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ABSTRACT

Federated Learning (FL) has become an established technique to facilitate privacy-
preserving collaborative training across a multitude of clients. The ability to
achieve collaborative learning from multiple parties containing an extensive vol-
ume of data while providing the essence of data privacy made it an attractive
solution to address numerous challenges in sensitive data-driven fields such as au-
tonomous vehicles (AVs). However, its decentralized nature exposes it to security
threats, such as evasion and data poisoning attacks, where malicious participants
can compromise training data. This paper addresses the challenge of defending
federated learning systems against data poisoning attacks specifically focusing on
data-flipping techniques in AVs by proposing a novel defense mechanism that
combines anomaly detection with robust aggregation techniques. Our approach
employs statistical outlier detection and model-based consistency checks to filter
out compromised updates before they affect the global model. Experiments on
benchmark datasets show that our method significantly enhances robustness by
preventing nearly 15% of accuracy drop for our global model when confronted
with a malicious participant and reduction the the attack success rate even when
dealing with 20% of poisoning level. These findings provide a comprehensive
solution to strengthen FL systems against adversarial threats.

1 INTRODUCTION

Autonomous driving Rajasekhar & Jaswal (2015)Martı́nez-Dı́az & Soriguera (2018) is a rapidly de-
veloping field that has the potential to revolutionize human transportation. the usage of machine
learning in this field proved to by vary promising for it’s application in various application, such
as autonomous driving Zhang et al. (2016), complex environment navigation Nguyen et al. (2020) ,
lane following and switching Gurghian et al. (2016) and traffic calculation Yu et al. (2021). Recent
advances in this area rely heavily on machine learning, that requires extensive training data. the cen-
tralized training provide more accuracy for autonomous driving solutions by using already known
and controlled data. This approach neglect data privacy and third party involvement protocols. to
confront those issues Federated learning provide multiple advantages.

Federated Learning (FL) Kairouz et al. (2021) McMahan et al. (2017) Chaabene et al. (2022) has
become increasingly popular in machine learning, enabling models to learn from distributed devices
in diverse contexts. In the FL framework, participating peers undertake the task of training a global
model that they receive from the central server using their own local datasets. After processing their
local data, these peers generate model updates, which they then send back to the server. The server’s
role is to gather and aggregate the various updates it receives from all the peers, ultimately leading
to the creation of an enhanced global model. Following this aggregation process, the updated global
model is redistributed to the peers, setting the stage for the next iteration of training. One of the
significant advantages of federated learning lies in its ability to enhance privacy. By keeping the
local data on the devices of the peers and not transferring it to a central server, FL significantly
mitigates the risks associated with data breaches and privacy violations. This is particularly crucial
in an era where data privacy concerns are paramount. Additionally, FL contributes to scalability
by distributing the computational workload across the devices of the peers, such as smartphones
and other mobile devices, rather than relying solely on a central server’s computing resources. This
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decentralized approach not only improves efficiency but also allows for a broader range of devices
to participate in the training process, making FL a highly attractive option for developing machine
learning models in a secure and scalable manner Bonawitz et al. (2019).

But such as any technique FL faces many challenges and limitations; it’s distributed nature exposes
the global models to potential attacks from malicious participants. The lack of control of the ser-
vice side Li et al. (2020), encourage malicious behaviour of the peers to tamper with the training
guidelines and conduct adversarial attack. Data poisoning represent one of the biggest challenges in
the usage of FL, the attackers take advantages of the model distribution to inject misclassified data
aiming to make the model fail or not converge, they want to make the model incorrectly classify
test cases with particular traits into some desired labels. One sort of targeted poisoning attack is the
label-flipping (LF) attack Biggio et al. (2012), in which the attackers tamper with training data in
the local model by flipping the labels of select accurate instances from a transfer information from
a source class to a target class. Attackers train their local models after contaminating it using the
same hyper-parameters, loss function that that the server has supplied for the model architecture .
Thus, altering the training data is all that is needed to carry out the assault. That poisoned model
is later on send to the server to aggregate with the other intact model, causing a drop of the overall
performance and accuracy.

