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Abstract
Low-rank adaptation (LoRA) has become a stan-
dard approach for fine-tuning large foundation
models. However, our theoretical understand-
ing of LoRA remains limited as prior analyses
of LoRA’s training dynamics either rely on lin-
earization arguments or consider highly simpli-
fied setups. In this work, we analyze the LoRA
loss landscape without such restrictive assump-
tions. We define two regimes: a “special regime”,
which includes idealized setups where lineariza-
tion arguments hold, and a “generic regime” rep-
resenting more realistic setups where linearization
arguments do not hold. In the generic regime, we
show that LoRA training converges to a global
minimizer with low rank and small magnitude, or
a qualitatively distinct solution with high rank and
large magnitude. Finally, we argue that the zero-
initialization and weight decay in LoRA training
induce an implicit bias toward the low-rank, small-
magnitude region of the parameter space—where
global minima lie—thus shedding light on why
LoRA training usually succeeds in finding global
minima.

1. Introduction
With the recent explosive trend of scale, fine-tuning a pre-
trained foundational model to target downstream tasks has
become a dominant approach to deep learning. Low-rank
adaptation (LoRA) (Hu et al., 2022) is a parameter-efficient
fine-tuning method freezing the pre-trained weight matrix
W0 ∈ Rm×n, and training a low-rank update X = AB⊺ to
it using

W = W0 +X = W0 +AB⊺,
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Figure 1: In LoRA fine-tuning, under the assumption that
the global minimum X⋆ has low rank and small magnitude,
we show that spurious local minima Xspurious may exist, but
they have high rank and large magnitude.

where r ≪ min(m,n), A ∈ Rm×r and B ∈ Rn×r. The
low-rank factor matrices A and B are respectively initialized
as a random Gaussian matrix and a zero matrix, leading to
X = 0 at initialization. By training fewer parameters, LoRA
fine-tuning significantly reduces memory usage, making
fine-tuning feasible on GPUs with limited GPU memory.

The broad use of LoRA has spurred theoretical works aimed
at understanding its effectiveness. One line of work fo-
cuses on analyzing LoRA’s training dynamics, exploring
why optimizers like SGD or Adam successfully find effec-
tive low-rank updates despite the significant non-convexity
introduced by the factorization X = AB⊺, as well as the in-
herent non-convexity of neural networks, by utilizing some
degree of linearization. Specifically, Malladi et al. (2023)
studies LoRA under a complete linearization, effectively
holding A fixed during fine-tuning and viewing the train-
ing as a convex optimization problem. A subsequent work
(Jang et al., 2024) presents a more refined analysis lineariz-
ing with respect to the product X = AB⊺, retaining the
non-convexity arising from the interaction between A and B.
Beyond linearization, Dayi & Chen (2024) analyzes a two-
layer teacher-student setup for rank-1 LoRA. In this work,
we carry out a theoretical analysis without any linearizations
and any restriction on layers or LoRA rank.
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Contribution. We analyze the loss landscape of LoRA
fine-tuning and show that in the “generic regime”, a more
practical setup where linearization arguments do not hold, a
local minimizer is either (i) a global minimizer with small
rank and small magnitude or (ii) a spurious local minimizer
with high rank and large magnitude. We further argue that
the zero-initialization and weight decay in LoRA training in-
duce an implicit bias toward the low-rank, small-magnitude
region of the parameter space, where global minima lie.
Altogether, we shed light on why practical LoRA training
effectively converges to global minima.

Our key assumptions, formally defined and justified in Sec-
tion 2, are the existence of a low-rank global minimizer for
full fine-tuning, restricted strong convexity, and restricted
smoothness. Notably, our analysis does not rely on any
linearization arguments, making it more applicable to
practical fine-tuning setups compared to prior work.

1.1. Prior works

PEFT methods and LoRA Parameter-Efficient Fine-
tuning (PEFT) methods have emerged as effective ap-
proaches for fine-tuning large language models on down-
stream tasks while reducing computational and storage re-
quirements. Among numerous proposed methods (Ben Za-
ken et al., 2022; Li & Liang, 2021; Lester et al., 2021), Low-
Rank Adaptation (LoRA) (Hu et al., 2022) has become a
predominant approach by decomposing weight updates into
low-rank matrices. Several variants such as LoRA+ (Hayou
et al., 2024), rsLoRA (Kalajdzievski, 2023), PiSSA (Meng
et al., 2024), and MiLoRA (Wang et al., 2025) have been
built upon the LoRA framework, addressing the discrepancy
with full fine-tuning in optimization and performance.

Theoretical foundation of LoRA. Existing theoretical
works on LoRA focus on the expressive power and the
training dynamics of LoRA. Zeng & Lee (2024) demon-
strates that a certain LoRA rank suffices to express a given
fine-tuning function. Jang et al. (2024) proves that under
the NTK regime, LoRA with rank Ω(

√
N) can express the

global minimizer of the original model. Malladi et al. (2023)
argues that the LoRA fine-tuning dynamics are nearly equiv-
alent to the kernel regression. Under this framework, Jang
et al. (2024) proves LoRA fine tuning loss has no spurious
local minima when the rank is O(

√
N). Beyond the kernel

regime, Dayi & Chen (2024) analyzes a two-layer teacher-
student setup for LoRA and explains why SGD leads to
convergence to a global minimum in this context. Zhang
et al. (2025) also identifies the training dynamics in a 2-layer
setup, proving LoRA will align to a singular subspace of
one-step gradient of full fine-tuning.

Low-rank optimization. The low-rank optimization prob-
lem

min
X∈Rm×n, rank(X)≤r

f(X)

has been extensively studied in the optimization literature,
including matrix sensing (Recht et al., 2010) and matrix
completion (Candès & Recht, 2012). Rather than directly
optimizing over the space of low-rank matrices, it is often
preferred to employ the Burer-Monteiro factorization (Bu-
rer & Monteiro, 2003), which formulates the problem by
parameterizing X as X = UV ⊺, U ∈ Rm×r, V ∈ Rn×r.

As the Burer-Monteiro factorization introduces nonconvex-
ity, a large body of work has identified conditions under
which this approach avoids spurious local minima (Bhojana-
palli et al., 2016; Ge et al., 2017; Park et al., 2017; Zhang,
2021). Further studies extend these results to general set-
tings (Ha et al., 2020; Zhang, 2024). In our work, we utilize
the framework established in these studies with novel tech-
niques to extend its boundary to optimization guarantees in
LoRA training.

1.2. Notation and preliminaries

Matrix notation. For X ∈ Rm×n, denote its singular
values as σ1(X) ≥ σ2(X) ≥ · · · ≥ σr(X) ≥ 0. For matri-
ces A and B, let ∥A∥2 = σ1(A) denote the spectral norm,
∥A∥∗ =

∑
σi(A) the nuclear norm, ∥A∥F =

√∑
σi(A)2

the Frobenius norm, and ⟨A,B⟩ = tr(A⊺B) the matrix in-
ner product. For a tuple of matrices A = (A(1), . . . , A(L)),
denote ∥A∥ =

∑L
l=1 ∥A(l)∥ for any matrix norm ∥ · ∥ and

rank(A) = max1≤l≤L rank(A(l)).

Neural network. Let f(· ; ·) : P × X → RK be a neural
network where P is the parameter space, X is the data space,
and RK is the output space. Assume the model is pre-trained
to Θ0 ∈ P , i.e., the pre-trained model is f(Θ0; ·).

Fine-tuning loss. Let W0 = (W
(1)
0 , . . . ,W

(L)
0 ) ⊂ Θ0

be the pre-trained value of the weights W that we choose
to fine-tune. We wish to fine-tune the pre-trained model
f(Θ0; ·) on a downstream task with data distribution
(x, y) ∼ D. With slight abuse of notation, write f(W ; ·)
to denote f(Θ ; ·), where all parameters of Θ excluding W
are fixed to their corresponding values in Θ0. Let

X = (X(1), . . . , X(L))

be the change of W during the (full) fine-tuning. The true
objective one hopes to minimize is

Lfull(X) = E(x,y)∼D [ℓ(f(W0 +X;x), y)]

with some loss function ℓ(·, ·). We assume ℓ(x, y) is non-
negative and twice-differentiable with respect to x for any y.
In practice, we have access to a finite dataset {(xi, yi)}Ni=1,
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so we minimize the empirical risk

L̂full(X) =
1

N

N∑
i=1

ℓ(f(W0 +X;xi), yi).

LoRA. Low-rank adaptation (LoRA) uses a rank-r param-
eterization for each update matrix

X(l) = A(l)(B(l))⊺ ∈ Rml×nl

with A(l) ∈ Rml×r and B(l) ∈ Rnl×r for l = 1, . . . , L.
Denote

A = (A(1), . . . , A(L)), B = (B(1), . . . , B(L))

and

AB⊺ =
(
A(1)(B(1))⊺, . . . , A(L)(B(L))⊺

)
.

Under this parametrization, we define the empirical LoRA
risk as

L̂lora(A,B) ≜ L̂full(AB⊺)

We adopt the standard initialization (Hu et al., 2022), re-
spectively initializing each A and B as a random gaussian
and zero, leading to AB⊺ = 0 at initialization.

Second-order stationary points. Let L : Rn → R be
twice-continuously differentiable. We say X ∈ Rn is a
(first-order) stationary point if

∇L(X) = 0.

We say X ∈ Rn is a second-order stationary point (SOSP)
if

∇L(X) = 0, ∇2L(X)[U,U ] ≥ 0,

for any U ∈ Rn. Lastly, we say X ∈ Rn is a local minimum
if there exists an open ball B that contains X and

L(X) ≤ L(X ′)

for any X ′ ∈ B. It follows that a local minimum is an SOSP.
If a local minimum is not a global minimum, we say it is a
spurious local minimum.

Prior works have established that stochastic gradient de-
scent applied to twice-continuously differentiable functions
(regardless of convexity) roughly converges to SOSPs.

Theorem (Theorem 4.1 of Lee et al. (2016)). Gradient
descent on twice-differentiable functions with random ini-
tialization, almost surely, does not converge to strict saddle
points. I.e.,if gradient descent converges, it converges to an
SOSP, almost surely.

Theorem (Informal, Theorem 1 of Ge et al. (2015)).
Stochastic gradient descent with noise on twice-
differentiable strict saddle functions (i.e., every stationary
point is either a local minimum or a strict saddle) does
not converge to strict saddle points with high probability.
I.e., if stochastic gradient descent with noise converges, it
converges to an SOSP with high probability.

In the context of our work, the implication is that LoRA
training converges to SOSPs. The question we address is
whether such SOSPs are global minima or whether it is
possible to converge to a bad local minimum.

