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Abstract
This work studies the learning problem of the
energy-based prior model and the multi-layer gen-
erator model. The multi-layer generator model,
which contains multiple layers of latent variables
organized in a top-down hierarchical structure,
typically assumes the Gaussian prior model. Such
a prior model can be limited in modelling expres-
sivity, which results in a gap between the gener-
ator posterior and the prior model, known as the
prior hole problem. Recent works have explored
learning the energy-based (EBM) prior model as a
second-stage, complementary model to bridge the
gap. However, the EBM defined on a multi-layer
latent space can be highly multi-modal, which
makes sampling from such marginal EBM prior
challenging in practice, resulting in ineffectively
learned EBM. To tackle the challenge, we propose
to leverage the diffusion probabilistic scheme to
mitigate the burden of EBM sampling and thus
facilitate EBM learning. Our extensive experi-
ments demonstrate a superior performance of our
diffusion-learned EBM prior on various challeng-
ing tasks.

1. Introduction
The hierarchical generative model with multiple layers of
latent variables (a.k.a., multi-layer generator model) has
made significant progress in learning complex data distri-
bution (Sø nderby et al., 2016; Vahdat & Kautz, 2020) and
has garnered particular interest for its top-down hierarchical
structure, where multiple layers of latent variables that are
organized from the top to the bottom layers tend to capture
levels of (hierarchical) data representations, with high-level
semantic representations captured by the latent variables at
the top layers and low-level detail representations by those at
the bottom layers (Maaløe et al., 2019; Child, 2020). Learn-
ing such hierarchical representation can be essential and
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crucial to various downstream applications (Havtorn et al.,
2021; Nijkamp et al., 2020b). However, such multi-layer
generator models typically assume the Gaussian prior model,
which can be limited in statistical expressivity by primarily
focusing on the inter-layer relation between layers of latent
variables while largely ignoring the intra-layer relation be-
tween latent units within each layer (Cui et al., 2023a;b).
This may result in the prior hole problem (Rosca et al., 2018;
Hoffman & Johnson, 2016; Takahashi et al., 2019; Bauer &
Mnih, 2019) where the non-expressive Gaussian prior fails
to match the aggregated generator posterior.

Recent studies (Aneja et al., 2021; Cui et al., 2023a) have
investigated the utilization of the energy-based (EBM) prior
model as a complementary model to address this limitation.
The EBM prior is typically trained with a fixed generator
model (referred to as the Two-Stage learning scheme) to tilt
the non-expressive Gaussian prior to match the generator
posterior. However, learning a single (marginal) EBM is
challenging because the generator posterior is often multi-
modal, and more importantly, the Markov Chain Monte
Carlo (MCMC) sampling required to maximize the marginal
EBM likelihood can be difficult, as multiple layers of latent
variables are interwoven and require exploration at differ-
ent latent scales. In addition, MCMC sampling, such as
Langevin dynamics, usually starts from a noise-initialized
point, which is hard to explore the energy landscape and
mix between different local modes. Therefore, for multi-
layer latent variables, EBM prior sampling may serve as the
bottleneck for effective EBM learning, which still poses a
challenge.

Inspired by recent diffusion probabilistic frameworks (Ho
et al., 2020; Gao et al., 2020; Zhu et al., 2023; Du et al.,
2023), we propose learning the EBM prior of multi-layer
latent variables in a diffusion learning scheme. We construct
a series of conditional EBMs prior to gradually matching
the highly multi-modal generator posterior, with each con-
ditional EBM prior only matching perturbed samples at
each step. Compared to marginal EBM prior, such a con-
ditional EBM prior can be less multi-modal, leading to
more tractable conditional likelihood learning. For EBM
sampling, the proposed conditional EBM prior can render
a smoother energy landscape, which mitigates the burden
of MCMC sampling and thus further facilitates effective
EBM learning. However, for multi-layer latent variables,
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MCMC sampling needs to account for their different latent
scales at different layers (i.e., the scales of latent variables
at the top and bottom layers can be very different); more-
over, directly perturbating the latent samples may destroy
their inter-layer relation (i.e., conditional dependency for-
mulated in the hierarchical structure). Therefore, we further
employ a uni-scale ũ-space (see definition in Sec. 3.1) con-
verted from the multi-scale latent space, which allows us
to preserve the hierarchical dependency along the forward
process while at the same time, further reducing the burden
of MCMC sampling by traversing a uni-scale latent space.
Our experiments demonstrate the effectiveness of the pro-
posed method in various challenging tasks and show that
our model is capable of generating high-quality samples and
capturing hierarchical representations at different layers.

Contribution: 1) We develop a learning framework that
incorporates the diffusion probabilistic scheme for learning
the joint EBM prior for the multi-layer generator model; 2)
To preserve hierarchical structures and enable more effec-
tive EBM sampling, we adopt a uni-scale space to further
mitigate the burden of MCMC sampling; 3) We conduct
various experiments to examine our model in generating
high-quality samples and learning effective hierarchical rep-
resentations.

