Under review as a conference paper at ICLR 2026

MULTI-STEP PREDICTIVE LEARNING LEADS TO SIM-
PLICITY BIAS

Anonymous authors
Paper under double-blind review

ABSTRACT

Predictive learning is a framework for understanding the formation of low-
dimensional internal representations mirroring the environment’s latent structure.
The conditions under which such representations emerge remain unclear. In this
work, we investigate how the prediction horizon and network depth shape the so-
lutions of predictive learning tasks. Using a minimal abstract setting inspired by
prior work, we show empirically and theoretically that sufficiently deep networks
trained with multi-step prediction horizons consistently recover the underlying
latent structure, a phenomenon explained through the Ordinary Least Squares es-
timator structure and biases in learning dynamics. We then extend these insights
to nonlinear networks and complex datasets, including piecewise linear functions,
MNIST, multiple latent states and higher dimensional state geometries. Our re-
sults provide a principled understanding of when and why predictive learning in-
duces structured representations, bridging the gap between empirical observations
and theoretical foundations.

1 INTRODUCTION

Predictive coding has emerged as a powerful theoretical framework for understanding both learning
and representation in neural networks. At its core, predictive coding posits that neural networks
continuously construct and refine internal models of their inputs to minimize prediction error of
incoming stimuli. This idea has gained significant traction as a unifying principle for perception,
action, and learning (Friston, [2010). In machine learning, predictive coding have been used as a
form of unsupervised learning (Wen et al.| 2018}, [Lotter et al.| [2016). In neuroscience, predictive
learning tasks have been used to study how networks build world models—internal representations
that capture the latent structure of the environment—by requiring them to predict future inputs given
the past (Recanatesi et al.,|2021). Predictive coding and predictive learning are conceptually closely
related. The former constitutes a biologically plausible learning rule, while the latter constitutes a
biologically plausible unsupervised task demand.

Despite these advances, several fundamental questions remain unresolved. While many studies
report that predictive learning networks develop low-dimensional, interpretable representations of
latent variables, this outcome is not guaranteed. Intuitively, learning a latent world model seems ad-
vantageous for predictive tasks, as structured representations may enable more efficient predictions.
However, overparameterized networks admit infinitely many solutions that can achieve perfect per-
formance without forming any interpretable representation (Frankle & Carbin| [2018; [Zhang et al.,
2016;Nguyen & Hein,2017). The mere success of predictive learning at minimizing prediction error
therefore does not explain why structured world models emerge in practice. A deeper understanding
of the inductive biases introduced by prediction horizon, network depth, and training dynamics is
needed to clarify when and why predictive learning induces meaningful internal representations.

Recent work shows that the prediction horizon—how far into the future the network must pre-
dict—plays a critical role in shaping the learned representations (Levenstein et al.| 2024} |Vollan
et al.| 2025). Here, we take a first step toward understanding this effect and the general rules of
predictive representations by constructing a minimal linear predictive learning problem inspired by
Recanatesi et al| (2021). This setting is analytically tractable yet rich enough to capture essen-
tial aspects of the problem. We show empirically that when the network is sufficiently deep and
the prediction horizon scales linearly with the environment size, gradient descent consistently con-
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verges to highly structured solutions that recover the underlying state from the observations. To
explain this phenomenon, we combine tools from machine learning theory with an analysis of the
Ordinary Least Squares estimator structure, revealing how the prediction horizon and loss choice
(cross-entropy rather than mean squared error) shape the solution landscape.

Building on this intuition, we then extend our study to more complex settings, including nonlinear
networks, continuous environments and stochastic observations, as well as settings with multiple
independent environments. Across these experiments, we test the generality of the principles un-
covered in the linear case, exploring how task structure, training biases, and prediction horizon
interact to produce ordered representations.

Our contributions are threefold:

1. Empirical characterization of when predictive learning induces state representations in
linear networks.

2. Theoretical analysis linking OLS estimator structure and training dynamics biases to rep-
resentation learning.

3. Extension to nonlinear and more natural settings, demonstrating the robustness of the
observed phenomena to modeling choices.

Together, these results advance our understanding of how predictive learning interacts with model
architecture, task design, and optimization dynamics to shape internal representations.

