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ABSTRACT

Data-driven techniques have emerged as a promising alternative to traditional
numerical methods for solving PDEs. For time-dependent PDEs, many ap-
proaches are Markovian—the evolution of the trained system only depends on
the current state, and not the past states. In this work, we investigate the benefits
of using memory for modeling time-dependent PDEs: that is, when past states
are explicitly used to predict the future. Motivated by the Mori-Zwanzig theory
of model reduction, we theoretically exhibit examples of simple (even linear)
PDEs, in which a solution that uses memory is arbitrarily better than a Markovian
solution. Additionally, we introduce Memory Neural Operator (MemNO), a
neural operator architecture that combines recent state space models (specifically,
S4) and Fourier Neural Operators (FNOs) to effectively model memory. We em-
pirically demonstrate that when the PDEs are supplied in low resolution or contain
observation noise at train and test time, MemNO significantly outperforms the
baselines without memory—with up to 6× reduction in test error. Furthermore,
we show that this benefit is particularly pronounced when the PDE solutions have
significant high-frequency Fourier modes (e.g., low-viscosity fluid dynamics) and
we construct a challenging benchmark dataset consisting of such PDEs.

1 INTRODUCTION

Time-dependent partial differential equations (PDEs) are central to modeling various scientific and
physical phenomena, necessitating the design of accurate and computationally efficient solvers. Re-
cently, data-driven approaches based on neural networks (Li et al., 2024b; Lu et al., 2019) have
emerged as an attractive alternative to classical numerical solvers, such as finite element and finite
difference methods (LeVeque, 2007). Classical approaches are computationally expensive in high
dimension and struggle with PDEs which are sensitive to initial conditions. Learned approaches can
often negotiate these difficulties better, at least for the PDE family they are trained on.

One example of a data-driven approach is learning a neural solution operator, which for a time-
dependent PDE learns to predict future states based on previous ones (Li et al., 2021; 2023a). Recent
works (Tran et al., 2023; Lippe et al., 2023) suggest that optimal performance across various PDE
families can be achieved by conditioning the models only on the immediate past state—i.e., treating
the system as Markovian. In contrast, other works propose architectures that explicitly use memory
of past states (Li et al., 2021; 2023a; Hao et al., 2024). However, none of these works elucidate
whether and when modeling memory is helpful.

In this work, we demonstrate that when the solution of the PDE is only partially observed (e.g.
observed at low resolution), explicitly modeling memory can be beneficial. Partial observability
is natural in many practical settings. This could be due to limited resolution of the measurement
devices collecting the data, inherent observational errors in the system, or prohibitive computa-
tional difficulty in generating high-quality synthetic data. This can lead to significant information
loss, particularly in systems like turbulent flows (Pope, 2001) or shock formation in fluid dynam-
ics (Christodoulou, 2007), where PDEs change abruptly in space and time. In such situations,
classical results from dynamical systems (Mori-Zwanzig theory), suggest that the system becomes
strongly non-Markovian.

More precisely, Mori-Zwanzig theory (Mori, 1965; Zwanzig, 1961; Ma et al., 2018) is an ansatz to
understand the evolution of a subspace of a system (e.g., the span of the k largest Fourier compo-
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nents). Under certain conditions, this evolution can be divided into a Markovian term (the evolution
of the chosen subspace under the PDE), a memory term (which is a weighted sum of the values of
all previous iterates in the chosen subspace), and an “unobservable” term, which depends on the
values of the initial conditions orthogonal to the selected subspace.

The main focus of this paper is studying when explicitly modeling this memory term is useful. We
give an example of a very simple (in fact, linear) PDE where we show theoretically that the solution
which takes into account the memory term can be arbitrarily better than the Markovian solution. We
also provide a way to operationalize the Mori-Zwanzig formalism by introducing Memory Neural
Operator (MemNO), a neural operator architecture that combines a Markovian operator to model
the spatial dynamics of the PDE (such as the Fourier Neural Operator (Li et al., 2021; Tran et al.,
2023)), and a sequence model to maintain a compressed representation of the past states (such as the
S4 state space model (Gu et al., 2022; 2023)). We show that MemNO outperforms its Markovian
(memoryless) counterpart in PDEs observed on low resolution grids or with observation noise —
achieving up to 6× less test error. Our contributions are as follows:

• We identify a setting in which explicitly modeling memory is helpful: namely, when there is a
combination of lossy observations of the solution of the PDE (e.g., due to limited resolution or
observation noise) and significant contributions from high-frequency Fourier modes in the solu-
tion.

• Even in simple PDEs, we theoretically show the memory term can result in a solution that
is (arbitrarily) closer to the correct solution, compared to the Markovian approximation —in
particular when the operator describing the PDE “mixes” the observed and unobserved subspace.

• Across several families of one-dimensional and two-dimensional PDEs, we empirically demon-
strate that when the input is supplied on a low-resolution grid, or contains observation noise,
neural operators with memory outperform Markovian operators by a significant margin. More
precisely, to operationalize memory, we introduce MemNO, a neural operator architecture
combining Fourier Neural Operators (FNOs) and S4, which achieves the best performance across
several Markovian and memory baselines.

• We observe that many current benchmarks for PDE solvers predominantly include PDEs in
which there is little contribution from high-frequency Fourier modes. Consequently, we construct
more challenging datasets where the solutions have significant high-frequency modes, which we
believe will be of broader significance to the community beyond testing the effects of memory—
especially given recent meta-studies suggesting many current PDE benchmarks are too easy
(McGreivy & Hakim, 2024).

2 RELATED WORK

Data-driven neural solution operators (Chen & Chen, 1995; Bhattacharya et al., 2021; Lu et al., 2019;
Kovachki et al., 2023) have emerged as the dominant approach for approximating PDEs, given their
ability to model multiple families of PDEs at once, and their computational efficiency at inference
time. Many architectures have been proposed to improve their performance across different families
of PDEs: Li et al. (2021) introduced the Fourier Neural Operator (FNO), a resolution invariant
architecture that uses a convolution-based integral kernel evaluated in the Fourier space; Tran et al.
(2023) later introduced the Factorized FNO (FFNO) architecture, which builds upon and improves
the FNO architecture by adding separable spectral layers and residual connections; Cao (2021)
proposed a Transformer method with linear attention over the spatial sequence; other recent works
have used U-Net-based architectures (Gupta & Brandstetter, 2023; Rahman et al., 2023).

Focusing on memory, Tran et al. (2023) performed ablations that suggest the Markov assumption
is optimal and outperforms models that use the history of past timesteps as input. Lippe et al.
(2023) performed a similar study for long rollouts of the PDE solution and concluded the optimal
performance is indeed achieved under the Markovian assumption. We show that these findings can
be replicated only when the resolution of the observation grid is high. On the other hand, we show
that MemNO effectively models memory to achieve much superior performance than Markovian
operators in low resolution, while not dropping performance in the high resolution case.

Our work is motivated by the Mori-Zwanzig formalism (Zwanzig, 1961; Mori, 1965) which shows
that a partial observation of the current state of the system can be compensated using memory of
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past states. Ma et al. (2018) draws parallels to the Mori-Zwanzig equations and LSTM (Hochreiter
& Schmidhuber, 1997) to model the dynamics of the k largest Fourier components of a single PDE.
However, in our work, we study the benefits of memory in neural operators that learn the dynamics
of an entire family of PDE. Furthermore, we show conditions under which not maintaining memory
can result in arbitrarily large errors.

3 PRELIMINARIES

First, we introduce several definitions, as well as the Mori-Zwanzig formalism applied to our setting.

3.1 PARTIAL DIFFERENTIAL EQUATIONS (PDES)

Definition 1 (Space of square integrable functions). For integers d, V and an open set Ω ⊂ Rd, we
define L2

(
Ω;RV

)
as the space of square integrable functions u : Ω → RV such that ∥u∥L2 ≤ ∞,

where ∥u∥L2 =
(∫

Ω
∥u(x)∥22dx

) 1
2 .

Notation 1 (Restriction). Given a function u : Ω → RV and a subset A ⊂ Ω, we denote u A as the
restriction of u to the domain A, i.e. u A : A → RV .

The general form of the PDEs we consider in this paper will be the following:

Definition 2 (Time-Dependent PDE). For an open set Ω ⊂ Rd and an interval [0, T ] ⊂ R, a Time-
Dependent PDE is the following expression:

∂u

∂t
(t, x) = L[u](t, x), ∀t ∈ [0, T ], x ∈ Ω, (1)

u(0, x) = u0(x), ∀x ∈ Ω, (2)
B[u ∂Ω](t) = 0, ∀t ∈ [0, T ] (3)

where L : L2
(
Ω;RV

)
→ L2

(
Ω;RV

)
is a differential operator in x which is independent of time,

u0(x) ∈ L2
(
Ω;RV

)
and B is an operator defined on the boundary of ∂Ω, commonly referred to as

the boundary condition.

In our theory and experiments, we will work with periodic boundary conditions (for a precise defi-
nition, see Definition 6). Finally, we will frequently talk about a grid of a given resolution:

Definition 3 (Equispaced grid with resolution f ). Let Ω = [0, L]d. An equispaced grid with resolu-
tion f in Ω is the following set S ⊂ Rd:

S =

{(
i1
L

f
, · · · , ik

L

f

)∣∣∣∣ 0 ≤ ik ≤ f − 1 for 1 ≤ k ≤ d

}
.

We will also denote by |S| the number of points in S.

3.2 MORI-ZWANZIG FORMALISM

The Mori-Zwanzig formalism (Zwanzig, 2001) considers the setting in which an equation is known
for a full system, but only a part of it is observed. It leverages the knowledge of past states of a system
to compensate for the loss of information that arises from the partial observation of the current state.
In our work, partial observation can refer to observing the solution at a discretized grid in space or
only observing the Fourier modes up to a critical frequency. In the context of time-dependent PDEs,
the Mori-Zwanzig principle is formalized as the Nakajima–Zwanzig equation (Nakajima, 1958).