Multiple studies has been conducted to address those issues. Li et al. (2021) investigate peers
that have the same goals as attackers, which causes a large percentage of false positives when
sincere peers have comparable local data. Zhou et al. (2023) present RoHFL, a hierarchical fed-
erated learning framework for the Internet of Vehicles that uses similarity-based reputation scoring
and logarithm-based normalization to thwart poisoning assaults. Nevertheless, combining these
techniques entangle the aggregate procedure. The OQFL framework Yamany et al. (2023) uses
quantum-behaved particle swarm optimization (QPSO) to modify hyperparameters in order to iden-
tify hostile cars. However, because the model must be reinitialized and retrained from start, there is
a large computational overhead every time a search is conducted.

Our experiments, conducted on image classification datasets such as A2D2 Dataset, CIFAR-10 and
a custom image collection used while training our AVs. We use Principal Component Analysis
(PCA) to reduce the dimensionality of update vectors and effectively differentiate between mali-
cious and legitimate updates. And we combined it with Multiclass Classification Using Support
Vector Machines (SVM). Using PCA, the model can identify anomalies in the distribution of prin-
cipal components that may indicate inconsistencies in labeling. Once the data is transformed, SVM
can be used to classify samples based on the extracted features. SVM decision thresholds can reveal
patterns that indicate that some labels are inconsistent with the feature distribution. This may iden-
tify flipped labels.,Furthermore, the ensemble method increases the robustness,of the search process.
This is because merging multiple SVM classifiers can reveal inconsistencies arising from additional
labeling. It helps to be confident. that the model is resilient to adversarial attacks while maintaining
high classification performance... Our evaluations on the auxiliary datasets, demonstrate that our
defense strategy can effectively identify and block malicious participants.

2 RELATED WORK

Autonomous driving system based on federated learning. As participatory driving models con-
tinue to improve in statistical accuracy, increased attention has been paid to improving the safety
and effectiveness of their training programs. Traditionally, driving intervention models have relied
on centralized training methods. However, centralized training presents challenges such as server
computing capacity limitations, data security concerns, and network transmission overhead Yaacoub
et al. (2023). In response, the FD Framework has developed the capacity to nurture these models.
FL in Autonomous driving systems has been the subject of a verity of research investigations for
various purposes Chellapandi et al. (2023). FL is used, for example, in object detection, it makes
it possible for the AV framework to learn quickly and with little communication overhead, which
is especially useful when the amount of data is significantly more than the size of the ML model
while also protecting the data’s privacy. In Barbieri et al. (2022), LiDAR on CAVs is utilized for
object classification through a decentralized FL approach. Through V2V networks, the ML model’s
parameters are exchanged. Comparing FL to selflearning techniques, it has been experimentally
demonstrated that FL is highly effective. The identification and recognition of license plates is a
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significant additional use of FL. Applications include traffic safety and infractions, traffic monitor-
ing, detecting unlawful or over-time parking, and parking access authentication are only a few of
the uses for it in ITS. It has been demonstrated that ML approaches are quite effective in identifying
license plates and detecting objects Kong et al. (2021)Xie et al. (2023). The Transformer model
has demonstrated the efficacy of the FL framework in learning spatio-temporal characteristics Zhou
et al. (2022), all the while maintaining user privacy. The detection of abnormal vehicle trajectories at
traffic crossings has been accomplished through the use of FL in conjunction with OneClass Support
Vector Machine (OC-SVM) Koetsier et al. (2022). According to the published results, the federated
strategy enhances anomaly detection’s overall accuracy while also benefiting specific data owners.
In other where FL provided promising results is predicting steering wheel angles and traffic control.
The performance of centralized learning and FL in steering angle prediction was evaluated in P et al.
(2021) under various noise levels, and the outcomes were equivalent. This research also took into
account the effects of communication load and interruptions, offering a thorough assessment of the
systems. Because of this, FL is appropriate for applications that include a growing number of CAVs,
particularly for jobs like steering wheel angle prediction. The research provided in Zhang et al.
(2021) showed that using FL in CAV significantly improved the quality of the edge models. In par-
ticular, the research used optical flow and pictures as two data modalities to estimate steering wheel
orientations. By employing FL to update the controller parameters dynamically, the target speed
has been better achieved while improving driver comfort and safetyZeng et al. (2022). Moreover,
FL is applied in cooperative parameter optimization between several vehicles at traffic junctions,
preventing crashes and enhancing driving comfort Wu et al. (2021). By precisely calculating the
road friction coefficients, FL is used in Liu et al. (2021) to improve brake performance in a variety
of driving scenarios and settings. This method maximizes the braking action while protecting the
driver’s privacy. To optimize the controller design for AVs with variable vehicle participation in the
FL training process, a FL framework is proposed in Zeng et al. (2022).