2 RELATED WORK

Predictive learning has been shown to uncover latent structure in environments. Recanatesi et al.
(2021)) demonstrated that predictive learning can recover low-dimensional latent spaces in discrete,
continuous, and angular settings. However, they did not examine when such structure fails to
emerge. Levenstein et al.|(2024) extended this line of work, showing that recurrent networks form
continuous attractors under multi-step but not next-step prediction, underscoring the role of predic-
tion horizon. Our study builds on these findings by analyzing how horizon length, network depth,
and optimization dynamics bias predictive learning solutions.

Previous works have proposed several approaches for extracting latent structure within predictive
frameworks. [Watter et al| (2015) introduced a model that enforces locally linear latent dynamics
through an explicit architectural prior. [Saanum et al.|(2024)) encouraged simplified latent dynamics
by imposing a soft state-invariance regularizer, biasing the latent state to change slowly unless driven
by actions. Kipf et al.|(2019) learned structured latent transitions using a contrastive objective that
separates true next states from negatives. While these methods demonstrate that predictive learning
can reveal aspects of latent geometry, they rely on architectural constraints, explicit regularization,
or assumed structure of the environment. In contrast, our work provides a mechanistic explanation
for why and when multi-step predictive learning alone—without additional regularization—reshapes
the data geometry and consistently drives networks toward representations that recover the underly-
ing latent state.

Separately, theoretical results on implicit bias in classification show that gradient descent converges
to the hard-margin SVM solution for linearly separable data. This has been established for single-
layer (Soudry et al., [2018)), deep linear (Ji & Telgarskyl 2018)), and homogeneous networks (Lyu &
Li, 2019). We use these results to characterize the implicit bias of deep linear networks in our ab-
stract predictive learning classification task, and make a connection that was previously overlooked:
In deep neural networks performing multiclass classifications, the parameters converge to the hard
margin SVM with regularization over the weight matrix rank rather than its Ly norm.

Finally, while related to Neural Collapse (Papyan et al., 2020), our findings differ: in our work rep-
resentations collapse toward the latent geometry of the environment rather than a simplex, indicating
that the effect arises from the structure of the environment rather than an optimal decoding geometry.
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3 RESULTS

We begin by formalizing the task of multi-step predictive learning in a simple setting (Figure [I).

xz=(0(s),9(a)), y=0(s+a), sell,5], ae[-A,A].

Here, O and g denote high-dimensional observation functions parameterized by lower-dimensional
states s and actions a. S denotes the number of states. The parameter A specifies the maximal
action range, which can be interpreted as the maximal or typical trajectory length considered by the
model. This formulation abstracts away explicit time dependence: instead of modeling continuous
temporal evolution, it is equivalent to sampling from a memory buffer of state—action trajectories.
For completeness sake, we include in the appendix simulations of Recurrent Neural Networks per-
forming k-step prediction in a gridworld, similar to [Levenstein et al.| (2024)). We will first consider
a deterministic and discrete environment in which each state maps to a single observation. These
assumptions will be relaxed when extending to more complex and naturalistic settings.
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Figure 1: Illustration of multi-step predictive learning setting where time is abstracted away. An
agent is acting in an environment, producing a set of observations and actions in its trajectory. The
task is to predict, for each action and observation pair, the following observation. The environment
has an underlying structure, and training a model on a predictive learning task sometimes generates a
representation of this latent structure. Recent work has shown that increasing the prediction horizon
can lead to more accurate and stable representations (Levenstein et al., 2024)).

3.1 SPONTANEOUS COLLAPSE TO ORDER IN MULTI-STEP ABSTRACT PREDICTIVE LEARNING

We consider an abstract predictive learning task inspired by [Recanatesi et al.| (2021)), in which .S
states and 2A + 1 actions are represented by one-hot encoded observations O(s) = 6, € R,
s € [1,9), gla) = §, € R?*4*1 q € [~A, A]. A specifies the maximal allowed action. The
network receives inputs of the form {O(s), g(a)}. The target output is the next observation O(s+a).
Tuples that map to undefined states are discarded. We train a deep linear network with L layers and
no biases on the full dataset of all possible state—action pairs. Since the observations are one-hot
encoded, training with cross-entropy loss naturally casts the task as multiclass classification.

