

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MULTI-STEP PREDICTIVE LEARNING LEADS TO SIMPLICITY BIAS

Anonymous authors

Paper under double-blind review

ABSTRACT

Predictive learning is a framework for understanding the formation of low-dimensional internal representations mirroring the environment’s latent structure. The conditions under which such representations emerge remain unclear. In this work, we investigate how the prediction horizon and network depth shape the solutions of predictive learning tasks. Using a minimal abstract setting inspired by prior work, we show empirically and theoretically that sufficiently deep networks trained with multi-step prediction horizons consistently recover the underlying latent structure, a phenomenon explained through the Ordinary Least Squares estimator structure and biases in learning dynamics. We then extend these insights to nonlinear networks and complex datasets, including piecewise linear functions, MNIST, multiple latent states and higher dimensional state geometries. Our results provide a principled understanding of when and why predictive learning induces structured representations, bridging the gap between empirical observations and theoretical foundations.

1 INTRODUCTION

Predictive coding has emerged as a powerful theoretical framework for understanding both learning and representation in neural networks. At its core, predictive coding posits that neural networks continuously construct and refine internal models of their inputs to minimize prediction error of incoming stimuli. This idea has gained significant traction as a unifying principle for perception, action, and learning (Friston, 2010). In machine learning, predictive coding have been used as a form of unsupervised learning (Wen et al., 2018; Lotter et al., 2016). In neuroscience, predictive learning tasks have been used to study how networks build *world models*—internal representations that capture the latent structure of the environment—by requiring them to predict future inputs given the past (Recanatesi et al., 2021). Predictive coding and predictive learning are conceptually closely related. The former constitutes a biologically plausible learning rule, while the latter constitutes a biologically plausible unsupervised task demand.

Despite these advances, several fundamental questions remain unresolved. While many studies report that predictive learning networks develop low-dimensional, interpretable representations of latent variables, this outcome is not guaranteed. Intuitively, learning a latent world model seems advantageous for predictive tasks, as structured representations may enable more efficient predictions. However, overparameterized networks admit infinitely many solutions that can achieve perfect performance without forming any interpretable representation (Frankle & Carbin, 2018; Zhang et al., 2016; Nguyen & Hein, 2017). The mere success of predictive learning at minimizing prediction error therefore does not explain why structured world models emerge in practice. A deeper understanding of the inductive biases introduced by prediction horizon, network depth, and training dynamics is needed to clarify *when* and *why* predictive learning induces meaningful internal representations.

Recent work shows that the *prediction horizon*—how far into the future the network must predict—plays a critical role in shaping the learned representations (Levenstein et al., 2024; Volland et al., 2025). Here, we take a first step toward understanding this effect and the general rules of predictive representations by constructing a minimal linear predictive learning problem inspired by Recanatesi et al. (2021). This setting is analytically tractable yet rich enough to capture essential aspects of the problem. We show empirically that when the network is sufficiently deep and the prediction horizon scales linearly with the environment size, gradient descent consistently con-

verges to highly structured solutions that recover the underlying state from the observations. To explain this phenomenon, we combine tools from machine learning theory with an analysis of the Ordinary Least Squares estimator structure, revealing how the prediction horizon and loss choice (cross-entropy rather than mean squared error) shape the solution landscape.

Building on this intuition, we then extend our study to more complex settings, including nonlinear networks, continuous environments and stochastic observations, as well as settings with multiple independent environments. Across these experiments, we test the generality of the principles uncovered in the linear case, exploring how task structure, training biases, and prediction horizon interact to produce ordered representations.

Our contributions are threefold:

1. **Empirical characterization** of when predictive learning induces state representations in linear networks.
2. **Theoretical analysis** linking OLS estimator structure and training dynamics biases to representation learning.
3. **Extension to nonlinear and more natural settings**, demonstrating the robustness of the observed phenomena to modeling choices.

Together, these results advance our understanding of how predictive learning interacts with model architecture, task design, and optimization dynamics to shape internal representations.

2 RELATED WORK

Predictive learning has been shown to uncover latent structure in environments. Recanatesi et al. (2021) demonstrated that predictive learning can recover low-dimensional latent spaces in discrete, continuous, and angular settings. However, they did not examine when such structure fails to emerge. Levenstein et al. (2024) extended this line of work, showing that recurrent networks form continuous attractors under multi-step but not next-step prediction, underscoring the role of prediction horizon. Our study builds on these findings by analyzing how horizon length, network depth, and optimization dynamics bias predictive learning solutions.

Previous works have proposed several approaches for extracting latent structure within predictive frameworks. Watter et al. (2015) introduced a model that enforces locally linear latent dynamics through an explicit architectural prior. Saanum et al. (2024) encouraged simplified latent dynamics by imposing a soft state-invariance regularizer, biasing the latent state to change slowly unless driven by actions. Kipf et al. (2019) learned structured latent transitions using a contrastive objective that separates true next states from negatives. While these methods demonstrate that predictive learning can reveal aspects of latent geometry, they rely on architectural constraints, explicit regularization, or assumed structure of the environment. In contrast, our work provides a mechanistic explanation for why and when multi-step predictive learning alone—without additional regularization—reshapes the data geometry and consistently drives networks toward representations that recover the underlying latent state.