Lable Flipping in Federated Learning. The rising popularity of FL has led to the exploration
of various attacks in this context, such as backdoor attacks Zhuang et al. (2024), gradient leakage
attacks Yang et al. (2024), and membership inference attacks Zhu et al. (2024). In work we focus
on data poisoning attacks[Data Poisoning Attacks Against Federated Learning Systems], such as
label-flipping (LF) Li et al. (2023a), Biggio et al. (2012) and feature perturbation (FP), are critical
areas of research. LF attacks have been widely applied in image processingPaudice et al. (2019).
For instance, Nowroozi et al. (2023) evaluated LF attacks and proposed a defense mechanism using
real datasets from the UCI repository , including MNIST Deng (2012) and Spambase Hopkins &
Suermondt (1999). Further experiments Rosenfeld et al. (2020) manipulated the MNIST dataset
using LF attacks and found a slight increase in classification error after injecting ten poisoning
points. The study was repeated with Multiclass Logistic Regression, revealing an error increase
from 2% to 2.1% due to a random LF attack. The approach in Tolpegin et al. (2020) extended to
label-specific scenarios, where adversaries could adjust predictions based on predetermined rules.
Experiments on CIFAR-10 and a reduced version of ImageNet confirmed the effectiveness of the
proposed method. In order to protect against poisoning assaults, a number of studies concentrate
on evaluating certain updates. To differentiate between faulty and accurate updates, Jebreel et al.
(2020)[ suggest examining the biases in the output layer. But only in the IID setting does it take
model poisoning attacks into account. In order to prevent data poisoning attacks, FGold Fung et al.
(2020) and Awan et al. (2021) evaluate the weights of the output layer; But these techniques also
frequently penalize identical but good updates mistakenly, which causes the model’s performance to
significantly decline. Using a kernel density estimator, Li et al. (2023b) calculates how harmful each
local update is in relation to its k-nearest neighbors. After that, it uses an asymptotic threshold to
determine if updates are benign or poisoned. Not only is it difficult to choose a threshold of this kind,
but this approach has not been validated with big DL models or non-IID data. In order to identify
the LF attack, Qayyum et al. (2022) suggests a method for discovering the correlation between the
latent features of training data and updates. However, the strategy imposes an additional cost on all
parties to train another model that learns such relationship. Furthermore, it is unrealistic to believe
that throughout the early training rounds, all peers will behave appropriately.

3 STUDY DESIGN

For our experiment we used three SunFounder Picar Sunfounder that we trained using a CNN (Con-
volutional Neural Network) model. The collected data from the integrated camera where used to
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Figure 1: Proposed Federated Learning model architecture for Label flipping Attack on for AV

create our own dataset that contained 5K images of traffic light, lines and different types of obstacle.
Moreover to address the data shortage we used the CIFAR10 dataset CIFAR-10 with it 60 K colored
images of 10 different classes and we divided it into 50K data for training and 10K for testing and
The A2D2 Dataset Audi that features over 40k labeled with 38 features.

We implement our FL framework for malicious vehicle detection using N = 3 participants, one
central aggregator, and k = 5 each . We use an independent and identically distributed (iid ) data
distribution, we assume the total training dataset is uniformly randomly distributed among all par-
ticipants with each participant receiving a unique subset of the training data. The testing data is used
for model evaluation only and is therefore not included in any participant Pi’s train dataset. Observ-
ing that both CNN models converge after fewer than 200 training rounds, we set our FL experiments
to run for R = 200 rounds total.