Our goal is to study the relationship between the environment’s latent geometry and the network’s
internal representation. The former is given by the shifted state s+a, while the latter we define as the
activation of the last hidden layer. Crucially, the choice of one-hot encoding removes any intrinsic
correlations between neighboring states. Thus, any emergent structure in the hidden representations
must arise from learning to solve the predictive task.

In an overparameterized network, there exist infinitely many perfect accuracy solutions for any
given A. For example, a solution for a large A trivially satisfies the task for smaller A. The key
question is therefore: which solution does the network converge to, and why? Figure [2] shows that
in the multi-step setting, hidden activations spontaneously collapse onto the latent state manifold,
whereas in the single-step setting they do not. This emergence of consistent and highly ordered
representations in an unconstrained optimization problem highlights the presence of strong implicit
biases in the training dynamics. Although disorganized solutions are equally valid, the network
reliably converges to the collapsed manifold structure—but only when the prediction horizon scales
linearly with S (Figure [S2). As we will show, explaining this phenomenon requires combining
several theoretical results with a deeper analysis of the problem structure.
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Figure 2: Top: the first two principal components of hidden activations for networks trained on
single-step prediction (left) and multi-step prediction with maximal action A = S/2 (right). Bottom:
quantitative metrics across values of A and network depth L. Left—NC1 decreases with increasing
A and L, indicating more compact class clusters. Middle—normalized margins (relative to L = 2)
decrease with depth. Right—representations become increasingly aligned with the target state as A
and L grow. See the appendix for detailed metric definitions. The analysis was done for |a| <= 1.

3.2 MECHANISM OF COLLAPSE TO ORDER

Because the task is classification with a linear network, prior work shows that training should con-

verge to the maximal margin solution (Soudry et al., 2018}, Ji & Telgarsky| [2018; [Lyu & Li, [2019).

However, as illustrated in Figure 2] networks of different depths trained on the same task achieve
different functional margins. At first glance, this appears to contradict the theoretical results. To
resolve this discrepancy, we turn to the concept of representation cost (Dai et al., [2021).

Specifically,|Lyu & Li/(2019) showed that a deep linear network trained on multiclass data converges
to the parameters that solve

argmm Z IWill3 st Vi,Vk #wy;: Wy—rml > Wz +1,
Wi Wi oy

where W = H1L:1 W,. Although this resembles the hard-margin multiclass SVM, it is not identical.
further showed that in deep linear networks, Lo regularization on the parameters
corresponds in functional space to a Schatten 2/L quasi-norm. Thus, in functional space the opti-
mization problem becomes

arg min ||W||§/CL s.t. Vi, Vk #y; Wy—rwl >W, x; + 1.
w

This characterization implies that increasing network depth induces a trade-off between effective
rank and functional margin: deeper networks bias the solution toward lower-rank approximations of
the hard-margin solution at the cost of smaller margins. This explains the empirical observation that
both rank and functional margins decrease with depth (Figure 3).

At this point we understand that deep networks are biased towards a low rank approximation of the
maximal margin solution, but that still doesn’t explain the difference between prediction horizons.
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We hypothesize that increasing the prediction horizon adds more constraints to the solution space,
narrowing it to a sub-space where states are correlated. We thus investigate the structure of the OLS
estimator ¥ = (X7 X)~!XTY. Intuitively, this matrix can be related to classification when the
data is highly balanced and symmetric. In such a case, the OLS estimator can also separate the data
into classes. As shown in Figure[3] for larger values of A the OLS matrix becomes effectively lower-
dimensional and exhibits two dominant singular values. The leading singular vector corresponds to
a linear combination of the input state and action. Importantly, as the prediction horizon increases,
this direction explains a growing fraction of the variance in the data, making it increasingly useful for
classification. Consequently, networks consistently converge to solutions that exploit this direction.

To build intuition, we analyze the structure of the OLS estimator. The matrix X T X has a block
structure consisting of two diagonal blocks and two off-diagonal band matrices. The width of these
bands grows linearly with the prediction horizon A: for a one-dimensional environment with S
states, the non-zero entries in the off-diagonal blocks are confined to a band of width 24 + 1. For
small A, these bands are very narrow and nearly diagonal, while for large A they become wide and
strongly overlapping, effectively coupling many distant states.

