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Abstract

State-of-the-art grammatical error correction
(GEC) systems rely on parallel training data
(ungrammatical sentences and their manually
corrected counterparts), which are expensive
to construct. In this paper, we employ the
Break-It-Fix-It (BIFI) method to build an un-
supervised GEC system. The BIFI framework
generates parallel data from unlabeled text us-
ing a fixer to transform ungrammatical sen-
tences into grammatical ones, and a critic to
predict sentence grammaticality. We present an
unsupervised approach to build the fixer and
the critic, and an algorithm that allows them
to iteratively improve each other. We evalu-
ate our unsupervised GEC system on English
and Chinese GEC. Empirical results show that
our GEC system outperforms previous unsuper-
vised GEC systems, and achieves performance
comparable to supervised GEC systems with-
out ensemble. Furthermore, when combined
with labeled training data, our system achieves
new state-of-the-art results on the CoNLL-2014
and NLPCC-2018 test sets.1

1 Introduction

Grammatical Error Correction (GEC) (Chollam-
patt et al., 2016; Chollampatt and Ng, 2018; Qorib
et al., 2022; Bryant et al., 2023) is the task of cor-
recting errors in a source sentence and generating
a grammatically correct target sentence. Current
state-of-the-art (SOTA) systems (Rothe et al., 2021)
have reached good performance using sequence-to-
sequence (seq2seq) models. However, a common
drawback of these systems is their extensive re-
liance on a significant quantity of labeled data. For
instance, Rothe et al. (2021) utilized over 2 mil-
lion sentence pairs, which are time-consuming and
costly to obtain as they require human manual cor-
rection. Unsupervised GEC systems aim to over-
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come this limitation. However, the current perfor-
mance of unsupervised GEC systems (Alikaniotis
and Raheja, 2019; Yasunaga et al., 2021) is much
lower than supervised systems. Moreover, they still
require manually defined or extracted confusion
sets to generate synthetic data and assess sentence
grammaticality. As a result, this greatly hinders the
applicability of unsupervised GEC systems.

The SOTA unsupervised GEC system, LM-critic
(Yasunaga et al., 2021), uses the Break-It-Fix-It
(BIFI) framework (Yasunaga and Liang, 2021) to
extract realistic parallel data from unlabeled data.
Specifically, the BIFI framework utilizes a fixer and
a critic. The fixer is designed to perform the GEC
task, while the critic is designed for the grammat-
ical error detection (GED) task, which classifies
an input sentence as grammatical or ungrammati-
cal. Given a critic which classifies each unlabeled
sentence as grammatical or ungrammatical, BIFI
generates parallel data to train a better fixer by the
following four steps. (1) Correct ungrammatical
sentences with the existing fixer and collect out-
puts that are classified as grammatical by the critic.
(2) Train a grammatical error generator (called a
breaker) using the sentence pairs obtained in (1).
(3) Corrupt the grammatical sentences with the
breaker and collect the outputs that the critic clas-
sifies as ungrammatical. (4) Obtain parallel data
by combining outputs of (1) and (3). LM-Critic
uses local neighborhood information and perplex-
ity (PPL) to build the critic and uses synthetic data
to initialize the fixer. However, the synthetic data
relies on the edit pairs provided by Awasthi et al.
(2019), which are extracted from labeled sentences.
Moreover, a significant performance gap remains
between LM-critic and supervised systems (See
Section 4).

In this paper, we propose a novel method for
generating synthetic data and building a critic, with
the aim of building an unsupervised GEC system
that can rival supervised systems. By examining
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the grammatical errors in labeled data, we identi-
fied several language-independent error patterns.
Using these patterns, we propose a synthetic data
generation method based on a masked language
model (MLM) to build a fixer. Subsequently, we
use this fixer as a basis for building our critic. The
critic is trained using grammaticality labels ob-
tained from high-confidence fixer predictions. To
address the data scarcity problem that arises from
high-confidence filtering, we propose a masking-
based approach and a self-knowledge distillation
method for data augmentation. The unsupervised
GEC system is trained using the BIFI framework,
with the fixer and the critic being refined repeatedly
in iterations.

We evaluate the performance of our system on
both English and Chinese GEC tasks. Specifically,
we evaluate our system on the CoNLL-2014 (Ng
et al., 2014) and BEA-2019 (Bryant et al., 2019)
test sets for English GEC, and on the NLPCC-2018
(Zhao et al., 2018) test set for Chinese GEC. Our
unsupervised system outperforms the prior unsu-
pervised SOTA by 12.5 F0.5 and 13.8 F0.5 on the
CoNLL-2014 and BEA-2019 test sets, respectively.
Our unsupervised system also compares favorably
with the best-performing supervised systems for
both languages. Furthermore, when we further
train our system with labeled data, we surpass the
SOTA results on both CoNLL-2014 and NLPCC-
2018 test sets.

The contributions of our paper are as follows:

• We introduce a novel method for unsupervised
synthetic data generation, based on MLM and
language-independent error patterns. Com-
pared to existing approaches, our method gen-
erates more realistic synthetic data, and pro-
vides a better unsupervised fixer.

• We propose a new method to build an unsuper-
vised critic with high-confidence predictions
from the fixer model. This approach enables
the critic model to continually enhance its per-
formance over iterations, demonstrating better
performance than prior methods.