We trained our federated learning models on each dataset without adversarial settings. Next, the
appropriate global models on test samples for each dataset. We first determined samples with high
prediction confidence by computing softmax probabilities and choosing the examples that correctly
forecasted in order to generate the Complementary dataset. If the projected class matched the ac-
tual label and its corresponding probability exceeded the threshold, we added the sample to the our
dataset. Participants within the federated learning framework must maintain continuous commu-
nication and collaboration with the aggregation server. The model M is finished with parameters
θR at the end of R rounds of FL. The test dataset used to evaluate M is denoted by Dtest, where
Dtest ∩ Di = ∅ for each participant dataset Di. We present an in-depth analysis of label flipping
attacks in FL in the following sections.

3.1 LABEL FLIPPING ATTACK

We use a label flipping attack to implement targeted data poisoning in FL. Given a source class
CSource and a target class Ctarget from C, each malicious participant Pi modifies their dataset Di as
follows: For all instances in Di whose class is CSource, change their class to Ctarget. We denote this
attack by CSource → Ctarget. For example, images with initial red light class labels may be altered to
have a green light class by malicious participants, according to the CIFAR-10 image classification
sign red light → green light. The attack tries to increase the possibility that, during testing, the final
global model would mistakenly classify traffic signals. The threat of label flipping is well-known
in centralized machine learning. It’s also acceptable in the FL scenario given the hostile objective
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Algorithm 1 Server-side code

Require: n > 0 the amount of clients
CNN ← create model()
for i in [0, n] do
CNN [i].initiate(initial packets)

end for
for i in [0, n] in parallel do
open port()
await client connection()
CNN [i]← receive client CNN()

end for
Require: suspicious packet

return CNN.predict(suspicious packet)

Algorithm 2 Client-side code

CNN ← create decision CNN()
CNN.initiate(initial packets)
CNN.train(local Data)
connect to server()
send CNN to server()

and capabilities indicated above. Label flipping is different from other poisoning methods in that
the adversary does not need to know the CNN architecture, loss function L, global distribution of D,
etc. Its time and energy efficiency make it a desirable feature, especially since FL is frequently used
with edge devices. In addition, it is simple enough for non-experts to perform and doesn’t involve
changing or meddling with participant-side FL software. To simulate the label flipping attack in a
federated learning (FL) system with P¨= 3 , where one is P malicious, we proceed as follows. At
the start of each experiment, we randomly designate N ×m% of the participants from the total P as
malicious, while the remaining participants are considered honest. The malicious participants is then
injected with flipped labels, each experiment is repeated 10 times, and we report the average results.
We examine three label flipping attack settings that represent a range of adversarial conditions:

• A source class → Ctarget class pairing where the source class was very frequently misclas-
sified as the Ctarget class in federated, non-poisoned training.

• A pairing where the source class was very infrequently misclassified as the Ctarget class.

• A pairing between these two extremes.

These conditions provide a diverse set of scenarios to evaluate the effectiveness and impact of label
flipping attacks in the federated learning environment.

3.2 ATTACK EVALUATION METRICS

We employ several evaluation indicators to do this.

Global Model Accuracy (Macc): The global model accuracy is the percentage of instances x ∈ Dtest
where the global model M with final parameters θR predicts MθR(x) = ci and ci is indeed the true
class label of x.

Class Recall (crecalli ): Where the percentage

TPi

TPi
+ FNi

· 100%

represents the class recall for any class ci ∈ C. Whereas FNi
is the number of examples x ∈ Dtest

where MθR(x) ̸= ci and the true class label of x is ci. The number of instances x ∈ Dtest is TPi
,

where MθR(x) = ci and ci is the true class label of x.
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Figure 2: Overview of the system design

3.3 PROPOSED DEFENSE MECHANISM

The defense approach for the LF attack consist of creating a security layer in between the aggregation
layer that includes our server S, where we trained our initial model and used for the distribution and
updates the global model by aggregating locally learned models from the vehicles. the aim is to
reach the optimal weight by optimizing the loss function L(W).