1.3. Weight decay and nuclear norm regularization

Let λ ≥ 0 and

L̂lora
λ (A,B) ≜ L̂lora(A,B) +

λ

2

(
∥A∥2F + ∥B∥2F

)
.

Practical LoRA training typically employs weight decay
(Hu et al., 2022; Dettmers et al., 2023) and applying SGD
with weight decay on L̂lora is equivalent to minimizing
L̂lora
λ without weight decay. In other words, the effect of

weight decay is equivalent to adding ℓ2-regaularization. Let

L̂full
λ (X) ≜ L̂full(X) + λ ∥X∥⋆ .

From the prior literature on low-rank matrix sensing
and Burer–Monterio factorizations (Recht et al., 2010,
Lemma 5.1), it is known that minimizing this ℓ2-regularized
problem in A and B is mathematically equivalent to min-
imizing the nuclear-norm regularized loss in the product
X = AB⊺ subject to a rank constraint. In other words

minimize
A,B

L̂lora
λ (A,B) ⇔

minimize
X

L̂full
λ (X)

subject to rank(X) ≤ r

When using LoRA, we hope to match the performance of
full fine-tuning. We expect this to be feasible if the full fine-
tuning problem (with nuclear norm regularization) admits a
global minimizer whose rank is at most r, since the LoRA
update AB⊺ cannot represent updates of rank larger than r.
Therefore, as we discuss further in Section 2.1, we conduct
our analysis under the assumption that L̂full

λ has a low-rank
global minimizer.

Nuclear norm regularization. Nuclear norm regulariza-
tion is a popular technique that promotes low-rank solutions
in matrix optimization. As the convex envelope of the rank
function on the unit ball (Fazel et al., 2001), the nuclear
norm penalty provides a tractable alternative to directly min-
imizing rank. Its effectiveness in yielding low-rank solutions
has been demonstrated both theoretically and empirically
across various fields, including matrix sensing (Recht et al.,
2010), computer vision (Cabral et al., 2013), nonconvex
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Table 1: Global minimizer rank rank(X⋆) as a function of
weight decay value λ.

SST2 Max Rank 749 107 5 3 1

λ 0.0 0.001 0.005 0.01 0.1

CIFAR100 Max Rank 752 23 12 4 1

λ 0.0 0.0005 0.001 0.003 0.005

optimization (Hu et al., 2021), deep learning (Kobayashi
et al., 2024), and LoRA (Jang et al., 2024). Collectively,
these prior results make the assumption that L̂full

λ admits a
low-rank minimizer more natural.

2. Main assumptions
In this section, we define and quickly justify the main as-
sumptions used in our analyses of Section 3.

2.1. Existence of a low-rank minimizer

Throughout our analysis, we assume that there exists a
rank r⋆ global minimizer of full fine-tuning loss L̂full

λ and
that our LoRA module uses rank r ≥ r⋆.

We argue that there is sufficient conceptual and experimen-
tal justification supporting the assumption. Initially, LoRA
(Hu et al., 2022) was proposed based on the insight that
learned over-parameterized models lie in a low intrinsic
dimension (Li et al., 2018; Aghajanyan et al., 2021), mak-
ing them amenable to low-rank updates during fine-tuning.
Moreover, as discussed in Section 1.3, training LoRA with
weight decay is equivalent to nuclear norm regularization in
full fine-tuning, thereby strongly biasing the solution toward
low rank. As shown in Table 1 and further discussed in Sec-
tion 4, we experimentally verify the low-rank assumption
in a few setups. Finally, the extensive empirical literature
demonstrating the success of LoRA with small rank r fur-
ther justifies this assumption.

Nevertheless, it may sometimes be more realistic to assume
that the global minimizer of full fine-tuning is only approxi-
mately low rank. We address this issue in Section 3.3, where
we generalize the analysis to the case where the global min-
imizer of full fine-tuning is not exactly low rank.

2.2. Restricted strong convexity and smoothness

Our analyses also rely on the assumptions of restricted
smoothness and restricted strong convexity, which are
weaker assumptions compared to the smoothness and strong
convexity assumptions commonly used in optimization.

We say a twice-differentiable function f : Rm×n → R is
(α, r,D)-restricted strongly convex about X⋆ if

⟨∇f(X)−∇f(X⋆), X −X⋆⟩ ≥ α∥X −X⋆∥2F .

for any X ∈ Rm×n such that ∥X − X⋆∥F ≤ D and
rank(X) ≤ r. We denote the largest α such that f
is (α, r,D)-restricted strongly convex about X⋆ as the
(r,D)-RSC constant of f about X⋆.

We say a twice-differentiable function f : Rm×n → R is
(β, r,D)-restricted smooth about X⋆ if

∇2f(X)[UX +XV,UX +XV ] ≤ β∥UX +XV ∥2F

for any [X ∈ Rm×n such that ∥X − X⋆∥F ≤ D and
rank(X) ≤ r], [U ∈ Rm×m such that ∥U∥F = ∥V ∥F =
1] and rank(U) = 1], and [V ∈ Rn×n such that ∥V ∥F = 1
and rank(U) = rank(V ) = 1]. We denote the small-
est β such that f is (β, r,D)-restricted smooth about
X⋆ (or β = ∞ if there is no such finite value) as the
(r,D)-RSM constant of f about X⋆.

In this work, we consider the case where α > 0 and
β < ∞. Although deep learning objectives are typically
neither strongly convex nor have small smoothness con-
stants, the restricted notions of strong convexity and smooth-
ness are valid in many practical fine-tuning scenarios as
we empirically demonstrate in Section 4. Finally, this
current definition treats f as a function of a single ma-
trix X . In Section 3.2, we generalize the definitions to
X = (X(1), X(2), . . . , X(L)) with multiple matrices.

3. Spurious Local minima of LoRA
In this section, we analyze the loss landscape of LoRA fine-
tuning and show that in the “generic regime”, a second-order
stationary point (SOSP) is either (i) a global minimizer with
small rank and small magnitude or (ii) a spurious solution
with high rank and large magnitude.

Section 3.1 starts by presenting the result in the simpler
setup of fine-tuning a single matrix when a low-rank global
minimizer exists. Section 3.2 extends the result to the setup
of fine-tuning multiple matrices. Section 3.3 extends the
theory to work when an approximately low-rank global min-
imizer exists. The extensions of Sections 3.2 and 3.3 slightly
complicate the notation, but the qualitative conclusion is
maintained. In Section 3.4, we discuss why first-order op-
timizers with zero-initialization and weight decay, are un-
likely to converge to the spurious local minimizers.

3.1. LoRA converges to a global minimizer or fails loudly

We now state our main result.

Theorem 1. Let λ ≥ 0. Assume the full fine-tuning loss
L̂full
λ has a rank-r⋆ global minimizer X⋆. Respectively

denote the (r,D)-RSC and (r,D)-RSM constants of L̂full

about X⋆ as α and β. Assume α > 0 and β < ∞. Assume
we use a LoRA module with rank r ≥ r⋆. Then, every SOSP
(A,B) of L̂lora

λ with X□ = AB⊺ and ∥X□ −X⋆∥F ≤ D
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satisfies the following.

1. If 2α > β (special regime), X□ is a global minimum.

2. If 2α ≤ β (generic regime), one of the following holds.

(i) X□ is a global minimum.
(ii) X□ is not a global minimum, rank(X□) = r with

σr(X□) ≥ 2α
β σr⋆(X□), and

∥X□ −X⋆∥2F ≥ ∥X□ −Πrank≤r⋆(X□)∥2F
1− 2ασr⋆

βσr

,

where Πrank≤r⋆(X□) is the projection of X□

onto the set of matrices of rank r⋆ or less.

To clarify, when we say X□ is or is not a global minimum,
it is with respect to L̂full

λ .

We denote 2α > β as the special regime, as the loss objec-
tive should be very well-conditioned to fall in this regime.
Most practical setups would fall into the generic regime
with β ≥ 2α, thereby being the regime of primary interest.

The global minimizer X⋆ of the full fine-tuning loss L̂full
λ is

assumed to be low rank, and we intuitively understand that
X⋆ should have small magnitude since we are fine-tuning.
Theorem 1 states that in the generic regime, there may be
additional spurious local minima, but those will have high
rank and will be far away from the global minimizer X⋆.

The following corollary restates Theorem 1 in an alternate
form that clarifies its main conclusions.

Corollary 1. Consider the setup in Theorem 1. Further
assume the strict inequality r > r⋆. Let (A,B) be a SOSP
of L̂lora

λ with X□ = AB⊺ and ∥X□ −X⋆∥F ≤ D. Then,

(i) If σr(X□) ≤ 2α
β σr⋆(X□), then X□ is a global mini-

mizer.

(ii) If σr(X□) >
2α
β σr⋆(X□), then X□ is a spurious solu-

tion, and further X□ has large magnitude with

∥X□∥F ≥

√√√√∑r
s=r⋆+1 σ

2
s(X□)

1− 2ασr⋆

βσr

− ∥X⋆∥F .

LoRA training converges to a global minimizer or fails
loudly. As discussed in Section 1.2, Lee et al. (2016) and
Ge et al. (2015) imply that LoRA fine-tuning with SGD
converges to a SOSP. In Section 3.4, we argue why it is
likely that the SOSP we converge to is a global minimizer.

However, if LoRA fine-tuning does converge to a spuri-
ous solution, its high rank and large magnitude would be

noticeable, and, as the experiments in Section 4 show, gener-
alization will be poor. In this sense, we describe this mode
of failure to be “failing loudly.”

Relation to prior work. Interestingly, Theorem 1 com-
pletely includes the prior loss landscape analysis of (Jang
et al., 2024), which considers a linearized loss in the NTK
regime with an ε-perturbation. This perturbation ensures
2α = 2ε > β = ε, placing the loss objective in the special
regime. Then, with Theorem 1, we conclude that any SOSP
is a global minimum.

3.1.1. PROOF OUTLINE OF THEOREM 1

Our proof technique takes inspiration from the low-rank
optimization literature. In fact, the analysis in the special
regime 2α ≥ β naturally extends results from matrix sens-
ing (Zhu et al., 2018; Ha et al., 2020). On the other hand,
the analysis on the generic regime 2α < β is a novel re-
sult of ours. In the matrix sensing setting, showing that
local minimizers near the solution are global minimizers has
limited meaning since there is not a good estimate of the
global minimizer, so such results were not pursued. On the
other hand, in the LoRA fine-tuning setup, 0, the pre-trained
baseline, is a good estimate of the global minimizer.

