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Abstract

Interest is rising in Physics-Informed Neural Networks (PINNs) as a mesh-free alternative
to traditional numerical solvers for partial differential equations (PDEs). However, PINNs
often struggle to learn high-frequency and multi-scale target solutions. To tackle this prob-
lem, we first study a strong Boundary Condition (BC) version of PINNs for Dirichlet BCs
and observe a consistent decline in relative error compared to the standard PINNs. We then
perform a theoretical analysis based on the Fourier transform and convolution theorem. We
find that strong BC PINNs can better learn the amplitudes of high-frequency components
of the target solutions. However, constructing the architecture for strong BC PINNs is
difficult for many BCs and domain geometries. Enlightened by our theoretical analysis, we
propose Fourier PINNs — a simple, general, yet powerful method that augments PINNs with
pre-specified, dense Fourier bases. Our proposed architecture likewise learns high-frequency
components better but places no restrictions on the particular BCs or problem domains. We
develop an adaptive learning and basis selection algorithm via alternating neural net basis
optimization, Fourier and neural net basis coefficient estimation, and coefficient truncation.
This scheme can flexibly identify the significant frequencies while weakening the nominal
frequencies to better capture the target solution’s power spectrum. We show the advantage
of our approach through a set of systematic experiments.

1 Introduction

Physics-informed neural networks (PINNs) (Raissi et al., 2019) are innovative, mesh-free approaches for
solving partial differential equations (PDEs). They offer computationally efficient alternatives to traditional
mesh-based numerical methods such as finite elements and finite volumes (Reddy, 2019). The optimization
of PINNs involves softly constraining neural networks (NNs) through customized loss functions designed to
adhere to the governing equations of physical processes. Researchers have successfully applied PINNs in
various domains—for example, they have been used to simulate the radiative transport equation (Mishra &
Molinaro, 2021), which is crucial for radio frequency chip and material design (Chen et al., 2020; Liu &
Wang, 2019). Further, cardiovascular flow modeling (Kissas et al., 2020) is another application, along with
various fluid mechanics problems (Cai et al., 2021), and high-speed aerodynamic flow modeling (Mao et al.,
2020), among many others (Raissi et al., 2020; Chen et al., 2020; Jin et al., 2021; Sirignano & Spiliopoulos,
2018; Zhu et al., 2019; Geneva & Zabaras, 2020; Sahli Costabal et al., 2020; Sun et al., 2020; Fang & Zhan,
2019).

Despite these successes, the training of PINNs remains challenging in some instances. Recent studies have
analyzed common failure modes of PINNs, particularly when modeling problems that exhibit high-frequency,
multi-scale, chaotic, or turbulent behaviors (Wang et al., 2022b; 2020b;a; 2022a), or when the governing
PDEs are stiff (Krishnapriyan et al., 2021; Mojgani et al., 2022). Rahaman et al. (2019) attributes the slow
convergence to the high-frequency components of the target solution, identifying it as a “spectrum bias” in
standard NNs, while learning low-frequency information from data is straightforward. Wang et al. (2020b)
confirmed that this bias is also present in the PINN setting. These challenges often arise because applying
differential operators over the NN in the residual complicates the loss landscape (Krishnapriyan et al., 2021).
From an optimization perspective, Wang et al. (2020a) highlighted that the imbalance in gradient magnitudes
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between the boundary loss and residual loss (with the latter often being much larger) causes the residual loss
to dominate training, leading to a poor fit to the boundary conditions. Wang et al. (2022b) confirmed this
conclusion through a neural tangent kernel (NTK) analysis of PINNs with wide networks, finding that the
dominant eigenvalues of the residual kernel matrix often result in the training primarily fitting the residual
loss.