2. Preliminary
2.1. Multi-layer Latent Variable Model

Let x ∈ RD be the high-dimensional observed example and
z ∈ Rd be the low-dimensional latent variable. The multi-
layer generator model contains multiple latent variables
(i.e., z1, z2, . . . , zL) organized in a top-down hierarchical
structure and can be specified as a joint distribution. We
denote z̃ = (z1, z2, . . . , zL), then

pβ(x, z̃) =pβ0
(x|z̃)pβ>0

p(z̃) where

pβ>0
(z̃) =

L−1∏
i=1

pβi
(zi|zi+1)p(zL)

(1)

in which pβ0
(x|z̃) is the generation model that maps from

the latent space to the data space, and pβ>0
(z̃) is the prior

model that factories consecutive layers of latent variables
with conditional Gaussian distribution (i.e., pβi(zi|zi+1) ∼
N (µβi(zi+1), σ

2
βi
(zi+1))) parameterized by learnable pa-

rameter βi. The p(zL) ∼ N (0, Id) is assumed to be unit
Gaussian at the top layer.

Learning such a hierarchical generative model can be
achieved using maximum likelihood estimation (MLE) with
the gradient estimated as∇βEpβ(z̃|x)[log pβ(x, z̃)]. For the
generator posterior pβ(z̃|x), prior works utilize MCMC
sampling to obtain approximated posterior samples (Ni-
jkamp et al., 2020b), and (Sø nderby et al., 2016; Child,

2020; Maaløe et al., 2019) propose the variational learn-
ing that introduces a parameterized inference network (e.g.,
qϕ(z̃|x)) learned to approximate the generator posterior dis-
tribution.

However, such multi-layer generator models often fall short
in generating high-quality image synthesis, as the Gaus-
sian prior typically only focuses on the inter-layer relation
modelling while largely ignoring the intra-layer relation
modelling (Cui et al., 2023a), resulting in the prior hole
problem with mismatch regions between the prior and ag-
gregate posterior distribution (Dai & Wipf, 2019; Ghosh
et al., 2019).

2.2. Energy-based Prior Model.

Another generative model, the energy-based model (EBM),
is shown to be expressive in capturing the intra-layer relation
and representing data uncertainty. In general, on data space
x, the EBM can be defined as

pω(x) =
1

Zω
exp [fω(x)] (2)

where Zω is the normalizing constant or partition function,
fω(x) is the energy function parameterized with ω.

Learning the EBM via MLE estimates the gradient as
Epdata(x)[∇ωfω(x) − Epω(x)[fω(x)]]. For EBM samples
from pω(x), (Du & Mordatch, 2019; Du et al., 2020; Ni-
jkamp et al., 2019) adopt MCMC sampling such as Langevin
dynamics (LD). In particular, it is applied as

xτ+1 = xτ + s∇xτ
log p(xτ ) +

√
2sUτ (3)

where τ indexes the time step, s is the step size and Uτ ∼
N (0, ID), and xτ=0 is usually initialized from the Gaussian
noise. However, in practice, it may take a long time to
explore the energy landscape and mix between different
local modes. To mitigate the burden of EBM sampling,
recent advances have explored EBMs on low-dimensional
latent space pω(z) (Pang et al., 2020a; Xiao & Han, 2022;
Yu et al., 2022), but a single-layer pω(z) prior model can
still be limited in modelling compacity of the whole model.

Two-stage complementary EBM prior. Learning the EBM
prior for multi-layer of latent variables z̃ = (z1, z2, . . . , zL)
can be more expressive than single-layer latent variables,
but jointly learning both the multi-layer generator model
and EBM prior can be extremely inefficient, especially with
a deep hierarchical structure involved (Vahdat & Kautz,
2020; Child, 2020). This motivates a Two-Stage learning
scheme (Xiao et al., 2020; Aneja et al., 2021; Cui et al.,
2023a) that learns the Gaussian prior generator model at
the first stage (see Sec. 2.1) and then learns the EBM, as
a complementary model at the second stage with the fixed
generator backbone. In our work, we adopt such a learning
scheme for its efficiency.
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With multi-layer of latent variables, the NCP-VAE (Aneja
et al., 2021) factories a conditional EBM prior

pωi,βi
(zi|zi+1) =

1

Zωi,βi
(zi+1)

exp [fωi
(zi)]pβi

(zi|zi+1)

which aims to tilt the Gaussian prior toward the genera-
tor posterior distribution. The noise-contrastive estimation
(NCE) is used for learning, which treats EBM as a classifier
and thus does not need MCMC approximation. However,
the NCE scheme can render suboptimal learning with a
large gap between the two distributions (Xiao & Han, 2022),
which exists between the generator posterior and the Gaus-
sian prior (Arjovsky et al., 2017; Dai & Wipf, 2019).

The recent work (Cui et al., 2023a) considers learning EBM
prior via MLE by jointly modelling all layers of latent vari-
ables

pω,β>0
(z̃) =

1

Zω,β>0

exp [Fω(z̃)] pβ>0
(z̃) (4)

where the energy function Fω(z̃) =
∑L

i=1 fωi(zi).
However, MCMC sampling for Eqn. 4 can be prac-
tically challenging as layers of zi can have different
scales (i.e., zL ∼ N (0, Id) and z1 ∼ pβ>0

(z1) =∫
pβ>0

(z1, . . . , zL)dz2, . . . , dzL), which requires special
designs for MCMC sampling to account for such variation.

Learning both the multi-layer EBM prior can be viewed to
minimize the Kullback-Leibler (KL) divergence between
the generator posterior distribution and the EBM prior, i.e.,
KL(pθ(z̃|x)||pω,β>0(z̃)), which is difficult due to the highly
multi-modal generator posterior and the multi-scale latent
space, resulting in ineffective MCMC sampling for EBM
learning.

3. Methodology
Inspired by recent diffusion probabilistic methods that focus
on learning a sequence of parameterized models to gradu-
ally match target data distribution, we study a probabilistic
framework that can leverage such diffusion scheme with
a sequence of conditional EBMs prior for the multi-layer
generator models.

