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Abstract

Reasoning language models such as DeepSeek-R1 produce long chain-of-thought
traces during inference time which make them costly to deploy at scale. Model
pruning is a model compression technique that aims to reduce the model size by
removing some weights from the model, while maintaining the accuracy in or-
der to obtain more efficient models. We show that using compression techniques
such as standard pruning methods produce large accuracy drop after pruning. To
mitigate this, we introduce a simple, drop-in fix: during pruning we jointly recon-
struct activations from the input and the model’s own chain-of-thought traces via
a layer-wise objective. This “Reasoning-Aware Compression” (RAC) integrates
seamlessly into standard pruning methods such as SparseGPT, and boosts their
performance significantly. We show that under this RAC approach, we can prune
reasoning LLMs to 50% sparsity, while maintaining up to 95% of the original
model’s accuracy on math and coding tasks. Code reproducing the results in the
paper can be found at: https://github.com/RyanLucas3/RAC

1 Introduction

Large Language Models (LLMs) with step-by-step reasoning abilities have become essential for
solving complex, multi-step tasks in domains such as mathematics, coding, and logical reason-
ing [12]. Reasoning models generate explicit intermediate reasoning steps, or Chains-of-Thought
(CoT) that significantly improve accuracy on challenging benchmarks, but at the cost of producing
very long outputs for each query at inference time. For example, the DeepSeek-R1 model (671B pa-
rameters) achieves strong reasoning performance but must output lengthy explanation traces, making
it extremely resource-intensive to deploy at scale [4, 13].

To reduce the cost of serving LLMs, recent years have seen a surge of interest in LLM compression
techniques. Model pruning [5, 7] is a popular model compression technique where the goal is to re-
move redundant weights or neurons from the model, while ensuring the model quality remains high.
This can lead to models with a smaller memory and compute footprint, which can be more resource
efficient. Pruning has been particularly successful when applied to LLMs [3, 8, 11]. Given the com-
putational requirement of reasoning LLMs, model pruning has appeared as an attractive proposition
for efficient reasoning. However, the application of existing pruning methods to reasoning mod-
els can often result in significant accuracy loss [13], limiting the application of such compression
techniques in practice where model quality is of high importance.

In this work, we focus on one-shot pruning of reasoning LLMs (that is, we do not conduct any
retraining after pruning). We propose a new model pruning approach that better preserves the rea-
soning capabilities of LLMs. To this end, our pruning method aims to reduce the error arising from
the model compression by minimizing the reconstruction error of model’s on-policy CoT response,
using a layer-wise objective function. This is in contrast to existing approaches such as [13] that
do not make use of model’s CoT when pruning. Our work demonstrates that by reconstructing the
CoT, reasoning LLMs can be pruned to up to 50% sparsity in one-shot accurately, maintaining up
to 95% of dense model’s accuracy on math and coding tasks. Additionally, our proposed method
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improves math and coding tasks’ accuracy of pruned models by up to 17% compared to existing
pruning approaches.

2 Background

Reasoning models. Conventional LLMs are trained to maximise the conditional likelihood
pθ(y0:L−1 | x) =

∏L−1
t=0 pθ

(
yt | x, y<t

)
of an output sequence y0:L−1 ∈ VL of length L from

the vocabulary V given a prompt x. A reasoning model instead produces:

(c0:T−1, y0:L−1), with c0:T−1 ∈ VT , y0:L−1 ∈ VL,

where c0:T−1 is a chain-of-thought (CoT) of length T and y0:L−1 (hereafter abbreviated simply
as y) is the final answer e.g. a single numeric value, a complete proof, or a code block.1 While a
conventional LLM can also be prompted to produce c0:T−1 before its answer y, reasoning models are
explicitly trained so that its generated chain c0:T−1 outputs a verifiable task reward R

(
x, c0:T−1, y

)
∈

[0, 1] for example, an exact match on a math problem, unit test pass for code, or logical-consistency
checks for formal proofs. This has recently become popularized by the DEEPSEEK-R1 reasoning
model, which is optimized via Group-Relative Policy Optimization (GRPO) [1].