Separately, theoretical results on implicit bias in classification show that gradient descent converges to the hard-margin SVM solution for linearly separable data. This has been established for single-layer (Soudry et al., 2018), deep linear (Ji & Telgarsky, 2018), and homogeneous networks (Lyu & Li, 2019). We use these results to characterize the implicit bias of deep linear networks in our abstract predictive learning classification task, and make a connection that was previously overlooked: In deep neural networks performing multiclass classifications, the parameters converge to the hard margin SVM with regularization over the weight matrix rank rather than its L_2 norm.

Finally, while related to Neural Collapse (Papyan et al., 2020), our findings differ: in our work representations collapse toward the latent geometry of the environment rather than a simplex, indicating that the effect arises from the structure of the environment rather than an optimal decoding geometry.

108

3 RESULTS

109
110 We begin by formalizing the task of multi-step predictive learning in a simple setting (Figure 1).
111

112
$$\mathbf{x} = (O(s), g(a)), \quad \mathbf{y} = O(s + a), \quad s \in [1, S], \quad a \in [-A, A].$$

113

114 Here, O and g denote high-dimensional observation functions parameterized by lower-dimensional
115 states s and actions a . S denotes the number of states. The parameter A specifies the maximal
116 action range, which can be interpreted as the maximal or typical trajectory length considered by the
117 model. This formulation abstracts away explicit time dependence: instead of modeling continuous
118 temporal evolution, it is equivalent to sampling from a memory buffer of state–action trajectories.
119 For completeness sake, we include in the appendix simulations of Recurrent Neural Networks per-
120 forming k-step prediction in a gridworld, similar to Levenstein et al. (2024). We will first consider
121 a deterministic and discrete environment in which each state maps to a single observation. These
122 assumptions will be relaxed when extending to more complex and naturalistic settings.
123132 Figure 1: Illustration of multi-step predictive learning setting where time is abstracted away. An
133 agent is acting in an environment, producing a set of observations and actions in its trajectory. The
134 task is to predict, for each action and observation pair, the following observation. The environment
135 has an underlying structure, and training a model on a predictive learning task sometimes generates a
136 representation of this latent structure. Recent work has shown that increasing the prediction horizon
137 can lead to more accurate and stable representations (Levenstein et al., 2024).
138139

3.1 SPONTANEOUS COLLAPSE TO ORDER IN MULTI-STEP ABSTRACT PREDICTIVE LEARNING

140141 We consider an abstract predictive learning task inspired by Recanatesi et al. (2021), in which S
142 states and $2A + 1$ actions are represented by one-hot encoded observations $O(s) = \delta_s \in \mathbb{R}^S$,
143 $s \in [1, S]$, $g(a) = \delta_a \in \mathbb{R}^{2A+1}$, $a \in [-A, A]$. A specifies the maximal allowed action. The
144 network receives inputs of the form $\{O(s), g(a)\}$. The target output is the next observation $O(s + a)$.
145 Tuples that map to undefined states are discarded. We train a deep linear network with L layers and
146 no biases on the full dataset of all possible state–action pairs. Since the observations are one-hot
147 encoded, training with cross-entropy loss naturally casts the task as multiclass classification.
148149 Our goal is to study the relationship between the environment’s latent geometry and the network’s
150 internal representation. The former is given by the shifted state $s + a$, while the latter we define as the
151 activation of the last hidden layer. Crucially, the choice of one-hot encoding removes any intrinsic
152 correlations between neighboring states. Thus, any emergent structure in the hidden representations
153 must arise from learning to solve the predictive task.
154155 In an overparameterized network, there exist infinitely many perfect accuracy solutions for any
156 given A . For example, a solution for a large A trivially satisfies the task for smaller A . The key
157 question is therefore: which solution does the network converge to, and why? Figure 2 shows that
158 in the multi-step setting, hidden activations spontaneously collapse onto the latent state manifold,
159 whereas in the single-step setting they do not. This emergence of consistent and highly ordered
160 representations in an unconstrained optimization problem highlights the presence of strong implicit
161 biases in the training dynamics. Although disorganized solutions are equally valid, the network
162 reliably converges to the collapsed manifold structure—but only when the prediction horizon scales
163 linearly with S (Figure S2). As we will show, explaining this phenomenon requires combining
164 several theoretical results with a deeper analysis of the problem structure.
165

Figure 2: Top: the first two principal components of hidden activations for networks trained on single-step prediction (left) and multi-step prediction with maximal action $A = S/2$ (right). Bottom: quantitative metrics across values of A and network depth L . Left— NC_1 decreases with increasing A and L , indicating more compact class clusters. Middle—normalized margins (relative to $L = 2$) decrease with depth. Right—representations become increasingly aligned with the target state as A and L grow. See the appendix for detailed metric definitions. The analysis was done for $|a| \leq 1$.

3.2 MECHANISM OF COLLAPSE TO ORDER

Because the task is classification with a linear network, prior work shows that training should converge to the maximal margin solution (Soudry et al., 2018; Ji & Telgarsky, 2018; Lyu & Li, 2019). However, as illustrated in Figure 2, networks of different depths trained on the same task achieve different functional margins. At first glance, this appears to contradict the theoretical results. To resolve this discrepancy, we turn to the concept of *representation cost* (Dai et al., 2021).