3.1. Diffusion with Multi-layer Latent Variables

Attempt on z̃-space. The diffusion probabilistic scheme
assumes a sequence of perturbed samples z0:T =
(z0, z1, . . . , zT ) for each diffusion step t = 0, 1, . . . , T . In
particular, the noisy sample z̃t is generated by a pre-defined
Gaussian perturbation kernel as

q(z̃t+1|z̃t) ∼ N (αt+1z̃t, σ
2
t+1I|d|) (5)

where αt+1 is typically set to be
√
1− σ2

t+1 to ensure a
spherical interpolation between samples and noise.

However, directly employing Eqn. 5 does not suit for multi-
layer latent variables z̃, since it does not take into account
the hierarchical structure between layers of latent variables.
Their inter-layer relation is consequently destroyed during
the progress, i.e., each zi becomes independently distributed
as standard Gaussian noise at the final diffusion step. Our
goal is to reach the Gaussian prior model pβ>0

(z̃) (Eqn.
1) at the final step, such that the reverse process can start
from the Gaussian prior model to approximate the generator
posterior distribution gradually.

Toward ũ-space. Instead of latent space, we formu-
late our diffusion model on ũ-space. In particular,
for multi-layer generator models, the Gaussian prior
model pβ>0

(z̃) is factorized to be the multiplication of
consecutive layers of conditional Gaussian distribution
pβi

(zi|zi+1) ∼ N (µβi
(zi+1), σ

2
βi
(zi+1)), which features

the re-parametrization sampling, i.e., zi = µβi(zi+1) +
σβi(zi+1) · ui+1 where ui+1 ∼ N (0, Id). We denote
such an invertible deterministic transformation function
to be Tβ>0

, i.e., z̃ = Tβ>0
(ũ) and ũ = T−1

β>0
(z̃) (see

App. A.1), which allows us to adapt our diffusion model
on ũ-space. The ũ-space enables the hierarchical struc-
ture to be maintained during the forward progress. When
q(ũT ) ∼ N (0, I|d|) becomes standard Gaussian noise af-
ter the forward diffusion process, the corresponding latent
variables reach the desired Gaussian prior model at the final
step.

Forward on ũ-space. The perturbation kernel is defined as

q(ũt+1|ũt) ∼ N (αt+1ũt, σ
2
t+1Id) (6)

With a designed diffusion σ-schedule (e.g., signal-to-noise
ratio, SNR), ũT at final step t = T becomes Gaussian noise
and q(ũT ) = N (0, I|d|) is then the stationary distribution.

For the case of t = 0, we obtain ũ0 via transformation func-
tion ũ0 = T−1

β>0
(z̃0) with z̃0 sampled from the generator

posterior. For variational-based generator models (see Sec.
2.1), z̃0 can be inferred from the inference model, while
we can also perform MCMC posterior sampling for z̃0. For
deep hierarchical structures, the inference model is preferred
for efficiency. The forward trajectory then becomes

qβ(ũ0:T |x) =
T−1∏
t=0

q(ũt+1|ũt)qβ(ũ0|x) (7)

where qβ(ũ0|x) is the unknown target distribution. The goal
is now to reverse from ũT to ũ0, which, in view of distri-
butions, reverses from the Gaussian prior model pβ>0

(z̃) to
the generator posterior pβ(z̃|x). This strategy circumvents
the problem of destroying hierarchical patterns during the
forward process and thus satisfies our goal to bridge the gap
between Gaussian prior model and the generator posterior.
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3.2. Reverse with Multi-layer Latent Variables

ũ-space for marginal EBM prior. The uni-scale ũ-space
is adopted in works (Xiao et al., 2020; Cui et al., 2023a) for
EBM sampling. Specifically, sampling from the marginal
EBM (Eqn. 4) is equivalent to sampling from

pω,β>0(ũ) =
1

Zω,β>0

exp [Fω(Tβ>0(ũ))] p0(ũ) (8)

where p0(ũ) is standard Gaussian. The uni-scale ũ-space
can make EBM sampling easier than the multi-scale latent
space z̃. However, this is still challenging as it aims to match
the highly multi-modal generator posterior and Gaussian
prior with a single (marginal) EBM.

To tackle this challenge, prior works (Gao et al., 2020; Yu
et al., 2022) leverage diffusion scheme and learn sequen-
tial conditional EBMs, which has seen some success in
modelling the high-dimensional x-space and single-layer
z-space. Inspired by their work, we propose to learn a
sequence of conditional EBMs prior but focus on hierarchi-
cal generative models with ũ-space to further alleviate the
burden of EBM sampling and learning.

ũ-space for conditional EBM prior. For our diffusion
model, we formulate the marginal EBM prior (Eqn. 8) to a
sequence of conditional EBMs prior, where each marginal
EBM prior at each diffusion step (i.e., pω,β>0

(ũt)) is con-
strained by the forward generated ũt+1, i.e.,

pω,β>0
(ũt|ũt+1) ∝ pω,β>0

(ũt)p(ũt+1|ũt) = (9)

1

Zω,β>0
(ũt+1)

exp [Fω(Tβ>0
(ũt), t)] p0(ũt) · p(ũt+1|ũt)

where we slightly abuse the notation and use p(ũt+1|ũt)
for the perturbation kernel as in Eqn. 6. The energy func-
tion essentially couples all layers of latent variables (i.e.,
Fω(Tβ>0

(ũt), t) =
∑L

i=1 fωi
(zi, t)), and thus the inter-

layer and intra-layer relation of each zi can be effectively
modelled. Each fωi(zi, t) corresponding to zi at each layer
can also capture the representation of different layers.