Similarly, the cross-term X TY also consists of two banded blocks, with the same width scaling.
Thus, as A increases, both X " X and X 'Y become increasingly dense, introducing strong cor-
relations between distant states and actions. This growing overlap causes the spectrum of the OLS
estimator to compress, leaving only a few dominant singular directions.

Because directions that capture the majority of the data variance are also the most effective for sepa-
rating classes, the dominant singular vector of X naturally becomes the most informative feature for
solving the predictive task. This explains why, in the multi-step setting, deep networks consistently
converge toward this leading direction, yielding ordered, low-dimensional representations of the en-
vironment. In contrast, in the single-step setting, the variance is more spread between directions and
thus no single direction separates the data well.
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Figure 3: Analyzing the singular values and vectors from the OLS estimator and the model’s effec-
tive weight matrix. As can be seen, for larger A both become lower dimensional, and the leading
singular vector becomes the transformation from the input state and action to the output state. For
A =1, since there is no strong direction that explains most variance, the model’s singular vectors
are mostly decoupled from those of the OLS estimator. We also a comparison between a shallow
network (L = 2) and a deep network (L = 9). As can be seen in the rightmost column, shallow
networks depends on directions of the input space to classify the data.

Finally, we can put all the puzzle pieces together and ask whether we gained any intuition for
a more general setting. For example, consider a predictive task with two distinct environments,
each equipped with its own encoding of actions and states. In this case, the singular vectors of
the OLS estimator associated with the two environments are orthogonal. However, because deep
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networks exhibit a low-rank bias, we expect training to favor solutions that align the two repre-
sentations in a way that minimizes the number of active singular values. Figure |4|illustrates this
phenomenon. In both tasks, the network embeds the environments within a shared representation
space, but under the multi-step objective the resulting structure captures the underlying geometry
and introduces a symmetry between analogous representation objects. These results generalize be-
yond the one-dimensional case, holding also for higher-dimensional latent states, as illustrated in
the two-dimensional setting of Figure [ST]
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Figure 4: Results for the task with two independent environments. Data are projected onto the
first two singular vectors of the OLS estimator, confirming that observations and actions from each
environment are orthogonal. In the single-step setting, the model representations remain unaligned,
whereas in the multi-step setting they collapse into a shared low-rank structure that aligns the two
environments and reveals their underlying symmetry.

3.3 GENERALIZATION ACROSS SETTINGS

Next, we consider a more naturalistic setting where the environment is continuous and observations
are temporally correlated. Consider a scenario in which an agent moves between several rooms.
Inside every room, the environment changes smoothly, while a transition between rooms introduces
discontinuities. A reliable representation of such an environment should use prediction to stitch the
various rooms together into a coherent world map. In this setup, states are drawn from a uniform
distribution s ~ U(—1,1), and actions are drawn from a Gaussian distribution a ~ N'(0, A). The
observations O(s) capture the world structure. As shown in Figure for small A the network merely
mirrors the local autocorrelation of the data, whereas for larger horizons it “stitches” together the
different linear segments into a coherent one-dimensional manifold.

To test whether our observations extend to settings where observations are stochastic rather than
deterministic, we designed a novel variant of the MNIST task. In this setting, the input to the
network is an MNIST digit along with a one-hot encoded action vector, and the target output is the
MNIST digit whose label corresponds to the sum of the input digit label and the action. As in the
abstract task, we control the maximal allowed action. We trained a Generative Adversarial Network
on this task and analyzed the encoder’s latent space. The network successfully generates the correct
digits in both the single-step and multi-step settings (see appendix). Strikingly, in the multi-step case
the latent space organizes along a one-dimensional manifold, where different positions correspond
to digits ordered by their labels (Figure [6). By sampling along the first principal component of
the latent space, we can generate digits in sequential order, demonstrating that multi-step predictive
learning induces structured and interpretable representations even in this more naturalistic dataset.
Furthermore, we demonstrate that training with a range of standard regularization methods fails to
recover this structure in the single-step setting (Figure [S3). Note that we only trained with a few
hundred samples per class. When within-class variability is too high, the network does not reliably
recover the latent structure. Exploring the reasons for this, as well as identifying bounds on the
tolerated variability, is an interesting direction for future work. The abstract framework developed
here provides a principled way to study such effects, for example by systematically controlling the
noise level in the observations.
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Figure 5: Training a deep nonlinear network on a predictive task with observations generated from
a piecewise linear function containing three discontinuities. When the action distribution is narrow,
the learned representations primarily mirror local autocorrelation. In contrast, with a wider action
distribution, the network organizes its hidden representations along a smooth one-dimensional man-
ifold that bridges the discontinuities, thereby recovering the underlying latent state. The top figure