2 Related Work

Unsupervised grammatical error correction.
Prior research (Alikaniotis and Raheja, 2019)
builds an unsupervised GEC system by leveraging
manually constructed confusion sets to provide pos-
sible corrections, and uses language models (LMs)

to validate these corrections. Yasunaga et al. (2021)
utilize the confusion sets and LM in a different way.
Instead of constructing a GEC model directly, Ya-
sunaga et al. (2021) use them to create a GED
model. This GED model is then combined with the
BIFI method to build an unsupervised GEC system.
In contrast to these works, our method does not
rely on any manually constructed confusion sets,
making it easy to extend to low-resource languages.
Synthetic data generation. Synthetic data gen-
eration for GEC commonly adopts two strategies:
backtranslation-based corruption methods using
labeled data (Kiyono et al., 2019; Stahlberg and
Kumar, 2021; Xie et al., 2018), and error injection
corruption methods via edit pairs or confusion sets
extracted from labeled data (Awasthi et al., 2019;
Lichtarge et al., 2019; Yuan and Felice, 2013).
Methods that do not require labeled GEC data have
been explored by Grundkiewicz et al. (2019) and
Sun et al. (2022). The former utilizes spellchecker-
based confusion sets to generate erroneous sen-
tences, while the latter applies machine transla-
tion pairs and a pre-trained cross-lingual language
model (XLM) for sentence corruption. Our method
avoids external dependencies, such as confusion
sets, spellcheckers, or translation pairs.
Text evaluation. Prior work in GEC (Bryant et al.,
2019; Dahlmeier and Ng, 2012; Niu and Penn,
2020) assesses sentence grammaticality through
reference text or syntactic information, such as part-
of-speech tags. Yasunaga et al. (2021) mitigate this
reliance with an LM-based method, yet it still needs
pre-defined confusion sets. Our method constructs
a critic using high-confidence predictions from the
fixer model, thereby completely eliminating the
need for external information.

Figure 1: Our unsupervised GEC system involves the
following four steps. (1) Create an initial fixer with
the synthetic data generated through an MLM-based
method. (2) Construct a critic based on high-confidence
predictions from the fixer. (3) Build a new fixer using
the parallel data extracted by BIFI. (4) Repeat steps 2
and 3 until the fixer’s performance converges.



3 Method

Figure 1 illustrates our method to build an unsu-
pervised GEC system. It contains two key com-
ponents: initial fixer2 construction (§3.2) and the
critic construction (§3.3).

3.1 Problem Setup
Grammatical error correction aims to correct an
ungrammatical sentence x(i) into its grammatical
version y(i) while preserving the original semantics.
In the supervised setting with annotated data avail-
able, the GEC model leverages labeled sentence
pairs Dl = {(x(i), y(i))} to learn a mapping from
x to y. However, in the unsupervised setting, the
GEC model must infer this mapping from a mono-
lingual corpus Dm = {x(i)}. The BIFI framework
offers a mechanism to extract realistic parallel data
from unlabeled sentences using a fixer f and a critic
c. The fixer maps x to y, and the critic evaluates
the grammaticality of a given sentence. Our goal is
to construct a good initial fixer f0 (§3.2) and critic
(§3.3) through unsupervised methods and utilize
them to develop the final fixer fn (§3.4).

3.2 Training an Initial Fixer
The BIFI framework relies on a good initial fixer
f0. Intuitively, f0 could be obtained by training
a model with synthetic data generated via unsu-
pervised approaches. However, how to generate
realistic synthetic data without reliance on super-
vised information (e.g., edit pairs) remains an open
problem. To tackle this problem, we analyze the
parallel data in English and Chinese to identify
some language-independent error patterns (§3.2.1).
Leveraging these patterns, we propose an unsuper-
vised synthetic data generation method (§3.2.2).

3.2.1 Exploiting Error Patterns
We carry out analysis on the GEC validation set and
categorize the errors into three categories: inser-
tion errors, deletion errors, and replacement errors.
Inspired by context-free spell-checkers, we plot the
edit distance distribution between erroneous source
tokens and their corresponding target tokens for
replacement errors. For both deletion and insertion
errors, we plot the frequency distribution of each
erroneous token of the vocabulary.

As depicted in Figure 2, it is evident that the
edit distance between an erroneous token and its

2To differentiate between the fixer obtained via synthetic
data and the fixer obtained via paired data through BIFI, we
name the former fixer as the initial fixer.

Figure 2: The character-level edit distance between an
erroneous token and its corresponding target token for
replacement errors. Left: For English, we compute
the character-level edit distance directly. Right: For
Chinese, we convert the tokens into Pinyin before com-
puting the character-level edit distance. Instances where
the edit distance equals 0 are due to homophonic tokens.

Figure 3: The erroneous token distribution for insertion
and deletion errors. The tokens of the vocabulary are
ordered by decreasing frequency. Left: English; Right:
Chinese.

target token is typically small for both English and
Chinese replacement errors. In either language, the
majority of the edit distances are confined by the
typical length of a “word”. In Figure 3, we can see
that the vast majority of incorrect tokens resulting
from insertion and deletion errors are found within
the top 5% of the vocabulary. This leads to the
conclusion that these errors are commonly associ-
ated with high-frequency tokens. Based on these
observations, we define two language-independent
error patterns:
Replacement errors. The edit distance between an
erroneous token and its corresponding target token
is typically small.
Insertion and deletion errors. The erroneous to-
ken usually has a high frequency in the vocabulary.

Leveraging these two patterns, we outline our
unsupervised synthetic data generation approach in
§3.2.2.