WOp ← argminL(W ),

The other layer is the training layer that consists of 3P vehicles, which, after obtaining a global
model from the reliable server, jointly train the local model. Each P trains a local model using its
personal dataset Dp ∈ D.

Our defense mechanism consist of locating and extracting from each participant local updates the
gradients pertinent to the LF attack, before updating the global model. This is made using the Prin-
cipal Component Analysis (PCA) to reduce the dimensionality of update vectors and; Multiclass
Classification Using Support Vector Machines (SVM). Our security agent study the relevant param-
eter subset and verify each peer update, since the updates provided by malicious participants differ
from those sent by honest participants. After obtaining two dimension we use MLSVM to com-
pute the distance between each sample point and the several class-specific hyperplanes, the model
identifies the hyperplane and, thus, the class assignment. In an MCSVM with M classes, the model
calculates the decision function for each classifier for a given test sample by training M binary clas-
sifiers, each of which corresponds to a distinct class. With the reduced dimension the objective is
to differentiate the M class with the all the different training data. Once each class is defined, we
compare the local model with our initial global model by calculating the

Outlier Scoret+1 =
1

|DC |

|D
∑

C|∑
i=1

(yi ̸= ŷi)

the higher the score the more likely to be a malicious participant. Once the agent has determined
which users are malicious, it may ban them or stop using their update.
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Algorithm 3 Federated Learning Algorithm with Adversarial Mitigation and PCA

Require: P : Total number of AV nodes
Require: K: Participating vehicles during aggregation
Require: R: Federation rounds
Require: DC : Initial dataset
Require: A: Adversary-controlled vehicles list
Require: Ms: MCSVM model
Require: Wl: Local model
Ensure: Wt: Global model shared with all peers in R- federation round

1: W0 ← initialize global model
2: for t = 0 to T − 1 do
3: S ← random set of K participants (Client Identifier)
4: C sends Wt to all participants in S
5: for each participant k ∈ S in parallel do
6: if k ∈ A then
7: Poison data Dk through LF
8: end if
9: Wk

t+1 ← ClientUpdate(k,Wt)
10: end for
11: for each participant k ∈ S do
12: Apply PCA: Transform Wl using PCA to reduce dimensionality:

Wl = PCAWl

13: for each sample i in Wl do
Ms ( Wl )

14: end for
15: Test the w model and compute ŷLi,k for each Ms ( Wl )
16: Test the model Wk

t+1
17: Compute Outlier Scoret+1

18: end for
19: O ← Select τ participants with the highest Outlier Scoret+1 scores
20: G← P −O {Remove malicious participants from P}
21: Perform aggregation of models Wt+1

22: end for
23: return WT

3.4 EVALUATION INDICATORS

Throughout this paper, we employ metrics to enhance our understanding of both the security and
utility provided by the models under scrutiny, which we subject to experimental manipulation. These
metrics have been defined as follows:

• Source Class Recall: This metric calculates the number of correct positive predictions made
out of all positive predictions that could have been made by the model. =In the event of
label tampering by a malicious user, this metric will decrease, as fewer (or none) correct
positive predictions will be made for the specific class Ctarget by the attacker.

• Sparse Categorical Accuracy: This metric evaluates the accuracy of a model’s predictions
by comparing the predicted class labels with the actual ground truth labels.

• CrossEntropy Loss: This measures the disparity between the predicted probability distribu-
tion and the true probability distribution of the classes. In our models, it serves to quantify
how well the predicted probabilities align with the actual class labels.