shows the Principle Component Analysis (PCA) space, and the bottom figure shows the distance
matrix sorted by the state variable.
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Figure 6: Top: latent activations of the encoder module. In the multi-step setting with A = 9,
the latents collapse onto a low-dimensional manifold ordered by digit label, whereas in the single-
step case no such structure emerges. Bottom: digits generated by sampling along the first principal
component of the latent space. In both cases, generation quality is high and the digits are correctly
produced (see Appendix).

We now consider a natural setting for this predictive learning task: Predictive Coding Networks
(PCNs), which offer a biologically plausible mechanism for such learning. We trained a PCN with
7 layers in the simplified, abstract discrete environment while varying the prediction horizon, ob-
serving the same qualitative results as in our previous experiments (Figure [7). Namely, for short
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prediction horizons and shallow network depths, representations remain unstructured. Conversely,
in deep networks with long prediction horizons, the representations emerge to mirror the underlying
line geometry of the environment. A detailed description of these simulations is provided in the
appendix.
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Figure 7: Predictive Coding Network trained on the discrete state abstract prediction task. For
single-step predictions, representations have no clear structure while for multi-step prediction, rep-
resentations are arranged along a line in the two first Principle Components.

4 DISCUSSION

We have shown that multi-step predictive learning, together with network depth, acts as a strong
inductive bias that drives networks toward low-dimensional, structured representations of the en-
vironment’s latent variables. Increasing the prediction horizon makes the task more constrained,
revealing a dominant direction in the data that deep networks, biased toward low-rank solutions,
naturally align with. This explains why structured solutions consistently emerge in the multi-step
setting, even when many trivial solutions are possible.

However, several open questions remain. It is unclear why this dominant direction takes such a
highly structured form and how this intuition extends to more complex, nonlinear settings. Our ex-
periments on continuous environments, gridworld RNNs and MNIST suggest that similar principles
apply, but a full theoretical understanding will require future work. These findings also raise broader
implications for machine learning and neuroscience, suggesting that longer prediction horizons may
play a key role in the emergence of interpretable world models.
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Figure S1: Same abstract task as the linear case, but for a two-dimensional state variable.
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Figure S2: We swept across values of S and A and trained deep nonlinear networks on the predictive
task with mean squared error loss. For each (S, A) pair we trained 10 networks and plotted the
median participation ratio (PR) of the hidden activations. We define At} esh as the smallest horizon
for which PR drops below 2. As shown, Ainresh Scales linearly with S, supporting the claim that
the prediction horizon required for latent state extraction grows proportionally with the environment
size. Error bars are standard deviation obtained by bootstrapping.
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Figure S3: Comparison of multiple regularization types for the single-step case in the MNIST task.
Note that no type of regularization produces representations that recover the latent structure as multi-
step prediction.

A.1 CODE AVAILABILITY

Code for running the simulations and generating the figures is attached to this submission. A pub-
licly accessible GitHub repository will be made available in the future.

A.2 LLM USAGE

LLMs were used to polish the text in the paper, generate code for running simulations, as well as
mathematical and technical descriptions in the appendix.

A.3 METRICS
A.3.1 NCI1

This metric was introduced in|[Papyan et al.| (2020). Given hidden activations

he RMXN e {1,...,C}",

where M is the number of samples, N is the hidden dimension, and C' is the number of classes, we
define:
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as the global mean of activations, and
1 .
HC:E.Z hi, me =iy = c}|
1:Y;=cC
as the class-conditional means.