3.2.2 Unsupervised Synthetic Data
Generation

We synthesize erroneous sentences from a clean
corpus using the following steps: for each sentence
x(i) from the seed corpus Dseed

m , we first sample
the error count per sentence from a pre-defined dis-



tribution (Awasthi et al., 2019). We introduce each
error by performing one of these three operations:
(1) delete a token wv ∈ x(i) with probability pdel;
(2) insert a token wv at a random position with
probability pins; (3) replace a token wj ∈ x(i) with
wr by probability prep.3

Specifically, to generate the replacement token
wr, we replace a randomly selected token wj ∈ x(i)

with the mask token [MASK] and utilize MLM to
predict a set of candidate tokens at the masked
position based on its surrounding context. In this
work, we choose RoBERTa as the MLM in our im-
plementation. As described in Section 3.2.1, only
candidates with a low edit distance from wj are
appropriate replacements. Therefore, we eliminate
candidate tokens that have an edit distance exceed-
ing a certain threshold. Finally, we sample wr from
the remaining candidates using a pre-defined distri-
bution solely based on the edit distance.

To circumvent the problem of consistently sam-
pling the same high-frequency tokens for insertion
and deletion errors, we design a smoothing function
to smooth the frequency of tokens in the vocabulary.
This process is detailed in Algorithm 1. In Algo-
rithm 1, LISTID represents a list of breakpoints
(idi), which are positive integers in ascending or-
der used for comparing against the rank of a token.
Note that the tokens of the vocabulary are orga-
nized in descending order of frequency, where a
token with a smaller rank occurs more frequently.
This design ensures that high-frequency tokens in
a collection possess an equal chance of being sam-
pled, while maintaining a higher frequency than the
less frequent tokens. We diverge from sampling
based on the raw frequency of tokens in the vocab-
ulary, opting to sample according to the smoothed
frequency fsmooth.

Algorithm 1: Smoothing Function
Input: LISTID = [id0, id1, ... , idn]

wv: a token in the vocabulary
Output: Smoothed probability fsmooth of wv

1: Find the rank k for wv in the vocabulary
2: Find the smallest i such that k ≤ idi
3: if i = 0 then
4: fsmooth = 1/id0
5: else
6: fsmooth = 1/(idi − idi−1)
7: end if

3The sum of pdel, pins, and prep equals to one

Figure 4: Correlation between the probability of pro-
ducing ŷ(i) and precision of z(i). Left: English; Right:
Chinese.

3.3 Training a Critic

LM-Critic integrates word-level perturbations with
sentence perplexity to define the critic. However,
the efficacy of word-level perturbations relies on
pre-defined confusion sets. To circumvent this re-
liance, an intuitive approach is to extract the GED
pseudo-labels from the existing fixer and then train
a binary classifier from such pseudo-labels as the
critic. Specifically, we begin by randomly choos-
ing a subset D′

m from Dm. For each sentence
x(i) ∈ D′

m, we use the fixer to make corrections
and obtain the output ŷ(i). If ŷ(i) is different from
x(i), then we assign a pseudo-label z(i) = 0, mean-
ing that x(i) is “ungrammatical”. Otherwise, we
assign z(i) = 1, meaning that x(i) is “grammati-
cal”.

Since the initial fixer is far from optimal, the
pseudo-labels assigned by the initial fixer may have
low precision. To address this problem, we analyze
the relation between the confidence of ŷ(i) and the
precision of z(i). In Figure 4, we observe that high-
confidence predictions (i.e., ŷ(i) predicted with a
high probability) are associated with more accurate
grammaticality labels. Therefore, we propose to
select a highly confident subset Dsub from D′

m

such that for every x(i) ∈ Dsub, the fixer predicts
ŷ(i) with probability greater than 0.9.

It is worth noting that when the critic is trained
on fixer predictions, it may unintentionally cause
over-fitting to the fixer, which undermines the
critic’s ability to enhance the fixer further through
iterations. Xie et al. (2020) has demonstrated the
importance of introducing noise throughout the
self-training process. Accordingly, we propose a
masking-based data augmentation approach when
building the critic. Specifically, for each sentence
x(i) ∈ Dsub, we generate an augmented sentence
x
(i)
masked by randomly replacing p% tokens with

the [MASK] token, and minimize the loss function
Lmasked with respect to the critic’s model parame-



ters θcr:

Lmasked = − 1

|Dsub|
∑

x(i)∈Dsub

∑
c∈{0,1}

1{z(i) = c}·

(logP (c|x(i); θcr) + logP (c|x(i)masked; θcr))

(1)

Another issue of selecting high-confidence
pseudo-labels is data scarcity. With the initial fixer,
only 20% of the sentences from D′

m are selected.
To mitigate this issue, we utilize a self-knowledge
distillation (SKD) technique to gather additional
training data and enhance the model’s generaliz-
ability. Specifically, for each x(i) ∈ D′

m, we follow
the method used by (Xie et al., 2016; Meng et al.,
2020) to construct soft pseudo-labels z̃(i)c

4:

z̃(i)c =
[P (c|x(i); θ′cr)]2/fc∑

c′∈{0,1}{[(P (c′|x(i); θ′cr)]2/fc′}
(2)

where fc =
∑

x(i)∈Dm′ P (c|x(i); θ′cr) is the sum
over soft frequencies for class c, and θ′cr is the
critic’s model parameters in the previous epoch. In
the first epoch, θ′cr represents the critic’s model pa-
rameters obtained by minimizing (1). Once the soft
pseudo-labels are obtained, we train a new critic
model by minimizing the following loss function:

Lcritic = Lmasked + Lskd where

Lskd = − 1

|Dm′ |
∑

x(i)∈Dm′

∑
c∈{0,1}

z̃(i)c ·

(logP (c|x(i); θcr) + logP (c|x(i)masked; θcr))

(3)

Algorithm 2: Break-It-Fix-It (BIFI)
Input: Fixer f , critic c, grammatical sentences

Dg
m, and ungrammatical sentences Dug

m

Output: (erroneous, corrected) sentence pairs.
1: Correct Dug

m using the fixer f and retain
output deemed grammatical by the critic c.