LLM pruning methods. Modern language models contain billions of parameters, so compression
is widely used for reducing GPU memory footprint, inference latency, and energy cost while pre-
serving most of the model’s accuracy. A popular approach to model compression is model pruning
via a layer-wise objective [2]. Suppose a pretrained LLM with L layers is given, with layer weights
Wℓ ∈ Rpℓ×dℓ for ℓ ∈ [L], and dℓ, pℓ denote the input and output sizes of layer ℓ, respectively. We
also let Xℓ ∈ Rdℓ×N denote the input activations to layer ℓ, gathered on a calibration set of N
tokens. Layer-wise LLM pruning methods find compressed weights Ŵℓ by solving, independently
for each layer,

min
Ŵℓ

∥∥WℓXℓ − Ŵℓ Xℓ

∥∥2
2

s.t. ∥Ŵ ∥0 ≤ S (1)

where ∥ · ∥0 denotes the number of non-zero coordinates of a matrix and S is the desired number of
non-zero coordinates. Numerous algorithms have been proposed for Layer-wise pruning of LLMs
via solving (1) [3, 8, 11].

The calibration data. In equation 1,Xℓ is the so-called calibration data, and for LLMs a text corpus
of size N tokens comprises the column dimension of Xℓ. The calibration data is typically chosen to
mimic the general distribution of natural language. As an example, the C4 dataset [9] is a common
choice [3]. For standard LLMs, the calibration data is typically derived from a set of inputs (or
prompts) x. Concretely, let x0:N−1 be a batch of N prompt tokens from the calibration corpus and
let E ∈ Rd×|V| denote the embedding matrix. Define the layer-wise hidden states for each token by:

x
(0)
t = E ext , x

(j)
t = fj

(
x
(j−1)
t

)
, j = 1, . . . , ℓ− 1,

where fj is the jth transformer layer (including attention, MLP, residual connections, etc.), and ext

is the embedding for token t. The states are stacked column-wise to obtain the calibration activation
matrix:

Xℓ =
[
x
(ℓ−1)
0 , x

(ℓ−1)
1 , . . . , x

(ℓ−1)
N−1

]
∈ Rdℓ×N ,

so the t-th token embedding (processed after ℓ− 1 transformer layers) is exactly the vector that will
enter layer ℓ when the dense model processes token xt. This Xℓ is what standard pruning algorithms
use to measure the reconstruction error of the compressed weight matrix Ŵℓ. This makes sense,
since in a standard LLM model we typically have |x|≫|y| (long context, short reply). However, for
reasoning LMs we observe the opposite regime |c0:T−1|+ |y|≫|x|. The model’s CoT will typically
be much longer than the input question (e.g., a math problem).

Pruning of reasoning LLMs Concurrently with our work, Zhang et al. [13] run an extensive
evaluation of compressed DeepSeek-R1 variants. They apply SparseGPT [3] to student models
distilled from Qwen and LLaMA, but follow the default C4-style calibration pipeline (details of the
calibration set are not reported). Their results are similar to what we observe: when using a generic

1See Wei et al. [12] for evidence that even noisy CoT traces boost reasoning accuracy.
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dataset, accuracy on complex reasoning tasks drops sharply with sparsity, chains of thought become
repetitive or degenerate, and longer post-compression outputs correlate with lower task accuracy.
Unlike their empirical study, our reasoning-aware method modifies the calibration distribution itself
injecting on-policy CoT activations, and thereby mitigates the performance loss during pruning.

3 Reasoning-Aware Compression (RAC)

Inference in an autoregressive reasoning model. Let x = (x0, . . . , xTin−1) ∈ VTin be a prompt
to an autoregressive reasoning model, and let πθ denote the dense model’s distribution over the
vocabulary V . At inference the model generates a full sequence:

z0:T =
(
x0, . . . , xTin−1, cTin , . . . , cT

)
,

where P = {0, . . . , Tin − 1} indexes prompt tokens and D = {Tin, . . . , T} indexes the decode
tokens. Each decode token ct is drawn autoregressively:

ct ∼ πθ(· | z0:t−1), t ∈ D.