4 RESULTS

First, we study the effect of a single malicious participant on our federated learning framework, FL.
We find that just a single malicious participant can significantly degrade global model performance-
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Figure 3: Evolution of the source class recall by
round when α = 0.8

Figure 4: Evaluation of the Global model accu-
racy with a malicious participant

source class recall losses of over 25% are possible when this adversary is consistently well-
represented in the participant pool. This impact on source class recall is highest for a high availability
level of α = 0.9. In this respect, the effect becomes smaller if availability goes down, meaning here
that lower losses can be obtained for lower values: α = 0.7, α = 0.6 or α = 0.5. Thus, to max-
imize effectiveness of the attack it is beneficial for the malicious participant to remain as available
as possible-especially in the later training rounds. To further demonstrate this effect of availability,
we report source class recall by round for α = 0.7 and α = 0.9. A higher availability of the mali-
cious participant results in a noticeable degradation in source class recall, along with lowering the
value of recall for α = 0.9 compared to α = 0.7. The probabilistic selection of the participants
can be considered one of the prime reasons for the variability of recall across rounds. A round with
fewer malicious participants tends to increase source recall, and a higher number falls back.Each
experimental condition is run three times, and the outcomes are averaged to remove round-to-round
variability. As our results indicate, even a single malicious participant can significantly reduce global
model performance, with source class recall losses of over 25% possible under high availability. In-
deed, with high availability, there is a negative effect, while a decrease in availability tends to grant
considerably better results. Importantly, for values of k significantly larger than N ×m%, increas-
ing availability (α) becomes less effective for meaningful impacts in individual training rounds. As
for the accuracy we notice that each round of training using the malicious participant effected the
model accuracy by a drop of 0.1% with each training round leading to an overall loss of 20% when
to model finish training.

Using our proposed defense mechanism enables the detection such a malicious participant and never
allows any updates from that participant or blacklists the participant for further usage in rounds.
Leading to no accuracy lost and the integrity of the global model training. Using Principal Com-
ponent Analysis (PCA) and Multi-class Support Vector Machine (SVM) classifiers together offers a
strong way to defend against label flipping attacks in federated learning. PCA cuts down the number
of features and gets rid of noise. This proves important in federated setups where data quality often
changes from one user to another. Focusing on the most useful features helps the model work faster
and spot unusual data more easily. After the data gets changed by PCA, the usage of Multiclass
Classification SVM classifiers to draw complex lines is helpful for our agent in telling apart good
labels from malicious ones. This method really works in finding strange data and keeping correct
results even with malicious participation.

5 CONCLUSION

In this paper, we investigated data poisoning attacks targeting Federated Learning (FL) systems in
autonomous vehicles. Our study reveals the susceptibility of FL systems to label flipping poisoning
attacks, highlighting their significant adverse effects on the global model. We established a defence
mechanism biased on PCA and MCSVM do to their ability to separate outliers. We further investi-
gated the results of our mechanism which lead to the avoidance of the attack and the preservation of
the global model integrity.
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Future Work: Since this approach was based on a real life simulation with real cars the number
of participant was limited to three do the high necessity of computation cost. we aim to extend our
approach on multiple participant. Also the recreation of our strategy with a computer simulation
using different nodes and compare it to stats ot the art solution. Another critical area is to test our
defence strategy against other types of adversarial attack such as backdoor and noise injection. One
other critical area to look into is domain adaptation since a participant can contain different data
from the original but not harmless. Creating a distinguish between outlier and other domain data is
crucial.

REFERENCES

Audi. Driving Dataset. URL https://www.a2d2.audi/a2d2/en.html.

Sana Awan, Bo Luo, and Fengjun Li. CONTRA: Defending Against Poisoning Attacks in Federated
Learning. In Elisa Bertino, Haya Shulman, and Michael Waidner (eds.), Computer Security –
ESORICS 2021, pp. 455–475, Cham, 2021. Springer International Publishing. ISBN 978-3-030-
88418-5. doi: 10.1007/978-3-030-88418-5 22.

Luca Barbieri, Stefano Savazzi, Mattia Brambilla, and Monica Nicoli. Decentralized federated
learning for extended sensing in 6G connected vehicles. Veh. Commun., 33(C), January 2022.
ISSN 2214-2096. doi: 10.1016/j.vehcom.2021.100396. URL https://doi.org/10.
1016/j.vehcom.2021.100396.

Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning Attacks against Support Vector Ma-
chines. June 2012.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman,
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