We will give an overview of the Nakajima-Zwanzig equation and set up the notation for the rest of
the paper. Assume we have a PDE as in Definition 2. Let P : L2

(
Ω;RV

)
→ L2

(
Ω;RV

)
be a

linear projection operator. We define Q = I −P , where I is the identity operator. In our setting, for
the PDE solution at timestep t ut ∈ L2

(
Ω;RV

)
, P[ut] is the part of the solution that we observe

and Q[ut] is the unobserved part. Thus, the initial information we receive for the system is P[u0].
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Applying P and Q to Equation 1 and using u = P[u] +Q[u], we get:

∂

∂t
P[u](t, x) = PL[u](t, x) = PLP[u](t, x) + PLQ[u](t, x) (4)

∂

∂t
Q[u](t, x) = QL[u](t, x) = QLP[u](t, x) +QLQ[u](t, x) (5)

Solving for 5 yields Q[u](t, x) =
∫ t

0
exp{QL(t− s)}QLP[u](s, x)ds+ eQLtQ[u0](t, x).

Plugging into 4, we obtain a Generalized Langevin Equation (Mori, 1965) for P[u]:

∂

∂t
P[u](t, x) = PLP[u](t, x) + PL

∫ t

0

exp{QL(t− s)}QLP[u](s, x)ds+ PLeQLtQ[u0](t, x)

(6)

We will refer to the first summand on the right hand side of Equation 6 as the Markovian term
because it only depends on P[u](t, x), the second summand as the memory term because it depends
on P[u](s, x) for 0 ≤ s ≤ t, and the third summand as the unobserved residual as it depends on
Q[u0] which is never observed.

Since Equation 6 is exact, it is equivalent to solving the full system. The term that is typically most
difficult to compute is the memory term, and many methods to approximate it have been proposed.

In the physics literature, some techniques include a perturbation expansion of the exponential
exp{QL(t− s)} (Breuer & Petruccione, 2002), or approximations using operators defined in
P
[
L2
(
Ω;RV

)]
(Shi & Geva, 2003; Zhang et al., 2006; Montoya-Castillo & Reichman, 2016; Kelly

et al., 2016). In the classical numerical PDE solver literature, the memory term has been approx-
imated by leveraging the structure of the orthogonal dynamics of the P semi-group (Gouasmi
et al., 2017), and the Mori-Zwanzig formalism has been applied to a variety of fluid dynamics PDEs
(Parish & Duraisamy, 2017). In the machine learning literature, some works approximate the mem-
ory term with a neural network, which is then used as a part of a hybrid PDE solver (Ma et al., 2018;
Beck et al., 2019; Pan & Duraisamy, 2018). Gupta & Lermusiaux (2021) approximated both the
Markovian and memory term with a neural network, yet the method required deriving and coding
adjoint equations to perform backpropagation. In this work, we explain when modeling memory
is expected to be helpful, and introduce a neural operator that learns to model the temporal (e.g.
memory) and spatial dynamics of a PDE directly from data.

4 THEORETICAL MOTIVATION FOR MEMORY: A SIMPLE EXAMPLE

In this section, we provide a simple, but natural example of a (linear) PDE, along with (in the
nomenclature of Section 3.2) a natural projection operator given by a Fourier truncation measure-
ment operator, such that the memory term in the generalized Langevin equation (GLE) can have
an arbitrarily large impact on the quality of the calculated solution. We will work with periodic
functions over [0, 2π] which have a convenient basis:
Definition 4 (Basis for 2π-periodic functions). A function f : R → R is 2π-periodic if f(x+2π) =
f(x). We can identify 2π-periodic functions with functions over the torus T := {eiθ : θ ∈ R} ⊆ C
by the map f̃(eix) = f(x). Note that {eixn}n∈Z is a basis for the set of 2π-periodic functions.

We will define the following measurement operator:
Definition 5 (Fourier truncation measurement). The operator Pk : L2(T ;R) → L2(T ;R) acts on
f ∈ L2(T ;R), f(x) =

∑∞
n=−∞ ane

inx as Pk(f) =
∑k

n=−k ane
inx.

For notational convenience, we will also define the functions {en}n∈Z, where en(x) := e−inx +
einx. Now, we consider the following operator to define a linear time-dependent PDE:
Proposition 1. Let L : L2(T ;R) → L2(T ;R) be defined as Lu(x) = −∆u(x) + B · (e−ix +
eix)u(x) for B > 0. Then, we have:

∀1 ≤ n ∈ N, L(en) = n2en +B(en−1 + en+1) & L(e0) = 2Be1
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The crucial property of this operator is that it acts by “mixing” the n-th Fourier basis with the
(n− 1)-th and (n+1)-th: thus information is propagated to both the higher and lower-order part of
the spectrum. Given the above proposition, we can easily write down the evolution of a PDE with
operator L in the basis {en}n∈Z:

Proposition 2. Let L be defined as in Proposition 1. Consider the PDE

∂

∂t
u(t, x) = Lu(t, x)

u(0, x) =
∑
n∈N0

an(0)en

Let u(t, x) =
∑

n∈N0
a
(t)
n en. Then, the coefficients a(t)n satisfy:

∀1 ≤ n ∈ N,
∂

∂t
a(t)n = n2a(t)n +B

(
a
(t)
n−1 + a

(t)
n+1

)
(7)

∂

∂t
a
(t)
0 = 2Ba

(t)
1 (8)

With this setup in mind, we will show that as B grows, the memory term in Equation 6 can have an
arbitrarily large effect on the calculated solution:

Theorem 1 (Effect of memory). Consider the operator L defined in Proposition 1, the Fourier
truncation operator P1, and let Q = I − P1. Let u(0, x) have the form in Proposition 2 for B > 0

sufficiently large, and let a(0)n > 0,∀n > 0. Consider the memoryless and memory-augmented
PDEs:

∂u1

∂t
= P1Lu1 (9)

∂u2

∂t
= P1Lu2 + P1L

∫ t

0

exp{QL(t− s)}QLu2(s)ds (10)

with u1(0, x) = u2(0, x) = P1u(0, x). Then, u1 and u2 satisfy:

∀t > 0, ∥u1(t)− u2(t)∥L2
≳ Bt∥u1(t)∥L2

(11)

∀t > 0, ∥u1(t)− u2(t)∥L2
≳ Bt exp

(√
2Bt

)
(12)

Remark 1. Note that the two conclusions of the theorem mean that both the absolute difference, and
the relative difference between the PDE including the memory term Equation 10 and not including
the memory term Equation 9 can be arbitrarily large as B, t → ∞.

Remark 2. The choice of L is made for ease of calculation of the Markovian and memory term.
Conceptually, we expect the solution to Equation 10 will differ a lot from the solution to Equation 9
if the action of the operator L tends to “mix” components in the span of P and the span of Q.

Remark 3. If we solve the equation ∂
∂tu(t, x) = Lu(t, x) exactly, we can calculate that ∥u(t)∥L2

will be on the order of exp(2Bt). This can be seen by writing the evolution of the coefficients of

u(t) in the basis {en}, which looks like: ∂
∂t

(
a0
a1
. . .

)
= O

(
a0
a1
. . .

)
where O is roughly a tridiagonal

Toeplitz operator O =


...

...
...

...
. . . B n2 B 0 . . .
. . . 0 B (n+ 1)2 B . . .

...
...

...
...

 . The largest eigenvalue of this oper-

ator can be shown to be on the order of at least 2B (Equation 4 in Noschese et al. (2013)). The
Markovian term results in a solution of order exp

(√
2Bt

)
( Equation 19 and Equation 20), which

is multiplicatively smaller by a factor of exp
((
2−

√
2
)
Bt
)
. The result in this Theorem shows that

the memory-based PDE Equation 10 results in a multiplicative “first order” correction which can
be seen by Taylor expanding exp

(√
2Bt

)
≈ 1 +

√
2Bt+ 1

2 (
√
2B)2t2 + . . . .
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5 EXPERIMENTAL SETUP

5.1 DATASET GENERATION

PDEs with high-frequency Fourier modes: From the expression for the memory term in Equa-
tion 6 and the presence of high-frequency terms in the solution of the PDE of Theorem 1, we should
intuitively expect that memory will be most useful when the PDE solutions contain significant con-
tributions from high-frequency Fourier modes1. Nevertheless, current benchmarks like PDEBench
(Takamoto et al., 2023) rarely contain PDEs whose solutions have substantial high-frequency com-
ponents, as we quantitatively show in Appendix D. A solution which predominantly contains low-
frequency Fourier modes can be accurately approximated by its Fourier truncation (Definition 5), so
it can be represented by a finite-dimensional space, which implies that the unobserved part of the
solution (Q[u] in the notation of Section 3.2) should be small.

Therefore, we construct a new benchmark dataset which is specifically designed to contain PDEs
in which the high-frequency Fourier modes have substantial contribution. Specifically, we gener-
ate a benchmark from solutions to the Kuramoto-Sivashinsky equation with low viscosity (Section
6.1). In the case of Navier-Stokes (Section 6.2) and Burgers’ equation (Section C), we directly take
datasets from previous works. Details on data generation procedure are provided in Appendix E.

Datasets with different resolutions: To construct our datasets, we first take discretized trajecto-
ries of a PDE on a high resolution discretized spatial grid SHR ⊂ Rd, i.e. u(t) ∈ R|SHR|. We then
produce datasets that consist of lower resolution versions of the above trajectories, i.e. on a grid
SLR of lower resolution f , and show the performance of models that were trained and tested at such
resolution. For 1-dimensional datasets, the discretized trajectory on SLR is obtained by cubic inter-
polation of the trajectory in the highest resolution grid. In 2D, the discretized trajectory is obtained
by downsampling.

5.2 TRAINING AND EVALUATION PROCEDURE

Task: Let u ∈ C
(
[0, T ];L2

(
Ω;RV

))
be the solution of the PDE given by Definition 2. Let S be an

equispaced grid in Ω with resolution f , and let T be another equispaced grid in [0, T ] with Nt + 1
points. Given u0(x) S , our goal is to predict u(t, x) S for t ∈ T using a neural operator.