Specifically, Lyu & Li (2019) showed that a deep linear network trained on multiclass data converges to the parameters that solve

$$\arg \min_{\mathbf{W}_1, \dots, \mathbf{W}_L} \sum_{l=1}^L \|\mathbf{W}_l\|_2^2 \quad \text{s.t.} \quad \forall i, \forall k \neq y_i : \mathbf{W}_{y_i}^\top \mathbf{x}_i \geq \mathbf{W}_k^\top \mathbf{x}_i + 1,$$

where $\mathbf{W} = \prod_{l=1}^L \mathbf{W}_l$. Although this resembles the hard-margin multiclass SVM, it is not identical. Dai et al. (2021) further showed that in deep linear networks, L_2 regularization on the parameters corresponds in functional space to a Schatten $2/L$ quasi-norm. Thus, in functional space the optimization problem becomes

$$\arg \min_{\mathbf{W}} \|\mathbf{W}\|_{2/L}^{SC} \quad \text{s.t.} \quad \forall i, \forall k \neq y_i : \mathbf{W}_{y_i}^\top \mathbf{x}_i \geq \mathbf{W}_k^\top \mathbf{x}_i + 1.$$

This characterization implies that increasing network depth induces a trade-off between effective rank and functional margin: deeper networks bias the solution toward lower-rank approximations of the hard-margin solution at the cost of smaller margins. This explains the empirical observation that both rank and functional margins decrease with depth (Figure 3).

At this point we understand that deep networks are biased towards a low rank approximation of the maximal margin solution, but that still doesn't explain the difference between prediction horizons.

We hypothesize that increasing the prediction horizon adds more constraints to the solution space, narrowing it to a sub-space where states are correlated. We thus investigate the structure of the OLS estimator $\Sigma = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$. Intuitively, this matrix can be related to classification when the data is highly balanced and symmetric. In such a case, the OLS estimator can also separate the data into classes. As shown in Figure 3, for larger values of A the OLS matrix becomes effectively lower-dimensional and exhibits two dominant singular values. The leading singular vector corresponds to a linear combination of the input state and action. Importantly, as the prediction horizon increases, this direction explains a growing fraction of the variance in the data, making it increasingly useful for classification. Consequently, networks consistently converge to solutions that exploit this direction.

To build intuition, we analyze the structure of the OLS estimator. The matrix $\mathbf{X}^T \mathbf{X}$ has a *block structure* consisting of two diagonal blocks and two off-diagonal *band matrices*. The width of these bands grows linearly with the prediction horizon A : for a one-dimensional environment with S states, the non-zero entries in the off-diagonal blocks are confined to a band of width $2A + 1$. For small A , these bands are very narrow and nearly diagonal, while for large A they become wide and strongly overlapping, effectively coupling many distant states.

Similarly, the cross-term $\mathbf{X}^T \mathbf{Y}$ also consists of two banded blocks, with the same width scaling. Thus, as A increases, both $\mathbf{X}^T \mathbf{X}$ and $\mathbf{X}^T \mathbf{Y}$ become increasingly dense, introducing strong correlations between distant states and actions. This growing overlap causes the spectrum of the OLS estimator to compress, leaving only a few dominant singular directions.

Because directions that capture the majority of the data variance are also the most effective for separating classes, the dominant singular vector of Σ naturally becomes the most informative feature for solving the predictive task. This explains why, in the multi-step setting, deep networks consistently converge toward this leading direction, yielding ordered, low-dimensional representations of the environment. In contrast, in the single-step setting, the variance is more spread between directions and thus no single direction separates the data well.

Figure 3: Analyzing the singular values and vectors from the OLS estimator and the model’s effective weight matrix. As can be seen, for larger A both become lower dimensional, and the leading singular vector becomes the transformation from the input state and action to the output state. For $A = 1$, since there is no strong direction that explains most variance, the model’s singular vectors are mostly decoupled from those of the OLS estimator. We also a comparison between a shallow network ($L = 2$) and a deep network ($L = 9$). As can be seen in the rightmost column, shallow networks depends on directions of the input space to classify the data.

Finally, we can put all the puzzle pieces together and ask whether we gained any intuition for a more general setting. For example, consider a predictive task with two distinct environments, each equipped with its own encoding of actions and states. In this case, the singular vectors of the OLS estimator associated with the two environments are orthogonal. However, because deep

networks exhibit a low-rank bias, we expect training to favor solutions that align the two representations in a way that minimizes the number of active singular values. Figure 4 illustrates this phenomenon. In both tasks, the network embeds the environments within a shared representation space, but under the multi-step objective the resulting structure captures the underlying geometry and introduces a symmetry between analogous representation objects. These results generalize beyond the one-dimensional case, holding also for higher-dimensional latent states, as illustrated in the two-dimensional setting of Figure S1.

Figure 4: Results for the task with two independent environments. Data are projected onto the first two singular vectors of the OLS estimator, confirming that observations and actions from each environment are orthogonal. In the single-step setting, the model representations remain unaligned, whereas in the multi-step setting they collapse into a shared low-rank structure that aligns the two environments and reveals their underlying symmetry.