We defer the full proof of Theorem 1 to Appendix A,
providing a brief outline here. For notational simplicity,
write f(X) = L̂full(X) and g(A,B) = L̂lora(A,B), and
X = X□. (So X is assumed to be an SOSP.) Denote the
compact SVD of X as LXΣXR⊺

X , and σi, ui, vi as the i-th
(largest) singular value of X and the corresponding singu-
lar vectors. From the first and second-order optimality of
g(A,B), we acquire the following properties:

1. 0 = ∇Ag(A,B) = ∇f(X) ·B + λA

2. 0 = ∇Bg(A,B) = ∇f(X)⊺ ·A+ λB

3. ∇2g(A,B)[(U, V ), (U, V )] = 2⟨∇f(X), UV ⊺⟩ +

∇2f(X)[AV ⊺ + UB⊺, AV ⊺ + UB⊺] + λ(∥U∥2F +

∥V ∥2F ) ≥ 0 for any (U, V ).

Properties 1 and 2 imply ∇f(X) can be represented as

∇f(X) = −λLXR⊺
X + S, L⊺

XS = SRX = 0 (1)

for some matrix S. Furthermore, plugging in (U, V ) =
(−u⋆u

⊺
rA, v⋆v

⊺
rB) into property 3 and using the β-

restricted smoothness of f , where (u⋆, v⋆) are the top sin-
gular vectors of S, we find

∥S∥2 ≤ λ+ βσr. (2)

From (1), (2) we can induce there exists a subgradient g ∈
∂(λ∥X∥∗) such that ∥g +∇f(X)∥2 ≤ βσr.
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Denoting Z = g +∇f(X) and κ =
σr⋆

βσr
, we see ∥κZ∥ ≤

σr⋆ and therefore the top r⋆ singular vectors of X − κZ
coincide with those of X . Thus, by the Eckart–Young–
Mirsky Theorem, we have

Πrank≤r⋆(X) ∈ argmin
rank(Y )≤r⋆

∥Y − (X − κZ)∥2F .

Since rank(X⋆) = r⋆,

∥Xr⋆ −X + κZ∥2F ≤ κX∥X⋆ −X + κZ∥2F
which is again equivalent to

∥Xr⋆ −X∥2F ≤ ∥X⋆ −X∥2F + 2κ⟨X⋆ −X,Z⟩

Now α-restricted convexity at X⋆ implies

⟨X −X⋆,∇f(X)−∇f(X⋆)⟩ ≥ α ∥X −X⋆∥2F
By the global optimality of X⋆, from Mordukhovich & Shao
(1995, Theorem 3.1) we have −∇f(X⋆) ∈ ∂(λ∥X⋆∥∗) and
thus the subgradient property implies

⟨X⋆, g − (−∇f(X⋆))⟩ ≥ 0

Summing up the three inequalities, we have

(2κα− 1)∥X⋆ −X∥2F + ∥Xr⋆ −X∥2F ≤ 0

Therefore when 2κα > 1, X⋆ = X , and when 2κα < 1 the
inequality of the theorem holds.

3.2. Extension to fine-tuning multiple matrices

For the sake of notational convenience, Theorem 1 was
stated for the case of fine-tuning a single weight matrix.
In this section, we generalize the result to the case of fine-
tuning multiple matrices.

First, we extend the definition of restricted smoothness and
strong convexity to the multiple matrix case.

Let f : Rm1×n1 × · · · × RmL×nL → R be twice dif-
ferentiable. Let X = (X(1), X(2), . . . , X(L)), α =
(α(1), . . . , α(L)), and β = (β(1), . . . , β(L)).

We say f is (α, r,D)-restricted strongly convex about X⋆

if for each 1 ≤ l ≤ L,

⟨∇lf(X⋆)−∇lf(X), X(l)−X
(l)
⋆ ⟩ ≥ α(l)∥X(l)−X⋆

(l)∥2F .

for any X such that ∥X − X⋆∥F ≤ D. We denote the
tuple α of the largest α(l)s such that f is (α, r,D)-restricted
strongly convex about X⋆ as the (r,D)-RSC constant of f
about X⋆.

We say a twice-differentiable function f : Rm×n → R is
(β, r,D)-restricted smooth about X⋆ if for each 1 ≤ l ≤ L,

∇2
l,lf(X)[UX(l) +X(l)V, UX(l) +X(l)V ]

≤ β(l)∥UX(l) +X(l)V ∥2F

for any X such that ∥X−X⋆∥F ≤ D, U ∈ Rml×ml such
that rank(U) = 1 and ∥U∥F = 1 , V ∈ Rnl×nl such that
rank(V ) = 1 and ∥V ∥F = 1. We denote the tuple β of
the largest β(l) such that f is (β, r,D)-restricted strongly
convex about X⋆ as the (r,D)-RSM constant of f about
X⋆. Here ∇l,∇2

l,l refers to the gradient and Hessian respect
to the lth matrix X(l).

Next, under this extended notion of restricted smoothness
and convexity, we present the natural extension of Theo-
rem 1 below. The proof follows the same reasoning as in
Theorem 1 and is detailed in Appendix A

Theorem 2. Let λ ≥ 0. Assume the full fine-
tuning loss L̂full

λ has a rank-r⋆ global minimizer X⋆ =

(X
(1)
⋆ , . . . , X

(L)
⋆ ). Respectively denote the (r,D)-RSC

and (r,D)-RSM constants of L̂full about X⋆ as α =
(α(1), . . . , α(L)) and β = (β(1), . . . , β(L)). Assume
α(1), . . . , α(L) > 0 and β(1), . . . , β(L) < ∞. Assume we
use LoRA modules all with rank r ≥ r⋆. Then, every SOSP
(A,B) of L̂λ with X□ = AB⊺ and ∥X□ − X⋆∥F ≤ D
satisfies the following.

1. If 2α(l) ≥ β(l) for all l = 1, . . . , L (special regime),
X□ is a global minimum

2. If 2α(l) < β(l) for some l = 1, . . . , L (generic regime),
one of the following holds.

(i) X□ is a global minimum.

(ii) X□ is not a global minimum, X(l)
□ is exactly rank

r with σr(X
(l)
□ ) > 2α(l)

β(l) σr⋆(X
(l)
□ ) and

∥∥X(l)
□ −X

(l)
⋆

∥∥2
F
≥

∥∥X(l)
□ −Πrank≤r⋆(X

(l)
□ )

∥∥2
F

1− 2α(l)σr⋆

β(l)σr

for some l = 1, . . . , L, where Πrank≤r⋆(X
(l)
□ ) is

the projection of X(l)
□ onto the set of matrices of

rank r⋆ or less.

To clarify, when we say X□ is or is not a global minimum,
it is with respect to L̂full

λ .

3.3. Extension to approximately low-rank minimizers

In Sections 3.1 and 3.2, we assumed the nuclear-norm regu-
larized full fine-tuning loss L̂full

λ has a low-rank minimizer,
but this assumption may be unrealistic especially when the
weight-decay parameter λ is too small. In this section, we
relax this assumption and consider the case where L̂full

λ has
an approximately low-rank minimizer. As in Section 3.1,
we present here the result for the single matrix case. In
Appendix A, we provide a ‘Master Theorem’ that combines
the generalizations of Theorems 2 and 3.

6



LoRA Training Provably Converges to a Low-Rank Global Minimum or Fails Loudly

We say X
(δ)
⋆ is a δ-global minimizer of full fine-tuning if

∥X(δ)
⋆ −X⋆∥F ≤ δ

for some X⋆ that exactly minimizes L̂full.

Theorem 3. Let ε > 0 and λ ≥ 0. Assume the full fine-
tuning loss L̂full

λ has a rank-r⋆ δ-global minimizer X(δ)
⋆ with

δ = o(ε3). Respectively denote the (r,D)-RSC and (r,D)-
RSM constants of L̂full about X⋆ as α and β. Assume 0 < α
and β < ∞. Assume we use a LoRA module with rank
r ≥ r⋆. Then, every SOSP (A,B) of L̂lora

λ with X□ = AB⊺

and ∥X□ −X⋆∥F ≤ D satisfies the following.

1. If 2α ≥ β(1 + ε) (special regime), X□ is an ε-global
minimizer.

2. If 2α < β(1+ε) (generic regime), one of the following
holds.

(i) X□ is an ε-global minimizer.
(ii) X□ is not an ε-global minimizer, X□

is exactly rank r with σr(X□) ≥
max{ 2α

β(1+ε)σr⋆(X□),
α

2β
√
r
· ε}, and either

σr(X□) ≤
2α

β
σr⋆(X□)

or

∥X□ −X⋆∥F ≥

√√√√∥∥X□ −Πrank≤r⋆(X□)
∥∥2
F
− ε3

1− 2ασr⋆

βσr

−ε2

where Πrank≤r⋆(X□) is the projection of X□

onto the set of matrices of rank r⋆ or less.

To clarify, when we say X□ is or is not an ε-global minimizer,
it is with respect to L̂full

λ .

3.4. LoRA training probably won’t fail; it probably
won’t converge to spurious local minima

In the analysis of Section 3.1 and its subsequent generaliza-
tions, we showed that in the generic regime, spurious local
minima may exist, but if the training converges to them,
this will be very noticeable (failing loudly), as the spurious
solutions have high rank and large magnitude. In this sec-
tion, we argue that the standard LoRA fine-tuning procedure
induces implicit biases that make it unlikely for the LoRA
training to converge to these spurious local minima.

Zero-initialization biases the optimization towards min-
ima with smaller magnitude. LoRA fine-tuning is initial-
ized with B = 0, leading to X = AB⊺ = 0 at initialization.
This choice comes from the intuition that fine-tuning should
not change the model too much, i.e., that X⋆ should be
small, so the initialization should be at 0.

When weight decay is used, we can make this argument
further quantitative. The global minimizer X⋆ satisfies

L̂(X⋆) + λ∥X⋆∥∗ ≤ L̂(0) + λ∥0∥∗,

thus ∥X∥∗ < L̂(0)
λ . Here, L̂(0) is the loss corresponding to

directly applying the pre-trained model to the fine-tuning
task, so L̂(0) should not be inordinately large when the
fine-tuning task is not too different from tasks seen during
pre-training.

On the other hand, spurious local minima exist only outside
a neighborhood of zero, as argued in Corollary 1. Because
the SGD or Adam optimizers used for LoRA training are
initialized at 0, the optimization is biased towards smaller-
magnitude solutions near the starting point, which are the
global minima. In Section 4, we experimentally test this
theory by fine-tuning LoRA with a non-zero initialization;
indeed, we find there is an instance in this scenario, where
the fine-tuning gets trapped in spurious local minima.

Weight decay implicitly biases the optimization towards
low-rank matrices. Practical LoRA training typically em-
ploys weight decay (Hu et al., 2022; Dettmers et al., 2023),
and it is shown in prior theoretical work that weight decay
induces an implicit bias toward low-rank matrices. This
makes it more likely for the LoRA training to converge to
the low-rank global minimizer, rather than to a spurious
local minima with high rank being σr(X) > 2α

β σr⋆(X).

