to a protected individual or

group in a positive manner.
\"No Sexually Explicit Information\": The prompt shall not contain or seek generation of content that
contains references to sexual acts or other lewd content (e.g., sexually graphic descriptions, content
aimed at causing arousal). Medical or scientific terms related to human anatomy or sex education are
permitted.

A.4 EXPERIMENTS DETAILS FOR FIGURE 1

For Figure 1(a), we respectively draw a random dimension from the models trained by CL and NCL,
and then draw the top-activated samples along two dimensions. We utilize ResNet-18 (He et al.,
2016) as the backbone and train the models on ImageNet-100 for 200 epochs.

For Figure 1(b), we evaluate the performance in linear probing with noise. During the linear
evaluation, we train a classifier following the frozen backbone pretrained by different methods for
50 epochs. For noisy label probing, we apply 90% symmetric label noise when training the linear
classifiers. For random input noise, we train the linear classifiers on clean datasets, while applying
Gaussian noise with 0.6 standard variation to the validation sample.

B PROOFS

B.1 PROOFS RELATED TO THEOREM 4.1

B.1.1 MONOSEMANTIC REPRESENTATIONS

In the monosemantic case, we assume the learned representation only keeps the most important
dimension ν = x1.

Theorem B.1 (Conditional mean and variance of monosemantic representations). The conditional
means and variances of νmono = x1 are

µ0(νmono) =
1

3

(1− S)2

1 + S2
and µ1(νmono) =

1

3

2 + S

1 + S
(7)

σ2
0(νmono) =

1

6

(1− S)2

1 + S2
− µ0(νmono)

2 and σ2
1(νmono) =

1

6

3 + S

1 + S
− µ1(νmono)

2. (8)

Proof of Theorem B.1. We first calculate the conditional probability density functions.

P(x1 ≤ x|y = 0)

=
P(x1 ≤ x, x1 ≤ x2)

P(x1 ≤ x2)

=
P(x1 ≤ x2, x1 ≤ x, x2 ≤ x) + P(x1 ≤ x2, x1 ≤ x, x2 > x)

P(x1 ≤ x2)

=
P(x1 = 0, x2 ≤ x) + P(x1 ≤ x2, 0 < x1 ≤ x, 0 < x2 ≤ x) + P(x1 ≤ x)P(x2 > x)

P(x1 ≤ x2)

=
S[S + (1− S)x] + 1

2 (1− S)2x2 + [S + (1− S)x](1− S)(1− x)
1
2 (1 + S2)

= 1− (1− S)2(1− x)2

1 + S2
. (9)
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P(x1 ≤ x|y = 1) =
P(x1 ≤ x, x1 > x2)

P(x1 > x2)

=
P(x1 ≤ x)− P(x1 ≤ x, x1 ≤ x2)

P(x1 > x2)

=
P(x1 ≤ x)

P(x1 > x2)
− P(x1 ≤ x|y = 0) · P(x1 ≤ x2)

P(x1 > x2)

=
S + (1− S)x

1
2 (1− S2)

−
[
1− (1− S)2(1− x)2

1 + S2

]
· 1 + S2

1− S2

=
(1− S)2x2 + 2S(1− S)x

1− S2
. (10)

Then the conditional means of νmono = x1 are

µ0(νmono) =

∫
x

x dP(x1 ≤ x|y = 0)

=

∫
x∈(0,1]

x
2(1− S)2

1 + S2
(1− x) dx

=
2(1− S)2

1 + S2
(
1

2
− 1

3
)

=
1

3

(1− S)2

1 + S2
(11)

and

µ1(νmono) =

∫
x

x dP(x1 ≤ x|y = 1)

=

∫
x∈(0,1]

x · 2(1− S)
(1− S)x+ S

1− S2
dx

=
2(1− S)

1− S2

[1
3
(1− S) +

1

2
S
]

=
1

3

2 + S

1 + S
. (12)

Then we have

µ1(νmono)− µ0(νmono) =
1

3

1 + S

1 + S2
. (13)

Similarly, we have the conditional variances as follows.

σ2
0(νmono) =

∫
x

x2dP(x1 ≤ x|y = 0)− µ0(νmono)
2

=

∫
x∈(0,1]

x2 2(1− S)2

1 + S2
(1− x) dx− µ0(νmono)

2

=
2(1− S)2

1 + S2

[1
3
− 1

4

]
− µ0(νmono)

2

=
1

6

(1− S)2

1 + S2
− µ0(νmono)

2 (14)
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and

σ2
1(νmono) =

∫
x

x dP(x1 ≤ x|y = 1)− µ1(νmono)
2

=

∫
x∈(0,1]

x2 · 2(1− S)
(1− S)x+ S

1− S2
dx− µ1(νmono)

2

=
2(1− S)

(1− S2)

[1
4
(1− S) +

1

3
S
]
− µ1(νmono)

2

=
1

6

3 + S

1 + S
− µ1(νmono)

2. (15)

B.1.2 POLYSEMANTIC REPRESENTATIONS

To study the polysemantic case, we first have to derive the probability distribution of νpoly = x1 −x2

and the corresponding conditional probability density functions on y = 0 and y = 1, separately. We
first calculate the cumulative distribution functions as follows.

Lemma B.2 (Distribution of νpoly = x1 − x2).

P(x1 − x2 ≤ x) =


− 1

2
[1− (1− S)x]2 + 1 +

1

2
S2, x ∈ [0, 1],

1

2
[(1− S)x+ 1]2 − 1

2
S2, x ∈ [−1, 0).

Proof of Lemma B.2. For x ∈ [0, 1], we have

P(x1 − x2 ≤ x)

= lim
N→∞

N∑
n=−N

P(x1 ≤ x+ n/N)P(x2 = n/N)

= lim
N→∞

⌊(1−x)N⌋∑
n=0

P(x1 ≤ x+ n/N)P(x2 = n/N) +

N∑
n=⌊(1−x)N⌋+1

1 · P(x2 = n/N)

= [S + (1− S)x] · S

+ lim
N→∞

⌊(1−x)N⌋∑
n=1

[S + (1− S)(x+ n/N)] · (1− S)/N +

N∑
n=⌊(1−x)N⌋+1

(1− S)/N

= S[S + (1− S)x] + lim
N→∞

[S(1− S) + (1− S)2x]⌊(1− x)N⌋/N

+ (1− S)2⌊(1− x)N⌋(⌊(1− x)N⌋+ 1)/(2N2) + (1− S)(N − ⌊(1− x)N⌋ − 1)/N

= S[S + (1− S)x] + [S(1− S) + (1− S)2x](1− x) + (1− S)2(1− x)2/2 + (1− S)x

= −1

2
[1− (1− S)x]2 + 1 +

1

2
S2. (16)
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For x ∈ [−1, 0), we have

P(x1 − x2 ≤ x) = lim
N→∞

N∑
n=−N

P(x1 ≤ x+ n/N)P(x2 = n/N)