Training objective: As is standard, we proceed by empirical risk minimization on a dataset of
trajectories. More specifically, given a loss function ℓ : (R|S|,R|S|) → R, a dataset of training
trajectories

(
u(t, x)(i)

)N
i=0

, and parametrized maps GΘ
t : R|S| → R|S| for t ∈ T , we optimize:

Θ∗ = argminΘ

1

N

N−1∑
i=0

1

Nt

Nt∑
t=1

ℓ
(
u(t, x)(i) S ,GΘ

t

[
u
(i)
0 (x) S

])
Training and evaluation metric: Our training loss and evaluation metric is normalized Root Mean
Squared Error (nRMSE):

nRMSE (u(t, x) S , û(t)) :=
∥u(t, x) S − û(t)∥2

∥u(t, x) S∥2
,

where ∥ · ∥2 is the Euclidean norm in R|S|.

Further details on training hyperparameters are given in Appendix F.

5.3 ARCHITECTURE FRAMEWORK: MEMORY NEURAL OPERATOR

In this section we describe Memory Neural Operator (MemNO), a deep learning framework to incor-
porate memory into neural operators. A diagram is provided in Figure 9 and pseudocode in Figure
10.

1Note, this is meant to be an intuitive rule-of-thumb rather than a formal statement. In general, the “obser-
vation” operator and the PDE will interact in complicated ways, but the combination of low-resolution grids
and examining high-frequency components in the Fourier basis seems to be very predictive in practice.
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Let NOΘ
t be a neural operator with L layers, and denote NOΘ

t [u0] the prediction of the solution of
the PDE at time t. We will assume that this Neural Operator follows the Markovian assumption, i.e.
we can write:

NOΘ
ti+1

[u0] = rout ◦ ℓL ◦ ℓL−1 ◦ ... ◦ ℓ0 ◦ rin[NOΘ
ti [u0]], (13)

where rin : R|S| → R|S|×h0 is the encoder and rout : R|S|×hL+1 → R|S| is the decoder; ℓj :

R|S|×hj → R|S|×hj+1 are parametrized layers; and hj is the dimension of the j-th hidden layer.
Essentially, the solution for each new timestep is obtained by applying the same L layers to the
immediately previous predicted timestep.

Our goal is to define a network GΘ
t that builds upon NOΘ

t and can incorporate memory. For this, we
take inspiration from the Mori-Zwanzig formalism summarized in Section 3.2. Comparing Equa-
tion 13 with Equation 6, we identify ℓL ◦ ℓL−1 ◦ ... ◦ ℓ0 with the Markov term which models the
spatial dynamics. To introduce the memory term, we interleave an additional residual sequential
layer M that acts on hidden representations of the solution at previous timesteps. Concretely, the
MemNO architecture can be written as:

GΘ
ti+1

[u0] = rout ◦ ℓL ◦ ... ◦ ℓk+1 ◦M ◦ ℓk ◦ ... ◦ ℓ0 ◦ rin

[
GΘ
ti [u0],GΘ

ti−1
[u0], ..., u0

]
,

where −1 ≤ k ≤ L is a chosen hyperparameter.2 For notation, we will refer to v(j)(t′) ∈ R|S|×hj

as the hidden representation at the j-th layer for a timestep t′ ≤ ti, and v(j)(t′, x) ∈ Rhj as the
value of such hidden representation at a spatial point x ∈ S . Then, the spatial ℓj layers are un-
derstood to be applied timestep-wise, i.e. ℓj

[
v(j)(ti), ..., v

(j)(t0)
]
:=
[
ℓj [v

(j)(ti)], ..., ℓj [v
(j)(t0)]

]
,

and analogously for rin and rout. Thus, the ℓj layers still follow the Markovian assumption. The
memory is introduced through M, which is a sequential model that uses the history of the previous
timesteps to predict the next one. For computational efficiency, we consider a sequential model
M : Ri×hk −→ Rhk that is applied to each element of the spatial dimension |S| independently, i.e.
for each x ∈ S,

(
M[v(k)(ti), ..., v

(k)(t0)]
)
(x) := M[v(k)(ti, x), ..., v

(k)(t0, x)].3

Note that our MemNO framework can be combined with any existing neural operator layer ℓ, and
with any (causal) sequential model M. Thus it provides a modular architecture design framework
which we hope can serve as a useful tool for practitioners.

5.4 INSTANTIATING THE MEMORY NEURAL OPERATOR FRAMEWORK: S4FFNO

For our experiments, we introduce S4 Factorized Fourier Neural Operator (S4FFNO), which instan-
tiates the MemNO framework by combining the Factorized Fourier Neural Operator (FFNO) (Tran
et al., 2023) as the Markovian neural operator and S4 (Gu et al., 2022) as the sequential layer. We
choose S4 models over recurrent architectures like LSTM (Hochreiter & Schmidhuber, 1997) due
to superior performance in modeling long range dependencies (Gu et al., 2022; Tay et al., 2020),
ease of training, and favorable memory and computational scaling with both state dimension and
sequence length. An ablation comparing S4 to LSTM and Transformers is provided in Appendix
G.1.

6 MEMORY HELPS IN LOW-RESOLUTION AND INPUT NOISE: A CASE STUDY

In this section we present a case study for several PDEs of practical interest, showing that neural
operators with memory confer accuracy benefits when the data is supplied in low resolution or with
observation noise. We will use four Markovian baselines: Factformer (1D) (Li et al., 2023b),
The Galerkin Transformer (GKT) (Cao, 2021), the U-Net Neural Operator (U-Net) (Gupta &
Brandstetter, 2023), and the Factorized Fourier Neural Operator (FFNO) (Tran et al., 2023). For
a memory-augmented baseline, we consider the Multi Input Factorized Fourier Neural Operator
(Multi input FFNO), which takes as input the last 4 timesteps of the solution of the PDE to predict
the next one, as proposed in the original FNO paper (Li et al., 2021), yet using the architectural
design of FFNO. The architectural details for all the models are elaborated upon in Appendix B.

2k = L refers to inserting M after all the S layers, and k = −1 refers to inserting M as the first layer. In
Appendix G.2, we show our experiments are not very sensitive to the choice of k.

3We present an analysis on some architecture modifications that model the local spatial structure more
explicitly in Appendix I.
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Architecture Uses memory Resolution

nRMSE ↓

KS Burgers’

ν = 0.075 ν = 0.1 ν = 0.125 ν = 0.001

Factformer (1D) ✗

32

0.436 0.391 0.149 0.190
GKT ✗ 0.588 0.601 0.314 0.356
U-Net ✗ 0.542 0.511 0.249 0.188
FFNO ✗ 0.500 0.446 0.187 0.207

Multi Input FFNO ✓ 0.364 0.308 0.092 0.099
S4FFNO (Ours) ✓ 0.139 0.108 0.031 0.053
Factformer (1D) ✗

64

0.195 0.086 0.022 0.162
GKT ✗ 0.401 0.120 0.016 0.349
U-Net ✗ 0.147 0.062 0.022 0.171
FFNO ✗ 0.107 0.033 0.004 0.146

Multi Input FFNO ✓ 0.108 0.046 0.005 0.054
S4FFNO (Ours) ✓ 0.036 0.011 0.004 0.037
Factformer (1D) ✗

128

0.058 0.030 0.017 0.117
GKT ✗ 0.028 0.013 0.007 0.307
U-Net ✗ 0.033 0.027 0.014 0.112
FFNO ✗ 0.006 0.004 0.002 0.099

Multi Input FFNO ✓ 0.057 0.052 0.023 0.028
S4FFNO (Ours) ✓ 0.008 0.005 0.003 0.030

Table 1: nRMSE values at different resolutions for Burgers’ and KS with different viscosities. S4FFNO
achieves up to 6x less error than its memoryless counterpart (FFNO) in KS at resolution 32. The final time
of KS is 2.5 seconds and it contains 25 timesteps. The final times of Burgers’ is 1.4 seconds and it contains
20 timesteps. For the prediction at time t, S4FFNO has access to the (compressed) memory of all previous
timesteps, whereas Multi Input FFNO takes as input the previous four timesteps. More details on training are
given in Appendix F, and on the Burgers’ experiment in Appendix C.

6.1 KURAMOTO–SIVASHINSKY EQUATION (1D): STUDY IN LOW-RESOLUTION

The Kuramoto-Sivashinsky equation (KS) is a nonlinear PDE that is used as a modeling tool in
fluid dynamics, chemical reaction dynamics, and ion interactions. Due to its chaotic behavior it
can model instabilities in various physical systems. For viscosity ν ∈ R+, it is written as ut +
uux + uxx + νuxxxx = 0. We generated datasets for KS at different viscosities and resolutions,
and show the results in Table 1. At resolutions 32 and 64, the memory models (S4FFNO and Multi
Input FFNO) outperform the Markovian baselines. In particular, S4FFNO can achieve up to 6× less
error than its Markovian counterpart (FFNO) and additionally 3× less error than Multi Input FFNO.
Furthermore, in Appendix H.2 we show that S4FFNO still achieves 3x less error than FFNO models
with 7x more parameters.

At resolution 128, FFNO has similar performance compared to S4FFNO, and it outperforms Multi
Input FFNO. This is in agreement with other works which propose following the Markovian assump-
tion in neural operators (Tran et al., 2023; Lippe et al., 2023), where it is argued that incorporating
previous timesteps as input is not necessary and can lead to difficulties in learning, as it seems to
happen with Multi Input FFNO. By contrast, S4FFNO effectively models memory when it is useful
(resolutions 32 and 64) without compromising performance at higher resolutions.

In Figure 1 we show the performance of all models across a continuous range of resolutions. It can be
seen that there is a “cutoff” resolution at which memory models (i.e. S4FFNO) start outperforming
Markovian ones (i.e. FFNO) by a large margin. Very importantly, this cutoff resolution depends
on the viscosity, being around 76 when ν = 0.075, 68 when ν = 0.1, and 52 when ν = 0.125.
In the KS equation, a lower viscosity leads to the appearance of higher frequencies in the Fourier
spectrum (see second row of Figure 1), which are not well captured at low resolutions. Thus, we
identify the resolution relative to the Fourier frequency spectrum of the solution as a key factor for
the improved performance of MemNO over memoryless neural operators. We note that even if the
initial condition does not contain high frequencies, in the KS equation high frequencies will appear
as the system evolves. We provide a similar study on 1D Burgers equation in Appendix C.

Lastly, there are several architecture choices to model memory that improve performance in low
resolution. In particular, in Appendix G.1 we show that using LSTM instead of S4 also brings similar
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performance improvements. Likewise, in Appendix G.3 we show that using S4 as the memory model
with U-Net as the Markovian neural operator also outperforms the purely Markovian U-Net.