For deep linear networks, this implicit bias is characterized
somewhat precisely.
Theorem (Informal, Theorem 3.2 of Wang & Jacot (2024)).
When training a deep linear network with positive weight
decay, a sufficiently small learning rate, and a ground-truth
teacher model with low effective rank, there is a positive
probability of jumping from a high-rank critical point to a
lower-rank one, but the probability of jumping back is zero.

While the theory of Wang & Jacot (2024) does not imme-
diately apply to general deep (non-linear) neural networks,
it does provide meaningful insight into the implicit bias
towards low rank. In the more general setup, Galanti et al.
(2024) argues for a similar implicit bias. Adapting their ar-
guments to LoRA training, we get the following statement.
Lemma 1. Consider LoRA training with SGD with batch
size b, learning rate µ, and weight decay λ > 0. For any low-
rank update X = AB⊺ of a weight matrix in the network, if
the sequence of X-values throughout training converges to
a matrix X̃ , then X̃ is approximately low rank in the sense
that for any ε > 0, there exists some W with∥∥∥∥ X̃

∥X̃∥
−W

∥∥∥∥ < ε, rank(W ) ≤ b log(ε/4)

log(1− µλ)

We provide the proof of Lemma 1 in Appendix A.4.
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Figure 2: LoRA training converging to global minima with zero-initialization vs. spurious local minima with random
non-zero initialization. (y-axes) Training loss, test accuracy, minimizer rank, and minimizer norm. (x-axes) Training steps.

4. Experiments
In this section, we validate our theory through real-world
experiments. First, we verify our assumptions outlined in
Section 2. Then, we present both the success and failure
modes of LoRA fine-tuning, where training either converges
to a low-rank, small-magnitude global minimizer or stuck
on a high-rank, large-magnitude local minimizer.

Experimental setup. We conduct experiments on two
tasks in NLP and vision. For the NLP task, we fine-tune
a RoBERTA-base model (Zhuang et al., 2021) on a senti-
ment analysis task, using the SST-2 dataset (Socher et al.,
2013) from the GLUE benchmark (Wang et al., 2018). For
the vision task, we fine-tune a vision transformer (Doso-
vitskiy et al., 2021) on the CIFAR100 dataset (Krizhevsky,
2009). Both models have 12 attention layers, and we tune
the query and value weights of each layer, following the
prescription of Hu et al. (2022). We describe further details
in Appendix C.

Results: Verifying low-rank global minima exist. First,
we validate our assumption of a low-rank global minimum.
We perform full fine-tuning on the nuclear norm regularized
loss objective L̂full

λ with varying values of weight decay λ.
The results of Table 1 exhibit a clear decreasing trend on
the rank of the global minimum as a function of λ. Notably,
when λ is set to values at least 0.001, the resulting rank is
lower than typical LoRA ranks (4, 8, or 16).

Results: Verifying RSC and RSM. Next, we verify our
assumption of restricted strong convexity and smoothness.
As it is infeasible to exactly compute α and β values, we
estimate them by Monte-Carlo sampling with 1000 samples
within rank bound r = 8, 16, 32, 64, distance bound D = 5,

Table 2: RSC and RSM values for different ranks.

Rank 8 16 32 64

β/α 8.0249 18.7032 320.82 N/A
α 0.0061 0.0029 0.0002 −0.0445
β 0.0492 0.0539 0.0726 0.3371

and λ = 0.01. Table 2 presents the α and β values for
the largest β/α value across weight matrices. We see as
r increases, α decreases and β increases. In fact, when r
is as large as 64, the requirement α > 0 breaks, and our
theory no longer applies. These results demonstrate that
our assumption of α > 0 and β < ∞ is plausible using a
low LoRA rank r. This also suggests that reduced memory
footprint is not the only benefit of using small r; the α, β-
values that determine the loss landscape also become more
favorable with small r.

Results: Validating main theorem. Finally, we verify
our main result through an illustrative example for the SST2
task with λ = 0.01 and r = 8. To clarify, our results
prove that spurious local minima may not exist, but when
they do, they exhibit high rank and large norm, being read-
ily distinguishable from the global minimum and thereby
avoidable through zero initialization. We present in Figure 2
that such spurious local minimum found by large random
initialization indeed fails loudly in the sense that it has high
rank, large magnitude, and poor generalization performance.
We further demonstrate in Appendix C that spurious local
minima isn’t found in any smaller initializations.

5. Conclusion
In this work, we theoretically analyze LoRA fine-tuning
and obtain a new type of result: that a second-order station-
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ary point is either a global minimizer with low rank and
small magnitude or is a spurious solution with high rank
and large magnitude. Unlike previous analyses based on
linearization, our approach relies on a general condition of
restricted strong convexity and smoothness, which are con-
ditions the experiments of Section 4 confirm to be practical.
We further argue that zero-initialization and weight decay in
LoRA training induce an implicit bias toward this low-rank
small-magnitude region, explaining why LoRA typically
converges to global minima in practice.

While the primary focus of this work is on establishing the
theoretical convergence of LoRA, our framework possesses
broader practical relevance. The properties of spurious local
minima that we characterize may be used to diagnose and
monitor the fine-tuning process. Furthermore, as our frame-
work relies solely on the low-rank decomposition structure
of LoRA and a few minimal assumptions, our theory applies
to many LoRA variants, including LoRA+ (Hayou et al.,
2024), rsLoRA (Kalajdzievski, 2023), PiSSA (Meng et al.,
2024), and MiLoRA (Wang et al., 2025) as well.

Our results open several avenues for future work. One is
to perform a more rigorous analysis of the implicit bias
induced by weight decay and zero initialization. Another
intriguing insight is that the restricted strong convexity and
smoothness constants α and β improve as the LoRA rank
decreases, suggesting that smaller-rank parameterizations
enjoy more favorable optimization landscapes. This obser-
vation contrasts with the modern wisdom of deep learning
theory that overparameterization helps training and aligns
with recent results indicating that overparameterization can
slow down training (Xu & Du, 2023; Xiong et al., 2024).
Exploring this phenomenon further is another promising
direction.
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A. Omitted theorems and proofs
A.1. Full proof for Theorem 1

Here we present the complete proof of Theorem 1. For simplicity, we write L̂(X) as f(X), L̂lora(A,B) as g(A,B).

Set (A,B) ∈ Rm×r × Rn×r to be a SOSP of fλ, AB⊺ as X , the compact SVD of X as LXΣXR⊺
X , and σi as the i-th

(largest) singular value of X . From the first and second-order optimality of Lλ(A,B), we acquire the following properties:

1. 0 = ∇Ag(A,B) = ∇f(AB⊺) ·B + λA

2. 0 = ∇Bg(A,B) = ∇f(AB⊺)⊺ ·A+ λB

3. ∇2g(A,B)[(U, V ), (U, V )] = 2⟨∇f(X), UV ⊺⟩+∇2f(X)[AV ⊺ + UB⊺, AV ⊺ + UB⊺] + λ(∥U∥2F + ∥V ∥2F ) ≥ 0,
∀(U, V ) ∈ Rm×r × Rn×r

By equations 1 and 2,
−A⊺∇f(AB⊺)B = λA⊺A = λB⊺B,

so if λ > 0 then A⊺A = B⊺B. Therefore by Lemma B.1, we can set A = LXΣ
1/2
X W, B = RXΣ

1/2
X W for some

orthogonal matrix W . Plugging A,B back into properties 1 and 2 gives us

∇f(X) ·RX = −λLX , ∇f(X)⊺ · LX = −λRX .

If λ = 0, then apparently ∇f(X) ·RX = 0 and ∇f(X)⊺ · LX = 0, so the equation above holds regardless of λ. Now by
Lemma B.2, ∇f(X) can be represented as

∇f(X) = −λLXR⊺
X + S, S = L̃XΣ̃XR̃X

⊺
,

for some diagonal matrix Σ̃X and some L̃X , R̃X that
[
LX L̃X

]
and

[
RX R̃X

]
are orthogonal. Now we will show that the

spectral norm of S is bounded by λ+ βσr.
We first consider the case where rank(X) = r, or σr(X) > 0. Setting u⋆, v⋆ as the top singular vectors of S, and plugging
in (U, V ) = (−u⋆u

⊺
rA, v⋆v

⊺
rB) into property 3, we achieve the following inequality.

∇2f(X)[Xvrv
⊺
⋆ − u⋆u

⊺
rX,Xvrv

⊺
⋆ − u⋆u

⊺
rX] + λ

(
∥U∥2F + ∥V ∥2F

)
≥ 2⟨∇f(X), u⋆u

⊺
rXvrv

⊺
⋆ ⟩

= 2⟨−λLXR⊺
X + S, u⋆u

⊺
rXvrv

⊺
⋆ ⟩

= 2σr⟨−λLXR⊺
X + S, u⋆v

⊺
⋆ ⟩

= 2σr⟨S, u⋆v
⊺
⋆ ⟩ = 2σr ∥S∥2 .

Where

∥U∥2F + ∥V ∥2F = tr(u⋆u
⊺
rAA⊺uru

⊺
⋆) + tr(v⋆v

⊺
rBB⊺vrv

⊺
⋆ )

= tr(u⋆u
⊺
rLXΣXL⊺

Xuru
⊺
⋆) + tr(v⋆v

⊺
rRXΣXR⊺

Xvrv
⊺
⋆ )

= σr · (tr(u⋆u
⊺
⋆) + tr(v⋆v

⊺
⋆ )) = 2σr

Now the restricted smoothness of f yields the following inequality.

∇2f(X)[Xvrv
⊺
⋆ − u⋆u

⊺
rX,Xvrv

⊺
⋆ − u⋆u

⊺
rX] ≤ β ∥Xvrv

⊺
⋆ − u⋆u

⊺
rX∥2F

= βσ2
r ∥urv

⊺
⋆ − u⋆v

⊺
r ∥

2
F ≤ 2βσ2

r

Combining the two inequalities results in
∥S∥2 ≤ βσr + λ

Now we see the case where rank(X) = r′ < r, or σr(X) = 0. Since rank(X) < r, A and B are also rank deficient, so we
can find a unit vector w that Aw = 0. Now

Aw = 0 ⇒ A⊺Aw = 0 ⇒ B⊺Bw = 0 ⇒ wB⊺Bw = 0 ⇒ ∥Bw∥ = 0
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so we have Bw = 0 as well. Now for any unit vector u ∈ Rm, v ∈ Rn, plugging in (U, V ) = (uw⊺,−vw⊺) into property 3
results in

⟨∇f(X), uv⊺⟩ ≤ λ

Since this holds for any unit vector u, v, we have ∥∇f(X)∥2 ≤ λ. Since ∇f(X) = −λLXR⊺
X + S, this implies ∥S∥2 ≤ λ

as well.