Compared to Eqn. 8 that directly models the complex ũ0

(generator posterior) with a single marginal EBM, the con-
ditional EBM only models ũt, reversing step by step until
ũ0. p(ũt+1|ũt) from Gaussian noise perturbation kernel
can serve to localize ũt to ũt+1, making our conditional
EBM less multi-modal and easier to be sampled than the
marginal EBM. The reverse trajectory constitutes

pω,β>0(ũ0:T ) =

T−1∏
t=0

pω,β>0(ũt|ũt+1)p(ũT ) (10)

where p(ũT ) ∼ N(0, I|d|) is standard Gaussian as q(ũT )
in forward trajectory.

EBM learning. The proposed method now contains a se-
quence of parameterized EBMs prior. With forward trajec-
tory Eqn. 7, we minimize KL(qβ(ũ0:T |x)||pω,β>0(ũ0:T ))
for EBM learning. The gradient is estimated as

∇ωEqβ>0
(ũ0:T |x)[

T−1∑
t=0

Fω(Tβ>0
(ũt), t)−

Epω,β>0
(ũ0:T )[

T−1∑
t=0

Fω(Tβ>0(ũt), t)]]

(11)

which involves sampling from the whole forward and re-
verse trajectories. To provide more efficient sampling and
learning, we follow the strategy used in (Ho et al., 2020)
and utilize random diffusion steps t at each iteration of
optimization. Thus, the learning gradient is

Eqβ>0
(ũt,ũt+1|x)[∇ωFω(Tβ>0

(ũt), t)−

Epω,β>0
(ũt|ũt+1)[∇ωFω(Tβ>0

(ũt), t)]]
(12)

where we only need perturbed sample ũt, ũt+1 from for-
ward trajectory (see Eqn. 7) and prior samples ũt from the
conditional EBM pω,β>0

(ũt|ũt+1). To obtain prior samples,
we perform Langevin dynamics (Eqn. 3) with the gradient

∇ũt
log pω,β>0

(ũt|ũt+1) = (13)

∇ũt
[Fω(Tβ>0

(ũt), t)− ||ũt||2
2 − ||αt+1ũt−ũt+1||2

2σ2
t+1

]

Compared to MCMC sampling of marginal EBM (see Eqn.
8) that can be hard to mix between different local modes
with noise initial points, MCMC sampling of conditional
EBM can start from the given ũt+1 and only needs to search
for the local modes around ũt+1. Specifically, the quadratic
term is from the noise-aware term in Eqn. 9 and constrains
the exploration of energy landscape to be localized around
ũt+1, which is much easier to obtain EBM samples than
marginal EBMs. This conditional sampling can be more
effective and efficient, which in turn benefits the learning of
the proposed EBM prior.

The overall training algorithm and sampling process are
shown in Alg. 1 and Alg. 2.

3.3. Coupling with symbol vector

In this section, we present the applicability of the proposed
EBM prior. For multi-layer generator models, they are typi-
cally learned in an unsupervised scheme and thus are only
feasible to generate random samples. However, the control-
lable and compositional ability to generate desired synthesis
nowadays becomes a key requirement for many downstream
tasks, yet it would be computationally expensive to re-train
these models to fit the job.

The proposed method is flexible in coupling labels or at-
tributes, which in turn empowers controllability and compo-
sition ability for the learned multi-layer generator models.
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Specifically, we can adapt our model with given labels y as

pω,β>0
(ũt,y|ũt+1) =

1

Zω,β>0
(ũt+1)

·

exp [⟨Fω(Tβ>0
(ũt), t),y⟩] p0(ũt)p(ũt+1|ũt)

(14)

where the energy function couples both y and ũt, forming
an associative memory that allows sampling ũt with a given
y. Generating images by such sampled ũt is known as
the controllable generation. (Pang et al., 2020b; Yu et al.,
2022) adopt similar formulations but only focus on single-
layer latent space, while we focus on a multi-layer latent
space with a hierarchical structure, allowing coupling y at
different layers for specific tasks. We formulate such EBM
prior at diffusion step t = 0 as the signal of y correlates
strongly with clean ũ0 samples, while noisy ũt>0 can be
less correlated with y.

The proposed EBM prior is capable of capturing inter-layer
and intra-layer relations for different layers of latent vari-
ables, thus rendering better controllability and composition-
ality with effectively learned latent representations. We refer
to learning derivation and details in App. A.2.

Algorithm 1 Learning EBM parameter ω
Require:

Training images x; Number of learning iterations M ;
Hierarchical generator model β; Diffusion steps T ;
Langevin steps k;.

1: Let m← 0, initialize EBM parameters ω.
2: repeat
3: Sample ũ0: obtain z̃ ∼ pβ(z̃|x) and ũ0 = Tβ>0

(z̃)
4: Diffusion step t: t ∼ U(0, T − 1)
5: Noise sample: sample ũ∗

t , ũ∗
t+1 from Eqn. 7.

6: Prior sample: sample ũk
t by Eqn. 3 and Eqn. 13

with ũ∗
t+1 being the initialization

7: Learn ω: Update ω with ũ∗
t and ũk

t using Eqn. 12
8: Let m← m+ 1.
9: until m = M

Algorithm 2 Sampling and Image Synthesis
Require:

Diffusion steps T ; Hierarchical generator model β;
EBM prior ω.