(a) ν = 0.075 (b) ν = 0.1 (c) ν = 0.125

Figure 1: (First row) nRMSE for several models in the KS dataset at different resolutions, where each column
is a different viscosity. The final time is T = 2.5s and there are Nt = 25 timesteps. (Second row) A
visualization of the whole frequency spectrum at each of the 25 timesteps for a single trajectory in the dataset.
The spectrum is obtained with the ground truth solution at resolution 512.

6.2 NAVIER-STOKES EQUATION (2D): STUDY IN OBSERVATION NOISE

The Navier-Stokes equation describes the motion of a viscous fluid. Like in Li et al. (2021), we
consider the incompressible form in the 2D unit torus, which is given by:

∂w(x, t)

∂t
+ u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x), x ∈ (0, 1)2, t ∈ (0, T ]

∇ · u(x, t) = 0, x ∈ (0, 1)2, t ∈ [0, T ]

w(x, 0) = w0(x), x ∈ (0, 1)2

Where w = ∇×u is the vorticity, w0 ∈ L2((0, 1)2;R) is the initial vorticity, ν ∈ R+ is the viscosity
coefficient, and f ∈ L2((0, 1)2;R) is the forcing function. In general, the lower the viscosity, the
more rapid the changes in the solution and the harder it is to solve it numerically or with a neural
operator. We investigate the effect of memory when adding i.i.d. Gaussian noise to the inputs of
our neural networks. The noise is sampled i.i.d. from a Gaussian distribution N (0, σ), and then
added to training and test inputs. During training, for each trajectory a different noise (with the
same σ) is sampled at each iteration of the optimization algorithm. The targets in training and
testing represent our ground truth, and do not contain added noise. In Figure 2a, we show the results
for ν = 10−3 when adding noise levels from σ = 0.0 (no noise) to σ = 2.048. S4FFNO-2D
outperforms FFNO-2D across most noise levels, and the difference between the two is especially
significant for noise levels beyond 0.128, where FFNO-2D is around 50% higher than S4FFNO-2D
(note the logarithmic scale). For this viscosity, adding small levels of noise actually helps training,
which was also observed in other settings in Tran et al. (2023). Figure 2b shows the same experiment
performed with ν = 10−5. Again, S4FFNO-2D outperforms FFNO-2D across most noise levels.
FFNO-2D losses are similarly around 50% higher for noise levels above 0.032. In this viscosity,
adding these levels of noise does not help performance.

6.3 RELATIONSHIP WITH FRACTION OF UNOBSERVED MODES

In this section, we provide a simple experiment to quantify the effect of the fraction of unobserved
modes on the performance of memory based models. Precisely, suppose u ∈ L2(Ω;RV ) is the
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(a) ν = 10−3, T = 16s, Nt = 32 (b) ν = 10−5, T = 3.2s, Nt = 32

Figure 2: nRMSE of FFNO-2D and S4FFNO-2D trained on Navier-Stokes 2D with different noise standard
deviations σ added to training and test inputs. Two configurations of viscosity ν and final time T are shown.

solution of a 1-dimensional PDE at a certain timestep, and an for n ∈ Z is its Fourier Transform. If
we observe it at a resolution f, we can only estimate its top ⌊ f

2 ⌋ modes4. Thus, we define ωf as the
ratio of unobserved modes at resolution f :

ωf :=

∑
|n|>⌊ f

2 ⌋
|an|2∑

n∈Z |an|2
(14)

ωf is an approximate indicator of the amount of information that is lost when the solu-
tion of the PDE is observed at resolution f . In practice, ωf can be computed by ap-
proximating the an with the discrete Fourier modes of the solution in the highest reso-
lution available. We show that there is a positive correlation between ωf and the dif-
ference in nRMSE between FFNO and S4FFNO for the KS experiment in Figure 3, and
also the for Burgers’ experiments of Appendix C in Figure 5. This demonstrates the
benefits of memory as a way to compensate for missing information in the observations.

Figure 3: Values of ωf and the difference
in nRMSE between FFNO and S4FFNO for
different resolutions in the KS experiment
of Section 6.1 with ν = 0.1. ωf is aver-
aged across all trajectories in the dataset and
across all timesteps.

7 CONCLUSION AND FUTURE WORK

We study the benefits of maintaining memory while mod-
eling time dependent PDE systems. When we only ob-
serve part of the initial conditions (for example, PDEs ob-
served on low-resolution or with input noise), the system
is no longer Markovian, and the dynamics depend on a
memory term. Taking inspiration from the Mori-Zwanzig
formalism, we introduce MemNO, an architecture that
combines Fourier Neural Operators (FNO) to model the
spatial dynamics of the PDE, and the S4 sequence model
to incorporate memory of past states. Through our exper-
iments on different 1D and 2D PDEs, we show that the
MemNO architecture outperforms the memoryless base-
lines, particularly when the solution to the PDE has large
components on high-frequency Fourier modes.

We present several avenues for future work. First, our
experiments on observation noise are limited to the setting where the input noise is i.i.d. Further,
extending the experiments and observing the effects of memory in more real-world settings (for ex-
ample, with non-i.i.d. noise or in the presence of aliasing) seems fertile ground for future work, and
also necessary to ensure that the application of this method does not have unintended negative con-
sequences when broadly applied in society. Lastly, while we primarily compare between Markovian
and memory architectures, a study on the trade-offs between different memory architectures such
as S4FFNO, LSTM-FFNO, S4U-Net and Multi Input FFNO is an interesting direction for future
work.

4This is a consequence of the Nyquist–Shannon sampling theorem.
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A ADDITIONAL RELATED WORK

Neural Operators. The Fourier Neural Operator (FNO) is a neural operator that performs a trans-
formation in the frequency space of the input (Li et al., 2021). Other models have proposed differ-
ent inductive biases for neural operators, including physics based losses and constraints (Li et al.,
2024b), using Deep Equilibrium Model (DEQ) (Bai et al., 2019) to design specialized architectures
for steady-state (time-independent) PDEs (Marwah et al., 2023), and using local message passing
Graph Neural Networks (GNNs) (Gilmer et al., 2017; Kipf & Welling, 2016) encoders to model ir-
regular geometries (Li et al., 2020; 2024a). Other methodologies to solve PDEs include methods like
(Gupta & Brandstetter, 2023; Rahman et al., 2023) that use the U-Net (Ronneberger et al., 2015)
architectures and works like Cao (2021); Hao et al. (2023) that introduce different Transformer-
based (Vaswani et al., 2017) neural solution operators for modeling both time-dependent and time-
independent PDEs. While most of these methodologies are designed for time-dependent PDEs,
there is no clear consensus of how to use the past states to predict future states, and most of these
methods predict the PDE states over time in an autoregressive way by conditioning the model on
varying lengths of the past states (Li et al., 2021; Tran et al., 2023; Hao et al., 2023).

Foundation models. There have been community efforts towards creating large-scale foundational
models for modeling diverse PDE families (McCabe et al., 2023; Hao et al., 2024; Shen et al., 2024),
and weather prediction (Pathak et al., 2022; Lam et al., 2022).

B NETWORK ARCHITECTURES

For all our models, we use a simple spatial positional encoding E. In 1-D, if the grid has f eq-
uispaced points in [0, L], then E ∈ Rf and the positional encoding is defined as Ei = i

L for
0 ≤ i ≤ f − 1. In 2-D, if we have f × f points in a 2-D equispaced grid in [0, Lx] × [0, Ly], the
positional encoding is defined as Eij = ( i

Lx
, j
Ly

). The input lifting operator (i.e. encoder) rin is a
linear layer that maps a concatenation of input and grid to the hidden dimension R2 → Rh, which
is applied to each element of the spatial dimension independently. It is shared across all model
architectures. Likewise, for the decoder Rout, we use another linear layer Rh → R.

Factorized Fourier Neural Operator (FFNO) (Tran et al., 2023): This model is a refinement over
the original Fourier Neural Operator (Li et al., 2021). Given a hidden dimension h and a spatial grid
S, its layers ℓ : R|S|×h → R|S|×h are defined as:

ℓ(v) := v + Linearh,h′ ◦ σ ◦ Linearh′,h ◦ K[v] (15)

where σ is the GeLU activation function (Hendrycks & Gimpel, 2016) and h′ is an expanded hidden
dimension. K is a kernel integral operator that performs a linear transformation in the frequency
space. Denoting by FFTα, IFFTα the Discrete Fast Fourier Transform and the Discrete Inverse Fast
Fourier Transform along dimension α (Cooley et al., 1969) respectively, the operator can be written
as:

K[v] :=
∑

α∈{1,...,d}

IFFT[Rα · FFTα[v]] (16)

for learnable matrices of weights Rα ∈ Ch2×kmax . kmax is the maximum number of Fourier modes
which are used in K. We use all Fourier modes by setting kmax = ⌊ f

2 ⌋.

In our experiments, The FFNO model consists of 4 FFNO layers. For experiments in 1D, the hidden
dimensions are all 128 (hj = 128 for j = 0, 1, 2, 3) and the expanded hidden dimension of FFNO’s
MLP h′ is 4 ·128. For experiments in 2D, the hidden dimensions are all 64 and the expanded hidden
dimension is 4 · 64.

S4 - Factorized Fourier Neural Operator (S4FFNO): This model uses our MemNO framework.
To isolate the effect of memory, all layers except the memory layer are the same as FFNO. For the
memory layer, we choose an S4 layer (Gu et al., 2022) with a state dimension of 64 and a diagonal
S4 (S4D) kernel.5

5The S4 repository has two available kernels, the diagonal S4 (S4D) and the Normal Plus Low Rank S4
(S4NPLR). In our experiments, we didn’t find a significant difference between the two, and chose S4D for
simplicity.
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Multi Input Factorized Fourier Neural Operator (Multi Input FFNO): This architecture uses the
solution at the last K = 4 timesteps as input to predict the next timestep, as originally proposed by Li
et al. (2021). Thus, this model uses the (uncompressed) memory of the four previous timesteps and it
is not Markovian. We choose K = 4 because, in practice, the number of previous timesteps to which
we have access is limited, if any. We also believe that Multi Input FFNO is advantaged by having
access to four ground truth observations, whereas the rest of the models only have access to one.
Thus, we consider K = 4 to be a reasonable choice when considering practical applicability and
fairness in comparisons. On the implementation side, the only difference with the FFNO architecture
resides in the input lifting operator Rin, which takes a concatenation of uti−3 , uti−2 , uti−1 , uti as
input to predict uti+1 . In all our experiments, we choose the fourth timestep of the solution of the
PDEs as initial condition for the rest of the models, whereas Multi Input FFNO is given access to
the first, second, third, and fourth timesteps for its first prediction. The number of layers and hidden
dimensions are the same as FFNO.