At each step t ∈ P ∪ D the model computes hidden states:

x
(0)
t = E ezt , x

(ℓ)
t = fℓ

(
{x(ℓ−1)

τ }τ≤t

)
, ℓ = 1, . . . , L,

That is, crucially, to generated the complete sequence, the model relies on the activations that are
computed on the input, but also on activations that arise from its own self-generated tokens. Once
the final hidden state x

(L)
t is computed, it is mapped to vocabulary logits via the output projection

Wout ∈ R|V|×dL given by yt = Wout x
(L)
t ∈ R|V|. which gives the next token distribution πθ(· |

z0:t) = softmax(yt).

Aligning compression with decoding during offline calibration. Suppose we have M calibra-
tion prompts {x(m)}Mm=1, with corresponding prompt index sets Pm and decode index sets Dm.
Standard post-training pruning collects activations only for t ∈ Pm, i.e. from fixed prompt tokens.
In reasoning tasks, however, |Dm| ≫ |Pm|, so ignoring decode-time activations misses the majority
of inference computation. RAC modifies calibration by self-generating tokens during calibration to
simulate decode activations. At each step t ∈ Dm, the model’s own prediction is re-used as the next
input:

z
(m)
t+1 ∼ πθ(· | z(m)

0:t ), πθ(· | z(m)
0:t ) = softmax

(
Wout x

(L,m)
t

)
.

The embedding and hidden states for this token are then computed:

x
(0,m)
t+1 = E e

z
(m)
t+1

, x
(ℓ,m)
t+1 = fℓ

(
{x(ℓ−1,m)

τ }τ≤t+1

)
, ℓ = 1, . . . , L.

The resulting layer-ℓ inputs are appended to the decode activation matrix XD
ℓ ←

[
XD

ℓ x
(ℓ−1,m)
t+1

]
.

After all steps, the final calibration matrix concatenates prompt and decode activations XRAC
ℓ =[

XP
ℓ XD

ℓ

]
∈ Rdℓ×(NP+ND). Pruning is then performed by minimizing, for each layer ℓ,

∥(Wℓ − Ŵℓ)X
RAC
ℓ ∥2F =

M∑
m=1

∑
t∈Pm∪Dm

∥(Wℓ − Ŵℓ)x
(ℓ−1,m)
t ∥22.

4 Experiments

Experimental Setup. To test the effectiveness of reasoning-aware compression, we perform
one-shot pruning on several open-source Qwen architectures (1.5B, 7B, 14B) which have been
distilled from the DeepSeek-R1 model. Each model is pruned in one-shot with SparseGPT at
layer-wise unstructured sparsity of 20%, 30%, 40% and 50% using 1M calibration tokens from:
(i) the standard English–web C4 corpus, (ii) OPEN-R1-MATH-220K [6] or CODEFORCES [10]
problem statements without answers or reasoning traces (”prompt only”) and (iii) those prompts
augmented with up to Tmax = 8192 on–policy CoT tokens collected from each corresponding
dense model (”RAC”). For all three calibration settings (C4, prompt-only, and RAC), we fix the
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calibration budget to 1M tokens, ensuring a fair comparison that avoids the confounder of RAC
simply benefiting from more tokens due to decoding.

For mathematical reasoning we use MATH500 and report acc@1:1: the percentage of problems for
which the model’s single most-confident prediction exactly matches the ground-truth answer (Top-1
accuracy). For code generation we use the CodeGen evaluation harness and report acc@1:16, i.e.,
the percentage of cases in which the correct solution appears anywhere within the model’s top-16
predictions, irrespective of rank (Top-16 accuracy). All evaluations are zero-shot with no additional
few-shot examples, and a 32k output token budget. This closely follows the evaluation pipeline used
by DeepSeek [1] and the open-source replication of the DeepSeek pipeline from [6].

Table 1: Comparison of pruning approaches when applied to DeepSeek-R1 distilled models, across
various sparsity levels. Accuracy with standard error (SE). Best accuracy per row in green.