1: Let t← T − 1 and ũT ∼ N(0, I|d|).
2: repeat
3: Sample ũt: sample ũt ∼ pω,β>0

(ũt|ũt+1) using
Eqn. 3 and Eqn. 13

4: Let t← t− 1.
5: until t = −1
6: Sample z̃: obtain z̃ = T−1

β>0
(ũ0).

7: Generate x: generate x ∼ pβ0
(x|z̃) with obtained z̃.

4. Related Work
Energy-based model. The EBM is expressive in represent-
ing the data uncertainty. Most existing works learn EBM on
data space by maximizing EBM likelihood, which involves
challenging MCMC sampling for the EBM. To tackle the
challenge, (Du & Mordatch, 2019; Du et al., 2020) propose
the use of a replay buffer, while (Cui & Han, 2023; Han
et al., 2020b; Xie et al., 2021; 2018) consider learning a com-
plementary generator model to jump-start MCMC sampling.
(Xiao & Han, 2022; Pang et al., 2020a;b) focus on learning
EBM prior on low-dimensional latent space to mitigate the
burden of EBM sampling, but these works only deal with a
single-layer latent space. We consider learning EBM prior
for multi-layer latent variables, which enables hierarchical
representation learning and better sample generation.

Hierarchical generative model. For hierarchical genera-
tive models (Vahdat & Kautz, 2020; Maaløe et al., 2019;
Sø nderby et al., 2016), they typically assume a Gaussian
prior model, which can be less informative, resulting in the
prior hole problem and poor generation quality. Our work
aims to learn effective EBM prior for hierarchical generative
models, which is related to joint EBM prior (see Sec. 2.2).
These works intend to learn a single (marginal) EBM on
z̃-space, while we study learning a sequence of conditional
EBMs on ũ-space. NCP-VAE (Aneja et al., 2021) discuss
a autoregressive-style model, which can be intractable for
MLE learning, as the normalization constant includes the
top layer zi+1 and needs an additional inner loop for sam-
pling. Our model leverages diffusion probabilistic models
such that we can directly draw ũt+1 through the forward tra-
jectory. Compared to (Cui et al., 2023a) (Eqn. 4), our EBM
prior only models ũt conditioned on the perturbed sample
ũt+1 generated by ũt+1 = αt+1ũt + ϵt+1σt+1, which can
be much easier than directly recovering from ũT to ũ0 (if
consider equivalent form Eqn. 8).

EBM diffusion model. Other diffusion EBMs (Gao et al.,
2020; Yu et al., 2022; 2023) motivate EBM learning with a
diffusion scheme. They build energy-based recovery model
on data space and single-layer latent space, respectively. In
this work, we focus on multi-layer generator model with a
top-down hierarchical structure, which is shown to be ca-
pable of learning meaningful hierarchical representations
(Child, 2020; Zhao et al., 2017; Havtorn et al., 2021). It
is typically challenging for the diffusion scheme to main-
tain such hierarchical structures as the goal of the forward
process is to destroy the data pattern, which includes the
inter-layer relation (conditional dependency) among multi-
layer latent variables. To preserve the hierarchical structure
of latent variables, we conduct the forward and reverse
processes on ũ-space, which also leads to more effective
learning and sampling than multi-scale x-space (Gao et al.,
2020) and z-space (Yu et al., 2022).
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Figure 1: Image synthesis on CelebA-HQ-256 (left), LSUN-Church-64 (center) and CIFAR-10 (right).

Table 1: IS(↑) and FID(↓) on CIFAR-10. Model∗ indicates
our backbone model.

Method IS FID

Ours (T = 3) 9.03 8.93
Joint-EBM (Cui et al., 2023a) 8.99 11.34
DRL-EBM (T = 6) (Gao et al., 2020) 8.40 9.58
NCP-VAE (Aneja et al., 2021) - 24.08

Hierarchical Generative Models w Gaussian Prior
NVAE∗ (Vahdat & Kautz, 2020) 5.30 37.73
NVAE∗-Recon - 0.68
HVAE (Sø nderby et al., 2016) - 81.44
BIVA (Maaløe et al., 2019) - 66.37

Energy-based Models
Architectural-EBM (Cui et al., 2023b) - 63.42
Dual-MCMC (Cui & Han, 2023) 8.55 9.26
Adaptive-CE (Xiao & Han, 2022) - 65.01
VAEBM (Xiao et al., 2020) 8.43 12.19
Hat EBM (Hill et al., 2022a) - 19.15
ImprovedCD (Du et al., 2020) 7.85 25.1
Divergence Triangle (Han et al., 2020a) - 30.10
Adv-EBM (Yin et al., 2020) 9.10 13.21

GANs+Score+Diffusion Models
StyleGANv2 w/o ADA (Karras et al., 2020) 8.99 9.9
Diffusion-Amortized (Yu et al., 2023) - 57.72
NCSN (Song & Ermon, 2019) 8.87 25.32
LSGM (Vahdat et al., 2021) - 2.10
DDPM (T = 1000) (Ho et al., 2020) 9.46 3.17

Table 2: FID on CelebA-HQ-256 and LSUN-Church-64.