3.3 GENERALIZATION ACROSS SETTINGS

Next, we consider a more naturalistic setting where the environment is continuous and observations are temporally correlated. Consider a scenario in which an agent moves between several rooms. Inside every room, the environment changes smoothly, while a transition between rooms introduces discontinuities. A reliable representation of such an environment should use prediction to stitch the various rooms together into a coherent world map. In this setup, states are drawn from a uniform distribution $s \sim \mathcal{U}(-1, 1)$, and actions are drawn from a Gaussian distribution $a \sim \mathcal{N}(0, A)$. The observations $O(s)$ capture the world structure. As shown in Figure 5, for small A the network merely mirrors the local autocorrelation of the data, whereas for larger horizons it “stitches” together the different linear segments into a coherent one-dimensional manifold.

To test whether our observations extend to settings where observations are stochastic rather than deterministic, we designed a novel variant of the MNIST task. In this setting, the input to the network is an MNIST digit along with a one-hot encoded action vector, and the target output is the MNIST digit whose label corresponds to the sum of the input digit label and the action. As in the abstract task, we control the maximal allowed action. We trained a Generative Adversarial Network on this task and analyzed the encoder’s latent space. The network successfully generates the correct digits in both the single-step and multi-step settings (see appendix). Strikingly, in the multi-step case the latent space organizes along a one-dimensional manifold, where different positions correspond to digits ordered by their labels (Figure 6). By sampling along the first principal component of the latent space, we can generate digits in sequential order, demonstrating that multi-step predictive learning induces structured and interpretable representations even in this more naturalistic dataset. Furthermore, we demonstrate that training with a range of standard regularization methods fails to recover this structure in the single-step setting (Figure S3). Note that we only trained with a few hundred samples per class. When within-class variability is too high, the network does not reliably recover the latent structure. Exploring the reasons for this, as well as identifying bounds on the tolerated variability, is an interesting direction for future work. The abstract framework developed here provides a principled way to study such effects, for example by systematically controlling the noise level in the observations.

340 Figure 5: Training a deep nonlinear network on a predictive task with observations generated from
341 a piecewise linear function containing three discontinuities. When the action distribution is narrow,
342 the learned representations primarily mirror local autocorrelation. In contrast, with a wider action
343 distribution, the network organizes its hidden representations along a smooth one-dimensional
344 manifold that bridges the discontinuities, thereby recovering the underlying latent state. The top figure
345 shows the Principle Component Analysis (PCA) space, and the bottom figure shows the distance matrix
346 sorted by the state variable.

369 Figure 6: Top: latent activations of the encoder module. In the multi-step setting with $A = 9$,
370 the latents collapse onto a low-dimensional manifold ordered by digit label, whereas in the single-
371 step case no such structure emerges. Bottom: digits generated by sampling along the first principal
372 component of the latent space. In both cases, generation quality is high and the digits are correctly
373 produced (see Appendix).

374 We now consider a natural setting for this predictive learning task: Predictive Coding Networks
375 (PCNs), which offer a biologically plausible mechanism for such learning. We trained a PCN with
376 7 layers in the simplified, abstract discrete environment while varying the prediction horizon, ob-
377 serving the same qualitative results as in our previous experiments (Figure 7). Namely, for short

378 prediction horizons and shallow network depths, representations remain unstructured. Conversely,
 379 in deep networks with long prediction horizons, the representations emerge to mirror the underlying
 380 line geometry of the environment. A detailed description of these simulations is provided in the
 381 appendix.
 382

394
 395 Figure 7: Predictive Coding Network trained on the discrete state abstract prediction task. For
 396 single-step predictions, representations have no clear structure while for multi-step prediction, rep-
 397 resentations are arranged along a line in the two first Principle Components.
 398

4 DISCUSSION

401 We have shown that multi-step predictive learning, together with network depth, acts as a strong
 402 inductive bias that drives networks toward low-dimensional, structured representations of the
 403 environment’s latent variables. Increasing the prediction horizon makes the task more constrained,
 404 revealing a dominant direction in the data that deep networks, biased toward low-rank solutions,
 405 naturally align with. This explains why structured solutions consistently emerge in the multi-step
 406 setting, even when many trivial solutions are possible.
 407

408 However, several open questions remain. It is unclear why this dominant direction takes such a
 409 highly structured form and how this intuition extends to more complex, nonlinear settings. Our ex-
 410 periments on continuous environments, gridworld RNNs and MNIST suggest that similar principles
 411 apply, but a full theoretical understanding will require future work. These findings also raise broader
 412 implications for machine learning and neuroscience, suggesting that longer prediction horizons may
 413 play a key role in the emergence of interpretable world models.

REFERENCES

416 Zhen Dai, Mina Karzand, and Nathan Srebro. Representation costs of linear neural networks: Anal-
 417 ysis and design. *Advances in Neural Information Processing Systems*, 34:26884–26896, 2021.
 418

419 Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
 420 networks. *arXiv preprint arXiv:1803.03635*, 2018.

421 Karl Friston. The free-energy principle: a unified brain theory? *Nature reviews neuroscience*, 11
 422 (2):127–138, 2010.

423 Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear networks. *arXiv*
 424 *preprint arXiv:1810.02032*, 2018.

425 Thomas Kipf, Elise Van der Pol, and Max Welling. Contrastive learning of structured world models.
 426 *arXiv preprint arXiv:1911.12247*, 2019.