Factformer 1D (Li et al., 2023b): This models uses four linear attention layers over the spatial
sequence length and an MLP as output projection. We set the hidden dimension to 64, and each
attention layer has 4 heads with a hidden dimension of 128, thus expanding the dimension from 64 to
512. The implementation is taken from https://github.com/BaratiLab/FactFormer
yet making a slight modification for 1D instead of 2D inputs. Li et al. (2023b) deals with 2D inputs
in the following manner: given a hidden state of a solution w with with spatial dimensions Sx and
Sy and hidden dimension H , two queries and keys are built from w by applying two different MLPs
(MLPx and MLPy) and then taking the mean across Sy and Sx, respectively. Thus, we get qx and kx
of shape (Sx, H), and qy and ky of shape (Sy, H). The attention “values” v of shape (Sx, Sy, H)
are obtained from w by a linear layer. Then two linear attention transformations are applied, first
with qx and kx across the Sx dimension, and then qy and ky across the Sy dimension. For our 1D
case we do not have MLPy , nor qy , ky . Concretely, we only have one MLPx, we do not take means
to compute qx and kx, and we only apply one linear attention per layer.

Galerkin Transformer (GKT) (Cao, 2021): This model uses four linear attention layers over the
spatial sequence length. It includes positional information by concatenating the grid coordinates into
the queries, keys and values . After the attention layers, two FNO layers (using all Fourier modes)
are used. The hidden dimension used in the experiments is 32 (both for the transformer encoders
and the spectral regressor). For the experiments of Figure 1, GKT had unstable performance for
some resolutions. Thus, for some resolutions we tried a different training setup: a dropout of 0.05
in the linear attention layer and 0.025 in the FFN layer and 50 training epochs instead of 200. We
reported the nRMSE of the best configuration. Specifically, the dropout + reduced training epochs
helped performance in resolutions [40-64] for ν = 0.075, [8-60] for ν = 0.1 and [36-48] for
ν = 0.125 (all inclusive intervals). The implementation is based on the publicly available code
https://github.com/scaomath/galerkin-transformer.

U-Net Neural Operator (U-Net) (Gupta & Brandstetter, 2023): This model consists of four down-
sample convolution blocks, a middle convolution block, and four upsample convolution blocks.
The upsample blocks have residual connections to the downsample blocks in the typical U-Net
fashion. The downsample blocks have channel multipliers [1, 2, 2, 2] and no time embeddings
are used. The first hidden dimension is 32. The implementation is based on the repository
https://github.com/pdearena/pdearena.

S4 - U-Net Neural Operator (S4U-Net): This model also uses our MemNO framework. As before,
all layers except the memory layer are the same as U-Net. The state dimension is 16 and the we used
the S4D kernel. We apply the memory layer after the “middle” convolution block.

B.1 PARAMETER AND TRAINING TIMES FOR DIFFERENT ARCHITECTURES

The number of parameters of the different baselines and training times (forward + backward) is
shown in Table 2.

B.2 ALGORITHMIC COMPLEXITIES OF S4FFNO AND FFNO

We present the theoretical complexities of the cores of the S4FFNO and FFNO layers (i.e., the
spectral convolution of FFNO and the convolution of S4FFNO). Let S be the spatial resolution, T
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Architecture # Params (millions) Training time (miliseconds)
Factformer (1D) 0.65 102

GKT 0.29 21
U-Net 2.68 23
FFNO 4.89 28

Multi Input FFNO 4.89 28
S4FFNO 4.94 32
S4U-Net 2.82 25

Table 2: Number of parameter and training times (forward and backward pass) of architectures for
the experiments in Section 6.1 and Appendix G.3. The batch size is 32, the spatial resolution is 64
and the number of timesteps is 25. The GPU is an NVIDIA L40S.

the number of timesteps, H the hidden dimension and N the state dimension of S4. The core spectral
convolution of FFNO (Eq. 16) has a Discrete Fourier Transform across the space dimension and a
matrix multiplication in the frequency space, which have complexities O(THS̃) and O(TSH2)
respectively (tildes denote log factors). In contrast, the S4 layer has a Discrete Fourier Transform
across the time dimension and it requires building the convolution kernel, which have complexities
O(SHT̃ ) and O(SH(Ñ + T̃ )) respectively (Gu et al., 2022). In our cases, S ranges from 32 to 128,
and T is either 20, 25 or 32. Thus, in most cases O(THT̃ ) < O(THS̃). As for the other term, we
use H = 128 and N = 64, so N +T ≤ H and we also have O(SH(Ñ + T̃ ))) < O(TSH2). Thus,
the S4 memory layer requires less computation than a spatial FFNO layer.

C BURGERS’ EQUATION (1D): A STUDY ON LOW-RESOLUTION

The Burgers’ equation with viscosity ν ∈ R+ is a nonlinear PDE used as a modeling tool in fluid
mechanics, traffic flow, and shock waves analysis. It encapsulates both diffusion and advection
processes, making it essential for studying wave propagation and other dynamic phenomena. It is
known for exhibiting a rich variety of behaviors, including the formation of shock waves and the
transition from laminar to turbulent flow. The viscous Burgers’ equation is written as:

ut + uux = νuxx

We used the publicly available dataset of the Burgers’ equation in the PDEBench repository
(Takamoto et al., 2023) with viscosity 0.001, which is available at resolution 1024.

We perform experiments at resolutions 64, 128, 256, 512 and 1024 and show results for the models
Galerkin Transformer (GKT) (Cao, 2021), U-Net neural operator (U-Net) (Gupta & Brandstetter,
2023), Factorized Fourier Neural Operator (FFNO), Multi Input Factorized Fourier Neural Operator
(Multi input FFNO) and our proposed model S4 Factorized Fourier Neural Operator (S4FFFNO).
The results are shown in Figure 4a.

In low resolutions, memory-based architectures (Multi Input FFNO and S4FFNO) outperform the
best Markovian baseline (FFNO). Specifically, S4FFNO achieves more than 4× less error than
FFNO in resolutions 32 and 64 (see Table 1). Additionally, S4FFNO has slightly better performance
than Multi Input FFNO in high resolutions (512, 1024). Furthermore, we show the difference in
nRMSE between FFNO and S4FFNO at each timestep in figure 4b. We observe that at the first
timestep there is no difference between the two models—which is expected because S4FFNO has
the exact same architecture as FFNO for the first timestep. Yet as the initial condition is rolled out,
there is more history of the trajectory and the difference between FFNO and S4FFNO increases.

C.1 CORRELATION WITH FRACTION OF UNOBSERVED MODES

As mentioned in Section 6.3 we measure the correlation of ωf defined in Equation 14 with the
difference in the nRMSE between FFNO and S4FFNO. The results can be seen in Figure 5.
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(a) nRMSE of several models at different resolutions.

(b) Difference between the nRMSE of FFNO and
S4FFNO per timestep (higher difference means better
performance of S4FFNO).

Figure 4: Results for the Burgers’s PDEBench dataset with viscosity ν = 0.001.

Figure 5: Difference in nRMSE between FFNO and S4FFNO against ωf (defined in Equation 14)
for different resolutions of the Burgers’ Equation. ωf is averaged over all trajectories in the dataset
and across all timesteps of the experiment. The value is computed approximating the continuous
Fourier modes with the Discrete Fourier modes of the solution in the highest resolution available
(1024 for Burgers’ Equation).

D ANALYSIS OF HIGH-FREQUENCY FOURIER MODES IN COMMON 1-D
DATASETS

In Section 5.1, we explained that one of the main criteria for choosing the datasets of our experi-
ments was the high contribution from high-frequency Fourier modes in the solutions of the PDEs.
Intuitively, when the solution contains contributions from high-frequency Fourier modes, say higher
than a number k, then it cannot be approximated accurately from its first k Fourier components (see
Definition 5). Therefore, when observed at a finite resolution f , only ⌊ f

2 ⌋ Fourier modes can be
estimated6, which is not enough to approximate the solution when k ≫ ⌊ f

2 ⌋. In this case, there is an
“unobserved” part of the solution (which corresponds to the high-frequency components), and thus
we can expect the memory term of the Mori-Zwanzig Equation 6 to be non-negligible.

In order to quantitatively measure the importance of the high-frequency components of a function,
we propose using ωf from Equation 14. This quantity measures the fraction of Fourier modes
(weighted by their amplitude) that are above the frequency ⌊ f

2 ⌋, and thus 0 ≤ ωf ≤ 1. When ωf is
close to 0, then we expect the solution to be very accurately approximated from the Fourier modes
that are observed at resolution f , so the “unobserved” part of the function is very small and thus the

6This is a consequence of Nyquist–Shannon Theorem (Shannon, 1949)
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memory term of the Mori-Zwanzig Equation is expected to be negligible. Conversely, if ωf is large,
we expect the memory term to be significant7.

The results for ωf are shown in Figure 6. For most PDEBench datasets the values of ωf are very
small, even for very small resolutions like 16 (note that the original data is in resolution 1024).
Therefore, based on our previous discussion we expect the memory term to be negligible. On several
exploratory experiments on these datasets, we indeed saw no benefit of using memory to model
PDEs. The only exception is the Burgers’ dataset with viscosity ν = 0.001, where our experiments
in Appendix C show a superior performance of memory-augmented models over Markovian ones
for resolutions 64, 128 and 256 (Figure 4a).