2: Train a breaker (error generator) on the
resulting paired data.

3: Corrupt Dg
m using the breaker and retain

output deemed ungrammatical by the critic c.
4: Combine the parallel data obtained in Step 1

and 3.

4The intuition is to (1) strengthen predictions; (2) empha-
size data with high confidence; and (3) normalize the loss
contribution of each centroid. Refer to (Xie et al., 2016) for
details.

3.4 Iteratively Refining the Fixer and Critic

Algorithm 3 provides a high-level overview of our
unsupervised grammatical error correction (GEC)
system. We start by applying the unsupervised
technique outlined in §3.2.2 to corrupt Dseed

m and
yield synthetic data. This synthetic data is then
employed to train an initial fixer, denoted by f0. In
the next phase, we leverage f0 and Dm to derive
pseudo labels and train a RoBERTa-based critic, as
described in §3.3. By utilizing this critic, we segre-
gate Dm into grammatically correct (Dg

m) and in-
correct (Dug

m ) subsets. We then use the BIFI mech-
anism to generate realistic parallel data that is then
employed to train a new fixer f1. We subsequently
substitute f0 with f1 and repeat this procedure until
the fixer achieves satisfactory performance.

Algorithm 3: Unsupervised GEC system

Input: Monolingual corpora Dseed
m , Dm

1: Generate synthetic data using the method
described in §3.2.2 to corrupt Dseed

m

2: Build f0 with synthetic data
3: for t = 1, 2, 3, . . . do
4: Extract GED pseudo-labels with ft−1

5: Train a critic (grammaticality classifier)
by minimizing Eqn (3), then use it
to split Dm into Dg

m and Dug
m

6: Use BIFI (Algorithm 2) to generate
parallel data to train a new fixer ft.

7: end for

4 Experiments on English GEC

4.1 Data and Model Configuration

Following prior work (Awasthi et al., 2019; Grund-
kiewicz et al., 2019), we use the combination of
WMT NewsCrawl corpus (Bojar et al., 2018) and
One-Billion-Word corpus (Chelba et al., 2014) as
the seed monolingual corpus Dseed

m . We gener-
ate 145 million synthetic sentence pairs with the
method described in §3.2.2. These synthetic pairs
are used to fine-tune the Flan-T5-xxl model (Chung
et al., 2022) to create the initial fixer f0.

Following Yasunaga et al. (2021), our monolin-
gual dataset Dm contains both grammatical and
ungrammatical sentences. Concretely, we ran-
domly select 10 million unlabeled sentences from
various sources: Yahoo!Answer corpus (Zhang
et al., 2015), Wikipedia history (Grundkiewicz and
Junczys-Dowmunt, 2014), Lang8 (Mizumoto et al.,



System Architecture Ens CoNLL-2014 BEA-2019
P R F0.5 P R F0.5

Unsupervised System
Alikaniotis and Raheja (2019) GPT2 ✗ 58.5 24.9 46.1 - - -
Grundkiewicz et al. (2019)* BART-base ✗ 59.7 18.5 41.3 62.4 25.4 48.8
Yasunaga et al. (2021)* BART-base ✗ 64.4 35.6 55.5 67.3 46.1 61.6
ChatGPT with prompting† ChatGPT ✗ 50.3 59.7 51.9 42.6 69.3 46.1
GPT4 with prompting† GPT4 ✗ 60.8 57.0 59.9 56.8 70.2 59.1

Supervised System
Sorokin (2022) RoBERTa-large ✗ 79.4 36.1 64.0 86.2 54.2 77.1
Zhang et al. (2022b) BART-large ✗ 74.7 49.0 67.6 75.1 65.5 72.9
Rothe et al. (2021) T5-xxl ✗ - - 68.9 - - 75.9
Lai et al. (2022) - ✓ 78.2 42.7 67.0 - - 77.9
Qorib et al. (2022) - ✓ 81.5 43.8 69.5 86.7 60.9 79.9

Our Unsupervised System
Initial fixer BART-base ✗ 66.2 35.8 56.6 63.1 41.3 57.1
1st iteration BART-base ✗ 67.2 40.2 59.3 68.3 48.8 63.2
2nd iteration BART-base ✗ 69.3 40.5 60.6 67.2 51.7 63.4
3rd iteration BART-base ✗ 66.8 44.5 60.7 65.6 57.4 63.8
Initial fixer Flan-T5-xxl ✗ 70.0 36.5 59.1 73.1 52.1 67.6
+ supervised data Flan-T5-xxl ✗ 74.5 53.6 69.1 78.6 67.8 76.1
1st iteration Flan-T5-xxl ✗ 75.5 42.0 65.2 79.5 55.4 73.1
2nd iteration Flan-T5-xxl ✗ 75.6 45.6 66.8 80.5 57.8 74.6
3rd iteration Flan-T5-xxl ✗ 74.9 49.6 68.0 79.6 62.5 75.4
+ supervised data Flan-T5-xxl ✗ 75.0 53.8 69.6# 78.8 68.5 76.5

Table 1: Performance (in %) of GEC systems on English GEC test sets. Ens: indicates if the system uses the
ensemble method. *: represents our reproduced result. Specifically, Grundkiewicz et al. (2019) proposed an
unsupervised synthetic data generation method. We use this synthetic data to train the BART-base model to make a
fair comparison to LM-Critic and our unsupervised system. †: The zero-shot performance of ChatGPT and GPT4
using the best prompt from (Coyne et al., 2023). The best unsupervised and supervised results are shown in bold
and bold, respectively. Statistically significant improvements (p < 0.01) over the initial fixer + supervised data is
marked #.