427 Daniel Levenstein, Aleksei Efremov, Roy Henha Eyono, Adrien Peyrache, and Blake Richards.
 428 Sequential predictive learning is a unifying theory for hippocampal representation and replay.
 429 *bioRxiv*, pp. 2024–04, 2024.

432 William Lotter, Gabriel Kreiman, and David Cox. Deep predictive coding networks for video pre-
 433 prediction and unsupervised learning. *arXiv preprint arXiv:1605.08104*, 2016.
 434

435 Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks.
 436 *arXiv preprint arXiv:1906.05890*, 2019.

437 Quynh Nguyen and Matthias Hein. The loss surface of deep and wide neural networks. In *International
 438 conference on machine learning*, pp. 2603–2612. PMLR, 2017.

439

440 Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal
 441 phase of deep learning training. *Proceedings of the National Academy of Sciences*, 117(40):
 442 24652–24663, 2020.

443 Stefano Recanatesi, Matthew Farrell, Guillaume Lajoie, Sophie Deneve, Mattia Rigotti, and Eric
 444 Shea-Brown. Predictive learning as a network mechanism for extracting low-dimensional latent
 445 space representations. *Nature communications*, 12(1):1417, 2021.

446

447 Tankred Saanum, Peter Dayan, and Eric Schulz. Simplifying latent dynamics with softly state-
 448 invariant world models. *Advances in Neural Information Processing Systems*, 37:38355–38382,
 449 2024.

450 Ben Sorscher, Surya Ganguli, and Haim Sompolinsky. Neural representational geometry under-
 451 lies few-shot concept learning. *Proceedings of the National Academy of Sciences*, 119(43):
 452 e2200800119, 2022.

453

454 Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The im-
 455 plicit bias of gradient descent on separable data. *Journal of Machine Learning Research*, 19(70):
 456 1–57, 2018.

457 Abraham Z Vollan, Richard J Gardner, May-Britt Moser, and Edvard I Moser. Left–right-alternating
 458 theta sweeps in entorhinal–hippocampal maps of space. *Nature*, 639(8056):995–1005, 2025.

459

460 Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control: A
 461 locally linear latent dynamics model for control from raw images. *Advances in neural information
 462 processing systems*, 28, 2015.

463 Haiguang Wen, Kuan Han, Junxing Shi, Yizhen Zhang, Eugenio Culurciello, and Zhongming Liu.
 464 Deep predictive coding network for object recognition. In *International conference on machine
 465 learning*, pp. 5266–5275. PMLR, 2018.

466

467 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
 468 deep learning requires rethinking generalization. *arXiv preprint arXiv:1611.03530*, 2016.

469

470 **A APPENDIX**

471

Figure S1: Same abstract task as the linear case, but for a two-dimensional state variable.

Figure S2: We swept across values of S and A and trained deep nonlinear networks on the predictive task with mean squared error loss. For each (S, A) pair we trained 10 networks and plotted the median participation ratio (PR) of the hidden activations. We define A_{thresh} as the smallest horizon for which PR drops below 2. As shown, A_{thresh} scales linearly with S , supporting the claim that the prediction horizon required for latent state extraction grows proportionally with the environment size. Error bars are standard deviation obtained by bootstrapping.

Figure S3: Comparison of multiple regularization types for the single-step case in the MNIST task. Note that no type of regularization produces representations that recover the latent structure as multi-step prediction.

A.1 CODE AVAILABILITY

Code for running the simulations and generating the figures is attached to this submission. A publicly accessible GitHub repository will be made available in the future.

A.2 LLM USAGE

LLMs were used to polish the text in the paper, generate code for running simulations, as well as mathematical and technical descriptions in the appendix.

A.3 METRICS

A.3.1 NC1

This metric was introduced in Papyan et al. (2020). Given hidden activations

$$h \in \mathbb{R}^{M \times N}, \quad y \in \{1, \dots, C\}^n,$$

where M is the number of samples, N is the hidden dimension, and C is the number of classes, we define:

$$\mu = \frac{1}{M} \sum_{i=1}^M h_i$$

540 as the global mean of activations, and
 541

$$542 \quad \mu_c = \frac{1}{m_c} \sum_{i:y_i=c} h_i, \quad m_c = |\{i : y_i = c\}|$$

543
 544 as the class-conditional means.
 545

546 The within-class scatter matrix is
 547

$$548 \quad S_W = \frac{1}{M} \sum_{c=1}^C \sum_{i:y_i=c} (h_i - \mu_c)(h_i - \mu_c)^\top,$$

549
 550 and the between-class scatter matrix is
 551

$$552 \quad S_B = \frac{1}{M} \sum_{c=1}^C m_c (\mu_c - \mu)(\mu_c - \mu)^\top.$$

553 The NC1 metric is then defined as
 554

$$555 \quad \text{NC1} = \frac{\text{Tr}(S_W)}{\text{Tr}(S_B)}.$$

556 Intuitively, S_W captures the variance of samples around their respective class means, while S_B
 557 captures the variance of class means around the global mean. The ratio NC1 therefore measures
 558 the relative tightness of clusters to their separation: smaller values indicate more compact class
 559 representations.
 560