Method CelebA-HQ-256 LSUN-Church-64

Ours (T = 3) 8.78 7.34
Joint-EBM (Cui et al., 2023a) 9.89 8.38
DRL-EBM (T = 6) (Gao et al., 2020) - 7.04
NCP-VAE (Aneja et al., 2021) 24.79 -

NVAE∗ (Vahdat & Kautz, 2020) 30.25 38.13
NVAE∗-Recon 1.64 2.45

Adv-EBM (Yin et al., 2020) 17.31 10.84
GLOW (Kingma & Dhariwal, 2018) 68.93 59.35
PGGAN (Karras et al., 2017) 8.03 6.42

5. Experiment
5.1. Image Synthesis

First, we examine the sample quality of our model. The
proposed model is learned as a reverse approximation model
in a diffusion probabilistic scheme, which allows sampling
reverse steps ũt to reach ũ0. With sampled ũ0, we obtain
z̃0 through the transformation function and then generate
images x through the generator model (see Alg. 2).

Our project page is available at https://jcui1224.
github.io/diffusion-hierarchical-ebm-proj/.

We assess our model on the standard benchmark CIFAR-10
and the challenging high-resolution CelebA-HQ-256 and
large-scale LSUN-Church-64. We compare with our direct
baseline model Joint-EBM (Cui et al., 2023a), NCP-VAE
(Aneja et al., 2021) that learn signal (marginal) EBM prior
for hierarchical generative models, and Diffusion Recov-
ery (DRL) EBM (Gao et al., 2020) which learn EBM with
diffusion probabilistic scheme on data space, as well as hier-
archical generative model with the Gaussian prior and other
powerful advanced generative models.

We recruit FréChet Inception Distance (FID) and Inception
Score (IS) metrics to evaluate the quality of image synthesis.
We report our results in Tab. 1 and Tab. 2 as well as the FID
score of the reconstructed images. It can be observed that
our hierarchical EBM prior shows superior performance
compared to our baseline models and can even be competi-
tive with those powerful GANs and diffusion-based methods.
For a fair comparison, we adopt the NVAE model (Vahdat &
Kautz, 2020) as the backbone generator model as our direct
baseline Joint-EBM and NCP-VAE. More quantitative and
qualitative results can be found in the ablation studies and
App. B.

5.2. Hierarchical Representation

Different from other generator models, the hierarchical gen-
erator model has an appealing structure, in which the latent
variables at the top layers tend to learn high-level semantic
representations, while low-level details representation can
be learned by latent variables at lower layers. We examine
our model in learning such hierarchical representations.

Hierarchical sampling. First, we demonstrate our model
by performing hierarchical sampling, which generates vari-
ations of image synthesis that can visualize the different
levels of data representation learned by different layers of
latent variables. In particular, for multi-layer latent vari-
ables, we only generate random samples for some layers
of latent variables while fixing other layers; hence, the cor-
responding variation of features is captured by the latent
variables randomly sampled. We show visualization results
on CelebA-HQ-256 in Fig. 2. It can be observed that by
randomly sampling for the top layers of latent variables, the
general structure (e.g., genders and face identities) would be
changed, while for lower layers of latent variables, low-level
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features (e.g., hair color, skin color) can vary correspond-
ingly. We note that this is a challenging task where some
minority of features are entangled across layers, but the ma-
jority of features can be successfully captured. This show-
cases the capability of our model in learning hierarchical
representations.

Figure 2: Hierarchical sampling. Visualization of repre-
sentations learned by latent variables from the top to bot-
tom layers, arranged as top-left, top-right, bottom-left and
bottom-right.

Out-of-distribution detection. Then, we evaluate our
model in out-of-distribution (OOD) detection task to further
demonstrate learned hierarchical representations. Typically,
EBMs can be applied to the OOD task by computing the en-
ergy score as the decision function (Hill et al., 2022b; Cui &
Han, 2023). For latent space EBMs, the inferred latent sam-
ple (i.e., ũ0 ∼ qβ(ũ0|x) for our case) from in-distribution
(ID) data is usually assigned with a lower energy than from
the OOD data. In this work, we compute the energy score of
inferred latent samples at the top layers as the decision func-
tion for using high-level semantic representations learned
at the top layers of latent variables to distinguish the OOD
and the ID data (Havtorn et al., 2021).

To better leverage the diffusion probabilistic scheme, we
propose conducting EBM sampling based on perturbed infer-
ence samples at the top layers, together with prior samples
at the bottom layers. Specifically, with testing images x
and layer index k, we first obtain ũ>k

1 ∼ qβ>0
(ũ0:T |x) (see

Eqn. 7) and ũ≤k
1 ∼ pω,β>0(ũ0:T ) (see Eqn. 10) where

we choose diffusion step t = 1 to ensure that only minor
noise is added. Then, we perform reverse sampling condi-
tioned on ũ>k

1 and ũ≤k
1 for jointly sampling final ũ0, i.e.,

ũ0 ∼ pω,β>0
(ũ0|[ũ>k

1 , ũ≤k
1 ]) where [, ] is the operation of

concatenation. If ũ>k
1 is from ID data, then ũ>k

0 should ren-
der lower energy scores as both the ũ>k

1 and ũ≤k
1 are from

similar local modes of the learned energy landscape. If ũ>k
1

is from OOD data, then ũ>k
1 and ũ≤k

1 can be in different
modes, making the final reverse sampling difficult to tra-
verse the energy landscape and thus rendering higher energy
score of sampled ũ>k

0 . We follow the standard protocol and
evaluate by AUROC score for our EBM prior trained on
CIFAR-10 with SVHN dataset being the OOD dataset. The
result is reported in Fig. 3 where the performance of our
model indeed improves as the layer of k increases, which
agrees with the observation in (Havtorn et al., 2021) that
our model can capture hierarchical representations at dif-

ferent layers. Compared to using inferred latent samples
(inference scheme in Fig. 3), the proposed diffusion-based
method (diffusion scheme in Fig. 3) can render better per-
formance by conducting additional MCMC sampling of the
learned EBM.