2011), NUCLE (Dahlmeier et al., 2013), and FCE
(Yannakoudakis et al., 2011) datasets. Notably, as
Wikipedia history, Lang8, NUCLE, and FCE are
labeled datasets, we only take sentences from the
source side of these datasets5. When constructing
the critic, we use the Lang8 dataset as D′

m and
choose RoBERTa-base as our classifier model.

We evaluate the performance of the English GEC
system on the CoNLL-2014 and BEA-2019 test
sets with the MaxMatch scorer (Dahlmeier and
Ng, 2012) and the ERRANT scorer (Bryant et al.,
2019), respectively. Following Cao et al. (2021),
we use a one-tailed sign test with bootstrap resam-
pling to carry out statistical significance tests. Re-
fer to Appendix A.3 for the detailed experimental
settings.

4.2 Main Results

Table 1 shows the performance of our system on
both CoNLL-2014 and BEA-2019 test sets, includ-
ing a comparison with existing supervised and un-
supervised systems on the leaderboard. Our un-

5The source side sentences are not annotated sentences,
and they could be grammatical or ungrammatical.

supervised system achieves F0.5 score of 68.0 and
75.4 on the CoNLL-2014 and BEA-2019 test set,
respectively, surpassing the current leading unsu-
pervised system (Yasunaga et al., 2021) by 12.5
points on the CoNLL-2014 and 13.8 points on the
BEA-2019 test set. Our system also exceeds the
zero-shot performance of the GPT4 model by 8.1
points and 16.3 points on the CoNLL-2014 and
BEA-2019 test set, respectively. Notably, our sys-
tem compares favorably with the state-of-the-art
supervised single system (Rothe et al., 2021), lag-
ging behind by just 0.9 points on the CoNLL-2014
test set and 0.5 points on the BEA-2019 test set.

To enable a fair comparison with Yasunaga et al.
(2021), we replace the Flan-T5-xxl model with
the smaller BART-base (Lewis et al., 2020) model
when building the fixer. With BART-base, our un-
supervised system still outperforms Yasunaga et al.
(2021), with a 5.2 F0.5 increase on CoNLL-2014
and a 2.2 F0.5 increase on BEA-2019. This high-
lights the superiority of our unsupervised training
algorithm.

When we further fine-tune our model using su-
pervised data, the cLang8 (Rothe et al., 2021)



dataset, our system achieves an F0.5 of 69.6 on
CoNLL-2014 and 76.5 on BEA-2019. This sets a
new SOTA result on the CoNLL-2014 test set.

4.3 Analysis
Synthetic data. We compare our synthetic data
generation method with relevant methods proposed
by (Grundkiewicz et al., 2019; Sun et al., 2022),
and the method by Awasthi et al. (2019) which was
used by (Yasunaga et al., 2021). To enable a fair
comparison with the aforementioned data synthesis
methods, we randomly select 8 million sentences
from the UN Parallel Corpus v1.0 (Ziemski et al.,
2016) and corrupt the same monolingual data using
each method. We then train a Transformer-base
model (Vaswani et al., 2017) on the resulting syn-
thetic data.

Initial fixer P R F0.5

Spellchecker (Grundkiewicz et al., 2019) 28.7 7.4 18.2
Translation pair (Sun et al., 2022) 31.5 8.1 19.8
Edit pair (Awasthi et al., 2019) 39.9 11.0 25.9
Our method 38.1 12.3 26.8 #
w/o edit distance 14.2 4.5 9.9
w/o high-frequency tokens 10.2 3.9 7.7

Table 2: Performance of the fixer on the BEA-2019
dev set (Bryant et al., 2019). Statistically significant
improvements (p < 0.01) over Awasthi et al. (2019) is
marked #.

Table 2 shows that our method outperforms com-
peting approaches. As demonstrated in Table 3, the
erroneous sentences generated by the competing
methods tend to either be grammatically correct
or change the intended meaning of the original
sentences. This observation explains the better per-
formance of our method relative to these competing
approaches. Notably, Sun et al. (2022) implements
an approach similar to ours, which also generates
replacement errors by inserting masks and then
uses XLM to predict the mask. The difference is
that they use translation pairs to guide the creation
of candidate tokens, while our method relies on
edit distance and frequency information.

In our ablation study (Table 2), we find that edit
distance and frequency controls are crucial to gen-
erate realistic synthetic data, confirming the effec-
tiveness of the error patterns reported in §3.2.1.
Critic’s training methods. Following (Yasunaga
et al., 2021), we randomly sample 600 grammat-
ical sentences and 600 ungrammatical sentences
from GEC validation sets and use the averaged
F0.5 score over 5 runs to measure the performance
of the critic. Specifically, to measure the perfor-
mance across various domains, we assemble our

Monolingual sentence Tim mentioned his goal is to discover the
hidden spy among us.

Grundkiewicz et al. (2019) Tim mentioned his her goal is to discover
the hidden spy among us.

Sun et al. (2022) Tim mentioned his goal is to discover find
the hidden spy among us.

Awasthi et al. (2019) Tim mentioned his goal is to discover the
hidden spy among between us.

Our method Tim mentioned his goal is to discover the
hidden spy among us.

Monolingual sentence
During the Second World War the islands
were occupied by Germany, causing
considerable suffering to the locals.

Grundkiewicz et al. (2019)
During the Second World War the islands
were was occupied by Germany, causing
considerable suffering to the locals .