561 A.3.2 MARGINS

562 Let $f : \mathbb{R}^d \rightarrow \mathbb{R}^C$ denote the network output function, where
 563

$$564 \quad f(x) = (f_1(x), f_2(x), \dots, f_C(x))$$

565 are the class scores (logits) for input $x \in \mathbb{R}^d$. For each sample (x_i, y_i) with true label $y_i \in$
 566 $\{1, \dots, C\}$, the functional margin is defined as
 567

$$568 \quad \gamma_i = f_{y_i}(x_i) - \max_{j \neq y_i} f_j(x_i).$$

569 The multiclass margin for the dataset is then given by
 570

$$571 \quad \gamma = \min_{i=1, \dots, n} \gamma_i.$$

572 Intuitively, γ_i measures the difference between the score assigned to the correct class and the highest
 573 score among all incorrect classes for sample i . The overall margin γ is the worst-case (smallest) of
 574 these values across all samples, and therefore characterizes the minimal separation achieved by the
 575 classifier.
 576

577 A.3.3 $\text{PC}_1^{\text{ORDER}}$

578 Let $\mathbf{H} \in \mathbb{R}^{M \times N}$ denote the hidden activations, where M is the number of samples and N the
 579 hidden dimension. We compute the first principal component $\mathbf{u}_1 \in \mathbb{R}^N$ of \mathbf{H} , i.e. the unit-norm
 580 eigenvector of the sample covariance matrix
 581

$$582 \quad \Sigma = \frac{1}{M} \sum_{i=1}^M (\mathbf{h}_i - \bar{\mathbf{h}})(\mathbf{h}_i - \bar{\mathbf{h}})^\top$$

583 corresponding to the largest eigenvalue, where $\bar{\mathbf{h}} = \frac{1}{M} \sum_{i=1}^M \mathbf{h}_i$.
 584

585 Each sample is then projected onto this direction:
 586

$$587 \quad z_i = \mathbf{u}_1^\top (\mathbf{h}_i - \bar{\mathbf{h}}), \quad i = 1, \dots, M.$$

594 Let $s_i \in \mathbb{R}$ denote the state variable associated with sample i . The *first PC order* metric is defined
 595 as the coefficient of determination (R^2) of the linear regression between $\{z_i\}$ and $\{s_i\}$:
 596

$$597 \text{PC}_1^{\text{order}} = R^2(z, s).$$

598 This metric measures how strongly the first principal component of the hidden representations aligns
 599 with the state. High values of $\text{PC}_1^{\text{order}}$ indicate that the dominant axis of variation in the representa-
 600 tion space reflects the state. For D -dimensional states variables we simply take the first D principal
 601 components.
 602

603 A.3.4 ALIGNMENT

604 To quantify whether the network aligns representations of separate state variables, we compute an
 605 alignment score between subspaces spanned by the leading principal components of their activa-
 606 tions. This method is adapted from Sorscher et al. (2022).
 607

608 Let $\mathbf{H}^{(1)}, \mathbf{H}^{(2)} \in \mathbb{R}^{M \times N}$ denote hidden activations corresponding to two distinct dataset partitions
 609 (e.g., two environments or contexts). For each partition, we compute the sample covariance
 610

$$611 \Sigma^{(k)} = \frac{1}{M} \sum_{i=1}^M (\mathbf{h}_i^{(k)} - \bar{\mathbf{h}}^{(k)}) (\mathbf{h}_i^{(k)} - \bar{\mathbf{h}}^{(k)})^\top, \quad k \in \{1, 2\},$$

612 where $\bar{\mathbf{h}}^{(k)}$ is the mean activation of partition k .
 613

614 From $\Sigma^{(k)}$, we extract the top principal directions $\mathbf{U}^{(k)} \in \mathbb{R}^{N \times m}$, where m is the smallest number
 615 of eigenvectors explaining at least a fixed proportion of variance (e.g., 95%).
 616

617 The alignment score is based on the principal angles $\theta_1 \leq \dots \leq \theta_m$ between the two subspaces
 618 spanned by $\mathbf{U}^{(1)}$ and $\mathbf{U}^{(2)}$. We take the cosine of the smallest principal angle:
 619

$$620 \text{Align}(\mathbf{H}^{(1)}, \mathbf{H}^{(2)}) = \cos(\theta_1). \\ 621$$

622 This score lies in $[0, 1]$, with higher values indicating stronger alignment (i.e., the leading directions
 623 of variability in the two partitions are closely matched).
 624

625 A.4 MNIST EXPERIMENT DETAILS

626 A.4.1 MODEL ARCHITECTURE

627 We implement a conditional Generative Adversarial Network (GAN) for MNIST digit generation
 628 with action-based transformations. The model consists of three components:
 629

- 630 1. **Encoder** $E(x, a)$: maps input image x and action vector a to a latent representation z .
 631
- 632 2. **Generator** $G(z)$: maps the latent vector z to an output image.
 633
- 634 3. **Discriminator** $D(x)$: classifies images into 11 classes (digits 0–9 plus a “fake” class 10).
 635

636 A.4.2 DATASET

637 We use the MNIST dataset with balanced sampling of $N = 200$ examples per digit class. Actions
 638 are integers in the range $[-A, A]$ with $A = 5$, encoded as one-hot vectors of dimension $2A+1 = 11$.
 639 Target labels are computed as
 640

$$641 \text{target} = \text{input_label} + a.$$

642 A.4.3 TRAINING

643 The model is trained using the Adam optimizer with learning rate 2×10^{-4} , batch size 64, and 20
 644 epochs. The loss function combines:
 645

- 646 1. **Adversarial loss:** the discriminator classifies real images by their true labels and fake
 647 images as class 10.