The within-class scatter matrix is

C
Sw =22 30 3 (hi— )i — )T

c=11iy;=c

and the between-class scatter matrix is
1 C
Sp=; z;mc (e = 1) (e = ) -
-

The NC1 metric is then defined as
Tr(Sw)

NC1 = Tv(Sp)

Intuitively, Sy captures the variance of samples around their respective class means, while Sp
captures the variance of class means around the global mean. The ratio NC1 therefore measures
the relative tightness of clusters to their separation: smaller values indicate more compact class
representations.

A.3.2 MARGINS
Let f : R? — RY denote the network output function, where

f(@) = (fi(2), f2(), .., fo(x))

are the class scores (logits) for input x € R?. For each sample (z;,y;) with true label y; €
{1,...,C}, the functional margin is defined as

Yi = fy: (i) — max fi(@i).

b

The multiclass margin for the dataset is then given by

Y= min ;.
1 n

i=1,...,

Intuitively, +; measures the difference between the score assigned to the correct class and the highest
score among all incorrect classes for sample i. The overall margin -y is the worst-case (smallest) of
these values across all samples, and therefore characterizes the minimal separation achieved by the
classifier.

A.3.3 PCYRVER

Let H € RM*N denote the hidden activations, where M is the number of samples and N the
hidden dimension. We compute the first principal component u; € R of H, i.e. the unit-norm
eigenvector of the sample covariance matrix

LM ) .
Y= M;(hi —h)(h; — h)

corresponding to the largest eigenvalue, where h = ﬁ Zf\il h;.

Each sample is then projected onto this direction:

11
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Let s; € R denote the state variable associated with sample ¢. The first PC order metric is defined
as the coefficient of determination (R?) of the linear regression between {z; } and {s; }:

PC({rder = R?(2,s).

This metric measures how strongly the first principal component of the hidden representations aligns

with the state. High values of PC{™" indicate that the dominant axis of variation in the representa-
tion space reflects the state. For D-dimensional states variables we simply take the first D principal
components.

A.3.4 ALIGNMENT

To quantify whether the network aligns representations of separate state variables, we compute an
alignment score between subspaces spanned by the leading principal components of their activa-
tions. This method is adapted from Sorscher et al.|(2022)).

Let H (2 ¢ RM*N denote hidden activations corresponding to two distinct dataset partitions
(e.g., two environments or contexts). For each partition, we compute the sample covariance

M
LS (0~ A) (b~ R9)T, ke (12,
=1

k) —

where h(*) is the mean activation of partition .

From X(®)| we extract the top principal directions U¥) € RN*™ where m is the smallest number
of eigenvectors explaining at least a fixed proportion of variance (e.g., 95%).

The alignment score is based on the principal angles §; < --- < 6, between the two subspaces
spanned by U and U(?), We take the cosine of the smallest principal angle:

Align(H®, H®)) = cos(6,).

This score lies in [0, 1], with higher values indicating stronger alignment (i.e., the leading directions
of variability in the two partitions are closely matched).

A.4 MNIST EXPERIMENT DETAILS
A.4.1 MODEL ARCHITECTURE

We implement a conditional Generative Adversarial Network (GAN) for MNIST digit generation
with action-based transformations. The model consists of three components:

1. Encoder E(z,a): maps input image = and action vector a to a latent representation z.
2. Generator G(z): maps the latent vector z to an output image.
3. Discriminator D(x): classifies images into 11 classes (digits 0-9 plus a “fake” class 10).

A.4.2 DATASET

We use the MNIST dataset with balanced sampling of N = 200 examples per digit class. Actions
are integers in the range [— A, A] with A = 5, encoded as one-hot vectors of dimension 24A+1 = 11.
Target labels are computed as

target = input_label + a.

A.4.3 TRAINING

The model is trained using the Adam optimizer with learning rate 2 x 10~4, batch size 64, and 20
epochs. The loss function combines:

1. Adversarial loss: the discriminator classifies real images by their true labels and fake
images as class 10.

12
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2. Generator loss: encourages generated images to be classified as their target labels rather
than as fake.

3. Optional losses: reconstruction loss (weight A = 0 in our experiments) and feature match-

ing loss.

We an adaptive discriminator training ratio, and optional learning rate scheduling for training stabil-
ity.
A.4.4 ARCHITECTURE DETAILS

* Encoder: Convolutional layers (28 x 28 — 14 x 14 — 7 x 7 — 3 x 3 — 1 x 1) followed
by action encoding via an MLP, then combined in a 2-layer MLP with hidden dimension
512.