In the case of the Kuramoto–Sivashinsky (KS) dataset, we again see that the viscosities that are
typical in other works, like ν = 1.0 and ν = 0.5 in PDE-Refiner (Lippe et al., 2023), do not have a
large ωf , unless the resolutions are low (16 or 32). For that reason, we generated our own datasets
with lower viscosities, which yield higher values for ωf and thus a more challenging benchmark to
compare Markovian and memory models. Besides the change of viscosity, PDE-Refiner generation
method had a warm-up of T = 72 seconds, while we did not consider a warm-up. This warm-up
explains the higher presence of high frequencies for viscosity ν = 0.5 compared to our viscosities
at resolution 16. Details and code to generate our datasets are provided in Appendix E.

It can be seen that ωf depends on both the parameters of the PDE (i.e. viscosities in Burgers’
and KS) and the observation resolution f . Thus, a key to understanding the importance of the
memory term is observing the resolution relative to the Fourier frequency spectrum of the solution,
as we noted in Section 6.1. Additionally, another important characteristic that affects ωf is the
frequency spectrum of the initial condition. While the initial condition for KS is generated as a
superposition of sinusoidal waves, PDEBench also uses this superposition of waves but applies some
transformations to it, like taking the absolute value (see Appendix D of Takamoto et al. (2023)).
These transformations lead to the appearance of higher order frequencies in the initial conditional
and thus also affect the frequency spectrum of later timesteps. We believe this is why Burgers’ with
ν = 0.001 also exhibits high ωf at resolutions 128 and 256 (Figure 6).

We hope ωf can serve as a practical quantity to help practitioners and researchers explore whether
to consider memory architectures or not.

E DATA GENERATION

E.1 KURAMOTO–SIVASHINSKY EQUATION

The Kuramoto-Sivashinsky (KS) equation is given by:

ut + uux + uxx + νuxxxx = 0 (t, x) ∈ [0, T ]× [0, L]

u(0, x) = u0(x) x ∈ [0, L]

We use periodic boundary conditions. Our data generation method is very similar to the one used
in PDERefiner (Lippe et al., 2023), except for the three following differences: (1) We do not have a
random ∆t per trajectory (2) We set the initial condition to have eight Fourier modes in the spectrum,
whereas Lippe et al. (2023) uses three (3) We do not discard the first generated timesteps of the
solution of the PDE. We provide a forked repository with these changes in https://github.
com/r-buitrago/LPSDA, which is based on the original repository of Brandstetter et al. (2022)
https://github.com/brandstetter-johannes/LPSDA. The generation command for
our datasets is (change --viscosity for the desired value):

python generate/generate data.py --experiment=KS --train samples=2048
--valid samples=256 --test samples=0 --L=64 --nt=51 --nx=512
--nt effective=51 --viscosity=0.1 --end time=5.0 --lmax=8

Now, we give an explanation of the generation procedure. We employ the method of lines (Schiesser,
1991), where the spatial dimension is discretized, and the PDE is transformed to a system of Or-

7This is not a precise mathematical argument, but rather an intuition that has proven to be helpful in practice
for the PDEs we have considered. In general, the interaction of the PDE and the frequency spectrum of the
solution is complex and ωf by itself is not enough to determine the magnitude of the memory term.
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Figure 6: ωf for different resolutions f and datasets. ωf measures the ratio of Fourier modes that
are above frequency f

2 (see Equation 14). The Advection, Diffusion-Reaction and Burgers’ datasets
come from PDEBench (Takamoto et al., 2023) (the Diffusion-Sorption dataset is not considered
because it does not have periodic boundary conditions). The KS datasets come from either PDE-
Refiner (Lippe et al., 2023), or they are generated by ourselves following Section E. The PDE-
Refiner datasets use a Twarm-up = 72s, that is, they discard all timesteps of the numerical solvers up
to time 72s. In contrast, our generated KS datasets do not have warm-up period. ωf is averaged
across all trajectories in the dataset, and also averaged across the first 20 timesteps. The values of
ωf are computed approximating the continuous Fourier modes with Discrete Fourier modes of the
solution in the highest resolution available (512 for KS datasets and 1024 for all other PDEBench
datasets).
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dinary Differential Equations (ODEs), one per point in the grid. In order to compute the spatial
derivative of the solution at each point in the grid, a pseudospectral method is used, where deriva-
tives are computed in frequency space and then converted to the original space through a Fast Fourier
Transform. This method is implemented in the diff method of the scipy.fftpack package
(Virtanen et al., 2020). Similarly, the system of ODEs is solved numerically with a implicit Runge-
Kutta method of the Radau IIA family of order 5 (Hairer & Wanner, 1996), which is implemented
in the solve ivp method of scipy.integrate. We refer to the code provided in Brandstetter
et al. (2022) to reproduce this data generation, however certain small modifications have to be made,
like using a fixed ∆t per trajectory and increasing the number of modes in the initial condition.

As for the PDE parameters, we use L = 64 and T = 2.5. For the initial condition, we use a
superposition of sinusoidal waves:

u0(x) =

20∑
i=0

Ai sin

(
2πki
L

x+ ϕi

)
where for each trajectory, the Ai are sampled from a continuous uniform in [−0.5, 0.5], the ki are
sampled from a discrete uniform in {1, 2, ..., 8}, and the ϕi are sampled from a uniform uniform in
[0, 2π]. We discretize [0, T ] into 26 equispaced points separated by ∆t = 0.1. In the experiments
in Section 6.1, for each of the four values of the viscosity (0.15, 0.125, 0.1, 0.075), we generated
a dataset with spatial resolution 512 with 2048 training samples and 256 test samples. For the
experiment in the sequential model ablation in section G.1, we generated one dataset with viscosity
0.15 in resolution 256, 4096 training samples and 256 test samples.

E.2 BURGERS’ 1D EQUATION

The 1D Burgers’ equation can be written as:
ut + uux = νuxx (t, x) ∈ [0, T ]× [0, L]

For the Burgers’ equation, we take the publicly available Burgers’ dataset of PDEBench (Takamoto
et al., 2023) with viscosity 0.001. Out of the 10000 samples of the dataset, we use 10% for testing.
For training, we found it sufficient to use 2048 samples. Additionally, for training and testing we
only used the 20 first timesteps, since we observed that after the 20th timestep the diffusion term of
the equation uxx attenuates all high frequencies and the solution changes very slowly.

E.3 NAVIER-STOKES 2D EQUATION

The incompressible Navier-Stokes equation in the 2D unit torus is given by:
∂w(x, t)

∂t
+ u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x), x ∈ (0, 1)2, t ∈ (0, T ]

∇ · u(x, t) = 0, x ∈ (0, 1)2, t ∈ [0, T ]

w(x, 0) = w0(x), x ∈ (0, 1)2

For the data generation, we follow the method of Li et al. (2021), yet with different tempo-
ral and spatial grids. The initial conditions w0 are sampled from a Gaussian Random field
N
(
0, 7

3
2 (−∆+ 49I)−2.5

)
with periodic boundary conditions. The forcing term is f(x1, x2) =

0.1 (sin 2π(x1 + x2) + cos 2π(x1 + x2)). At each timestep, the velocity is obtained from the vor-
ticity by solving a Poisson equation. Then, spatial derivatives are obtained, and the non-linear term
is computed in the physical space and then dealiased. A Crank-Nicholson scheme is used to move
forward in time, with a timestep of 10−4. We use a 512x512 spatial grid which is then downsampled
to 64x64 for our experiments. For the viscosity ν = 10−3, we use a final time of 16 seconds and
sample every 0.5 seconds. For the viscosity ν = 10−5, we use a final time of 3.2 seconds and sample
every 0.1 seconds. For more details on the data generation algorithm, we refer to Li et al. (2021).

F TRAINING DETAILS

In this section, we will provide a detailed description of the training hyperparameters used in the
KS experiments of Section 6.1, in the Burgers experimente of section C and the Navier Stokes
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experiments of section 6.2. We start with the training hyperparameters. All our experiments used
a learning rate of 0.001. For the number of epochs, in KS and Burgers, the training was done over
200 epochs with cosine annealing learning scheduling (Loshchilov & Hutter, 2017); whereas in
Navier Stokes we trained for 300 epochs and halved the learning rate every 90. As for the number
of samples, KS and Burgers were trained with 2048 samples and Navier Stokes with 1024 samples.
Lastly, we observed that the batch size was a sensitive hyperparameter for both the memory and
memoryless models (it seemed to affect both equally) so we ran a sweep at each experiment to
select the best performing one. In the results shown in the paper, KS and Navier Stokes use a batch
size of 32, and Burgers a batch size of 64.

Another relevant detail is the memory length in training, that is, the number of past states that were
fed to the memory layer in the MemNO model. In the KS and Burgers experiments, the maximum
memory lengths are 20 and 25 (which are the same as the number of timesteps of the dataset).
That means that for the last timestep, the previous 19 or 24 states were fed into the memory layer.
However, for GPU memory limitations in Navier Stokes the memory length was 16, half the number
of timesteps of each trajectory in the dataset.8 In this case, the memory was reset after the 16th
timestep, i.e. for the 16th timestep the 15 past states were fed to the memory model, yet for the 17th
timestep only the 16th timestep was fed. Then, for the 18th timestep, the 17th and 16th were fed,
and so on.

As in (Tran et al., 2023), experiments were trained using teacher forcing. This means that for the
prediction of the i-th timestep during training, the ground truth of the i − 1 previous steps was fed
to the model (as opposed to the prediction of the model for such steps).

We ran our experiments on A6000/A6000-Ada GPUs. The Navier Stokes 2D experiments required
around 34GB of GPU memory for the batch size of 32 and took around 5 hours to finish, whereas
the rest of experiments in 1D required a lower GPU memory (less than 10GB) and each run took
around 1 or 2 hours, depending on the resolution.