One class of approaches designed to mitigate the training challenges in PINNs involves setting different
weights for the boundary and residual loss terms. For example, Wight & Zhao (2020) suggested incorporating
a large multiplier for the boundary loss term to prevent the residual loss from dominating the training process.
In contrast, Wang et al. (2020a) proposed a dynamic weighting scheme based on the gradient statistics of the
loss terms, and Wang et al. (2022b) developed an adaptive weighting approach based on the eigenvalues of the
NTK. Liu & Wang (2021) employed a mini-max optimization to update the loss weights via stochastic ascent,
and McClenny & Braga-Neto (2020) used a multiplicative soft attention mask to dynamically re-weight the
loss term for each data point and collocation point. To alleviate the spectrum bias in NNs, Tancik et al. (2020)
randomly sampled a set of high frequencies from a large-variance Gaussian distribution to construct random
Fourier features as input to the NN. Additionally, Wang et al. (2021) used multiple Gaussian variances to
sample frequencies for Fourier features, aiming to capture multi-scale solution information within the PINN
framework. While effective, the performance of this method is sensitive to the number and scales of the
Gaussian variances, which are user-specified hyperparameters that are often difficult to optimize.

Another strategy to improve these challenges is to modify the NN architecture to exactly satisfy the boundary
conditions (BCs) (Lu et al., 2021; Lyu et al., 2020; Lagaris et al., 1998; 2000; McFall & Mahan, 2009; Berg &
Nyström, 2018; Lagari et al., 2020; Mojgani et al., 2022). We refer to these approaches as “strong BC PINNs”.
Despite their effectiveness, these approaches face several limitations. They are usually limited to tasks with
relatively simple and well-defined physics, requiring significant craftsmanship and complex implementations
even in straightforward problem settings. Consequently, these strategies are less flexible than the original
PINN framework, which employs a soft constraint approach for boundary condition satisfaction. Additional
complications arise for challenging physical systems governed by invariances or conservation laws, such as
energy or momentum conservation, due to often poorly understood and imprecisely defined physical laws.
Incorporating these laws effectively into the NN architecture makes extending strong BC PINNs to handle
more complex tasks difficult. Further, designing a custom ansatz requires tailoring the NN architecture for
each specific boundary condition and domain, which is often impractical for complicated domains. However,
when properly designed, these techniques can achieve highly accurate solutions.

In our work, we delve deeper into the training challenges of PINNs for learning high-frequency and multi-
scale solutions. We analyze the mechanisms behind the success of strong BC PINNs and explore ways to
incorporate these successful strategies into a more general PINN architecture. Our specific contributions are
as follows:

• We first examine a strong BC PINN architecture for simple Dirichlet boundary conditions as pro-
posed by Lu et al. (2021). This variant integrates a fixed polynomial boundary function into the NN
architecture to exactly satisfy the boundary conditions. While it shows significant improvements
over the standard PINN, especially for higher frequency problems, it struggles to predict solutions
with frequencies above a certain threshold due to its static nature. To address this limitation, we
propose a new strong BC PINN architecture featuring an adaptive parameter optimized during train-
ing. This parameter adjusts the boundary function’s sharpness to match the true solution, thereby
improving accuracy for higher-frequency solutions compared to the static polynomial variant.

• We conduct a Fourier analysis on both strong BC PINNs compared to the standard PINN. Through
the Fourier series convolution theory, we discovered that multiplying the NN by the strong boundary
function significantly enhances the learning speed and accuracy of the higher frequency coefficients
in the target solution. In contrast, standard PINNs struggle to capture coefficients in the high-
frequency domain accurately. This analysis complements and confirms the aforementioned NTK
work.

• Inspired by our Fourier analysis, we develop Fourier PINNs. This novel PINN architecture enhances
frequency learning within the true solution, comparable to strong BC PINNs, regardless of specific
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boundary conditions, domain, or underlying physical properties. The Fourier PINN architecture
integrates a standard NN with a linear combination of Fourier bases, with frequencies uniformly
sampled from an extensive pre-set range. We implement an adaptive learning and basis selection
algorithm that alternately optimizes the NN basis parameters and the coefficients of the NN and
Fourier bases while pruning insignificant bases. This approach efficiently identifies significant fre-
quencies, supplements those missed by the NN, and improves frequency amplitude estimation (i.e.,
the basis coefficient) while maintaining computational efficiency. Unlike previous methods, this ap-
proach only requires specifying a sufficiently large range and small spacing for the Fourier bases
without concern for the actual number and scales of frequencies in the true solution.