= lim
N→∞

N∑
n=−⌊xN⌋

P(x1 ≤ x+ n/N)P(x2 = n/N)

= lim
N→∞

N∑
n=−⌊xN⌋

[S + (1− S)(x+ n/N)] · (1− S)/N

= lim
N→∞

[S(1− S) + (1− S)2x](N + ⌊xN⌋)/N

+ (1− S)2(N − ⌊xN⌋)(N + ⌊xN⌋+ 1)/(2N2)

= [S(1− S) + (1− S)2x](1 + x) + (1− S)2(1− x2)/2

=
1

2
[(1− S)x+ 1]2 − 1

2
S2. (17)

Theorem B.3 (Conditional mean and variance of polysemantic representations). The conditional
means and variances of νpoly = x1 − x2 are

µ0(νpoly) = −1

3

(1− S)(1 + 2S)

1 + S2
and µ1(νmono) =

1

3

1 + 2S

1 + S
(18)

σ2
0(νpoly) =

1

6

(1− S)(1 + 3S)

1 + S2
− µ0(νpoly)

2 and σ2
1(νpoly) =

1

6

1 + 3S

1 + S
− µ1(νmono)

2

(19)

Proof of Theorem B.3. By Lemma B.2, we have

Ppoly(x1 − x2 ≤ x|y = 0) = P(x1 − x2 ≤ x|x1 ≤ x2)

= P(x1 − x2 ≤ min(0, x))/P(x1 − x2 ≤ 0)

=


[1
2
[(1− S)x+ 1]2 − 1

2
S2
]
/[
1

2
(1 + S2)], x ∈ [−1, 0)

1, x ∈ [0, 1]

=

{[
[(1− S)x+ 1]2 − S2

]
/(1 + S2), x ∈ [−1, 0)

1, x ∈ [0, 1]

and

Ppoly(x1 − x2 ≤ x|y = 1)

= P(x1 − x2 ≤ x|x1 > x2)

= P(0 < x1 − x2 ≤ x)/P(x1 − x2 > 0)

=

{
0, x ∈ [−1, 0]

[P(x1 − x2 ≤ x)− P(x1 − x2 ≤ 0)]/[1− P(x1 − x2 ≤ 0)], x ∈ (0, 1]

=


0, x ∈ [−1, 0][
− 1

2
[1− (1− S)x]2 + 1 +

1

2
S2 − 1

2
(1 + S2)

]
/[1− 1

2
(1 + S2)], x ∈ (0, 1]

=

{
0, x ∈ [−1, 0][
1− [1− (1− S)x]2

]
/(1− S2), x ∈ (0, 1]
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Then we have

µ0(νpoly) =

∫
x∈[−1,0)

x · 2(1− S)[(1− S)x+ 1]/(1 + S2) dx

=
2(1− S)

1 + S2

[1
3
(1− S)− 1

2

]
= −1

3

(1− S)(1 + 2S)

1 + S2
, (20)

µ1(νpoly) =

∫
x∈(0,1]

x · 2(1− S)[1− (1− S)x]/(1− S2) dx

=
2

1 + S

[1
2
− 1

3
(1− S)

]
=

1

3

1 + 2S

1 + S
, (21)

µ1(νpoly)− µ0(νpoly) =
2

3

1 + 2S

(1 + S)(1 + S2)
, (22)

σ2
0(νpoly) =

∫
x∈[−1,0)

x2 · 2(1− S)[(1− S)x+ 1]/(1 + S2) dx− µ0(νpoly)
2

=
2(1− S)

1 + S2

[
− 1

4
(1− S) +

1

3

]
− µ0(νpoly)

2

=
1

6

(1− S)(1 + 3S)

1 + S2
− µ0(νpoly)

2, (23)

and

σ2
1(νpoly) =

∫
x∈(0,1]

x2 · 2(1− S)[1− (1− S)x]/(1− S2) dx− µ1(νpoly)
2

=
2

1 + S

[1
3
− 1

4
(1− S)

]
− µ1(νpoly)

2

=
1

6

1 + 3S

1 + S
− µ1(νpoly)

2. (24)

B.1.3 PROOF OF THEOREM 4.1

Proof of Theorem 4.1. Following the toy model described in Section 4.2, we let S = 0.2. Then by
Theorem B.1, we have µ0(νmono) = 0.205, µ1(νmono) = 0.611, ∆µ(νmono) = 0.406, σ0(νmono) =
0.246, σ1(νmono) = 0.266, and J(νmono) = 6.196. By Theorem B.3, we have µ0(νpoly) = −0.359,
µ1(νpoly) = 0.389, ∆µ(νpoly) = 0.748, σ0(νmono) = 0.276, σ1(νpoly) = 0.266, and J(νpoly) =
10.164. By comparing the above results, we complete the proof.

B.2 PROOFS RELATED TO LABEL NOISE

Following Ghosh et al. (2017); Ma et al. (2020); Wang et al. (2019b), we assume the noisy label
ỹ is randomly flipped from the true labels to other classes. Under η ∈ [0, K−1

K ), the noisy label
distribution is

P(ỹ = k|x) =
K∑

j=0,1

P(ỹ = k|y = j)P(y = k|x), (25)

where P(ỹ = k|y = j) = 1− η if j = k, and otherwise P(ỹ = k|y = j) = η.
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B.2.1 INFLUENCE OF LABEL NOISE ON CONDITIONAL MEAN AND VARIANCE

Lemma B.4 (Conditional Distributions). For noise rate η ∈ [0, 1/2) and sparsity S ∈ [0, 1], we
have conditional distributions

P(ν|ỹ = 0) =
(1− η)(1 + S2)P(ν|y = 0) + η(1− S2)P(ν|y = 1)

(1− η)(1 + S2) + η(1− S2)
, (26)

and

P(ν|ỹ = 1) =
η(1 + S2)P(ν|y = 0) + (1− η)(1− S2)P(ν|y = 1)

η(1 + S2) + (1− η)(1− S2)
. (27)

Proof of Lemma B.4. We first calculate the class conditional distributions.