* Generator: 2-layer MLP (latent.dim — 512 — 1024 — 7 x 7 x 128) followed by
transposed convolutions (7 x 7 — 14 x 14 — 28 x 28).

¢ Discriminator: CNN backbone with 11-class classification head.

All networks use LeakyReLU activations and batch normalization.

A.5 RNN WITH GRIDWORLD

We designed a long, narrow gridworld environment to study sequential prediction in navigation tasks
with repeating visual patterns. The environment consists of a 10 x 2 grid with a distinct color band
that changes along the horizontal axis, creating a corridor-like structure.

The agent receives egocentric observations through a 5 x 5 window centered on its current position.
The observation space includes:

¢ One-hot encoded color channels for the colors
* A wall channel indicating out-of-bounds areas

* An object channel for randomly placed objects outside the grid boundaries

The total observation dimension is dops = 5 % 5 x (10+2) = 300. Additionally, 10 randomly placed
objects are positioned outside the grid boundaries within a margin of 2 cells to provide additional
visual context.

A.5.1 AGENT BEHAVIOR

We implemented a reactive agent that performs a random walk with wall-avoidance behavior. The
agent has four possible actions: forward, left turn, right turn, and backward. The agent’s behavior is
characterized by:

* Wall Detection: The agent detects walls by attempting forward movement and checking if
the position changes

» Wall Avoidance: When a wall is detected, the agent turns with 90% probability (left or
right with equal probability)

* Forward Movement: When no wall is detected, the agent always moves forward

* Exploration: With 10% probability, the agent performs random turns even when no wall
is present

The agent’s heading is represented using both one-hot encoding and sinusoidal/cosinusoidal fea-
tures, providing 6-dimensional heading information (4 one-hot + 2 sin/cos).

13
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A.5.2 SEQUENTIAL PREDICTION TASK

We formulate the task as k-step sequential prediction, where the model must predict future observa-
tions given:

¢ An initial observation og

* A sequence of k future actions and heading features f1.;, = {ax, ht},’f:l

The model is trained to predict the corresponding sequence of future observations 01,5 using mean
squared error loss:

k
1 .
L=- > "o — 643 QY
t=1

where 0, is the model’s prediction for observation at time ¢.

A.5.3 MODEL ARCHITECTURE

We employ a GRU-based recurrent neural network with the following architecture:

¢ Observation Encoder: Two-layer MLP with hidden dimension & = 128 and ReLU acti-
vation, followed by a Tanh activation

* Feature Encoder: Two-layer MLP with the same architecture for processing action-
heading features

* GRU: Two-layer GRU with hidden dimension h = 128
* Prediction Head: Two-layer MLP with ReL.U activation for generating observation pre-
dictions

The model processes the initial observation oy through the observation encoder to initialize the GRU
hidden state. The sequence of action-heading features fi.; is then processed through the feature
encoder and fed to the GRU to generate predictions for each of the £ future time steps.

A.5.4 TRAINING CONFIGURATION

The model is trained using the following hyperparameters:

* Training trajectories: 1000 trajectories of length 7" = 100
* Validation trajectories: 100 trajectories
* Batch size: 128
e Learning rate: 2 X 1073 (Adam optimizer)
* Gradient clipping: 1.0
* Training epochs: 10
We evaluate the model’s learned representations using Principal Component Analysis (PCA) on the

GRU hidden states, visualizing the 2D projection colored by the agent’s z-position to assess spatial
encoding capabilities.

A.5.5 EVALUATION PROTOCOL

For evaluation, we generate 100 trajectories of length T¢,,; = 50 and extract hidden states from the
trained model. We apply PCA to reduce the 128-dimensional hidden states to 2D for visualization,
coloring points by the agent’s x-position to reveal spatial structure in the learned representations.

The evaluation protocol allows us to assess whether the model has learned to encode spatial infor-
mation in its hidden states, which would be evidenced by clustering or smooth transitions in the
PCA visualization corresponding to the agent’s position along the corridor.
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Results for k=1

Figure S4: Detailed results for training an RNN on k-step prediction in a gridoworld setting.