Sun et al. (2022)
During the Second World War the islands
isles were occupied by Germany, causing
considerable suffering to the locals.

Awasthi et al. (2019)
During the Second World War the islands
were occupied by Germany, causing
considerable suffering time to the locals.

Our method
During the Second World War the islands
were occupied occupy by Germany, causing
considerable suffering to locals.

Table 3: Example erroneous sentences produced by
different approaches.

GEC validation set from the BEA-2019 dev set,
the CoNLL-2013 dev set (Ng et al., 2013), and the
GMEG-wiki/Yahoo/FCE validation set (Napoles
et al., 2019).

We analyze the performance of our critic and
compare it to LM-Critic in Table 4. We conduct
an ablation study using the following configura-
tions: (1) without employing the self-knowledge
distillation method (SKD); (2) without applying the
data augmentation approach (DA); and (3) without
utilizing the high-confidence subset Dsub (CF). Re-
sults indicate that all three methods are crucial in
enhancing the critic’s performance. Notably, our
critic outperforms LM-Critic by a significant mar-
gin, exhibiting a 13.4 F0.5 increase in grammati-
cal and a 14.1 F0.5 increase in ungrammatical sen-
tences. Our statistical significance test shows that
our critic significantly improves over LM-Critic,
and our critic without each individual component
(SKD, DA and CF) still significantly improves over
LM-Critic.

Critic Grammatical Ungrammatical
P R F0.5 P R F0.5

LM-Critic 63.2 76.0 65.4 69.9 55.7 66.5
Our Critic 77.8 83.0 78.8 81.8 76.3 80.6
w/o SKD 72.3 80.5 73.8 78.0 69.1 76.2
w/o DA 71.0 81.7 72.9 78.5 66.6 75.7
w/o CF 68.9 81.0 71.1 76.9 64.0 73.9

Table 4: Performance of our critic (in %) after the 3rd
iteration. The ablation study confirms the effectiveness
of self-knowledge distillation (SKD), data augmentation
(DA) and using high-confidence pseudo labels (CF).

Fixer’s performance through iterations. In Fig-
ure 5, the performance of the fixer across BIFI



iterations is shown. It is observed that the fixer’s
improvement is stagnant in the absence of the high-
confidence subset (CF). Additionally, the fixer’s
improvement is considerably smaller when data
augmentation (DA) or self-knowledge distillation
(SKD) is excluded. Moreover, similar to LM-critic,
the fixer’s improvement comes to a halt after the
first iteration without updating the critic. This
demonstrates the significance of updating both the
critic and the fixer throughout the process.

Figure 5: The performance of the fixer across iterations
on the BEA-2019 dev set.

Critic’s performance through iterations. In Fig-
ure 6, we observe a consistent improvement in the
performance of the critic throughout the iterations.
This indicates a mutually beneficial learning pro-
cess between the critic and the fixer: the critic im-
proves the fixer, which in turn refines the critic even
further. The plot on the right shows a correlation
between pseudo-label precision and fixer iteration.
This suggests that the fixer enhances the critic by
providing more accurate GED pseudo-labels.

Figure 6: Left: The performance of the critic in different
iterations on the BEA-2019 dev set. Right: The preci-
sion of z(i) using the fixer in different iterations on the
BEA-2019 dev set. Specifically, iteration 0 represents
the initial fixer.

Examples. In Table 5, we provide qualitative
examples to compare the sentences generated by
our system with those of GPT4 and LM-Critic.
We find that both GPT4 and LM-Critic tend to
make unnecessary edits, while our system does

Input Keep the information as secret to their spouce is good.

GPT4 Keep the information as a secret to from their spouse is
good.

LM-Critic Keep the information as a secret to their spouse is good.
Our method Keep the information secret to from their spouse is good.

Input Laws push a carrier to tell his/her relatives about his
problem.

GPT4 Laws push a carrier to tell his/her relatives about his their
problem.

LM-Critic Laws push a carrier to tell his/her relatives about his their
problem.

Our method Laws push a carrier to tell his/her relatives about his
problem .

Input The knowledge of the genetic risk was to be shared within
the family.

GPT4 The knowledge of the genetic risk was were to be shared
within the family.

LM-Critic The knowledge of the genetic risk was to be shared within
the family families.

Our method The knowledge of the genetic risk was to be shared within
the family.

Table 5: Examples comparing our system to GPT4 and
LM-Critic. Both GPT4 and LM-Critic tend to make un-
necessary edits by adding articles or changing pronouns
or noun number.

not. The advantage of our system over LM-Critic
could be attributed to two components: a better
initial fixer which corrects more errors, and a better
critic which assesses sentence grammaticality more
precisely, as illustrated in Table 2 and Table 4.

5 Experiments on Chinese GEC

5.1 Data and Model Configuration

We generate 10 million synthetic sentence pairs
using 10 million monolingual sentences crawled
from the Toutiao website6. We train the Chinese
BART-large model (Shao et al., 2021) on this data
to create the initial fixer f0. To build the monolin-
gual dataset Dm, we randomly select 4 million sen-
tences from the CCMatrix corpus (Schwenk et al.,
2021), Chinese Lang8 (Zhao et al., 2018), and HSK
(Zhang, 2009). For both Lang8 and HSK datasets,
we only take the sentences from the source side.
When creating the critic, we use the HSK dataset as
D′

m and use RoBERTa-wwm-ext (Cui et al., 2020)
as our classifier model.

We evaluate the performance of our Chinese
GEC system on the NLPCC-2018 test set with the
MaxMatch scorer. Following Cao et al. (2021), we
use the one-tailed sign test with bootstrap resam-
pling to carry out statistical significance tests.