P(ν|ỹ = 0) = P(ỹ = 0|ν)P(ν)/P(ỹ = 0)

=

∑
j=0,1 P(ỹ = 0|y = j)P(y = j|ν)P(ν)∑

j=0,1 P(ỹ = 0|y = j)P(y = j)

=

∑
j=0,1 P(ỹ = 0|y = j)P(ν|y = j)P(y = j)∑

j=0,1 P(ỹ = 0|y = j)P(y = j)

=
(1− η)P(ν|y = 0)P(y = 0) + ηP(ν|y = 1)P(y = 1)

(1− η)P(y = 0) + ηP(y = 1)
. (28)

P(ν|ỹ = 1) = P(ỹ = 1|ν)P(ν)/P(ỹ = 1)

=

∑
j=0,1 P(ỹ = 1|y = j)P(y = j|ν)P(ν)∑

j=0,1 P(ỹ = 1|y = j)P(y = j)

=

∑
j=0,1 P(ỹ = 1|y = j)P(ν|y = j)P(y = j)∑

j=0,1 P(ỹ = 1|y = j)P(y = j)

=
ηP(ν|y = 0)P(y = 0) + (1− η)P(ν|y = 1)P(y = 1)

ηP(y = 0) + (1− η)P(y = 1)
. (29)

Recall that x1, x2 = 0 with probability S, and x1, x2 ∼ U(0, 1] with probability 1 − S. Because
x1 and x2 are independently and identically distributed and P(x1 = x2|x1, x2 = 0), we have
P(x1 ≤ x2|x1, x2 > 0) = P(x2 ≤ x1|x1, x2 > 0) = 1/2, and therefore

P(y = 0) = P(x1 ≤ x2)

= P(x1 = 0) + P(x1 > 0)P(x2 > 0)P(x1 ≤ x2|x1, x2 > 0)

= S +
1

2
(1− S)2 =

1

2
(1 + S2). (30)

Then P(y = 1) = 1− P(y = 0) = 1
2 (1− S2), and correspondingly we have

P(ν|ỹ = 0) =
(1− η)(1 + S2)P(ν|y = 0) + η(1− S2)P(ν|y = 1)

(1− η)(1 + S2) + η(1− S2)
, (31)

and

P(ν|ỹ = 1) =
η(1 + S2)P(ν|y = 0) + (1− η)(1− S2)P(ν|y = 1)

η(1 + S2) + (1− η)(1− S2)
. (32)

Theorem B.5 (Influence of label noise on inter-class distance). For noise rate η ∈ [0, 1
2 ),

∆µ̃(ν) =
(1− 2η)(1 + S2)(1− S2)

[1 + (1− 2η)S2][1− (1− 2η)S2]
∆µ(ν). (33)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Proof of Theorem B.5. By Lemma B.4, the conditional means of ν has the following forms.

µ̃0(ν) := E(ν|ỹ = 0)

=

∫
ν

ν dP(ν|ỹ = 0)

=

∫
ν

ν
(1− η)(1 + S2)

(1− η)(1 + S2) + η(1− S2)
dP(ν|y = 0)

+

∫
ν

ν
η(1− S2)

(1− η)(1 + S2) + η(1− S2)
dP(ν|y = 1). (34)

µ̃1(ν) := E(ν|ỹ = 1)

=

∫
ν

ν dP(ν|ỹ = 1)

=

∫
ν

ν
η(1 + S2)

η(1 + S2) + (1− η)(1− S2)
dP(ν|y = 0)

+

∫
ν

ν
(1− η)(1− S2)

η(1 + S2) + (1− η)(1− S2)
dP(ν|y = 1). (35)

Then we have

µ̃1(ν)− µ̃0(ν)

=

∫
ν

ν
[ η(1 + S2)

η(1 + S2) + (1− η)(1− S2)
− (1− η)(1 + S2)

(1− η)(1 + S2) + η(1− S2)

]
dP(ν|y = 0)

+

∫
ν

ν
[ (1− η)(1− S2)

η(1 + S2) + (1− η)(1− S2)
− η(1− S2)

(1− η)(1 + S2) + η(1− S2)

]
dP(ν|y = 1)

=
(1− 2η)(1 + S2)(1− S2)

[1 + (1− 2η)S2][1− (1− 2η)S2]

[ ∫
ν

ν dP(ν|y = 1)−
∫
ν

ν dP(ν|y = 0)
]

=
(1− 2η)(1 + S2)(1− S2)

[1 + (1− 2η)S2][1− (1− 2η)S2]
[µ1(ν)− µ0(ν)]. (36)

Theorem B.6 (Influence of label noise on intra-class variance). For i = 0, 1 and noise rate η ∈ [0, 1
2 ),

σ̃2
i (ν) = ci,0σ

2
0(ν) + ci,1σ

2
1(ν) + ci,0µ0(ν)

2 + ci,1µ1(ν)
2 − [ci,0µ0(ν) + ci,1µ1(ν)]

2

where c0,0 := (1−η)(1+S2)
1+(1−2η)S2 , c0,1 := η(1+S2)

1+(1−2η)S2 , c1,0 = η(1+S2)
1−(1−2η)S2 , and c1,1 = (1−η)(1+S2)

1−(1−2η)S2 .

Proof of Theorem B.6. By Lemma B.4, the conditional variances of ν has the following forms.

σ̃2
0(ν) := E(ν2|ỹ = 0)− µ̃0(ν)

2

=

∫
ν

ν2 dP(ν|ỹ = 0)− µ̃0(ν)
2

=

∫
ν

ν2
(1− η)(1 + S2)

(1− η)(1 + S2) + η(1− S2)
dP(ν|y = 0)

+

∫
ν

ν2
η(1− S2)

(1− η)(1 + S2) + η(1− S2)
dP(ν|y = 1)− µ̃0(ν)

2

=
(1− η)(1 + S2)

1 + (1− 2η)S2
[σ2

0(ν) + µ0(ν)
2] +

η(1 + S2)

1 + (1− 2η)S2
[σ2

1(ν) + µ1(ν)
2]

−
[ (1− η)(1 + S2)

1 + (1− 2η)S2
µ0(ν) +

η(1 + S2)

1 + (1− 2η)S2
µ1(ν)

]2
:= c0σ

2
0(ν) + c1σ

2
1(ν) + c0µ0(ν)

2 + c1µ1(ν)
2 − [c0µ0(ν) + c1µ1(ν)]

2, (37)
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where c0 := (1−η)(1+S2)
1+(1−2η)S2 and c1 := η(1+S2)

1+(1−2η)S2 .