648 2. **Generator loss:** encourages generated images to be classified as their target labels rather
 649 than as fake.
 650
 651 3. **Optional losses:** reconstruction loss (weight $\lambda = 0$ in our experiments) and feature matching
 652 loss.

653 We an adaptive discriminator training ratio, and optional learning rate scheduling for training stabil-
 654 ity.
 655

656 **A.4.4 ARCHITECTURE DETAILS**

658 • **Encoder:** Convolutional layers ($28 \times 28 \rightarrow 14 \times 14 \rightarrow 7 \times 7 \rightarrow 3 \times 3 \rightarrow 1 \times 1$) followed
 659 by action encoding via an MLP, then combined in a 2-layer MLP with hidden dimension
 660 512.
 661 • **Generator:** 2-layer MLP ($\text{latent_dim} \rightarrow 512 \rightarrow 1024 \rightarrow 7 \times 7 \times 128$) followed by
 662 transposed convolutions ($7 \times 7 \rightarrow 14 \times 14 \rightarrow 28 \times 28$).
 663
 664 • **Discriminator:** CNN backbone with 11-class classification head.

665 All networks use LeakyReLU activations and batch normalization.
 666

667 **A.5 RNN WITH GRIDWORLD**

670 We designed a long, narrow gridworld environment to study sequential prediction in navigation tasks
 671 with repeating visual patterns. The environment consists of a 10×2 grid with a distinct color band
 672 that changes along the horizontal axis, creating a corridor-like structure.

673 The agent receives egocentric observations through a 5×5 window centered on its current position.
 674 The observation space includes:

676 • One-hot encoded color channels for the colors
 677 • A wall channel indicating out-of-bounds areas
 678 • An object channel for randomly placed objects outside the grid boundaries

680 The total observation dimension is $d_{\text{obs}} = 5 \times 5 \times (10 + 2) = 300$. Additionally, 10 randomly placed
 681 objects are positioned outside the grid boundaries within a margin of 2 cells to provide additional
 682 visual context.
 683

684 **A.5.1 AGENT BEHAVIOR**

686 We implemented a reactive agent that performs a random walk with wall-avoidance behavior. The
 687 agent has four possible actions: forward, left turn, right turn, and backward. The agent's behavior is
 688 characterized by:

690 • **Wall Detection:** The agent detects walls by attempting forward movement and checking if
 691 the position changes
 692 • **Wall Avoidance:** When a wall is detected, the agent turns with 90% probability (left or
 693 right with equal probability)
 694 •
 696 • **Forward Movement:** When no wall is detected, the agent always moves forward
 697 • **Exploration:** With 10% probability, the agent performs random turns even when no wall
 698 is present

700 The agent's heading is represented using both one-hot encoding and sinusoidal/cosinusoidal fea-
 701 tures, providing 6-dimensional heading information (4 one-hot + 2 sin/cos).

702 A.5.2 SEQUENTIAL PREDICTION TASK
703704 We formulate the task as k -step sequential prediction, where the model must predict future observa-
705 tions given:706

- 707 • An initial observation o_0
- 708 • A sequence of k future actions and heading features $f_{1:k} = \{a_t, h_t\}_{t=1}^k$

710 The model is trained to predict the corresponding sequence of future observations $o_{1:k}$ using mean
711 squared error loss:

712
$$\mathcal{L} = \frac{1}{k} \sum_{t=1}^k \|o_t - \hat{o}_t\|_2^2 \quad (1)$$

713
714

715 where \hat{o}_t is the model’s prediction for observation at time t .
716717 A.5.3 MODEL ARCHITECTURE
718

719 We employ a GRU-based recurrent neural network with the following architecture:

720

- 721 • **Observation Encoder:** Two-layer MLP with hidden dimension $h = 128$ and ReLU activa-
722 tion, followed by a Tanh activation
- 723 • **Feature Encoder:** Two-layer MLP with the same architecture for processing action-
724 heading features
- 725 • **GRU:** Two-layer GRU with hidden dimension $h = 128$
- 726 • **Prediction Head:** Two-layer MLP with ReLU activation for generating observation pre-
727 dictions

728
729 The model processes the initial observation o_0 through the observation encoder to initialize the GRU
730 hidden state. The sequence of action-heading features $f_{1:k}$ is then processed through the feature
731 encoder and fed to the GRU to generate predictions for each of the k future time steps.
732733 A.5.4 TRAINING CONFIGURATION
734

735 The model is trained using the following hyperparameters:

736

- 737 • Training trajectories: 1000 trajectories of length $T = 100$
- 738 • Validation trajectories: 100 trajectories
- 739 • Batch size: 128
- 740 • Learning rate: 2×10^{-3} (Adam optimizer)
- 741 • Gradient clipping: 1.0
- 742 • Training epochs: 10

743
745 We evaluate the model’s learned representations using Principal Component Analysis (PCA) on the
746 GRU hidden states, visualizing the 2D projection colored by the agent’s x -position to assess spatial
747 encoding capabilities.
748749 A.5.5 EVALUATION PROTOCOL
750751 For evaluation, we generate 100 trajectories of length $T_{\text{eval}} = 50$ and extract hidden states from the
752 trained model. We apply PCA to reduce the 128-dimensional hidden states to 2D for visualization,
753 coloring points by the agent’s x -position to reveal spatial structure in the learned representations.754 The evaluation protocol allows us to assess whether the model has learned to encode spatial infor-
755 mation in its hidden states, which would be evidenced by clustering or smooth transitions in the
PCA visualization corresponding to the agent’s position along the corridor.