• We evaluate Fourier PINNs on several benchmark PDEs characterized by high-frequency and multi-
frequency solutions. In all cases, Fourier PINNs consistently achieve low solution errors (e.g., ∼
10−3 or ∼ 10−4). In contrast, standard PINNs invariably fail to achieve comparable accuracy.
PINNs with random Fourier features (RFF-PINNs) often fail across various Gaussian variances
and scales, indicating high sensitivity to these parameters. Additionally, we test spectral methods,
PINNs with large boundary loss weights (Wight & Zhao, 2020), and PINNs with adaptive activation
functions (Jagtap et al., 2020). Fourier PINNs consistently outperform all these methods.

The remainder of this paper is structured as follows: Section 2 provides the necessary background and
notation, while in Section 4, we present our Fourier analysis of strong BC PINNs and explain the success of
the strong boundary ansatz methodology. Our new Fourier PINN architecture and its training routines are
described in Section 5. Section 6 details our numerical experiments and findings, including assessments of
computational cost and accuracy compared to baseline methods. Finally, Section 7 discusses the results and
outlines future research directions.

2 Background

In this section, we first describe the general optimization problems we are addressing with physics-informed
neural networks (PINNs) following the formulation presented in Raissi et al. (2019). We then discuss the
specifics of strong boundary condition enforcement.

2.1 General Overview of Physics-Informed Neural Networks

The PINN framework uses NNs to estimate solutions to partial differential equations (PDEs). Consider a
PDE of the following general form,

F [u](x) = f(x), x ∈ Ω, (1)

where F is a linear or non-linear differential operator and u represents the unknown solution and Ω is the
problem domain in Rd. The general boundary conditions are then,

B[u](x) = g(x), x ∈ ∂Ω, (2)

where ∂Ω is the boundary of the domain and B is a general boundary-condition operator.

To solve the PDE, the PINN uses a deep NN, uN (x;θ), to approximate the true solution u(x). For clarity
in later sections, we follow the convention of Cyr et al. (2020) and define the output of the NN with width
W as a linear combination of a set of non-linear bases such that,

uN (x; c,θH) =
W∑
j=1

cjψj(x;θH), (3)

where each ψj are non-linear activation functions (such as Tanh) acting on the hidden layer outputs. Each cj
for j = 1, ..., w and θH are the weights and biases in the last layer of the NN and hidden layers, respectively.
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Therefore, θ = {c,θH} form the set of all network parameters. Then, finding the optimal network parameters
θ∗ involves minimizing the following composite loss function between boundary and residual loss terms,

θ∗ = arg minθ λLb(θ) + Lr(θ). (4)

Here,

Lb(θ) = 1
M

M∑
i=1

(
B[uN ](xib)− g(xib)

)2
, (5)

is the boundary loss to fit the boundary condition with Lagrange multiplier λ, and

Lr(θ) = 1
N

N∑
i=1

(
F [uN ](xir)− f(xir)

)2
, (6)

is the residual loss to fit the equation. We minimize equation 4 by sampling N collocation points {xir}Ni=1
from the domain Ω and M points {xib}Mi=1 from the boundary of the domain ∂Ω, and iteratively modifying
the network parameters through gradient descent.

2.2 Strong Boundary Condition PINNs

Equation 5 can approximately enforce various types of boundary conditions, including Dirichlet, Neumann,
Robin, and periodic. However, prior analysis by Wang et al. (2020a; 2022b) suggests that the instability
in training PINNs likely arises from the competition between the weakly enforced boundary loss (5) and
the residual loss (6) terms during optimization. This competition likely occurs because both loss terms
are minimized simultaneously during training. However, the optimization algorithm tends to prioritize the
minimization of the residual loss, as it typically dominates the gradient of the combined loss function.
Consequently, this can lead to a scenario where the residual loss converges effectively but at the expense of
the boundary loss, which remains inadequately optimized. As a result, the boundary conditions may not be
satisfied, leading to poor model performance on new, unseen data or data at the domain’s boundaries.

One solution to mitigate the competition between the loss terms is to design a surrogate model that inherently
satisfies the boundary conditions. This approach typically works by modifying the network architecture to
satisfy the boundary conditions exactly, thus eliminating the need for a boundary enforcement loss term
and further reducing the computational cost. This method of exact imposition of boundary conditions has
become a standard approach in the PINN literature and is especially prevalent for Dirichlet and periodic
boundary conditions (Lu et al., 2021; Yu et al., 2022; Wang et al., 2024).