A.6 PREDICTIVE CODING NETWORKS

We conducted simulations using predictive coding networks to investigate their performance on pre-
dictive learning tasks. All simulations were implemented in PyTorch based on this|Github repository
by Bogacz group.

A.6.1 TASK DESIGN

The simulations employed a discrete state-action transition task where the network learned to predict
the resulting state given a current state and action. States were represented as integers from 1 to .S,
where S = 20 in all experiments. Actions were drawn from the range [— A, A], where A € {1,10}
to examine performance under different action space complexities. For each valid state-action pair
(s, a), the target resulting state was computed as s’ = s+ a, subject to the constraint that s’ € [1, .5].
This yielded a total of N valid transitions, where N varied with the action range A.

Inputs were encoded as concatenated one-hot vectors: the state was one-hot encoded into a vector
of length S, and the action was one-hot encoded into a vector of length 24 4 1 (mapping actions
from [—A, A] to indices [0, 2A]). The resulting input dimension was S + 24 + 1. The output was a
probability distribution over the .S possible resulting states, with the task formulated as a multi-class
classification problem using cross-entropy loss.

A.6.2 NETWORK ARCHITECTURE

We trained feedforward neural networks with architectures ranging from 1 to 10 hidden layers. Each
network consisted of:

* An input layer mapping from S + 2A + 1 dimensions to a hidden layer of size H = 1048
* Between 1 and 10 hidden layers, each of size H = 1048
* An output layer mapping from H to S dimensions

Each hidden layer was composed of a linear transformation, a predictive coding layer (PCLayer),

and a ReLU activation function. The output layer consisted of a linear transformation without acti-
vation, producing logits for the S output classes.
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A.6.3 PREDICTIVE CODING TRAINING

Networks were trained using the predictive coding framework, which minimizes an energy function
through iterative inference. During training, for each batch:

1. Inference phase: The latent states x were updated for 7' = 100 iterations to minimize
the energy function, which combines prediction errors (loss) and internal energy terms.
Latent states were optimized using stochastic gradient descent (SGD) with learning rate
N, = 0.01.

2. Parameter update phase: After inference converged, network parameters € were updated
using the Adam optimizer with learning rate 7, = 0.001. Parameters were updated only at
the final inference step (¢ = 1), following the standard predictive coding training protocol.

The energy function minimized during inference was:

E=L(y,y")+ > Eul(x) )
4

where L is the cross-entropy loss between predictions y and targets y*, and E, represents the energy
associated with hidden layer ¢ containing latent states x,.

A.6.4 TRAINING PROTOCOL

All networks were trained for 200 epochs using full-batch training (batch size equal to the number
of valid transitions N). For each combination of network depth (L € {1,2,...,10}) and action
range (A € {1, 10}), we recorded:

* Accuracy (classification accuracy on the state prediction task)
* Loss (cross-entropy loss)

* Last hidden layer activations for principal component analysis (PCA)

A.6.5 ANALYSIS METHODS

Performance evaluation: We computed classification accuracy and cross-entropy loss on the train-
ing set after each epoch. Since the task involved learning all valid transitions, training and test sets
were identical (full dataset).

Representation analysis: To examine learned representations, we extracted hidden layer activations
for all valid state-action pairs after training. We performed principal component analysis (PCA) on
these activations. For visualization, we projected activations onto the first two principal components
and colored data points according to: (1) output state, (2) input state, and (3) action value. When an-
alyzing networks trained with A > 1, we filtered to transitions with |a| < 1 to generate comparable
figures.

A.6.6 CONVERGENCE MONITORING

In separate experiments, we monitored inference convergence during training to choose a verify the
number of inference steps 7' is sufficient. Convergence was assessed by tracking the relative change
in loss over a sliding window of 5 consecutive inference steps. Inference was considered converged
when the relative change fell below a threshold of 1%. This analysis was performed periodically
during training (every 10 epochs) to characterize how inference dynamics evolve with learning, and
to recommend optimal 7" values based on the 90th percentile of observed convergence points.

A.7 COMPUTATIONAL DETAILS
All simulations were implemented in Python 3 using PyTorch for neural network operations.

The predictive coding framework was based on the implementation from the Bogacz Group
1 _supervised_learning _pc.ipynb.
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