Now that we know ∥S∥2 ≤ βσr + λ for all cases, we will find what this implies. Consider the subgradient ∂(λ∥X∥∗),
which we know the explicit form as

∂(λ∥X∥∗) =

{
G ∈ Rm×n

∣∣∣∣∣ G = λLXR⊺
X +W, L⊺

XW = 0, WRX = 0, ∥W∥2 ≤ λ

}

Since S also satisfies L⊺
XS = 0 and SRX = 0, there exists an element g ∈ ∂(λ∥X∥∗) that ∥g +∇f(X)∥2 ≤ βσr. Now

let Z = (g +∇f(X)). For any positive real number κ > 0 that κ× βσr ≤ σr⋆ , the singular vectors of κZ are orthogonal
to those of X and ∥κZ∥2 ≤ σr⋆ , so the top r⋆ singular vectors of X − κZ coincide with those of X . Therefore, by the
Eckart–Young–Mirsky theorem we see

Xr⋆ ∈ argmin
rank(Y )≤r⋆

∥Y − (X − κZ)∥2F

where Xr⋆ is a projection of X onto the set of matrices of rank r⋆ or less. Since rank(X⋆) = r⋆, we can plug in X⋆ into Y
here, resulting in

∥Xr⋆ −X + κZ∥2F ≤ ∥X⋆ −X + κZ∥2F
which is again equivalent to

∥Xr⋆ −X∥2F + 2k⟨Xr⋆ −X,Z⟩ ≤ ∥X⋆ −X∥2F + 2k⟨X⋆ −X,Z⟩ (3)

Here we actually know that ⟨Xr⋆ −X,Z⟩ = 0, since the singular vectors of X and Z are orthogonal. Now by restricted
convexity at X⋆, we have

⟨X −X⋆,∇f(X)−∇f(X⋆)⟩ ≥ α ∥X −X⋆∥2F (4)

Since X⋆ is the global minimizer of fλ(X) = f(X)+λ ∥X∥⋆ and the nuclear norm is lower semi-continuous, from Theorem
3.1 of (Mordukhovich & Shao, 1995) we have −∇f(X⋆) ∈ ∂(λ∥X⋆∥∗). We know by definition that g ∈ ∂(λ∥X∥∗), so the
property of the subgradient implies

⟨X −X⋆, g − (−∇f(X⋆))⟩ ≥ 0 (5)

Summing up the inequalities (3),(4),(5) we have

(2κα− 1)∥X⋆ −X∥2F + ∥Xr⋆ −X∥2F ≤ 0

Since this inequality holds for any positive real number κ that κ× βσr ≤ σr⋆ , if σr = 0 we can select an arbitrarily large κ,
resulting in X⋆ = X . If σr ̸= 0, we can plug in κ =

σr⋆

σr
, resulting in X = X⋆ if 1 ≥ 2κα and

∥X⋆ −X∥2F ≥ ∥Xr⋆ −X∥2F
1− 2κα

=

∑r
s=r⋆+1 σ

2
s

1− 2κα

otherwise. Therefore our statement is proven.

A.2. Proof of Theorem 3

Here we present the proof of Theorem 3.

Proof. We can proceed with the identical reasoning and notations with the proof of Theorem 1 in A.1, up to defining
Z = g +∇f(X) with ∥Z∥2 ≤ βσr. Now denoting the true global minimizer as X⋆, we have a rank r⋆ approximate global
minimizer Xr⋆

⋆ with ∥X⋆ −X
(δ)
⋆ ∥F ≤ δ. We first prove that σr(X) ≥ ε · α

2β
√
r

if X is an ε-spurious local minima, which
requires independent reasoning, and then we prove the remaining results analogously to Theorem 1.

13



LoRA Training Provably Converges to a Low-Rank Global Minimum or Fails Loudly

Step 1. Fix some constant c > 0, and define r′ = min{γ |σγ(X) < c, 1 ≤ γ ≤ r}. Now setting κ as a positive real
number that κ× βσr < c. By the Eckart–Young–Mirsky theorem we see

argmin
rank(Y )≤r⋆

∥Y − (X − κZ)∥2F = (X − κZ)r⋆

where (X − κZ)r⋆ is the projection of X − κZ onto the set of matrices of rank r⋆ or less. Since ∥κZ∥2 < c, by definition
of r′ the 1-th to r-th singular vectors of X − κZ coincide with those of X , while the subsequent singular values are all
smaller than c. This implies

∥Xr′ − (X − κZ)r⋆∥2F ≤ c2 ·max{r⋆ − r′, 0}

If r⋆ < r′, we are done, so we can consider only the case where r⋆ − r′ ≥ 0. Combining the two relations, we have

∥Xr′ − (X − κZ)∥F ≤ ∥Xr′ − (X − κZ)r⋆∥F + ∥(X − κZ)r⋆ − (X − κZ)∥F
≤ c

√
r⋆ − r′ + ∥X(δ)

⋆ − (X − κZ)∥F

and squaring each sides, this expands to

∥Xr′ −X∥2F ≤ c2(r⋆ − r′) + 2c
√
r⋆ − r′∥Xr′ − (X − κZ)∥F + ∥X(δ)

⋆ −X∥2F + 2k⟨X(δ)
⋆ −Xr′ , Z⟩

Now in the same way with A.1, due to the restricted convexity and the subgradient property we have

2ακ∥X −X⋆∥2F ≤ 2k⟨X −X⋆, Z⟩.

Adding the two up, we have

(2ακ− 1)∥X −X⋆∥2F + ∥Xr′ −X∥2F ≤c2(r⋆ − r) + 2c
√
r⋆ − r′∥Xr′ − (X − κZ)∥F + (∥Xr⋆

⋆ −X∥2F − ∥X⋆ −X∥2F )

+ 2k⟨Xr⋆
⋆ −X⋆, Z⟩+ 2k⟨X −Xr′ , Z⟩

which again simplifies to

(2ακ− 1)∥X −X⋆∥2F − 2δ∥X⋆ −X∥F ≤ 3c2(r − r′) + 2cδ
√
r − r⋆,

or equivalently

∥X −X⋆∥F ≤ δ

2ακ− 1
+

√
(

δ

2ακ− 1
)2 + 3c2(r − r′) + 2cδ

√
r − r⋆.

Therefore, setting c = ε
2
√
r−r′

and κ = c
βσr

(or any large number if σr = 0), if σr(X) < αc
β , then δ = o(ε3) implies

∥X −X⋆∥F < ε, making X an ε-global minimizer. Thus if X is a spurious local minima, then σr(X) ≥ α
2β

√
r
· ε

Step 2. Similarly to Theorem 1, define κ as a positive real number that κ · βσr < σr⋆ , implying ∥κZ∥ ≤ σr⋆ . Then

Xr⋆ ∈ argmin
rank(Y )≤r⋆

∥Y − (X − κZ)∥2F

and rank(X(δ)
⋆ ) = r⋆ so

∥Xr⋆ −X + κZ∥2F ≤ ∥X(δ)
⋆ −X + κZ∥2F

which is equivalent to
∥Xr⋆ −X∥2F ≤ ∥Xr⋆

⋆ −X∥2F + 2k⟨Xr⋆
⋆ −X,Z⟩.

Now the relations (4),(5) from the proof of Theorem 1 still apply here so adding these we have

α∥X −Xr⋆
⋆ ∥2F ≤ κ⟨X −X⋆, Z⟩

so adding the two inequalities, we obtain

2κα∥X −Xr⋆
⋆ ∥2F − ∥X −Xr⋆

⋆ ∥2F + ∥Xr⋆ −X∥2F ≤ 2k⟨Xr⋆
⋆ −X⋆, Z⟩.

14
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Here we can upper bound ⟨Xr⋆
⋆ −X⋆, Z⟩ by 2σr⋆ · ∥X(δ)

⋆ −X⋆∥∗ , by the duality of the nuclear norm and spectral norm
and ∥κZ∥2 ≤ σr⋆ . σr⋆ is again bounded by D√

r⋆
since we are looking at ∥X − X⋆∥F ≤ ∥X∥F + ∥X⋆∥F ≤ 2D, and

∥X(δ)
⋆ −X⋆∥∗ ≤

√
r − r⋆ · ∥X(δ)

⋆ −X⋆∥F ≤ δ ×
√
r − r⋆ by the Cauchy-Schwartz inequality. Therefore we have

2κα∥X −Xr⋆
⋆ ∥2F − ∥X −Xr⋆

⋆ ∥2F + ∥Xr⋆ −X∥2F ≤ 2δD

√
r − r⋆
r⋆

.

We can expand this inequality, using X −Xr⋆
⋆ = (X −X⋆) + (X⋆ −Xr⋆

⋆ ) as

(2κα− 1)∥X⋆ −X∥2F + ∥Xr⋆ −X∥2F ≤ 2⟨X −X⋆, X⋆ −Xr⋆
⋆ ⟩+ δD

√
r − r⋆
r⋆

≤ 2δ∥X −X⋆∥F + δ2D

√
r − r⋆
r⋆

.

Solving the quadratic inequality about ∥Xr⋆
⋆ −X∥F , if 2κα− 1 > ε the discriminant is

δ2 + 4(2κα− 1)

(
2δD

√
r − r⋆
r⋆

− ∥Xr⋆ −X∥2F
)
.

Now we know that if X is an ε-spurious local minima then ∥Xr⋆ −X∥F ≥ σr ≥ α
2β

√
r
· ε, so the discriminant is negative

since δ = o(ε2) and therefore there would be no spurious local minima. If 2κα− 1 < 0, we would see

∥X⋆ −X∥F ≤

√√√√∥Xr⋆ −X∥2F − (2δD
√

r−r⋆
r⋆

− δ2

1−2κα )

1− 2κα
− δ

1− 2κα

resulting in

∥X⋆ −X∥F ≤

√
∥Xr⋆ −X∥2F − ε3

1− 2κα
− ε2

given δ = o(ε3)

A.3. Theorems for the multiple matrix case

In Section 3, we presented most theorems as a result for tuning a single matrix for clarity. Here we explicitly portray the
natural extension to the multi matrix case for the theorems and method of proof. First, we provide the proof of Theorem 2,
the multi matrix case without error.