Figure 3: AUROC results for energy scores of different
layers (denoted as L > k for using top layers above k-th
layer). Top figure visualizes the comparison between
the diffusion scheme (ũ0 sampled from EBM) and the
inference scheme (ũ0 inferred from inference model)
in different layers. Bottom figure is the histogram of
energy scores using all layers L > 0 and top layers
L > 27. Total number of layers is 30.

5.3. Controllable Synthesis

For hierarchical generator models that are typically learned
without labels (unsupervised learning), they can only gen-
erate random synthesis. Our diffusion EBM prior, as a
flexible complementary model, can be coupled with labels
to make hierarchical generative models more applicable in
downstream tasks, such as controllable and compositional
generation. In practice, we fix the hierarchical generative
model and train our adapted model (Eqn. 14) with given
y (supervised learning), and then we assess if our model
can render controllability and compositionality with the cap-
tured hierarchical representations. We refer to App. A.2 for
details of training and sampling.

Categorical labels. First, we evaluate our model with cate-
gorical label information, e.g., y represents labels of objects
in CIFAR-10. To better examine our model, we only con-
sider coupling y at the top layers by which the semantic
representations are captured. With the learned model, we
conduct controllable generation by specifying target labels

7
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Figure 4: Fine-tuned image synthesis with multiple attributes on CelebA-64.

y and sampling corresponding ũ for generating the images.
We show the results in Fig. 5, and it can be seen that our
model can capture data representations and thus can gener-
ate synthesis with specific categories.

Figure 5: Controllable synthesis on CIFAR-10.

Multiple attributes. Then, we showcase our model by uti-
lizing multiple data attributes for the challenging fine-tuned
image synthesis. In particular, for example of CelebA-64
dataset, we can have multiple attributes y1:N for differ-
ent levels of data features. To better suit the hierarchical
structure, we choose to couple high-level attributes, such
as gender information, at the top layers and gradually cou-
ple lower-level attributes, such as face and hair features,
at the lower layers. In Fig. 4, we first specify gender at-
tributes (e.g., ”Male”) and sample ũ at the corresponding
top layers for generating gender-specified images. Then, we
fix these ũ of top layers and specify lower-level attributes
(e.g., ”Smile” and ”Blond Hair”) for sampling ũ at lower
layers. We observe our EBM prior successfully renders the
desired compositional synthesis by gradually adding spe-
cific features to the sampled images without changing the
majority of previously fixed features. This suggests learned
hierarchical representation of our EBM prior.

5.4. Langevin Transition for Energy Landscape

We examine the energy landscape of our learned EBM
prior by visualizing the Langevin transition. Our condi-
tional EBM prior should render a smooth energy landscape
such that Langevin dynamics can effectively explore with a
smooth Langevin transition. We visualize the corresponding
image synthesis of the Langevin trajectory of each diffusion

step, i.e., t = T − 1, . . . , 1, 0. We show in Fig. 7 for each
step of the short-run Langevin dynamics (e.g., 30 Langevin
steps) and in Fig. 6 for a challenging long-run setting (e.g.,
300 Langevin steps for each diffusion step). We observe in
Fig. 7 that the quality of image synthesis becomes better as
the Langevin progresses, with large improvement at diffu-
sion step t = T − 1 and minor improvement at diffusion
step t = 0; while, in Fig. 6, we do not see an oversaturated
problem of EBM learning as observed in (Nijkamp et al.,
2020a). We conduct such experiments to demonstrate a
smooth energy landscape learned for our EBMs prior.

Figure 7: Short-run Langevin transition on CelebA-HQ-256.
The top rows of figures show the transition for the diffusion
step at t = T − 1, and the bottom rows show the transition
for the diffusion step at t = 0.

5.5. Ablation Studies

Diffusion step T . First, we train our diffusion-based EBM
prior with more diffusion steps, e.g., T = 6. By doing
so, our model should render better performance with easier
EBM sampling by matching less perturbed samples at each

8
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Figure 6: Long-run Langevin transition on CelebA-HQ-256. Visualization for each 30 steps.

step. We report the FID score and sampling time in Tab.3
where the synthesis quality indeed improves with more dif-
fusion steps but also requires more sampling time. We thus
report T = 3 as our result.

Table 3: Langevin steps K and diffusion steps T .

K = 30 K = 100 K = 50, T = 3 T = 6

FID 9.98 8.13 8.93 8.13
Time (seconds) 75.17 166.34 94.23 193.45

Langevin step K. By using more Langevin steps, we
should explore the energy landscape better and obtain more
effective EBM samples for learning. The learned EBMs can
thus generate high-quality samples for image synthesis. We
show our results in Tab. 3 where using 50 steps (denoted as
K = 50) delivers better synthesis than using 30 steps, while
using 100 steps only shows a minor improvement but costs
much more training and sampling time.

Figure 8: Images synthesis on CIFAR-10 with different
backbones. Top-row images are generated with the NVAE
(30 layers) backbone, and bottom-row images are generated
with the HVAE (3 layers) backbone.

Other hierarchical generator models. In addition to the
NVAE backbone model, we also train a simple backbone
hierarchical VAE with 3-layer latent variables. We visualize
images generated by the Gaussian prior and our model in
Fig. 8, where our model still improves the quality of the gen-
eration in a large way (from FID 81.44 to 35.13), suggesting
the effectiveness of the proposed method.