G ABLATIONS ON THE MEMNO ARCHITECTURE

In this section we present three ablations regarding the MemNO architecture

G.1 ABLATION: CHOICE OF SEQUENTIAL MODEL

In section 5.3 we introduced MemNO as an architecture framework which allowed the introduction
of memory through any choice of a sequential layer, which we chose as S4 in the previous experi-
ments. In this section, we explore two other candidates for the sequential layers: a Transformer and
an LSTM. We introduce Transformer-FFNO (T-FFNO) and LSTM-FFNO as two models that are
identical to S4FFNO except in the sequential layer, where a Transformer and an LSTM are used
respectively. The Transformer layer includes causal masking and a positional encoding, which is
defined for pos across the time dimension and i across the hidden dimension by:

PE(pos, 2i) = sin

(
pos

10000
2i

dim model

)
PE(pos, 2i+ 1) = cos

(
pos

10000
2i

dim model

)
We show results for the KS dataset with viscosity ν = 0.15 and different resolutions. This dataset
was generated using a resolution of 256 and contains 4096 samples, twice as many compared to the
KS datasets of E, given that Transformers are known to perform better in high-data regimes. The
results are shown in Figure 7. TFFNO performs significantly worse than S4FFNO across almost
all resolutions, and even performs worse than FFNO. In contrast, LSTM-FFNO outperforms FFNO,
which shows that MemNO can work with other sequential models apart from S4. The memory term
in Equation 6 is a convolution in time, which is equivalent to the S4 layer and very similar to a

8Under this setup, the GPU memory requirements were around 34 GB. Using the full 32 timesteps for
training would require a memory beyond 48GB, which was beyond our GPU capacity (A6000/A6000-Ada
GPUs).
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Recurrent Neural Network (RNN) style layer, as showed in Gu et al. (2022). We believe that this
inductive bias in the memory layer is the reason why both S4FFNO and LSTM-FFNO outperform
FFNO. However, S4 was designed with a bias for continuous signals and has empirically proven
better performance in these kind of tasks (Gu et al., 2022), which is in agreement with its increased
performance over LSTMs in this experiment. Additionally, we observed that LSTMs were unstable
to train in Navier Stokes 2D datasets.

Lastly, we make two remarks. Firstly, we believe that Transformers performed worse due to over-
fitting, given that the train losses were normally comparable or even smaller than the train losses of
the rest of the models at each resolution. We hypothesize that the full access to the past of Trans-
formers models might lead to exploiting spurious correlations during training. Modifications of the
Transformer layer or to the training hyperparameters as in other works (Hao et al., 2024; Cao, 2021;
Hao et al., 2023) might solve this issue. Secondly, recently there has been a surge of new sequential
models such as Mamba (Gu & Dao, 2023; Dao & Gu, 2024), RWQK (Peng et al., 2023), xLSTM
(Beck et al., 2024) or LRU (Orvieto et al., 2023). We chose S4 over Mamba-type architectures
because in our experiments the PDE temporal dynamics do not change, and thus we do not expect
the input-dependent selectivity mechanism to be necessary. However, we leave it as future work to
study which of these sequential model has better overall performance, and hope that our study on
the settings where the memory effect is relevant can help make accurate comparisons between them.

Figure 7: Performance of FFNO, S4FFNO and T-FFNO and LSTM-FFNO in KS with viscosity
ν = 0.15.

G.2 ABLATION: MEMORY LAYER CONFIGURATION

In Section 5.3 we introduced the memory layer in MemNO as a single layer to be interleaved with
neural operator layers. In our experiments, we inserted it after the second layer of a four layer neural
operator. In this section, we explore the impact of having different layer configurations, including
the possibility of having several memory layers. We will denote the configurations with a sequence
of S and T letters. S means a neural operator layer (some sort of Spatial convolution), and T a
memory layer (some sort of Time convolution). For example, SSTSS denotes the architecture of
our experiments, where we have 2 neural operators layers, followed by a memory layer, followed
by other 2 neural operator layers. Similarly, SSSST denotes 4 neural operators layers followed by
a memory layer. In Table 3, we present the results for the KS dataset with ν = 0.1 and final time
of 4 seconds for several models. We include the S4FFNO model we used in previous experiments
in the first row (with configuration SSTSS), and the FFNO model in the last row. In the middle
rows, we show different configurations of memory and neural operator layers. It can be observed
that all models with at least a memory layer outperform FFNO. There are slight differences between
configurations, yet we focused mainly on the comparison to the memoryless model. For that reason,
we fixed SSTSS configuration in our previous experiment, which was the most efficient (only one
memory layer) and symmetric. We leave as further work determining if there are settings where a
given configuration pattern can be substantially better than the rest.
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Architecture
nRMSE ↓

Resolution 32 Resolution 48 Resolution 64

S4FFNO (SSTSS) 0.123 ± 0.011 0.086 ± 0.004 0.015 ± 0.001
S4FFNO (SSSST) 0.142 ± 0.009 0.069 ± 0.001 0.017 ± 0.001
S4FFNO (STSSTS) 0.141 ± 0.006 0.064 ± 0.002 0.019 ± 0.001

S4FFNO (STSTSTST) 0.113 ± 0.006 0.070 ± 0.004 0.017 ± 0.001
S4FFNO (TSSSS) 0.129 ± 0.007 0.080 ± 0.003 0.017 ± 0.001

FFNO 0.294 ± 0.004 0.138 ± 0.013 0.021 ± 0.002

Table 3: KS, ν = 0.1. The final time is 4 seconds and the trajectories contain 20 timesteps. For each
architecture, we tried 4 learning rates (0.002, 0.001, 0.0005 and 0.00025, each with three different
seeds. We present the results of the learning rate with the lowest nRMSE averaged across the three
seeds. The standard deviation is also with respect to the seeds.

G.3 ABLATION: S4U-NET

The experiments in Section 6 used S4FFNO as our proposed memory model, which was the instan-
tiation of the MemNO framework (Section 5.3) with FFNO as the Neural Operator and S4 as the
memory layer. In the ablations of Section G.1 we showed that although S4 was the best performing
memory model, LSTM also provided good performance, showing the versatility of the framework
and the importance of adding memory (regardless of the specific architecture). In this section, we
show that the MemNO can also use a different Neural Operators as the Markovian layer. In partic-
ular, we instantiate the MemNO framework using U-Net as the Markovian Neural Operator, and S4
as the memory layer with a state dimension of 16.

The results for the KS experiment (Section 6.1) and Burgers’ experiment (section C) are shown in
Table 4. As in the case of S4FFNO, S4U-Net also improves the performance of U-Net in the cases
of low resolution. This shows that modeling memory is useful in low resolution for architectures
other than FFNO. However, S4U-Net has worse performance than S4FFNO. We reiterate that the
main contribution of our work is studying when modeling memory is helpful, as well as providing
flexible ways to incorporate it into existing neural operators. We leave for future work the study of
the trade-offs between different memory models under different setups.

Architecture Uses memory Resolution

nRMSE ↓

KS Burgers’

ν = 0.075 ν = 0.1 ν = 0.125 ν = 0.001

U-Net No 32 0.542 0.511 0.249 0.188
S4U-Net (Ours) Yes 0.364 0.277 0.104 0.096

U-Net No 64 0.147 0.062 0.022 0.171
S4U-Net (Ours) Yes 0.114 0.052 0.026 0.070

U-Net No 128 0.033 0.027 0.014 0.112
S4U-Net (Ours) Yes 0.058 0.030 0.022 0.057

Table 4: nRMSE values for the S4U-Net architecture at different resolutions for Burgers’ and KS
with different viscosities. The values of U-Net are the same as the ones in Table 1 and are provided
here for context. More details on training are given in Appendix F, on the KS experiment on 6.1 and
on the Burgers’ experiment in Appendix C.

H ABLATIONS ON S4FFNO AND FFNO PERFORMANCE

H.1 ABLATION: MEMORY WINDOW LENGTH

In this section we present an ablation on the memory window length of the S4FFNO architecture.
We recall that in our experiments of Section 6.1 we had a discretized grid T = [t0, t1, ..., tN ], and
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Figure 8: nRMSE for S4FFNO with varying memory window length, for the KS experiment of
Section 6.1 (ν = 0.1 and resolution 32). A memory window of K means that the S4 model only has
access to the memory of the last K timesteps to predict the next one. At training time, the sequence
length is split into chunks of K timesteps and each chunk is trained independently. At inference
time, the S4FFNO is given access to the last K predicted timesteps to make the next prediction.

in order to predict the solution at timestep ti S4FFNO had access to the memory of all previous
timesteps (i.e. the S4 model operated on the hidden dimensions v(tj) for 0 ≤ j ≤ i − 1). In this
section, we study what happens when S4 is only fed the last K timesteps, i.e. in order to predict ti,
S4 operates on the solution at timesteps ti−K , ti−K+1, ..., ti. The results are shown in Figure 8.

S4FFNO improves performance as the window length increases, illustrating that the reason for the
increased performance of S4FFNO is the capacity to model the memory of past timesteps.

H.2 ABLATION: FFNO MODEL SIZE

Now we consider what happens when we increase the model size of FFNO. Based on the results of
Section 6.1, S4FFNO outperformed FFNO when they had similar compute budgets (see Table 2).
However, S4FFNO still outperforms FFNO when FFNO has a much higer compute and parameter
budget, as it can be seen in Table 5. Thus, we conclude that S4FFNO has superior performance due
to the possibility of modeling memory from past states.

Architecture Hidden Dimension # Layers nRMSE ↓ # Params (millions)

Resolution 32 Resolution 48 Resolution 32 Resolution 48

S4FFNO 128 4 0.108 0.045 2.8 3.9

FFNO 128 4 0.440 0.238 2.8 3.8
FFNO 128 8 0.361 0.181 5.5 7.6
FFNO 256 4 0.435 0.252 11.1 15.3
FFNO 256 8 0.346 0.194 22.2 30.6

Table 5: Performance of S4FFNO and different model sizes of FFNO on the KS experiment with
viscosity ν = 0.1 and resolutions 32 and 48. The experimental details are the same as 6.1.

I ABLATION ON THE MODELING OF LOCAL SPATIAL INFORMATION

In Section 5.3 we presented the MemNO framework as a way to build neural operators that model
memory, which is inspired by the Mori-Zwanzig formalism. In Equation 6, it can be seen that the
memory term depends on the differential operator L, which can depend on the spatial derivatives of
the input. The memory layer of MemNO is applied independently to each spatial dimension of the
hidden representation of the input, and thus it does not model spatial derivatives explicitly, although
the hidden dimension can in principle encode such local information implicitly.
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In this section, we present several modifications to the S4FFNO architecture, which attempt to pro-
vide an inductive bias for modeling spatial information more explicitly. In particular, we try the
following modifications:

• S4FFNO + Input Gradients: The numerical gradients of the input ut are fed to the model
encoder. Specifically, ut is represented as a vector of spatial shape S, and the spatial
gradients are approximated using second-order accurate central differences method (using
the method torch.gradient of the pytorch library (Paszke et al., 2019)). This would
directly facilitate storing information about the first order spatial gradients in the hidden
dimension.