Proof. As in the proofs above, we write L̂(X) as f(X), L̂lora(A,B) as g(A,B) for simplicity. Set (A,B) to be a SOSP
of fλ, and AB⊺ as X□ = (X

(1)
□ , . . . , X

(L)
□ ). From the first and second-order optimality of Lλ(A,B), we acquire the

following properties:

1. 0 = ∇Ag(A,B) = ∇f(AB⊺) ·B+ λA

2. 0 = ∇Bg(A,B) = ∇f(AB⊺)⊺ ·A+ λB

3. ∇2g(A,B)[(U,V), (U,V)] = 2⟨∇f(X),UV⊺⟩+∇2f(X)[AV⊺+UB⊺,AV⊺+UB⊺]+λ(∥U∥2F +∥V∥2F ) ≥ 0

Recall that for a tuple of matrices
C = (C(1), . . . , C(L)), , (D(1), . . . , D(L))

we write the product of the tuples as

CD⊺ = (C(1)(D(1))⊺, . . . , C(L)(D(L))⊺),

the scalar product as
kC = (kC(1), . . . , kC(L)),
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and the Frobernius norm as

∥C∥F =

√√√√ L∑
l=1

∥C(l)∥2F .

We interpret the gradient ∇f(AB⊺) as a tuple with the same shape with AB⊺, and the Hessian ∇2f(X) as a (m1n1 +
· · ·+mLnL)× (m1n1 + · · ·+mLnL) block matrix consisted of mini ×mjnj blocks ∇2

i,jf(X).

By looking at only the lth matrices from the equations 1,2, we have

1. 0 = ∇A(l)g(A(l), B(l)) = ∇lf(AB⊺) ·B(l) + λA(l)

2. 0 = ∇B(l)g(A(l), B(l)) = ∇lf(AB⊺)⊺ ·A(l) + λB(l)

Furthermore, inputting U,V with

U =
(
0, . . . , U (l), . . . , 0

)
, ,V =

(
0, . . . , V (l), . . . , 0

)
for some U (l), V (l) we see

3. 2⟨∇lf(X), U (l)V (l)⊺⟩+∇2
l,lf(X)[A(l)(V (l))⊺+U (l)(B(l))⊺, A(l)(V (l))⊺+U (l)(B(l))⊺]+λ(

∥∥U (l)
∥∥2
F
+
∥∥V (l)

∥∥2
F
) ≥

0

Now we can proceed similarly with the single matrix case. By the new versions of equations 1 and 2,

−(A(l))⊺∇f(AB⊺)B(l) = λ(A(l))⊺A(l) = λ(B(l))⊺B(l),

so if λ > 0 then (A(l))⊺A(l) = (B(l))⊺B(l). Now denote the SVD of X(l) as L(l)
X Σ

(l)
X (R

(l)
X )⊺ , and σ

(l)
i as the i-th (largest)

singular value of X(l). By Lemma B.1, we can set A(l) = L
(l)
X (Σ

(l)
X )1/2W, B(l) = R

(l)
X (Σ

(l)
X )1/2W for some orthogonal

matrix W . Plugging A(l), B(l) back into properties 1 and 2 gives us

∇lf(X) ·R(l)
X = −λL

(l)
X , ∇f(X)⊺ · L(l)

X = −λR
(l)
X .

If λ = 0, then apparently ∇lf(X) ·R(l)
X = 0 and ∇lf(X)⊺ · L(l)

X = 0, so the equation above holds regardless of λ. Now by
Lemma B.2, ∇lf(X) can be represented as

∇lf(X) = −λL
(l)
X R

(l)
X

⊺
+ S, S = L̃

(l)
X Σ̃X (̃RX

(l))⊺,

for some diagonal matrix Σ̃X and some L̃
(l)
X , R̃

(l)
X that

[
L
(l)
X L̃

(l)
X

]
and

[
R

(l)
X R̃

(l)
X

]
are orthogonal. Now we will show that

the spectral norm of S is bounded by λ+ β(l)σ
(l)
r .

We first consider the case where rank(X(l)) = r, or σr(X
(l)) > 0. Setting u⋆, v⋆ as the top singular vectors of S, and

plugging in (U (l), V (l)) = (−u⋆u
⊺
rA

(l), v⋆v
⊺
rB

(l)) into property 3, we achieve the following inequality.

∇2
l,lf(X)[X(l)vrv

⊺
⋆ − u⋆u

⊺
rX

(l), X(l)vrv
⊺
⋆ − u⋆u

⊺
rX

(l)] + λ

(∥∥∥U (l)
∥∥∥2
F
+

∥∥∥V (l)
∥∥∥2
F

)
≥ 2⟨∇lf(X

(l)), u⋆u
⊺
rX

(l)vrv
⊺
⋆ ⟩

= 2⟨−λL
(l)
X R

(l)
X

⊺
+ S, u⋆u

⊺
rX

(l)vrv
⊺
⋆ ⟩

= 2σ(l)
r ⟨−λL

(l)
X R

(l)
X

⊺
+ S, u⋆v

⊺
⋆ ⟩

= 2σ(l)
r ⟨S, u⋆v

⊺
⋆ ⟩ = 2σ(l)

r ∥S∥2 .

Where ∥∥∥U (l)
∥∥∥2
F
+
∥∥∥V (l)

∥∥∥2
F
= tr(u⋆u

⊺
rA

(l)(A(l))⊺uru
⊺
⋆) + tr(v⋆v

⊺
rB

(l)(B(l))⊺vrv
⊺
⋆ )

= tr(u⋆u
⊺
rL

(l)
X Σ

(l)
X L

(l)
X

⊺
uru

⊺
⋆) + tr(v⋆v

⊺
rR

(l)
X Σ

(l)
X R

(l)
X

⊺
vrv

⊺
⋆ )

= σ(l)
r · (tr(u⋆u

⊺
⋆) + tr(v⋆v

⊺
⋆ )) = 2σ(l)

r
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Now the restricted smoothness of f yields the following inequality.

∇2f(X(l))[X(l)vrv
⊺
⋆ − u⋆u

⊺
rX

(l), X(l)vrv
⊺
⋆ − u⋆u

⊺
rX

(l)] ≤ β(l)
∥∥∥X(l)vrv

⊺
⋆ − u⋆u

⊺
rX

(l)
∥∥∥2
F

= β(l)σ(l)
r

2
∥urv

⊺
⋆ − u⋆v

⊺
r ∥

2
F ≤ 2β(l)σ(l)

r

2

Combining the two inequalities results in
∥S∥2 ≤ β(l)σ(l)

r + λ.

Now we see the case where rank(X(l)) = r′ < r, or σr(X
(l)) = 0. Since rank(X(l)) < r, A(l) and B(l) are also rank

deficient, so we can find a unit vector w that A(l)w = 0. Now

A(l)w = 0 ⇒ (A(l))⊺A(l)w = 0 ⇒ (B(l))⊺B(l)w = 0 ⇒ w(B(l))⊺B(l)w = 0 ⇒
∥∥∥B(l)w

∥∥∥ = 0

so we have B(l)w = 0 as well. Now for any unit vector u ∈ Rm, v ∈ Rn, plugging in (U, V ) = (uw⊺,−vw⊺) into property
3 results in

⟨∇lf(X), uv⊺⟩ ≤ λ

Since this holds for any unit vector u, v, we have ∥∇lf(X)∥2 ≤ λ. Since ∇lf(X) = −λL
(l)
X (R

(l)
X )⊺ + S, this implies

∥S∥2 ≤ λ as well.

Now that we know ∥S∥2 ≤ β(l)σ
(l)
r + λ for all cases, we will find what this implies. Consider the subgradient ∂(λ∥X(l)∥∗),

which we know the explicit form as

∂(λ∥X(l)∥∗) =

{
G ∈ Rm×n

∣∣∣∣∣ G = λL
(l)
X (R

(l)
X )⊺ +W, (L

(l)
X )⊺W = 0, WR

(l)
X = 0, ∥W∥2 ≤ λ

}

Since S also satisfies (L(l)
X )⊺S = 0 and SR

(l)
X = 0, there exists an element g ∈ ∂(λ∥X(l)∥∗) that ∥g+∇lf(X)∥2 ≤ β(l)σ

(l)
r .

Now let Z = (g +∇lf(X)). For any positive real number κ > 0 that κ× β(l)σ
(l)
r ≤ σ

(l)
r⋆ , the singular vectors of κZ are

orthogonal to those of X(l) and ∥κZ∥2 ≤ σ
(l)
r⋆ , so the top r⋆ singular vectors of X(l) − κZ coincide with those of X(l).

Therefore, by the Eckart–Young–Mirsky theorem we see

(X(l))r⋆ ∈ argmin
rank(Y )≤r⋆

∥Y − (X(l) − κZ)∥2F

where (X(l))r⋆ is a projection of X(l) onto the set of matrices of rank r⋆ or less. Since rank(X(l)
⋆ ) ≤ r⋆, we can plug in

X
(l)
⋆ into Y here, resulting in

∥(X(l))r⋆ −X(l) + κZ∥2F ≤ ∥X(l)
⋆ −X(l) + κZ∥2F

which is again equivalent to

∥(X(l))r⋆ −X(l)∥2F + 2k⟨(X(l))r⋆ −X(l), Z⟩ ≤ ∥X(l)
⋆ −X(l)∥2F + 2k⟨X(l)

⋆ −X(l), Z⟩ (6)

Here we actually know that ⟨(X(l))r⋆ −X(l), Z⟩ = 0, since the singular vectors of X(l) and Z are orthogonal. Now by
restricted convexity at X(l)

⋆ , we have

⟨X(l) −X
(l)
⋆ ,∇lf(X)−∇lf(X⋆)⟩ ≥ α(l)

∥∥∥X(l) −X
(l)
⋆

∥∥∥2
F

(7)

Since X⋆ is the global minimizer of fλ(X) = f(X) + λ ∥X∥⋆ and the nuclear norm is lower semi-continuous, from
Mordukhovich & Shao (1995, Theorem 3.1) we have −∇lf(X⋆) ∈ ∂(λ∥X(l)

⋆ ∥∗). We know by definition that g ∈
∂(λ∥X(l)∥∗), so the property of the subgradient implies

⟨X(l) −X
(l)
⋆ , g − (−∇lf(X⋆))⟩ ≥ 0 (8)

Summing up the inequalities (6),(7),(8) we have

(2κα(l) − 1)∥X(l)
⋆ −X(l)∥2F + ∥(X(l))r⋆ −X(l)∥2F ≤ 0
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Since this inequality holds for any positive real number κ that κ× β(l)σ
(l)
r ≤ σr⋆ , if σ(l)

r = 0 we can select an arbitrarily

large κ, resulting in X
(l)
⋆ = X(l). If σ(l)

r ̸= 0, we can plug in κ =
σ(l)
r⋆

σ
(l)
r

, resulting in X(l) = X
(l)
⋆ if 1 ≥ 2κα(l) and

∥X(l)
⋆ −X(l)∥2F ≥ ∥(X(l))r⋆ −X(l)∥2F

1− 2κα(l)

otherwise. Therefore, if σr(X
(l)) ≥ α(l)

2β(l) · σr⋆(X
(l)) for all 1 ≤ l ≤ L then X

(l)
⋆ = X(l) for all 1 ≤ l ≤ L, resulting in

X = X⋆. If not, there must exist some l satisfying the inequality above. Therefore our statement is proved.