This work primarily focuses on Dirichlet boundary conditions to simplify the analysis and implementations
while addressing a significant and common scenario in physical systems. Dirichlet boundary conditions
provide a clear and straightforward framework to demonstrate the effectiveness of the surrogate model
approach, as they require the solution to take specific values at the boundaries, which is relatively easy to
enforce exactly on simplified domains. To illustrate, we consider the 1D Dirichlet boundary condition defined
as,

x ∈ [a, b], u(a) = u(b) = g(x). (7)

For this case, the surrogate model is typically defined as,

uθ(x) = g(x) + φ(x)uN (x), (8)

such that uθ(x) is the solution function, g(x) is the provided boundary function, uN (x) is the output of
the neural network, and φ(x) is a composite distance function that zeroes out on the boundaries, ensuring
the boundary conditions are met without explicit penalty terms. By construction, uθ(a) = uθ(b) = g(x),
and thus the boundary condition in equation 7 is strictly and automatically satisfied. To estimate the
parameters of uθ, we only need to minimize the residual loss Lr(θ). Most PINN surrogate model designs
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rely on distance functions based on the theory of R-functions (Sukumar & Srivastava, 2022), which are
smooth mathematical functions that encode Boolean logic and facilitate the combination of simple shapes
to form complex geometries (Rvachev & Sheiko, 1995). Some meshfree Galerkin methods have utilized the
capability of R-functions to enforce boundary conditions smoothly and exactly to enhance the precision and
robustness of numerical simulations for solving boundary-value problems (Shapiro & Tsukanov, 1999; Akin,
2014; Tsukanov & Posireddy, 2011).
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Figure 1: This figure shows the polynomial distance function φpoly(x) and the exponential distance function
φexp(x) with different α values. The curves for φexp(x) correspond to different α parameters, demonstrating
how the shape of φexp(x) “sharpens” around the domain boundaries as α increases.

In this work, we compare the standard PINN to two strong BC PINNs using different distance functions
to enforce Dirichlet boundary conditions exactly. The first distance function we consider is the polynomial
distance function proposed in (Lu et al., 2021), defined as,

φpoly(x) = (x− a)(b− x). (9)

This function satisfies the boundary conditions by zeroing out at the endpoints x = a and x = b. While Lu
et al. (2021) demonstrates promising results using this formulation, the polynomial distance function φpoly(x)
remains static throughout the training process. The absence of adaptability limits the model’s performance
across different problems and domains, whereas introducing adaptability would allow the model to adjust to
the varying complexities within the solution space.

To address this limitation, we propose an adaptive distance function to introduce flexibility in enforcing the
boundary conditions, which we define as:

φexp(x) = (1− eα(a−x))(1− eα(x−b)), (10)

where α is a parameter that can be pre-set or optimized during training. The exponential form of equation 10
allows the function to adjust dynamically to better conform to the unique characteristics of the problem
domain, thus enhancing the enforcement of boundary conditions across different scenarios and potentially
leading to more accurate and efficient training outcomes.

Figure 1 illustrates the behavior of the polynomial distance function φpoly(x) to the exponential distance
function φexp(x) with various values of α. As α varies, φexp(x) adjusts its shape, showcasing its ability to
conform to different problem domains and complexities. We expect this dynamic adaptability to enhance the
model’s performance by more precisely enforcing boundary conditions across diverse scenarios. We affirm
this through a numerical example in the next section.

3 Boundary Condition Pathologies in PINNs

Recent works have employed strong boundary enforcement strategies (Lu et al., 2021; Yu et al., 2022)
but offer few insights into the specific surrogate model design process. The design and implementation
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of the surrogate models are often ad-hoc, with no systematic approach to their architectural design. This
complicates their application and limits their effectiveness across boundary conditions and physical problems,
especially when dealing with complex physics and domains. Moreover, the standard PINNs frequently
encounter difficulties with high-frequency and multi-scale solutions, leading to inaccurate predictions (Wang
et al., 2020b). We show that while the strong BC PINN model improves solution quality for problems with
higher frequency compared to the standard PINN, the solution quality nevertheless degrades with larger
frequencies. In the following, we empirically demonstrate how the standard PINN solution quality degrades
as the actual frequency of the solution increases in both a linear 1D Poisson problem and a non-linear 1D
steady-state Allen-Cahn problem. Specifically, we consider the fabricated solution u(x) = sin(kx) for a range
of frequencies k ∈ [2, 6, 10, 14, 18, 22, 26, 30, 34] and x ∈ [0, 2π]. Therefore, by varying k, we can examine
the performance of the standard PINNs compared to the strong BC PINNs when the solution u includes
different frequency information.