6. Limitation
In this work, the proposed method still renders inferior per-
formance compared to state-of-the-art models (e.g., modern

diffusion probabilistic models (Vahdat et al., 2021)). In
addition, sampling from our EBM prior requires an iterative
Langevin dynamics sampler, which can be further improved
or even bypassed; we will consider it in our future studies.

7. Conclusion
We propose learning EBM prior for hierarchical generative
model with a diffusion probabilistic scheme, which features
more tractable conditional likelihood learning and more
effective EBM sampling. We employ a uni-scale ũ-space to
maintain the hierarchical structure and further mitigate the
burden of MCMC sampling. Such learned EBM prior can
generate high-quality samples for image synthesis and can
capture hierarchical representations for downstream tasks.

Impact Statement
This paper presents a generative probabilistic framework
whose goal is to advance the field of Machine Learning and
may share the limitations and negative impact as other ad-
vanced generative models. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. Theorectical Derivation
A.1. Between ũ-space and z̃-space

For conditional Gaussian distribution pβi(zi|zi+1) (see Eqn. 1), we can have an invertible transformation function Tβ>0 .
For example of 2-layer latent variables, it is defined specifically as

z2 = T z2

β>0
(u2) = u2 and z1 = T z1

β>0
(u1,u2) = µβ1

(z2) + σβ1
(z2) · u1 (15)

where u1 and u2 are distributed as independent Gaussian noise, i.e., (u1,u2) ∼ p0(u1,u2) and p0(u1,u2) = p0(u1)p0(u2)
with each p0(ui) ∼ N (0, Id). By change-of-variable rule, we can have

pβ>0(z1, z2) = p0(u1,u2)|det(JT−1
β>0

)| and p0(u1,u2) = pβ>0(z1, z2)|det(JTβ>0
)| (16)

where JTβ>0
is the Jacobian of Tβ>0 .

For joint EBM prior on z̃-space pω,β>0
(z̃) (see Eqn. 4), we can apply the change-of-variable rule and Eqn. 16 as

pω,β>0
(ũ) = pω,β>0

(z̃)|det(JTβ>0
)|

=
1

Zω,β>0

exp[Fω(Tβ>0
(ũ))]pβ>0

(z̃)|det(JTβ>0
)|

=
1

Zω,β>0

exp[Fω(Tβ>0
(ũ))]p0(ũ)

(17)

which is the Eqn. 8. With such marginal EBM prior on ũ-space, we construct our conditional EBM prior as shown in Eqn. 9.

A.2. Coupling with symbol vector

Energy-based model can be flexible to couple with symbol vector (Pang et al., 2020b; Yu et al., 2022; Nie et al., 2021;
Grathwohl et al., 2019). For Eqn. 14, we adapt our model to couple with symbol vector y. The marginal version of Eqn. 14
is given as

p̂ω,β>0
(ũt|ũt+1) =

1

Zω,β>0
(ũt+1)

exp
[
F̂ω(Tβ>0

(ũt), t)
]
p0(ũt)p(ũt+1|ũt) (18)

where F̂ω(Tβ>0(ũt), t) = log
∑

y exp(⟨Fω(Tβ>0(ũt), t),y⟩). This forms a softmax classifier, i.e.,

pω,β>0
(y|ũt, ũt+1) =

pω,β>0(ũt,y|ũt+1)

p̂ω,β>0
(ũt|ũt+1)

=
exp(⟨Fω(Tβ>0(ũt), t),y⟩)∑
y exp(⟨Fω(Tβ>0

(ũt), t),y⟩)
(19)

where energy function Fω(Tβ>0(ũt), t) outputs the logit score of categories. Recall that Fω(Tβ>0(ũt), t) =
∑L

i=1 fωi
(zi, t),

we therefore can couple y at different layers and let the energy score fωi
(zi, t) at i-th layer serve as the softmax classifier

for y.

Recall that we only couple y at t = 0, learning such model can be achieved by maximizing the likelihood of
log pω,β>0

(ũ0:T ,y). Specifically, we have

log pω,β>0
(ũ0:T ,y) = log p̂ω,β>0

(ũ0|ũ1) + log pω,β>0
(y|ũ0, ũ1)︸ ︷︷ ︸

with symbol vector

(20)

+

T−1∑
t=1

log pω,β>0
(ũt|ũt+1)︸ ︷︷ ︸

without symbol vector

(21)

where Eqn. 21 computes the gradient similar as Eqn. 12, while for Eqn. 20, it is learned with an extra term computing the
gradient for the softmax classifier pω,β>0(y|ũ0, ũ1), i.e., optimizing using standard cross-entropy.

For sampling ũ0 with specified y, we first obtain ũ1 by reversing step by step from ũT via Langevin dynamics (see Alg. 2).
Then, we perform Langevin dynamics (see Eqn. 3) to sample from pω,β>0(ũ0,y|ũ1). The gradient is then computed as
∇ũ0 log pω,β>0(ũ0,y|ũ1) = ∇ũ0 [log p̂ω,β>0(ũ0|ũ1) + log p̂ω,β>0(y|ũ0, ũ1)]
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B.1. Additional Result

Figure 9: Images synthesis on CIFAR-10 and LSUN-Chruch-64.

Figure 10: Images synthesis on CelebA-HQ-256. Left figure shows temperature=1.0. Right figure shows temperature=0.7.
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