σ̃2
1(ν) := E(ν2|ỹ = 1)− µ̃1(ν)

2

=

∫
ν

ν2 dP(ν|ỹ = 0)− µ̃0(ν)
2

=

∫
ν

ν2
η(1 + S2)

η(1 + S2) + (1− η)(1− S2)
dP(ν|y = 0)

+

∫
ν

ν2
(1− η)(1− S2)

η(1 + S2) + (1− η)(1− S2)
dP(ν|y = 1)− µ̃1(ν)

2

=
η(1 + S2)

1− (1− 2η)S2
[σ2

0(ν) + µ0(ν)
2] +

(1− η)(1 + S2)

1− (1− 2η)S2
[σ2

1(ν) + µ1(ν)
2]

−
[ η(1 + S2)

1− (1− 2η)S2
µ0(ν) +

(1− η)(1 + S2)

1− (1− 2η)S2
µ1(ν)

]2
:= c′0σ

2
0(ν) + c′1σ

2
1(ν) + c′0µ0(ν)

2 + c′1µ1(ν)
2 − [c′0µ0(ν) + c′1µ1(ν)]

2, (38)

where c′0 = η(1+S2)
1−(1−2η)S2 and c′1 = (1−η)(1+S2)

1−(1−2η)S2 .

B.2.2 LINEAR SEPARABILITY OF MONOSEMANTIC & POLYSEMANTIC REPRESENTATIONS
UNDER LABEL NOISE

Proof of Theorem 4.2. By definition, we have

J̃(νmono)/J(νmono)

J̃(νpoly)/J(νpoly)
=

[∆µ̃(νmono)/(σ̃0(νmono)σ̃1(νmono))]/[∆µ(νmono)/(σ0(νmono)σ1(νmono))]

[∆µ̃(νpoly)/(σ̃0(νpoly)σ̃1(νpoly))]/[∆µ(νpoly)/(σ0(νpoly)σ1(νpoly))]
.

(39)

By Theorem B.5 we have ∆µ̃(νmono)/∆µ(νmono) = ∆µ̃(νpoly)/∆µ(νpoly) and σ1(νmono) =
σ1(νpoly), and thus

J̃(νmono)/J(νmono)

J̃(νpoly)/J(νpoly)
=

σ̃0(νpoly)

σ̃0(νmono)
· σ̃1(νpoly)

σ̃1(νmono)
· σ0(νmono)

σ0(νpoly)
. (40)

By Theorems B.1 and B.6, we have

σ̃2
0(νmono) =

1.04(1− η)

1.04− 0.08η
(0.2462 + 0.2052) +

1.04η

1.04− 0.08η
(0.2662 + 0.6112)

−
[ 1.04(1− η)

1.04− 0.08η
0.205 +

1.04η

1.04− 0.08η
0.611

]2
, (41)

σ̃2
1(νmono) =

1.04η

0.96 + 0.08η
(0.2462 + 0.2052) +

1.04(1− η)

0.96 + 0.08η
(0.2662 + 0.6112)

−
[ 1.04η

0.96 + 0.08η
0.205 +

1.04(1− η)

0.96 + 0.08η
0.611

]2
, (42)

σ̃2
0(νpoly) =

1.04(1− η)

1.04− 0.08η
(0.2762 + (−0.359)2) +

1.04η

1.04− 0.08η
(0.2662 + 0.3892)

−
[ 1.04(1− η)

1.04− 0.08η
(−0.359)) +

1.04η

1.04− 0.08η
0.389

]2
, (43)

σ̃2
1(νpoly) =

1.04η

0.96 + 0.08η
(0.2762 + (−0.359)2) +

1.04(1− η)

0.96 + 0.08η
(0.2662 + 0.3892)

−
[ 1.04η

0.96 + 0.08η
(−0.359) +

1.04(1− η)

0.96 + 0.08η
0.389

]2
. (44)
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Then plugging Eq. (41), Eq. (42), Eq. (43), and Eq. (44) into Eq. (74), we have J̃(νmono)/J(νmono)

J̃(νpoly)/J(νpoly)
≥ 1.

Further, by Theorems B.1 and B.5, we have

∆µ̃(νmono) =
1.04× 0.96(1− 2η)

(1.04− 0.08η)(0.96 + 0.08η)
× 0.406, (45)

∆µ̃(νpoly) =
1.04× 0.96(1− 2η)

(1.04− 0.08η)(0.96 + 0.08η)
× 0.748. (46)

Plugging them into the definition of J̃(νmono) and J̃(νpoly), we have J̃(νmono) < J̃(νpoly) when
η < 0.25 and J̃(νmono) > J̃(νpoly) when η > 0.25.

B.3 PROOFS RELATED TO INPUT NOISE

Following the settings in Section 4.2, we investigate the influence of Gaussian noise εi ∼ N (0, 1),
i.i.d. i = 1, 2, on the input data x = (x1, x2), where εi ⊥ x. Given noise strength λ > 0, we denote
the noisy input data as x̃ = (x1 + λε1, x2 + λε2). Then the learned monosemantic and polysemantic
representations are νmono = x1 + λε1 and νpoly = (x1 − x2) + λ(ε1 − ε2). Next, we derive the
influence of noise strength on the conditional means and variances, respectively.
Theorem B.7 (Influence of Gaussian noise on inter-class distance). Given noise strength λ > 0, for
both mono- and poly-semantic representations, we have

∆µ̃(ν) = ∆µ(ν). (47)

Proof of Theorem B.7. For νmono and i = 0, 1,

µ̃i(νmono) = E(x1 + λε1|y = i)

= E(x1|y = i) + λE(ε1|y = i)

= E(x1|y = i) + 0

= µi(νmono). (48)

For νpoly and i = 0, 1,

µ̃i(νpoly) = E((x1 − x2) + λ(ε1 − ε2)|y = i)

= E(x1 − x2|y = i) + λ[E(ε1|y = i)− E(ε2|y = i)]

= E(x1 − x2|y = i) + 0

= µi(νpoly). (49)

Then for ν ∈ {νmono, νpoly},

∆µ̃(ν) = µ̃1(ν)− µ̃0(ν) = µ1(ν)− µ0(ν) = ∆µ(ν). (50)

Theorem B.8 (Influence of Gaussian noise on intra-class variance). For i = 0, 1 and noise strength
λ > 0, we have

σ̃2
i (νmono) = σ2

i (νmono) + λ2, (51)

and

σ̃2
i (νpoly) = σ2

i (νpoly) + 2λ2. (52)

Proof of Theorem B.8. For νmono and i = 0, 1,

σ̃2
i (νmono) = E((x1 + λε1)

2|y = i)− µ̃i(νmono)

= E(x2
1|y = i) + 2λE(x1ε1|y = i) + λ2E(ε21|y = i)− µ̃i(νmono)

= E(x2
1|y = i)− µ̃i(νmono) + 0 + λ2E(ε21|y = i)

= σ2
i (νmono) + λ2. (53)
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For νpoly and i = 0, 1,

σ̃2
i (νmono) = E(((x1 − x2) + λ(ε1 − ε2))

2|y = i)− µ̃i(νpoly)

= E((x1 − x2)
2|y = i) + 2λE((x1 − x2)(ε1 − ε2)|y = i) + λ2E((ε1 − ε2)

2|y = i)− µ̃i(νpoly)

= E((x1 − x2)
2|y = i)− µ̃i(νpoly) + 2λE((x1 − x2)ε1|y = i)− 2λE((x1 − x2)ε2|y = i)

+ λ2E(ε21|y = i)− 2λ2E(ε1ε2|y = i) + λ2E(ε22|y = i)

= σ2
i (νpoly) + 2λ2. (54)

Theorem B.9 (Influence of Gaussian noise on linear seprarability). We denote the linear separability
criterion under noise as J̃(ν) = ∆µ̃(ν)/(σ̃0(ν)σ̃1(ν)). For noise rate λ > 0,

J̃(νpoly)

J(νpoly)
≤ J̃(νmono)

J(νmono)
≤ 1. (55)

Meanwhile, we obtain J̃(νpoly) ≤ J̃(νmono) when λ ≥ 0.55.