Specifically, we examine the 1D Poisson equation given by,

∆u = f(x) (11)
u(0) = u(1) = 0, (12)

and derive the forcing function f(x) from the fabricated solution u(x) = sin(kx) which gives f(x) =
−k2 sin(kx). We also consider the 1D Allen-Cahn equation defined as,

uxx + u(u2 − 1) = f(x) (13)
u(0) = u(1) = 0, (14)

which gives the forcing function f(x) = −k2 sin(kx)+sin(kx)(sin2(kx)−1). Both are subject to the Dirichlet
condition in equation 7 where a = 0 and b = 2π. We test these problems using a standard PINN, which
explicitly incorporates the weakly enforced boundary loss and residual loss terms. We compare these results
to two strong BC PINNs employing different distance functions (8) and show that this method exhibits
slower solution degradation with increased frequency. We used the same NN architecture for the strong BC
PINN and the standard PINN, including two hidden layers, 100 neurons per layer, and Tanh activation.
Both methods used the same 10K collocation points randomly sampled from the domain. We report the
averaged results for each method from five random trials.

Figure 2 shows that both of the strong BC PINNs given by equation 9 and equation 10 push the surrogate
model to inhibit the high-frequency components resulting in higher accuracy solutions, however, once the
frequency surpasses a certain threshold, the static polynomial distance function φpoly fails to provide any
additional benefit. Figure 2 shows that the strong BC PINN (φexp) given by equation 10 obtains higher
accuracy solutions than both the standard PINN and the strong BC PINN (φpoly). However, it similarly
hits a threshold where the benefits of the strong boundary enforcement diminish, albeit at a much higher
frequency than the strong BC PINN (φpoly).

4 Fourier Analysis of Strong BC PINNs

In this section, we explain why the strong BC PINNs outperform standard PINNs using Fourier analysis.
Both NNs and PINNs often exhibit spectral bias, quickly capturing low-frequency information but struggling
with high-frequency components (Basri et al., 2020; Rahaman et al., 2019; Xu et al., 2019; Wang et al., 2021).
This bias means that while NNs can quickly grasp general patterns (low frequencies), they struggle with
capturing finer details (high frequencies), leading to potential inaccuracies in the solution. The frequency
spectrum of a PINN showing spectral bias would show large coefficients at low frequencies, indicating that the
NN has effectively captured the low-frequency components of the target solution. In contrast, the coefficients
for high-frequency components would decay slowly and exhibit heavy tails, indicating that the network is
not effectively filtering out the high-frequency noise or inaccuracies. These tails suggest that the high-
frequency components, even though not dominant, still have significant amplitudes. Overall, the frequency
spectrum would highlight a pronounced low-frequency peak with a gradual and insufficient reduction in the
magnitude of higher frequencies, reflecting the network’s difficulty in learning and accurately representing
the high-frequency aspects of the solution.
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Figure 2: Relative `2 error in predicting the solution u(x) = sin(kx) as a function of frequency k. The plots
compare the performance of the standard PINN, the strong BC PINN with polynomial boundary function
φpoly, and the strong BC PINN with exponential boundary function φexp for (left) 1D Poisson and (right)
1D steady-state Allen-Cahn equations. The shaded regions represent the error variability.