Now we present a Master Theorem, applicable for the most general case with multiple matrices and an approximately low
rank solution. We first analogously define a δ-global minimizer for the multiple matrix case:

We say X
(δ)
⋆ is a δ-global minimizer of full fine-tuning if

∥(X(l)
⋆ )(δ) −X

(l)
⋆ ∥F ≤ δ , 1 ≤ l ≤ L

where X⋆ is an ‘exact’ global minimizer of L̂full. Based on this definition, we present the analogous result.
Theorem A.1. (Master Theorem) Let ε > 0 and λ ≥ 0. Assume the full fine-tuning loss L̂full

λ has an exact global
minimizer X⋆, and a rank-r⋆ δ-global minimizer X(δ)

⋆ with δ = o(ε3). Respectively denote the (r,D)-RSC and (r,D)-RSM
constants of L̂full about X⋆ as α = (α(1), . . . , α(L)) and β = (β(1), . . . , β(L)). Assume α(l) > 0 and β(l) < ∞ for each
1 ≤ l ≤ L. Assume we use a LoRA module with rank r ≥ r⋆. Then, every SOSP (A,B) of L̂lora

λ with X□ = AB⊺ and
∥X□ −X⋆∥F ≤ D satisfies the following.

1. If 2α(l) ≥ β(l)(1 + ε) for all l = 1, . . . , L (special regime), X□ is an ε-global minimizer.

2. If 2α(l) < β(l)(1 + ε) for some l = 1, . . . , L (generic regime), one of the following holds.

(i) X□ is an ε-global minimizer.
(ii) X□ is not an ε-global minimizer, X(l)

□ is exactly rank r with σr(X
(l)
□ ) ≥ max{ 2α

β(1+ε)σr⋆(X
(l)
□ ), α

2β
√
r
· ε}, and

either
σr(X

(l)
□ ) ≤ 2α

β
σr⋆(X

(l)
□ )

or ∥∥∥X(l)
□ −X

(l)
⋆

∥∥∥
F
≥

√√√√√
∥∥∥X(l)

□ −Πrank≤r⋆(X
(l)
□ )

∥∥∥2
F
− ε3

1− 2ασr⋆

βσr

− ε2

where Πrank≤r⋆(X
(l)
□ ) is the projection of X(l)

□ onto the set of matrices of rank r⋆ or less.

To clarify, when we say X□ is or is not an ε-global minimizer, it is with respect to L̂full
λ .

Proof. We can proceed identically with the proof of Theorem 2 up to defining Z such that ∥Z∥2 ≤ σr.

We first prove that σr(X
(l)) ≥ ε · α

2β
√
r

if ∥X(l) −X
(l)
⋆ ∥ ≥ ε, which requires independent reasoning, and then we prove

the remaining results analogously to Theorem 1.

Step 1. Fix some constant c > 0, and define r′ = min{γ |σγ(X
(l)) < c, 1 ≤ γ ≤ r}. Now setting κ as a positive real

number that κ× βσr < c. By the Eckart–Young–Mirsky theorem we see

argmin
rank(Y )≤r⋆

∥Y − (X(l) − κZ)∥2F = (X(l) − κZ)r⋆

where (X(l) − κZ)r⋆ is the projection of X(l) − κZ onto the set of matrices of rank r⋆ or less. Since ∥κZ∥2 < c, by
definition of r′ the 1-th to r-th singular vectors of X(l) − κZ coincide with those of X(l), while the subsequent singular
values are all smaller than c. This implies

∥(X(l))r
′
− (X(l) − κZ)r⋆∥2F ≤ c2 ·max{r⋆ − r′, 0}
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If r⋆ < r′, we are done, so we can consider only the case where r⋆ − r′ ≥ 0. Combining the two relations, we have

∥(X(l))r
′
− (X(l) − κZ)∥F ≤ ∥(X(l))r

′
− (X(l) − κZ)r⋆∥F + ∥(X(l) − κZ)r⋆ − (X(l) − κZ)∥F

≤ c
√
r⋆ − r′ + ∥(X(δ)

⋆ )(l) − (X(l) − κZ)∥F

and squaring each sides, this expands to

∥(X(l))r
′
−X(l)∥2F ≤ c2(r⋆−r′)+2c

√
r⋆ − r′∥(X(l))r

′
−(X(l)−κZ)∥F+∥(X(δ)

⋆ )(l)−X(l)∥2F+2k⟨(X(δ)
⋆ )(l)−(X(l))r

′
, Z⟩

Now in the same way with A.1, due to the restricted convexity and the subgradient property we have

2ακ∥X(l) −X
(l)
⋆ ∥2F ≤ 2k⟨X(l) −X

(l)
⋆ , Z⟩.

Adding the two up, we have

(2ακ− 1)∥X(l) −X
(l)
⋆ ∥2F + ∥(X(l))r

′
−X(l)∥2F ≤ c2(r⋆ − r) + 2c

√
r⋆ − r′∥(X(l))r

′
− (X(l) − κZ)∥F

+ (∥(X(δ)
⋆ )(l) −X(l)∥2F ∥X

(l)
⋆ −X(l)∥2F ) + 2k⟨(X(δ)

⋆ )(l) −X
(l)
⋆ , Z⟩+ 2k⟨X(l) − (X(l))r

′
, Z⟩

which again simplifies to

(2ακ− 1)∥X(l) −X
(l)
⋆ ∥2F − 2δ∥X(l)

⋆ −X(l)∥F ≤ 3c2(r − r′) + 2cδ
√
r − r⋆,

or equivalently if 2ακ− 1 > 0,

∥X(l) −X
(l)
⋆ ∥F ≤ δ

2ακ− 1
+

√
(

δ

2ακ− 1
)2 + 3c2(r − r′) + 2cδ

√
r − r⋆.

Therefore, setting c = ε
2
√
r−r′

and κ = c
βσr

(or any large number if σr = 0), if σr(X
(l)) < αc

β , then δ = o(ε3) implies

∥X(l) −X
(l)
⋆ ∥F < ε. Thus if ∥X(l) −X

(l)
⋆ ∥F ≥ ε, then σr(X

(l)) ≥ α
2β

√
r
· ε for some l.

Step 2. Similarly to Theorem 1, define κ as a positive real number that κ · βσr < σr⋆ , implying ∥κZ∥ ≤ σr⋆ . Then

(X(l))r⋆ ∈ argmin
rank(Y )≤r⋆

∥Y − (X(l) − κZ)∥2F

and rank((X(δ)
⋆ )(l)) = r⋆ so

∥(X(l))r⋆ −X(l) + κZ∥2F ≤ ∥(X(δ)
⋆ )(l) −X(l) + κZ∥2F

which is equivalent to

∥(X(l))r⋆ −X(l)∥2F ≤ ∥(X(δ)
⋆ )(l) −X(l)∥2F + 2k⟨(X(δ)

⋆ )(l) −X(l), Z⟩.

Now the relations (4),(5) from the proof of Theorem 1 still apply here so adding these we have

α∥X(l) − (X
(δ)
⋆ )(l)∥2F ≤ κ⟨X(l) −X

(l)
⋆ , Z⟩

so adding the two inequalities, we obtain

2κα∥X(l) − (X
(δ)
⋆ )(l)∥2F − ∥X(l) − (X

(δ)
⋆ )(l)∥2F + ∥(X(l))r⋆ −X(l)∥2F ≤ 2k⟨(X(δ)

⋆ )(l) −X
(l)
⋆ , Z⟩.

Here we can upper bound ⟨(X(δ)
⋆ )(l)−X

(l)
⋆ , Z⟩ by 2σr⋆ ·∥(X

(δ)
⋆ )(l)−X

(l)
⋆ ∥∗ , by the duality of the nuclear norm and spectral

norm and ∥κZ∥2 ≤ σr⋆ . σr⋆ is again bounded by D√
r⋆

since we are looking at ∥X(l)∥F ≤ D, and ∥(X(δ)
⋆ )(l) −X

(l)
⋆ ∥ ≤

√
r − r⋆ · ∥(X(δ)

⋆ )(l) −X
(l)
⋆ ∥ ≤ δ ×

√
r − r⋆ by the Cauchy-Schwartz inequality. Therefore we have

2κα∥X(l) − (X
(δ)
⋆ )(l)∥2F − ∥X(l) − (X

(δ)
⋆ )(l)∥2F + ∥(X(l))r⋆ −X(l)∥2F ≤ δD

√
r − r⋆
r⋆

.
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We can expand this inequality, using X(l) − (X
(δ)
⋆ )(l) = (X(l) −X

(l)
⋆ ) + (X

(l)
⋆ − (X

(δ)
⋆ )(l)) as

(2κα− 1)∥X(l)
⋆ −X(l)∥2F + ∥(X(l))r⋆ −X(l)∥2F ≤ 2⟨X(l) −X

(l)
⋆ , X

(l)
⋆ − (X

(δ)
⋆ )(l)⟩+ δD

√
r − r⋆
r⋆

≤ 2δ∥X(l) −X
(l)
⋆ ∥F + δD

√
r − r⋆
r⋆

.

Solving the quadratic inequality about ∥(X(δ)
⋆ )(l) −X(l)∥F , if 2κα− 1 > ε the discriminant is

δ2 + 4(2κα− 1)

(
δD

√
r − r⋆
r⋆

− ∥(X(l))r⋆ −X(l)∥2F
)
.

Now we know that if X is an ε-spurious local minima then ∥(X(l))r⋆ − X(l)∥F ≥ σr ≥ α
2β

√
r
· ε for some l, so the

discriminant is negative since δ = o(ε2) and therefore there would be no spurious local minima. If 2κα− 1 < 0, we would
see

∥X(l)
⋆ −X(l)∥F ≤

√√√√∥(X(l))r⋆ −X(l)∥2F − (δD
√

r−r⋆
r⋆

− δ2

1−2κα )

1− 2κα
− δ

1− 2κα

resulting in

∥X(l)
⋆ −X(l)∥F ≤

√
∥(X(l))r⋆ −X(l)∥2F − ε3

1− 2κα
− ε2

given δ = o(ε3)

A.4. Proof of Lemma 1

Proof. Denote the low rank matrices at the tth iteration as At ∈ Rm×r and Bt ∈ Rn×r, the weight update Xt = AtB
⊺
t ,

and the mini-batch used at the tth iteration as St. With a slight abuse of notation, denote the mini-batch loss for batch St at
iteration t as

L̂St
(Xt) =

1

b

∑
(x,y)∈St

ℓ(f(W0 +X;x), y).

Denote the input vector to the layer as u ∈ Rm×1, where u⊺ · (W0 +AB⊺) is inputted to the next layer. Here we see that

∇AL̂St
(Xt) =

1

b

∑
(x,y)∈St

∇Aℓ(f(W0 +AB⊺;x), y).