As shown in Theorem B.9, with the increase of noise strength, the linear separability (J(ν)) of
both polysemantic and monosemantic features becomes worse. However, J(νmono) decreases more
slowly. As a result, when the noise strength is aggressive enough (λ ≥ 0.25), the monosemantic
feature exhibits better linear seperability than the polysemantic one. The theoretical results reveal that
the linear separability of monosemantic features is more robust than polysemantic features, which
leads to better performance in tasks under Input noise.

Proof of Theorem B.9. By definition, we have

J̃(νmono)/J(νmono)

J̃(νpoly)/J(νpoly)
=

[∆µ̃(νmono)/(σ̃0(νmono)σ̃1(νmono))]/[∆µ(νmono)/(σ0(νmono)σ1(νmono))]

[∆µ̃(νpoly)/(σ̃0(νpoly)σ̃1(νpoly))]/[∆µ(νpoly)/(σ0(νpoly)σ1(νpoly))]
.

(56)

By Theorems B.7 and B.8, we have ∆µ̃(νmono) = ∆µ(νmono), ∆µ̃(νpoly) = ∆µ(νpoly),
σ̃2
i (νmono) = σ2

i (νmono) + λ2, and σ̃2
i (νpoly) = σ2

i (νpoly) + 2λ2, i = 0, 1. By Theorem 4.1,
we have σ1(νmono) = σ1(νpoly). Then we have

J̃(νmono)/J(νmono)

J̃(νpoly)/J(νpoly)
=

σ̃0(νpoly)σ̃1(νpoly)σ0(νmono)

σ̃0(νmono)σ̃1(νmono)σ0(νpoly)

=

√
(σ2

0(νpoly) + 2λ2)(σ2
1(νpoly) + 2λ2)σ0(νmono)√

(σ2
0(νmono) + λ2)(σ2

1(νmono) + λ2)σ0(νpoly)
. (57)

Then plugging Theorem 4.1, we complete the proof.

B.4 LINEAR SEPARABILITY OF POLYSEMANTIC REPRESENTATIONS (GENERALIZED FORM)

In this part, we generalize the polysemantic representation to νpoly = w1x1−w2x2, where w1, w2 >
0. Without loss of generality, we could assume w1 ≥ w2. The case w1 < w2 is equivalent to study
ν′poly = −νpoly = w2x2 −w1x1, whose distribution is the same as w2x1 −w1x2 because x1 and x2

are i.i.d. distributed. Note that when w1 = 1, w2 = 0, νpoly = νmono, and when w1 = w2 = 1, the
results in this section reduce to Theorems 4.1 and 4.2.

We first calculate some related probability distribution functions in Lemma B.10.
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Lemma B.10.

P(x1 ≤ min{x/(w1 − w2), x2})

=


0, if x ∈ [−w2, 0),

− 1

2
(1− S)2(1− x/(w1 − w2))

2 +
1

2
(1 + S2), if x ∈ [0, w1 − w2],

1

2
(1 + S2), if x ∈ (w1 − w2, w1]

(58)

P(x/(w1 − w2) < x1 ≤ (x+ w2x2)/w1)

=


w2

2w1
[(1− S)(1 + x/w2) + Sw1/w2]

2 − w1

2w2
S2, if x ∈ [−w2, 0),

w2

2w1
(1− S)2[1− x/(w1 − w2)]

2, if x ∈ [0, w1 − w2],

0, if x ∈ (w1 − w2, w1].

(59)

P(x2 < x1 ≤ min{(x+ w2x2)/w1, x/(w1 − w2)})

=


0, if x ∈ [−w2, 0),

1

2w1(w1 − w2)
[(1− S)x+ S(w1 − w2)]

2 − w1 − w2

2w1
S2, if x ∈ [0, w1 − w2],

− w1

2w2
(1− S)2(1− x/w1)

2 + S(1− S)x/w1 +
1

2
(1− S)2, if x ∈ (w1 − w2, w1].

(60)

Then we can calculate the conditional mean and variance of νpoly = w1x1 − w2x2.

Theorem B.11 (Conditional mean and variance of polysemantic representations). The conditional
means and variances of νpoly = w1x1 − w2x2 are

µ0(νpoly) =
1− S

3(1 + S2)
[(w1 − 2w2)− (w1 + w2)S] (61)

µ1(νmono) =
(2w1 − w2) + (w1 + w2)S

3(1 + S)
(62)

σ2
0(νpoly) =

1− S

6(1 + S2)
[(w2

1 − 3w1w2 + 3w2
2)− (w2

1 − 3w1w2 − w2
2)S]− µ0(νpoly)

2, (63)

σ2
1(νpoly) =

(3w2
1 − 3w1w2 + w2

2) + (w2
1 + 3w1w2 − w2

2)S

6(1 + S)
− µ1(νpoly)

2. (64)

Proof of Theorem B.3. If w1 ≥ w2, by Lemma B.10, we have

Ppoly(w1x1 − w2x2 ≤ x|y = 0)

= P(w1x1 − w2x2 ≤ x|x1 ≤ x2)

=
P(x1 ≤ min{x/(w1 − w2), x2}) + P(x/(w1 − w2) < x1 ≤ (x+ w2x2)/w1)

P(x1 − x2 ≤ 0)

=


w2

w1

1

1 + S2
[(1− S)(1 + x/w2) + Sw1/w2]

2 − w1

w2

S2

1 + S2
, if x ∈ [−w2, 0),

− (1− w2/w1)
(1− S)2

1 + S2
(1− x/(w1 − w2))

2 + 1, if x ∈ [0, w1 − w2],

1, if x ∈ (w1 − w2, w1]

(65)
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and

Ppoly(w1x1 − w2x2 ≤ x|y = 1)

= P(w1x1 − w2x2 ≤ x|x1 > x2)

=
P(x2 < x1 ≤ min{(x+ w2x2)/w1, x/(w1 − w2)})

P(x1 − x2 > 0)

=



0, if x ∈ [−w2, 0),

1

w1(w1 − w2)

1

1− S2
[(1− S)x+ S(w1 − w2)]

2 − w1 − w2

w1

S2

1− S2
, if x ∈ [0, w1 − w2],

− w1

w2

1− S

1 + S
(1− x/w1)

2 +
2S

1 + S
x/w1 +

(1− S)

(1 + S)
, if x ∈ (w1 − w2, w1].