100 75 50 25 0 25 50 75 100
Frequency 

10 2

10 1

100

101

Am
pl

itu
de

Standard PINN
Strong BC PINN

100 50 0 50 100
Frequency 

10 3

10 2

10 1

100

101

102

Am
pl

itu
de

B( v)
N(v)

Figure 3: The frequency spectrum of the learned solution surrogate (a) and the convolution operation in
the strong BC PINN (φpoly) with ω = 15. In both cases, the ground-truth solution is sin(ωx). The left
graph shows how the standard and strong BC PINNs handle frequency components, while the right graph
illustrates the impact of the convolution operation on reducing high-frequency noise.
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Figure 3 shows the frequency spectrum from the discrete Fourier transform of a standard PINN trained to
solve the 1D Poisson problem defined in equation 12 with the true solution u(x) = sin(ωx) for x ∈ [0, 2π],
where the solution frequency is ω = 15. Although the standard PINN identifies the target frequency seen
by the large coefficient at ω = 15, it exhibits large coefficients for higher frequencies, leading to heavy tails
and reduced accuracy. In contrast, the frequency spectrum of the strong BC PINN (Figure 3) demonstrates
that it not only captures the target frequency as accurately as the standard PINN, but its higher frequency
coefficients decay much faster. This rapid decay weakens or excludes the influence of unnecessary high
frequencies, resulting in significantly improved accuracy. In simpler terms, while both networks can identify
the main pattern in the data (the target frequency), the strong BC PINN is better at ignoring unnecessary
noise (high-frequency components) which leads to a more accurate overall solution.

To analyze why the distance function (φ(x)) after multiplied to the NN in equation 8 can help obtain better
coefficients for high frequencies, we first represent the general boundary function φ(x) as an infinite Fourier
series,

φ(x) = φ∞(x) =
+∞∑

n=−∞
φ̂[n] · einx (15)

where i indicates the imaginary part and n are integers. We first analyze the polynomial distance function
by substituting equation 9 for φ̂ in equation 15 giving,

φ̂poly[n] = 1
2π

∫
2π
x(2π − x) · e−inxdx = − 2

n2 . (16)

Similarly, to compare against our proposed adaptive distance function, we substitute in equation 10 for φ̂
in equation 15 and obtain,

φ̂exp[n] = 1
2π

∫
2π

(1− e−αx)(1− eα(x−2π)) · e−inxdx = α(1− e2πα)e−2πα

π(α2 + n2) . (17)

Here, we expand the boundary functions φ(x) to be periodic (i.e., duplicating its definition in [0, 2π] to other
intervals) and the period is 2π. We can now obtain the Fourier transforms of each φ∞(x) by evaluating,

φ̂(ω) =
∑+∞

n=−∞
φ̂[n] · δ

(
ω − n

2π

)
(18)

where δ(·) is the Dirac delta function and ω is the continuous frequency. Specifically, each φ̂(ω) represents
the Fourier transform of φ∞(x), meaning F−1

{
φ̂(ω)

}
= φ∞(x) where F−1 denotes the inverse Fourier

transform.

Since |φ̂poly[n]| ∝ 1/n2, the amplitude of the frequencies of φpoly(x) decay quadratically fast with the increase
of the absolute frequency value. This rapid decay is beneficial for denoising as it effectively suppresses high-
frequencies leading to smoother approximations. However, it may result in the loss of fine details, especially
if important signal components are present at higher frequencies. Alternatively, |φ̂exp[n]| ∝ α/(α2 + n2),
indicating that the frequency amplitudes follow Lorentzian decay controlled by the decay rate α. Lorentzian
decay is less aggressive in reducing high-frequency components, which helps preserve fine details and sharp
transitions in the signal. This flexibility is useful in tuning the decay based on signal characteristics, however,
the slower decay rate may lead to less effective noise suppression.

We can now look at the frequency spectrum of the full surrogate model uθ(x) in equation 8. We use the
convolution theorem (McGillem & Cooper, 1991) to obtain

ûθ(ω) = φ̂ ∗ ûN =
∫ ∞
−∞

φ̂(ω − ν) ûN (ν) dν (19)

where ∗ denotes convolution, and ûN is the Fourier transform of the NN. Suppose ω > 0, we know that
φ̂(ω − ν) is obtained by first reflecting φ̂(ν) about the y-axis, and then shifting the frequency ω left along
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the spectrum. Then, we integrate ûN (ν) weighted by φ̂(ω − ν). The larger the frequency ω, the more φ̂ is
moved left to obtain φ̂(ω − ν) resulting in a stronger weighting of the high-frequency components during
integration. Since the frequency coefficients of φ̂ decay quadratically fast (|φ̂[n]| ∝ 1/n2), the larger the
portion of the tail is used, and the smaller the integration result. Specifically, with φ, the corresponding
amplitude of ûθ(ω) decrease fast when ω increases1. See Figure 3 for an illustration. Thereby, during the
course of training, the boundary function pushes the surrogate model in equation 8 to weaken irrelevant
high-frequency components to reduce large tails and to better capture the frequency spectrum.