• S4FFNO + Convolutional Encoder: Instead of having a linear layer as encoder, we sub-
stitute it with a 1D Convolution of kernel size 3 across the spatial dimension.

• S4FFNO + Convolution before memory layer: Before feeding the sequence of hidden
presentations [v0, v1, ..., vt] to the memory layer S4, we apply a 1D Convolution across the
spatial dimension with kernel size of 3.

The performance of such modifications on the KS experiment of Section 6.1 with viscosity ν = 0.1
is shown in Table 6. It can be seen that none of the modifications improve performance compared to
the baseline significantly. We hypothesize that training becomes more difficult with these architec-
ture modifications, and thus they do not provide an improvement in performance. We leave as future
work to consider other architectures to model spatial information more explicitly.

Architecture nRMSE ↓
Resolution 16 Resolution 32 Resolution 48 Resolution 64 Resolution 80

FFFNO 1.106 0.4461 0.2325 0.328 0.0040
S4FFNO (Base) 0.3318 0.1081 0.0455 0.0111 0.0048

S4FFNO + Input Gradients 0.4433 0.1120 0.0482 0.0120 0.0054

S4FFNO + Convolutional encoder 0.4340 0.1053 0.0571 0.0138 0.0065

S4FFNO + Convolution before memory layer 0.4283 0.1224 0.0491 0.0142 0.0057

Table 6: Performance comparison between FFNO, S4FFNO and several architecture modifications
to S4FFNO aimed at introducing an inductive bias to model spatial information, see Section I. The
experiment is performed on the the KS PDE with viscosity ν = 0.1 under the same setup as Section
6.1. The architecture details of S4FFNO and FFNO are provided in Appendix B.

J MEMNO DIAGRAM

In Figure 9 we provide a diagram for the MemNO framework (Section 5.3) in 1D.

K QUANTIFYING THE EFFECT OF MEMORY

We include the proof for Theorem 1.

Proof. We proceed to the Equation 9 first. Note that u1(t),∀t ≥ 0 can be written as u1(t) =

a
(t)
0 e0 + a

(t)
1 e1. Moreover, by Proposition 1, we have

∂a
(t)
0

∂t
= 2Ba

(t)
1 (17)

∂a
(t)
1

∂t
= a

(t)
1 +Ba

(t)
0 (18)

In matrix form, these equations form a linear matrix ODE:

∂

∂t

(
a
(t)
0

a
(t)
1

)
=

(
0 2B
B 1

)(
a
(t)
0

a
(t)
1

)
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Figure 9: Diagram of the MemNO framework in 1D (Section 5.3). S denotes spatial dimension, H
denotes hidden dimension, and L number of layers. The memory layer in inserted in the middle,
although the framework works with other configurations.

The solution of this ODE is given by

(
a
(t)
0

a
(t)
1

)
= exp

(
t

(
0 2B
B 1

))(
a
(0)
0

a
(0)
1

)
. By the first statement

of Lemma 1 and the non-negativity of a(0)0 , a
(0)
1 , we get:

a
(t)
0 ≤ 10e

√
2Bt
(
a
(0)
0 + a

(0)
1

)
, (19)

a
(t)
1 ≤ 10e

√
2Bt
(
a
(0)
0 + a

(0)
1

)
(20)

We proceed to Equation 10. Note that for any s ≥ 0, we can write u2(s) = â
(s)
0 e0 + â

(s)
1 e1 with

â
(0)
0 = a

(0)
0 and â

(0)
1 = a

(0)
1 . By Proposition 1, we have

QLu2(x) = Bâ
(s)
1 e2(x)

Moreover, given a function v(x), the action of the operator exp
{
QL(t̃)

}
on v is given by the solution

w(t̃, x) to the PDE
∂

∂t
w(t, x) = QLw(t, x)

w(0, x) = v(x)

If w(t, x) =
∑

n∈N0
b
(t)
n en and ∀n ∈ N0, b

(0)
n ≥ 0, we are interested in solving the previous PDE

with initial conditions b(0)2 = Bâ
(s)
1 and b

(0)
n = 0 ∀n ̸= 2.

We claim that the coefficients â(t)n ≥ 0 ∀t > 0 and ∀n ∈ {0, 1}. For t = 0 this is by definition, and
we will prove it for all t by way of contradiction. Suppose the claim is not true, then there exists a
t∗ > 0, and some n∗ ∈ {0, 1} such that â(t

∗)
n∗ = 0, and â

(s)
n > 0 ∀n ∈ {0, 1} and ∀s < t∗. But from

continuity this implies that there exists 0 < t′ < t∗ such that ∂
∂t â

(t′)
n∗ < 0. However, it can be easy

to see that if â(s)n > 0 ∀s ≤ t′, then P1Lu2(t
′) > 0 and P1L

∫ t′

0
exp{QL(t− s)}u2(s)ds > 0.

Therefore, from Equation 10, ∂
∂t â

(t′)
n∗ > 0, which is a contradiction.

This claim implies that b(0)n ≥ 0 ∀n ∈ N, and in turn it implies that b(t)n ≥ 0 ∀n ∈ N, t > 0.
Applying QL results in the following inequalities for the coefficients b(t)1 , b(t)2 , b

(t)
3 :
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∂

∂t
b
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∂
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Thus, we can write a linear matrix ODE for the vector (b(t)1 , b
(t)
2 , b

(t)
3 ):
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Therefore, using Lemma 2, for sufficiently large B we have b
(t−s)
2 ≥ Be

√
2B(t−s)

10 â
(s)
1 .

Hence, if we write
∫ t

0
exp{QL(t− s)}QLu2(s)ds in the basis {en}n∈N0

, the coefficient for e2 will
be lower bounded by ∫ t

0

1

10
BeB(t−s)a

(s)
1 ds

Applying the second statement of Lemma 1 and using the non-negativity of a(0)0 and a
(0)
1 , we have
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We finally need to consider what happens after applying the outermost operator P1L. Because of
Proposition 1 again, applying L makes the coefficient in front of e1 at least B2t

100 e
√
2Bt
(
a
(0)
0 + a

(0)
1

)
.

Finally, applying P1 preserves the coefficient in front of e1.

Hence, equation Equation 10 results in the following evolution inequalities:
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1 (25)
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Using the second statement of Lemma 1 again we have that â0(t) ≥ 1
10e

√
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(
a
(0)
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)
. Thus,

dropping the (positive) term â
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1 in equation 26, we have:
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Integrating this equation yields:
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Thus, we have a(t)1 ≳ Bte
√
2Bt
(
a
(0)
0 + a

(0)
1

)
. Together with equation 19, the claim of the Theorem

follows.

Lemma 1. There exists B > 0 sufficiently large such that for all t > 0 the matrix
(

0 2Bt
Bt t

)
satisfies:
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(29)
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Proof. By direct calculation, we have:
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=

1

2
√
8B2 + 1

(√
8B2 + 1g(B, t)− h(B, t) 4Bh(B, t)

2Bh(B, t)
√
8B2 + 1g(B, t) + h(B, t)

)
where:

g(B, t) = e
1
2 (

√
8B2+1+1)t + e−

1
2 (

√
8B2+1−1)t

h(B, t) = e
1
2 (

√
8B2+1+1)t − e−

1
2 (

√
8B2+1−1)t

Thus, the statement follows.
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
Thus, the statement follows.

L DEFINITION OF PERIODIC BOUNDARY CONDITIONS

For completeness, we give a precise definition of periodic boundary conditions for the PDE defined
in Definition 2:
Definition 6 (Periodic Boundary Conditions). For a PDE given by Definition 2 with Ω = [0, L]d,
we define the periodic boundary conditions as the condition:

u(x1, · · · , xk−1, 0, xk+1, · · ·xd) = u(x1, · · · , xk−1, L, xk+1, · · ·xd)

for all (x1, · · · , xk−1, xk+1, · · · , xL) ∈ [0, L]d−1 and all k = 1, · · · , d.

30



Published as a conference paper at ICLR 2025

M MEMNO PSEUDOCODE

In Figure 10 we provide pseudocode for the MemNO framework (Section 5.3) in PyTorch (Paszke
et al., 2019).

from typing import List
from einops import rearrange
import torch
import torch.nn as nn

class MemNO(nn.Module):
’’’
Notation:

B: batch size
T: temporal dimension
S: spatial dimension (1D)
H: hidden dimension

’’’
def __init__(self, markovian_layers: List[nn.Module], memory_layer: nn.Module, memory_position: int):

’’’
Args:

markovian_layers: List of nn.Module that maps inputs (B, S, H) to outputs (B, S, H).
memory_layer: nn.Module that maps inputs (B, T, H) to outputs (B, T, H).

This must be a causal and sequential model.
memory_position: Position of memory layer in the model.

’’’
super().__init__()
self.markovian_layers = nn.ModuleList(markovian_layers)
self.memory_layer = memory_layer
self.memory_position = memory_position

def forward(self, x: torch.Tensor) -> torch.Tensor:
’’’
Args:

x: encoded representation of the solution of the PDE (B, T, S, H)
(i.e. [u_0, ..., u_{T-1}])

Output:
Prediction of the solution of the PDE at the next timestep (B, T, S, H)

(i.e. [\hat{u}_1, ..., \hat{u}_{T}])
’’’
B, T, S, H = x.shape
x = rearrange(x, ’b t s h -> (b t) s h’)
for markov_layer in self.markovian_layers[:self.memory_position+1]

x = markov_layer(x)
x = rearrange(x, ’(b t) s h -> (b s) t h’, b=B)
x = self.memory_layer(x)
x = rearrange(x, ’(b s) t h -> (b t) s h’, b=B)
for markov_layer in self.markovian_layers[self.memory_position+1:]:

x = markov_layer(x)
return rearrange(x, ’(b t) s h -> b t s h’, b=B)

Figure 10: Pseudocode for the MemNO framework (see Section 5.3) in 1-D. Encoder and Decoder
layers are omitted for clarity (see details in Appendix B).
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