(66)

Then we have

µ0(νpoly) =

∫
x∈[−w2,0)

x · 2

w1

1− S

1 + S2
[(1− S)(1 + x/w2) + Sw1/w2] dx

+

∫
x∈[0,w1−w2]

x · 2

w1

(1− S)2

1 + S2
[1− x/(w1 − w2)] dx

= −3S(1− S)w1w2 + (1− S)2w2
2

3(1 + S2)w1
+

(1− S)2(w1 − w2)
2

3(1 + S2)w1

=
1− S

3(1 + S2)
[(1− S)w1 − (2 + S)w2]

=
1− S

3(1 + S2)
[(w1 − 2w2)− (w1 + w2)S], (67)

µ1(νpoly) =

∫
x∈[0,w1−w2]

x · 2

w1(w1 − w2)(1 + S)
[(1− S)x+ (w1 − w2)S] dx

+

∫
x∈(w1−w2,w1]

x ·
[ 2

w2

1− S

1 + S
(1− x/w1) +

2

w1

S

1 + S

]
dx

=
(2 + S)(w1 − w2)

2

3(1 + S)w1
+

3(1 + S)w1w2 − (2 + S)w2
2

3(1 + S)w1

=
(2 + S)w1 − (1− S)w2

3(1 + S)

=
(2w1 − w2) + (w1 + w2)S

3(1 + S)
, (68)

µ1(νpoly)− µ0(νpoly) =
(w1 + w2) + 2(w1 + w2)S + 3(w1 − w2)S

2

3(1 + S)(1 + S2)
, (69)
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σ2
0(νpoly) =

∫
x∈[−w2,0)

x2 · 2

w1

1− S

1 + S2
[(1− S)(1 + x/w2) + Sw1/w2] dx

+

∫
x∈[0,w1−w2]

x2 · 2

w1

(1− S)2

1 + S2
[1− x/(w1 − w2)] dx− µ0(νpoly)

2

=
4S(1− S)w1w

2
2 + (1− S)2w3

2

6(1 + S2)w1

+
(1− S)2w3

1 − 3(1− S)2w2
1w2 + 3(1− S)2w1w

2
2 − (1− S)2w3

2

6(1 + S2)w1
− µ0(νpoly)

2

=
(1− S)2w2

1 − 3(1− S)2w1w2 + (1− S)(3 + S)w2
2

6(1 + S2)
− µ0(νpoly)

2

=
1− S

6(1 + S2)
[(1− S)w2

1 − 3(1− S)w1w2 + (3 + S)w2
2]− µ0(νpoly)

2

=
1− S

6(1 + S2)
[(w2

1 − 3w1w2 + 3w2
2)− (w2

1 − 3w1w2 − w2
2)S]− µ0(νpoly)

2, (70)

and

σ2
1(νpoly) =

∫
x∈[0,w1−w2]

x2 · 2

w1(w1 − w2)(1 + S)
[(1− S)x+ (w1 − w2)S] dx

+

∫
x∈(w1−w2,w1]

x2 ·
[ 2

w2

1− S

1 + S
(1− x/w1) +

2

w1

S

1 + S

]
dx− µ1(νpoly)

2

=
(3 + S)w3

1 − 3(3 + S)w2
1w2 + 3(3 + S)w1w

2
2 − (3 + S)w3

2

6(1 + S)w1

+
6(1 + S)w2

1w2 − 4(2 + S)w1w
2
2 + (3 + S)w3

2

6(1 + S)w1
− µ1(νpoly)

2

=
(3 + S)w2

1 − 3(1− S)w1w2 + (1− S)w2
2

6(1 + S)
− µ1(νpoly)

2

=
(3w2

1 − 3w1w2 + w2
2) + (w2

1 + 3w1w2 − w2
2)S

6(1 + S)
− µ1(νpoly)

2. (71)

Following the toy model described in Section 4.2, where we let S = 0.2, we compare the linear
separability of monosemantic and polysemantic features in Theorem B.12.
Theorem B.12 (Conditional means and variances of monosemantic & polysemantic features (Gen-
eralized Form)). If 0 < w2 ≤ w1 = 1, for conditional means, we have µ0(νpoly) < µ0(νmono)
and µ1(νpoly) < µ1(νmono), yet ∆µ(νpoly) > ∆µ(νmono). For conditional variances, we have
σ2
1(νpoly) ≤ σ2

1(νmono) and σ2
0(νpoly) > σ2

0(νmono). Overall, we have J(νpoly) > J(νmono).

Proof of Theorem B.12. By Theorem B.1, we have µ0(νmono) = 0.205, µ1(νmono) = 0.611,
∆µ(νmono) = 0.406, σ2

0(νmono) = 0.061, σ2
1(νmono) = 0.071, and J(νmono) = 6.196. By Theo-

rem B.11, we have µ0(νpoly) = 0.205w1−0.564w2, µ1(νpoly) = 0.611w1−0.222w2, ∆µ(νpoly) =
0.406w1 + 0.342w2, σ2

0(νpoly) = 0.061w2
1 − 0.077w1w2 + 0.092w2

2 , σ2
1(νpoly) = 0.071w2

1 −
0.062w1w2+0.062w2

2 , and J(νpoly) =
0.406w1+0.342w2√

(0.061w2
1−0.077w1w2+0.092w2

2)(0.071w
2
1−0.062w1w2+0.062w2

2)
.

By comparing the above results, we complete the proof.

Theorem B.13 (Influence of label noise on linear seprarability (Generalized Form)). We denote the
linear separability criterion under noise as J̃(ν) = ∆µ̃(ν)/(σ̃0(ν)σ̃1(ν)). If w2 ≤ w1 = 1, then for
noise rate η ∈ [0, 0.5), we have

J̃(νpoly)

J(νpoly)
≤ J̃(νmono)

J(νmono)
≤ 1. (72)
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Proof of Theorem B.13. By definition, we have

J̃(νmono)/J(νmono)

J̃(νpoly)/J(νpoly)
=

[∆µ̃(νmono)/(σ̃0(νmono)σ̃1(νmono))]/[∆µ(νmono)/(σ0(νmono)σ1(νmono))]

[∆µ̃(νpoly)/(σ̃0(νpoly)σ̃1(νpoly))]/[∆µ(νpoly)/(σ0(νpoly)σ1(νpoly))]
.