5 Fourier PINNs

Our Fourier analysis in the previous section revealed that the standard PINNs inefficiently capture the true
amplitude of frequencies in the power spectrum of their predicted solutions. Specifically, the analysis showed
that although standard PINNs could identify the true solution frequency, they failed to prune large and
noisy frequencies, as indicated by the large amplitudes assigned at the tail end of the power spectrum in
Figure 3. While the strong BC PINNs address this issue by multiplying the NN with a boundary function—
which helps decay high-frequency amplitudes faster—their overall benefit remains limited. As shown in
Figure 2, performance degrades as k increases, indicating the boundary function’s inability to learn ultra-
high frequency solutions. Additionally, the strong BC PINNs are restricted to specific boundary conditions,
such as Dirichlet conditions in equation 7, limiting their applicability.

5.1 Fourier PINNs

To overcome these challenges, we introduce Fourier PINNs, a novel PINN architecture. Fourier PINNs
seamlessly handle diverse boundary conditions, like the standard PINNs, while emphasizing the true so-
lution frequencies during training—akin to the strong BC PINNs. Specifically, in order to flexibly yet
comprehensively capture the frequency spectrum, we first introduce a set of dense frequency candidates,
{ωn}Kn=1, evenly sampled from the range [1,K]. From this set of frequency candidates, we define a set of
trainable Fourier bases uB as,

uB(x; a,b) =
K∑
n=1

an cos(2πωnx) + bn sin(2πωnx). (20)

The Fourier PINN architecture additively combines the outputs of both the NN from equation 3 and the
Fourier bases from equation 20 to generate the augmented prediction uF . Specifically, the full output of
Fourier PINNs is,

uF (x;θ) =
W∑
j=1

cjψj(x;θH) +
K∑
n=1

an cos(2πωnx) + bn sin(2πωnx). (21)

We define w = {c1, ..., cW , a1, ..., aK , b1, ..., bK} as the set of all basis coefficients, and θ = {θH ,w} form the
set of all trainable network parameters.

While we present our method in the one dimensional input case, it is straightforward to extend to multiple
dimensions. Consider the two dimensional input x = [x1, x2] for an example. We use the same set of
frequencies to construct Fourier bases for each input. Specifically, we construct

φ(x1) = [cos(2πω1x1), sin(2πω1x1), . . . , cos(2πωKx1), sin(2πωKx1)],

and

φ(x2) = [cos(2πω1x2), sin(2πω1x2), . . . , cos(2πωKx2), sin(2πωKx2)].

1The same conclusion applies when we consider ω < 0.
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Then we apply the cross-product of φ(x1) and φ(x2) to obtain the tensor-product Fourier bases for x. The
surrogate model is given by,

uθ(x) = uN (x) + β>vec
(
φ(x1)φ(x2)>

)
(22)

where vec(·) denotes the vectorization, and β are the coefficients of the Fourier bases. Note that the
tensor-product of bases grows exponentially with the problem dimension, quickly becoming computationally
intractable. One potential solution is to generate more sparse Fourier bases, such as total-degree or hyperbolic
cross bases. Another option is to re-organize the coefficients β into a tensor or matrix and introduce a low-
rank decomposition structure to parameterize β to save computational cost (Novikov et al., 2015). These
explorations are left for future work.

5.2 Adaptive Basis Selection Training Algorithm

Given that the ground-truth solution likely contains significantly fewer frequencies than the augmented
candidate bases (uB), and our previous analysis showed that models often struggle to prioritize learning
necessary frequencies, we developed an adaptive learning and basis selection algorithm. This algorithm
flexibly identifies meaningful frequencies while pruning the inconsequential ones—allowing the model to
focus on learning and improving the bases that significantly contribute to the solution by inhibiting the
learning of unnecessary (and likely noisy) frequencies.