5.2 Results

Since no unsupervised results are available for Chi-
nese GEC, we compare our model with existing
supervised models on the NLPCC-2018 test set. Ta-

6https://www.toutiao.com/



System Ens NLPCC-2018
P R F0.5

Zhao and Wang (2020) ✗ 44.4 22.2 37.0
Sun et al. (2022) ✗ 46.0 27.8 40.7
Wu and Wu (2022) ✗ 50.6 25.2 42.1
Zhang et al. (2022b) ✗ 45.0 33.0 45.3
Zhang et al. (2022a) ✓ 59.4 24.2 46.0

Our Unsupervised System
Initial fixer ✗ 46.5 25.6 39.9
+ supervised data ✗ 55.5 29.7 47.3
1st iteration ✗ 51.2 25.3 42.5
2nd iteration ✗ 52.1 28.2 44.7
+ supervised data ✗ 57.1 28.9 47.8#

Table 6: Performance (in %) of GEC systems on the
NLPCC-2018 test set. Ens: represents if the system
uses the ensemble method. The best unsupervised result
and the supervised result are shown in bold and bold, re-
spectively. Statistically significant improvements (p <
0.01) over initial fixer + supervised data is marked #.

ble 6 shows that our model achieves 44.7 F0.5 score,
surpassing Wu and Wu (2022) and Sun et al. (2022).
It is only 0.6 points below the best-performing
supervised single system. When we further fine-
tune our unsupervised GEC system with labeled
data, the combination of the Chinese Lang8 dataset,
and the HSK dataset, our system achieves 47.8
F0.5 score, setting a new SOTA on NLPCC-2018.
It demonstrates that our unsupervised model can
serve as a strong initial checkpoint for supervised
training.

6 Conclusion

In this paper, we present innovative unsupervised
techniques to produce synthetic parallel data and
train a critic to evaluate the grammaticality of sen-
tences. By combining our methods with BIFI, we
develop an unsupervised GEC system that achieves
results comparable to models utilizing substantial
labeled data. The core idea is to employ language-
independent erroneous models to construct realis-
tic synthetic data, and then create an unsupervised
critic utilizing high-confidence predictions from
the fixer model. Our system does not require any
manually defined or extracted confusion sets, mak-
ing it an ideal solution for developing GEC models
for low-resource languages.

7 Limitations

We identified and utilized error patterns in both
English and Chinese labeled corpora. While we
believe such patterns are language-agnostic, we
have not explored their application to other low-
resource languages. Future research may delve

further into this area. Additionally, we trained our
models using extensive GPU resources, up to 32
A100 GPUs, though similar results can be achieved
with just 8 V100 GPUs.
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A Appendix

A.1 Details on Exploiting Error Patterns
Validation set selection. We carry out error pat-
tern analysis on the validation set. Specifically, we
follow previous work (Cao et al., 2023; Wu and
Wu, 2022) to use BEA-2019 dev set (Bryant et al.,
2019) and randomly sample 5,000 sentences from
the NLPCC-2018 training set (Zhao et al., 2018) as
the validation set for English and Chinese, respec-
tively.
Vocabulary creation. We derive the vocabulary
from the C4 corpus (Raffel et al., 2020) and the

UN Parallel Corpus v1.0 (Ziemski et al., 2016) for
English and Chinese, respectively.
Error type creation. We use the ERRANT
toolkit7 to extract edits. Specifically, we use the
‘all-split’ configuration, which merges nothing,
when extracting edit pairs from the labeled data.
In this way, both the target side and the source side
of an edit pair contain at most one token. If the
source side of an edit pair is empty, the edit is cat-
egorized as an insertion error. If the target side of
an edit pair is empty, the edit is categorized as a
deletion error. For the rest of the cases, the edit is
categorized as a replacement error.
Complete figures. We show the insertion and
deletion error pattern for English in Figure 7. The
insertion and deletion error pattern for Chinese is
shown in Figure 8. The replacement error pattern
for English is shown in Figure 9. The replacement
error pattern for Chinese is shown in Figure 10.

A.2 Extracting GED Pseudo-Labels from the
Fixer

The complete correlation between the probability
of producing ŷ(i) and precision of z(i) is shown in
Figure 11.

A.3 Detailed Experimental Settings

Implementation details and training configura-
tion.

We build our fixer using both the fairseq8 and
transformers9 toolkit. Specifically, since the Flan-
T5-xxl model has around 11B parameters, we use
the transformers toolkit with DeepSpeed10 ZeRO-
Offload to build the fixer for English and use the
fairseq toolkit to build the rest of the components.
For English GEC, we use 32 NVIDIA A100 GPUs.
For Chinese GEC, we use 8 NVIDIA A100 GPUs.
The experiments took 14 days for English and 2
days in total for Chinese. We use the default train-
ing configuration under different toolkits unless
otherwise stated. The detailed training configura-
tions for English and Chinese are shown in Table
8 and Table 9, respectively. The best checkpoint
is selected based on the performance on the val-
idation set. Specifically, when building the fixer,
we follow Yasunaga and Liang (2021) to randomly
sample 5,000 sentences from the obtained training

7https://github.com/chrisjbryant/errant
8https://github.com/facebookresearch/fairseq
9https://github.com/huggingface/transformers

10https://github.com/microsoft/DeepSpeed
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sentence pairs as the validation data for both En-
glish and Chinese. When building the critic, we
follow the approach used by Yasunaga et al. (2021)
to randomly select 600 grammatical sentences and
600 ungrammatical sentences from the BEA-2019
dev set and Chinese Lang8 dataset as the validation
set for English and Chinese, respectively.
Hyper-parameter settings. We tune two hyper-
parameters in our system, the edit distance thresh-
old, as mentioned in §3.2.2, and the masking per-
centage, denoted as p%, which is outlined in §3.3.
We select the edit distance threshold from {1, 2,
3, 4, 5} for English GEC and select the the edit
distance threshold from {0, 1, 2} for Chinese. For
both English and Chinese p is selected from {5, 10,
15}. For English, the edit distance threshold 2 and
p equals 5% give the best performance on the vali-
dation set. For Chinese, the edit distance threshold
1 and p% equals 10% give the best performance on
the validation set.
Parameters for synthetic data generation. Table
10 shows the parameter values used when generat-
ing the synthetic data. Note that these values are
set to mimic the error distribution in real erroneous
corpora.