Figure S4: Detailed results for training an RNN on k-step prediction in a gridworld setting.

A.6 PREDICTIVE CODING NETWORKS

We conducted simulations using predictive coding networks to investigate their performance on predictive learning tasks. All simulations were implemented in PyTorch based on this Github repository by Bogacz group.

A.6.1 TASK DESIGN

The simulations employed a discrete state-action transition task where the network learned to predict the resulting state given a current state and action. States were represented as integers from 1 to S , where $S = 20$ in all experiments. Actions were drawn from the range $[-A, A]$, where $A \in \{1, 10\}$ to examine performance under different action space complexities. For each valid state-action pair (s, a) , the target resulting state was computed as $s' = s + a$, subject to the constraint that $s' \in [1, S]$. This yielded a total of N valid transitions, where N varied with the action range A .

Inputs were encoded as concatenated one-hot vectors: the state was one-hot encoded into a vector of length S , and the action was one-hot encoded into a vector of length $2A + 1$ (mapping actions from $[-A, A]$ to indices $[0, 2A]$). The resulting input dimension was $S + 2A + 1$. The output was a probability distribution over the S possible resulting states, with the task formulated as a multi-class classification problem using cross-entropy loss.

A.6.2 NETWORK ARCHITECTURE

We trained feedforward neural networks with architectures ranging from 1 to 10 hidden layers. Each network consisted of:

- An input layer mapping from $S + 2A + 1$ dimensions to a hidden layer of size $H = 1048$
- Between 1 and 10 hidden layers, each of size $H = 1048$
- An output layer mapping from H to S dimensions

Each hidden layer was composed of a linear transformation, a predictive coding layer (PCLayer), and a ReLU activation function. The output layer consisted of a linear transformation without activation, producing logits for the S output classes.

810 A.6.3 PREDICTIVE CODING TRAINING
811812 Networks were trained using the predictive coding framework, which minimizes an energy function
813 through iterative inference. During training, for each batch:814
815 1. **Inference phase:** The latent states \mathbf{x} were updated for $T = 100$ iterations to minimize
816 the energy function, which combines prediction errors (loss) and internal energy terms.
817 Latent states were optimized using stochastic gradient descent (SGD) with learning rate
818 $\eta_x = 0.01$.
819 2. **Parameter update phase:** After inference converged, network parameters θ were updated
820 using the Adam optimizer with learning rate $\eta_p = 0.001$. Parameters were updated only at
821 the final inference step ($t = T$), following the standard predictive coding training protocol.
822823 The energy function minimized during inference was:
824

825
$$E = \mathcal{L}(\mathbf{y}, \mathbf{y}^*) + \sum_{\ell} E_{\ell}(\mathbf{x}_{\ell}) \quad (2)$$

826 where \mathcal{L} is the cross-entropy loss between predictions \mathbf{y} and targets \mathbf{y}^* , and E_{ℓ} represents the energy
827 associated with hidden layer ℓ containing latent states \mathbf{x}_{ℓ} .
828829 A.6.4 TRAINING PROTOCOL
830831 All networks were trained for 200 epochs using full-batch training (batch size equal to the number
832 of valid transitions N). For each combination of network depth ($L \in \{1, 2, \dots, 10\}$) and action
833 range ($A \in \{1, 10\}$), we recorded:834
835 • Accuracy (classification accuracy on the state prediction task)
836 • Loss (cross-entropy loss)
837 • Last hidden layer activations for principal component analysis (PCA)838 A.6.5 ANALYSIS METHODS
839840 **Performance evaluation:** We computed classification accuracy and cross-entropy loss on the training
841 set after each epoch. Since the task involved learning all valid transitions, training and test sets
842 were identical (full dataset).
843844 **Representation analysis:** To examine learned representations, we extracted hidden layer activations
845 for all valid state-action pairs after training. We performed principal component analysis (PCA) on
846 these activations. For visualization, we projected activations onto the first two principal components
847 and colored data points according to: (1) output state, (2) input state, and (3) action value. When analyzing
848 networks trained with $A > 1$, we filtered to transitions with $|a| \leq 1$ to generate comparable
849 figures.
850851 A.6.6 CONVERGENCE MONITORING
852853 In separate experiments, we monitored inference convergence during training to choose a verify the
854 number of inference steps T is sufficient. Convergence was assessed by tracking the relative change
855 in loss over a sliding window of 5 consecutive inference steps. Inference was considered converged
856 when the relative change fell below a threshold of 1%. This analysis was performed periodically
857 during training (every 10 epochs) to characterize how inference dynamics evolve with learning, and
858 to recommend optimal T values based on the 90th percentile of observed convergence points.
859860 A.7 COMPUTATIONAL DETAILS
861862 All simulations were implemented in Python 3 using PyTorch for neural network operations.
863 The predictive coding framework was based on the implementation from the Bogacz Group
864 *I_supervised_learning_pc.ipynb*.
865