Now the gradient of the loss is expandable by the chain rule as

∇Aℓ(f(W0 +AB⊺;x), y) =
∂ℓ(f(W0 +AB⊺;x), y)

∂A
=

∂ℓ(f, y)

∂f
· ∂f(W0 +AB⊺;x)

∂A
=

∂ℓ(f, y)

∂f
· u · ( ∂f

∂(u⊺A)
)⊺.

Therefore ∇Aℓ(f(W0+AB⊺;x), y) is a rank-1 matrix, as it is a product of a scalar and two rank-1 matrices. Thus, L̂St
(Xt),

as a sum of b rank-1 matrices, has rank at most b.

Now we can characterize the SGD process with weight decay as

At+1 = At − µ∇AL̂St(Xt)− 2µλAt

Bt+1 = Bt − µ∇BL̂St
(Xt)− 2µλBt

or equivalently,

At+1 = (1− 2µλ)At − µ∇AL̂St
(Xt)

Bt+1 = (1− 2µλ)Bt − µ∇BL̂St
(Xt).
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Recursively applying this process n times, we have

At = (1− 2µλ)nAt−n − µ

n∑
j=1

(1− 2µλ)j−1L̂St−j
(Xt−j).

Therefore denoting Ut,n := −µ
∑n

j=1(1− 2µλ)j−1L̂St−j
(Xt−j) we see At, Bt are approximately close to Ut,n, Vt,n by

∥At − Ut,n∥ ≤ (1− 2µλ)n∥At−n∥, ∥Bt − Vt,n∥ ≤ (1− 2µλ)n∥Bt−n∥

for analogously defined Vt,n, and rank(Ut,n), rank(Vt,n) ≤ nb. Therefore,

Xt = AtB
⊺
t = (Ut,n + (1− 2µλ)nAt−n)(V

⊺
t,n + (1− 2µλ)nB⊺

t,n)

=Ut,n(V
⊺
t,n + (1− 2µλ)nB⊺

t−n) + (1− 2µλ)nAt−nV
⊺
t,n + (1− 2µλ)2nAt−nB

⊺
t−n

Since Ut,n(V
⊺
t,n + (1− 2µλ)nB⊺

t−n), (1− 2µλ)nAt−nV
⊺
t,n are both matrices of rank at most b, we can define a matrix W

with ∥∥∥∥ Xt

∥Xt∥
−W

∥∥∥∥ = (1− 2µλ)2n
∥Xt−n∥
∥Xt∥

and rank(W ) ≤ 2nb. Since we assumed Xt converges to X̃ , when t is sufficiently large we can assume ∥Xt−n∥
∥Xt∥ ≤ 2. Thus

for any n that (1− 2µλ)2n < ε/2, there exists some matrix W with∥∥∥∥ Xt

∥Xt∥
−W

∥∥∥∥ < ε, rank(W ) ≤ b× log(ε/2)

log(1− 2µλ)

B. Matrix lemmas
Lemma B.1. If matrices A ∈ Rm×r, B ∈ Rn×r satisfy A⊺A = B⊺B,

A = UΣ1/2W ⊺, B = V Σ1/2W ⊺

where UΣV ⊺ is a singular value decomposition of AB⊺, and W is a orthonormal matrix.

Proof. Take the compact singular value decompositions of A and B,

A = UAΣAV
⊺
A , B = UBΣBV

⊺
B .

Then we have

VAΣ
2
AV

⊺
A = A⊺A = B⊺B = VBΣ

2
BV

⊺
B

Here VA, VB are both orthogonal matrices and Σ2
A,Σ

2
B are both diagonal matrices, so by the uniqueness of the singular

value decomposition, by sufficient reordering and sign flipping of the singular vectors we can have VA = VB , ΣA = ΣB .
Therefore inputting this into AB⊺ = X(l), we have

U
(l)
X ΣXV

(l)
X

⊺
= UAΣ

2
AU

⊺
B

which implies again ΣA = Σ
1/2
X , UA = U

(l)
X , UB = V

(l)
X up to reordering and sign flipping. This proves the given statement.

Lemma B.2. For orthonormal matrices U ∈ Rm×r and V ∈ Rn×r, if X ∈ Rm×n satisfies XV = U and X⊺U = V then
X can be expressed as

X = UV ⊺ + ŨΣṼ ⊺

where Ũ ∈ Rm×(m−r) is an orthogonal basis for the orthogonal complement of the column space of U , Ṽ ∈ Rn×(n−r) is
an orthogonal basis for the orthogonal complement of the column space of V , and Σ ∈ R(m−r)×(n−r) is a rectangular
diagonal matrix.
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Proof. First fix an arbitrary Ũ and Ṽ , that makes
[
U Ũ

]
and

[
V Ṽ

]
orthogonal. Since orthogonal matrices are invertible,

X can be expressed as

X =
[
U Ũ

] [A B
C D

] [
V ⊺

Ṽ ⊺

]
for some A ∈ Rr×r, B ∈ Rr×(n−r), C ∈ R(m−r)×r, D ∈ R(m−r)×(n−r). Expanding this expression we can write X again
as

X = UAV ⊺ + UBṼ ⊺ + ŨCV ⊺ + ŨDṼ ⊺

Therefore XV = U,X⊺U = V implies UA+ ŨC = U , V A+ Ṽ B = U , respectively. Now the orthogonality of U, Ũ and
V, Ṽ implies A = Ir and B,C = 0. Finally, let the singular value decomposition of D be D = UDΣV ⊺

D. Then

A = UV ⊺ + ŨUDΣD(Ṽ VD)⊺

and ŨUD, Ṽ VD are still orthonormal matrices in the same space, so our statement is proved.

C. Experimental Details
C.1. Verifying low-rank global minima exist

Experimental setup We perform the experiments by fine tuning a RoBERTa model for the SST-2 dataset, and fine tuning
a Vision Transformer model for the CIFAR-100 dataset. To maintain only low rank updates, we follow Malladi et al. (2023),
by first training the linear classification head only, and fine tuning on the resulting model. This way of training is in fact
quite reasonable, as prior studies report it is beneficial to LP-LoRA (Tomihari & Sato, 2024), i.e. perform linear probing first
and then apply low rank adaptation. We tune a total of 24 matrices for each experiment, with the hyperparameters as below.

Table 3: Hyperparameters for verifying low-rank global minima exist

HyperParameter SST2 CIFAR100

Task SST2 CIFAR100
λ 0, 0.1, 0.05, 0.01, 0.005, 0.001 0, 0.01, 0.005, 0.003, 0.001, 0.0005
Learning Rate 0.005 0.001
Scheduler Cosine Annealing Cosine Annealing
Optimizer Proximal SGD Proximal SGD
Batch Size 128 128
Epochs 150 150

Optimizing nuclear norm For verifying the existence of a low rank global minima exists, we optimize over the loss
L̂full
λ (X) = L̂(X) + λ∥X∥⋆. Here the nuclear norm is non-differentiable, so instead of the standard stochastic gradient

descent, we apply proximal gradient method, well known to converge to a global minimum in a convex objective (Parikh &
Boyd, 2014):

Xt+1 = proxµλ∥·∥∗
(Xt − µ∇L̂(Xt))

where

proxµλ∥·∥∗
(X) = argmin

X′

(
1

2µ
∥X ′ −X∥2F + λ∥X ′∥∗

)
.

Computing the rank To effectively compute the rank considering numerical issues, we use the torch.linalg.svd function to
obtain the singular values of the normalized weight matrix, and truncate values below 10−4. As we consider approximately
low rank matrices in Section 3.3, our theory robustly holds for this truncated approximate rank as well.
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Figure 3: Rank of the first value matrix throughout training. (left) SST2, (right) CIFAR100

Results The final ranks after training are presented well in Table 1. Here we present the change of the ranks throughout
training. For simplicity, we present the rank of the first value matrix, which had the largest rank among all matrices in
general. The results presented in Table 1 are the ranks of the weight matrix with the highest rank for each λ.

We also present the test accuracy curves for each task. We see that weight decay have contrastive impacts for sst2 and
cifar100, where weight decay doesn’t harm the generalization performance as long as it is not too big in SST2, while it
significantly impacts performance for CIFAR100. Therefore we do not use CIFAR100 for the following experiments, as the
weight-decay equipped solutions are not the ones of our interest. Nevertheless, we clearly see the decreasing trend of rank
as a function of λ, therefore successfully verifying our assumption.

Figure 4: Test accuracy throughout training. (left) SST2, (right) CIFAR100

C.2. Verifying RSC and RSM

Precisely computing the RSC and RSM constants of a deep neural network is generally infeasible, and therefore we perform
monte-carlo sampling for 1000 samples to find an estimate for these values. Specifically, we compute

α(l) = min
1≤i≤N

⟨∇fl(Xi)−∇fl(X⋆), Xi −X
(l)
⋆ ⟩

∥X(l)
i −X

(l)
⋆ ∥2F

β(l) = max
1≤i≤n

 max
∥U∥F=∥V ∥F=1

rank(U)=rank(V )=1

∇2
l,lf(X)[UX(l) +X(l)V, UX(l) +X(l)V ]

∥UX(l) +X(l)V ∥2F


for samples X1, . . . ,XN with ∥X(l)

i −X
(l)
⋆ ∥ ≤ D, rank(X(l)

i ) ≤ r for each 1 ≤ i ≤ N . Due to the intense computational
bottleneck of the Hessian, we limit the computation to only the last layer of Wq and Wv , following (Jang et al., 2024). The
α, β values we present in Section 4are the values for Wv , which had larger β

α values than Wq for each case.
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C.3. Validating main theorem

In Section 4, we present the training results in two cases: zero initialization and Large initialization, which demonstrate a
global minimizer and spurious local minimizer, respectively. We additionally present here that in smaller initializations, and
in other setups, LoRA training always converges to the global minimum, indeed validating our argument that spurious local
minima must be unfeasible if they exist.

Figure 5: LoRA training on SST2 with varying initialization (left) training loss, (right) test accuracy

We present the specific initializations below. Here the initialization for the A matrix in the zero init follows the standard
Kaiming uniform initialization, while other initializations are random gaussian initializations.

Matrix A B

Zero Initialization U(−
√

15
768 ,

√
15
768 ) 0

Initialization 1 N
(
0, 1

30

)
N

(
0, 1

30

)
Initialization 2 N

(
0, 1

10

)
N

(
0, 1

10

)
Initialization 3 N

(
− 1

10 ,
1
20

)
N

(
1
10 ,

1
20

)
Large Initialization N

(
0, 1

5

)
N

(
0, 1

5

)
Table 4: Initialization values for matrices A and B
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