A.4 Experiments on German and Russian
We use German (Falko-MERLIN dataset) and Rus-
sian (RULEC-GEC dataset) to demonstrate our
method’s performance in additional languages.

For both languages, we use mT5-xxl instead of
Flan-T5-xxl as the base model and generate 10
million synthetic sentence pairs by corrupting the
sentences from UN-Corpus v1.0. Following the
setup in Section 4.1 and Section 5.1, we randomly
collect 10 million sentences from the CCMatrix
(Schwenk et al., 2021) corpus, Falko-MERLIN
(Boyd et al., 2014) dataset, and cLang8(Rothe
et al., 2021) dataset for German. For both Falko-
MERLIN dataset and cLang8 dataset, we take the
sentences from the source side (not annotated sen-
tences), which could be grammatical or ungram-
matical. We randomly collect 10 million sentences
from the CCMatrix (Schwenk et al., 2021) cor-
pus, RULEC-GEC (Rozovskaya and Roth, 2019)
dataset, and cLang8 (Rothe et al., 2021) dataset
for Russian. For both RULEC-GEC dataset and
cLang8 dataset, we also take the sentences from
the source side. The results are shown in the Ta-
ble 7. Note that no unsupervised baselines exist in
German and Russian GEC.

System Falko-MERLIN
(P/R/F0.5)

RULEC-GEC
(P/R/F0.5)

Our Unsupervised System
Initial fixer 74.3/50.1/67.8 55.8/22.0/42.6
1st iteration 76.2/64.2/73.4 60.1/27.7/48.7
2nd iteration 76.5/67.8/74.5 60.4/30.1/50.3

Supervised SOTA System
Rothe et al. (2021) -/-/76.0 -/-/51.6
Sorokin (2022) -/-/- 73.7/27.3/55.0

Table 7: Performance (in %) of GEC systems on the
Falko-MERLIN and RULEC-GEC test sets.

Configuration Value
Fixer

Devices 32 NVIDIA A100 GPU
Batch Size per GPU 256
Update Frequency 1

Loss function label smoothed cross entropy
(label-smoothing=0.1)

Model architecture Flan-T5-xxl

Optimizer
Adamw
(β1 = 0.9, β2 = 0.999,
ϵ = 1× 10−8)

Learning rate 2.00× 10−5

Learning rate
scheduler Linear

Warmup 0
Number of epochs 10

Critic
Devices 1 NVIDIA A100 GPU
Batch Size per GPU 10000
Update Frequency 1
Loss function cross entropy
Model architecture RoBERTa-base

Optimizer
Adam
(β1 = 0.9, β2 = 0.98,
ϵ = 1× 10−6)

Learning rate 1.00× 10−5

Learning rate
scheduler Polynomial decay

Warmup 400
Number of epochs 40

Table 8: Experimental configuration on English.



Figure 7: The erroneous token distribution for insertion and deletion errors for English. The tokens in the vocabulary
are ordered by decreasing frequency.

Figure 8: The erroneous token distribution for insertion and deletion errors for Chinese. The tokens in the vocabulary
are ordered by decreasing frequency.

Figure 9: The character-level edit distance between an erroneous token and its corresponding target token for
replacement error for English.



Figure 10: The character-level edit distance between an erroneous token and its corresponding target token for
replacement error for Chinese.

Figure 11: Correlation between the probability of producing ŷ(i) and precision of z(i). Left: English; Right:
Chinese.



Configuration Value
Fixer

Devices 8 NVIDIA A100 GPU
Max tokens per GPU 7000
Update Frequency 1

Loss function label smoothed cross entropy
(label-smoothing=0.1)

Model architecture Chinese BART-large

Optimizer
Adam
(β1 = 0.9, β2 = 0.98,
ϵ = 1× 10−6)

Learning rate 1.00× 10−5

Learning rate
scheduler Polynomial decay

Warmup 0
Number of epochs 15

Critic
Devices 1 NVIDIA A100 GPU
Max tokens per GPU 10000
Update Frequency 1
Loss function cross entropy
Model architecture RoBERTa-wwm-ext

Optimizer
Adam
(β1 = 0.9, β2 = 0.98,
ϵ = 1× 10−8)

Learning rate 1.00× 10−5

Learning rate
scheduler Polynomial decay

Warmup 400
Number of epochs 40

Table 9: Experimental configuration on Chinese.



English Chinese
pdel 0.15 0.15
pins 0.35 0.35
prep 0.50 0.50
error count
distribution multinoulli (0.05, 0.07, 0.25, 0.35, 0.28) multinoulli (0.01, 0.32, 0.29, 0.20, 0.18)

LISTID [5, 10, 40, 80, 200, 500, 1000, 2800] [35, 95, 187, 274, 372, 561, 787, 1176, 1995]

Table 10: Parameters for synthetic data generation.