Model Sparsity
Math500 acc@1:1 codegen pass@1:16

C4 Prompt only RAC C4 Prompt only RAC

1.5B

Dense 0.832 0.832 0.832 0.161 0.161 0.161
20% 0.822 (0.017) 0.840 (0.016) 0.832 (0.017) 0.148 (0.018) 0.156 (0.019) 0.155 (0.018)
30% 0.762 (0.019) 0.788 (0.018) 0.822 (0.017) 0.127 (0.017) 0.138 (0.018) 0.150 (0.018)
40% 0.658 (0.021) 0.728 (0.020) 0.774 (0.019) 0.066 (0.011) 0.086 (0.013) 0.129 (0.017)
50% 0.356 (0.021) 0.496 (0.022) 0.664 (0.021) 0.004 (0.002) 0.024 (0.006) 0.093 (0.014)

7B

Dense 0.936 0.936 0.936 0.374 0.374 0.374
20% 0.902 (0.013) 0.928 (0.012) 0.934 (0.011) 0.362 (0.025) 0.367 (0.025) 0.364 (0.025)
30% 0.904 (0.013) 0.922 (0.012) 0.934 (0.011) 0.335 (0.025) 0.341 (0.025) 0.361 (0.025)
40% 0.890 (0.014) 0.898 (0.014) 0.912 (0.013) 0.273 (0.023) 0.300 (0.024) 0.333 (0.024)
50% 0.744 (0.020) 0.812 (0.017) 0.900 (0.013) 0.099 (0.014) 0.228 (0.021) 0.283 (0.023)

14B

Dense 0.941 0.941 0.941 0.513 0.513 0.513
20% 0.952 (0.010) 0.954 (0.009) 0.962 (0.009) 0.508 (0.027) 0.508 (0.027) 0.508 (0.027)
30% 0.936 (0.011) 0.930 (0.011) 0.936 (0.011) 0.491 (0.027) 0.496 (0.027) 0.496 (0.027)
40% 0.910 (0.013) 0.928 (0.012) 0.942 (0.010) 0.447 (0.026) 0.471 (0.027) 0.480 (0.027)
50% 0.878 (0.015) 0.880 (0.015) 0.910 (0.013) 0.319 (0.024) 0.385 (0.026) 0.424 (0.026)

Discussion of pruning results. Table 1 presents the accuracy@1:1 results (exact match accuracy)
for mathematical reasoning tasks on the Math500 benchmark across different model sizes and spar-
sity levels. The results demonstrate that RAC consistently outperforms both baseline calibration
methods, particularly at higher sparsity levels where standard compression techniques cause severe
performance loss. At 50% sparsity on the 1.5B parameter model, RAC achieves 66.4% accuracy
compared to only 35.6% with standard C4 calibration. Similarly, for the 7B model at 50% sparsity,
RAC maintains 90.0% accuracy while C4 calibration drops to 74.4%. The improvements are less
pronounced at lower sparsity levels, with all methods performing similarly to the dense model at
20% sparsity, suggesting that the benefits of reasoning-aware calibration become more pronounced
as compression becomes more aggressive.

Additionally, Table 1 shows the pass@1:16 results for code generation tasks on LiveCodeBench,
where the metric represents whether the correct solution appears anywhere within the model’s top-
16 predictions. The pattern observed here mirrors the mathematical reasoning results, with RAC
providing the largest performance gains at high sparsity levels. However, code generation tasks ap-
pear to be even more sensitive to compression than mathematical reasoning. Across both tasks, the
effectiveness of RAC scales directly with sparsity, becoming more beneficial as pruning becomes
more aggressive. Even the approach of using task-specific prompts without chain-of-thought traces
(prompt-only calibration) consistently outperforms generic C4 calibration, indicating that domain-
relevant calibration data matters significantly for reasoning tasks. However, the full RAC approach
that incorporates complete reasoning traces provides additional substantial benefits beyond task-
specific prompts alone. Finally, larger models demonstrate greater robustness to compression across
all methods, with the 14B model maintaining higher performance at equivalent sparsity levels com-
pared to the smaller variants, though RAC still provides meaningful improvements for these models.
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