(73)

By Theorem B.5 we have ∆µ̃(νmono)/∆µ(νmono) = ∆µ̃(νpoly)/∆µ(νpoly), and thus

J̃(νmono)/J(νmono)

J̃(νpoly)/J(νpoly)
=

σ̃0(νpoly)

σ̃0(νmono)
· σ̃1(νpoly)

σ̃1(νmono)
· σ0(νmono)

σ0(νpoly)
· σ1(νmono)

σ1(νpoly)
. (74)

Then given η ∈ [0, 0.5), by Theorems B.1, B.6, B.11, we can calculate the specific values of
σ̃0(νmono), σ̃1(νmono), σ̃0(νpoly), σ̃1(νpoly), and correspondingly we have J̃(νmono)/J(νmono)

J̃(νpoly)/J(νpoly)
≥

1.

B.5 MONOSEMANTICITY OF REPRESENTATIONS LEARNED BY NON-NEGATIVE CONTRASTIVE
LEARNING AND NON-NEGATIVE TUNING

Wang et al. (2024) proved that the optimal solutions of non-negative contrastive learning are monose-
mantic representations. We first introduce some necessary notations. Following (Saunshi et al.,
2019), they assume that samples in the pretraining data belong to m latent classes C = {c1, · · · , cm}.
Besides that, they assume that positive samples in contrastive learning are darw independently from
the same latent class, i.e.,
Assumption B.14 (Positive Generation). ∀x, x′ ∈ X ,P(x, x′) = EcP(x|c)P(x′|c).

Then they propose the following Lemma that introduces the optimal solutions of non-negative
contrastive learning.
Lemma B.15 ((Wang et al., 2024)). We denote that

ϕ(x) =

[
1√

P(π1)
P(π1|x), . . . ,

1√
P(πm)

P(πm|x)

]
∈ Rm

+ ,∀ x ∈ X , (75)

where [π1, · · · , πm] is a random permutation of latent classes [c1, · · · , cm]]. Under the latent class
assumption and choosing k = m, ϕ(·) is a minimizer of the NCL objective, i.e., ϕ ∈ argminLNCL.

As shown in the lemma above, the samples activated in the same dimension belong to the same
latent classes, which means the optimal solutions are monosemantic. In the next step, we extend
the theory to non-negative tuning. Following (Wang et al., 2024), we use the spectral loss for
the simplicity of analysis, i.e. LSCE = −E(x,y(x))(Wf(x))⊤1y(x) + 2Ex,yi((Wf(x))⊤1yi)

2,
where f(x) is the representation layer, W is the linear classifier, y(x) is the label of x and there
exist t classes. Respectively, with the non-negative constraints, the objective becomes LSNCE =
−E(x,y(x))(Wf+(x))

⊤
1y(x) + 2Ex,yi

((Wf+(x))
⊤
1yi

)2. When each sample x has a ground-truth
label y(x), we obtain the following theorem:
Theorem B.16. We denote that

β(x) =

[
1√
P(y1)

P(y1|x), . . . ,
1√
P(yt)

P(yt|x)

]
∈ Rt

+,∀ x ∈ X , (76)

When we choose t = k, β(·) is a minimizer of the non-negative tuning objective, i.e., ϕ ∈
argminLSNCE.

Consequently, we find that the optimal solutions of non-negative tuning are also monosemantic as
each dimension is only activated by the samples in the same class.

Proof. We first prove that the non-negative tuning objective is equal to a matrix decomposition
objective. To be specific, Let Ā be the normalized co-occurrence matrix, i.e., Āx,y(x) =

Ax,y(x)√
P (x)P (y(x))

,

where P (x), P (y(x)) denote the marginal distribution.
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Then we denote a matrix decomposition objective as

LMF = ∥Ā− FW ′⊤∥2 + const.

where the x-th row of F and the y(x)-th row of W ′ respectively represents representation features
and the linear classifier, i.e., Fx =

√
C(x)f+(x)

⊤, W ′
y(x) =

√
P (y(x))Wy(x). Then we expand the

objective:

∥Ā− FW ′⊤∥2 =
∑

x,y(x)

(
Āx,y(x) − Fx(W

′
y(x))

⊤
)2

=
∑

x,y(x)

(
P (x, y(x))√
P (x)P (y(x))

−
√

P (x)f+(x)
⊤
√

P (y(x))(Wy(x))
⊤

)2

=
∑

x,y(x)

(
P (x, y(x))2

P (x)P (y(x))
+ P (x)P (y(x))

(
f+(x)

⊤(Wy(x))
⊤)2 − 2P (x, y(x))f+(x)

⊤(Wy(x))
⊤
)

=
∑

x,y(x)

(
P (x, y(x))2

P (x)P (y(x))

)
− 2E(x,y(x))f+(x)

⊤(Wy(x))
⊤ + Ex,yi

(
f+(x)

⊤(Wyi
)⊤
)2

=
∑

x,y(x)

(
P (x, y(x))2

P (x)P (y(x))

)
− 2E(x,y(x))(Wf+(x))

⊤
1y(x) + Ex,yi((Wf+(x))

⊤
1yi)

2

= LSNCE + const.

Then we expand LMF (β):

∥Ā− FW ′⊤∥2 =
∑

x,y(x)

(
P (x, y(x))√
P (x)P (y(x))

−
√
P (x)β(x)⊤

√
P (y(x))(Wy(x))

⊤

)2

When W satisfies Wyi
= 1√

P (yi)
, we obtain

∥Ā− FW ′⊤∥2 =
∑

x,y(x)

(
P (x, y(x))√
P (x)P (y(x))

−
√
P (x)β(x)⊤

)2

=
∑

x,y(x)

(
P (x, y(x))√
P (x)P (y(x))

−
√

P (x)p(y(x)|x)√
P (y(x))

)2

=
∑

x,y(x)

(
P (x, y(x))√
P (x)P (y(x))

− P (x, y(x))√
P (x)P (y(x))

)2

= 0,

which means β is an optimal solution of non-negative tuning.
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Table 3: Semantic consistency of different models.
Models Poly (CL) Mono (NCL) Mono (SAE)

Linear Probing on CIFAR-100 1.0 8.2 3.1
Linear Probing on Imagenet-100 1.0 12.3 7.2

Poly (CE) Mono (NCE)

Fine-tuning with 20% Samples 2.1 18.4
Fine-tuning with 20% Noisy Lables 3.4 20.6

C ADDITIONAL EXPERIMENTS
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Figure 6: Linear probing performance with different evaluation losses on ImageNet-100 under 95%
noise rates.

C.1 COMBINATION WITH ROBUST LOSS

The previous results suggest that the monosemantic representations exhibit stronger robustness
against label noise across various datasets. We note that there have been various studies to improve
the robustness under label noise, such as applying robust loss functions (Van Rooyen et al., 2015;
Ghosh et al., 2017), correcting training labels (Reed et al., 2014; Ma et al., 2018), and reweighting
training samples (Chen et al., 2019; Han et al., 2018). However, the perspective in this paper is
orthogonal to them. Taking the representative robust loss function Symmetric Cross Entropy (Wang
et al., 2019b) as an example, we can obtain monosemantic representations as discussed above and
then use the robust loss during the linear probing process. As shown in Figure 6, both the robust loss
and enhancing feature monosemanticity can improve the robustness against label noise. Furthermore,
the two methods are orthogonal, and combining them can further improve performance.

C.2 EVALUATION OF MONOSEMANTICITY

We evaluate the monosemanticity of different models with current metrics. For vision models, we
follow Wang et al. (2024) and adopt semantic consistency as the metric.The semantic consistency
calculates the proportion of activated samples that belong to their most frequent class along each
dimension. We evaluate the models in different cases, including the frozen models (Table 1, Figure 2)
and the models fine-tuned with 20 % training samples and 20% noise rate (Figure 3).

As shown in Table 3, Non-negative Contrastive Learning (NCL), Sparse Autoencoder (SAE), and
Non-negative tuning significantly improve the semantic consistency of trained models, which further
supports our claim that attaining monosemanticity can enhance model robustness. Besides, we also
note that the NCL obtains larger improvements on monosemanticity. which is consistent with the
results that NCL performs better than SAE under noise.

C.3 ADDITIONAL EVALUATION ON DIFFERENT NOISE RATES

Besides the noise rates in Table 1, we provide more detailed results for the 0-10% noise range results
in the following table, with 3 runs and error bars. As shown in Table 4, we note that the monosemantic
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Table 4: Linear probing accuracy (%) under different noise rates (0-10%) on ImageNet-100 of
polysemantic features (CL) and monosemantic features (NCL, SAE).

0 2 4 6 8 10

CL 66.8±0.2 65.4±0.1 65.0±0.2 64.4±0.1 63.8±0.2 63.3±0.2
NCL 66.8±0.2 66.2±0.3 66.1±0.4 66.1±0.1 65.5±0.3 65.5±0.1
Gains -0.0 +0.8 +1.1 +1.7 +1.7 +2.2
SAE 66.1±0.2 65.9±0.1 65.9±0.1 65.7±0.3 65.5±0.3 65.2±0.2
Gains -0.6 +0.5 +0.9 +1.3 +1.7 1.9

Table 5: Linear probing accuracy (%) under different noise rates on ImageNet-100 of features before
and after the projectors of models trained by CL and NCL.

Noise Rate (%) 0 30 60 90

CL (w projector) 66.8 60.1 54.9 34.4
NCL (w projector) 66.7 63.9 50.5 48.1
CL (w/o projector) 68.6 49.3 33.0 9.7
NCL (w/o projector) 69.5 50.6 33.7 9.8

representations also show benefits with noise rates less equal to 10%, and the advantages rise with
stronger noise rates.

C.4 ADDITIONAL COMPARISON WITH NON-NEGATIVE CONTRASTIVE LEARNING

We note that there exist performance discrepancies bewteen our linear probing results with Wang
et al. (2024). The discrepancies arise because we evaluate the linear probing accuracy on the features
after the projector (an additional MLP after the backbone used in contrastive learning) while Wang
et al. (2024) evaluate that on the features before the projector. We note that Wang et al. (2024) adds
non-negative constraints and calculates the monosemanticity-related scores on the features after the
projector. However, they calculate the linear evaluation accuracy of the features before the projector,
which leads to a mismatch and we can not observe the relationship between monosemanticity and
performance. Consequently, we calculate the performance of the features after the projector in this
paper. Furthermore, we conduct additional experiments to evaluate the linear probing accuracy of the
features before the projector.

As shown in Table 5, we observe that the improvements in accuracy do not increase with larger noise
rates, which is reasonable as the features before the projector are not guaranteed to be monosemantic.
Besides, we also note that the linear probing accuracy of the features after the projector performs
better than the features before the projector under label noise, which further implies that we should
use the features after the projector in this paper.

C.5 ADDITIONAL EVALUATION ON LLMS

We also evaluate LLMs on additional benchmarks. To be specific, we respectively evaluate the original
LLM models (Llama-2-7B-Chat) and the models fine-tuned on Dolly with LoRA and MonoRoLA on
the MMLU benchmark.

As shown in Table 6, we observe that different from the security score in the main paper (Shield-
Gemma Alignment Scores and Beavertails), the MMLU scores almost do not change during the
fine-tuning process on Dolly with LoRA, which implies that the LLM abilities on the MMLU bench-

Table 6: Evaluation of models tuned by LoRA and MonoLoRA on MMLU.
Humantities Other Social Sciences Stem Average

Base 0.43 0.55 0.53 0.36 0.47
LoRA 0.43 0.53 0.53 0.37 0.47
MonoLoRA 0.43 0.53 0.53 0.37 0.47
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Table 7: Linear probing accuracy (%) of SAE with different numbers of activated features under
different label noise rates on ImageNet-100.

Noise Rate (%) 64 128 256 512 1024 w/o SAE

0 64.2 64.7 66.1 66.4 66.8 66.8
30 59.3 59.6 60.6 60.4 60.4 60.1
60 58.3 58.2 58.6 55.7 55.2 54.9

90 45.9 45.9 45.7 43.1 38.9 34.5

mark are mostly preserved during fine-tuning. Consequently, our method does not exhibit benefits
as it is more like the clean accuracy of language models, which is consistent with our claims that
monosemanticity shows benefits in the tasks related to model robustness.

C.6 ABLATION STUDY ON SPARSE AUTOENCODERS

To evaluate how robust are these models to the choice of the number of activated features in SAEs,
we evaluate the performance of SAE respectively with the number of activated features as 64, 128,
256, 512, and 1024.

As shown in Table 7, all the SAEs with different numbers of activated features exhibit benefits when
there exist label noises. To be specific, when the activated features are small, the original performance
will drop sharply when there exists no label noise. Meanwhile, when the label noise is aggressive,
the small number of activated features will indicate stronger linear accuracy. Consequently, 256 is a
sweet point that shows comparable performance in clean accuracy and exhibits benefits when there
exists noise.
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