To aid in identifying the significant frequencies, we add an L2 regularization term to the basis parameters w.
This additional regularization penalizes large coefficients for the basis functions, thereby promoting sparsity
and encouraging the model to focus on learning the most significant frequencies. The full loss function we
use is similar to PINNs (see equation 4), but with the addition of the L2 regularization term. Specifically,
the loss function is,

L(θ) = Lb(θ) + Lr(θ) + α

2 ‖w‖
2, (23)

where ‖w‖2 represents the L2 regularization of w and α is the regularization strength defined by the user
prior to initiating training. This regularization term helps prune or inhibit unnecessary frequencies, allowing
the model to focus more on learning and improving the bases that significantly contribute to the solution.

Our adaptive basis selection algorithm optimizes the regularized loss function in equation 23 by building
upon the hybrid least squares gradient descent method proposed by Cyr et al. (2020). Cyr et al. (2020)
formulates the output of a neural network as a linear combination of non-linear basis functions, as shown
in equation 3. Their algorithm alternates between optimizing the hidden weights (θH) via gradient descent
and the final layer coefficients (c) through the least squares problem of the form,

arg minc ‖Ac− b‖2
`2
, (24)

such that bi = L[u](xi) for the data points {xi}Mi=1, Aij = L[ψj(xi;θH)] for j = 1, ...,W , and L is some
linear operator. equation 24 extends to problems with multiple operators, such as those defined by equation 1
and equation 2 when F and B are linear operators.

Representing the output of Fourier PINNs in equation 20 as a linear combination of both adaptive bases (i.e.,
the hidden layers of the NN) and an augmented Fourier series ensures our model’s compatibility with the
general approach of the alternating least squares and gradient descent optimization. While Cyr et al. (2020)
hold the coefficients c constant while optimizing the bases θH through gradient descent, we alternatively
choose to jointly optimize both the basis coefficients w and the adaptive bases θH during the gradient descent
step. During the least squares step, we solve a similar problem to equation 24 modified to suit the Fourier
PINN architecture. Specifically, we solve the least squares problem of the form,

arg minw ‖A′w− b‖2
`2
, (25)

such that bi = L[uF ](xi) for the data points {xi}Mi=1, and

A′ij =


L[ψj(xi;θH)] for j = 1, ...,W,
L[cos(2πωjxi)] for j = W + 1, ...,W +K,

L[sin(2πωjxi)] for j = W +K + 2, ...,W + 2K.
(26)
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We define equation 25 for one operator L, but the method extends to multiple operators. Additionally, we
extend our least-squares method to non-linear operators, unlike many works that focus only on linear cases.

Specifically, when the operator L is nonlinear, the coefficient updates of w require more careful consideration.
We consider non-linear operators L, that can be decomposed into linear and nonlinear parts such as,

L[·] = G[·] + S[·] (27)

where G is a linear operator and S is the nonlinear part. For illustration, consider the Allen-Cahn problem
define by equation 14. We have G[u] = uxx and S[u] = u(u2 − 1), and solve equation 25 such that bi =
L[uF ](xi)− si for the data points {xi}Mi=1. Here, si = S[uF ](x) = uF (xi; w)(uF (xi; w)2− 1) are the Fourier
PINN’s evaluations with the current w on the set of points, and

A′ij =


G[ψj(xi;θH)] for j = 1, ...,W,
G[cos(2πωjxi)] for j = W + 1, ...,W +K,

G[sin(2πωjxi)] for j = W +K + 2, ...,W + 2K.
(28)

In this case, since b is determined from the current w but fixed as a constant in the least squares estimation,
the update of w is in essense a type of fixed point iteration. When L does not include any linear operator
(which might be rare), we can use any continues optimization algorithm, e.g., L-BFGS, to update w.

We integrate a custom basis pruning routine into the optimization algorithm to eliminate insignificant bases
and refine model training. Our modified loss function defined in equation 23 enhances this hybrid optimiza-
tion algorithm with an L2 regularization term to identify and prioritize significant frequencies. Algorithm 1
outlines our adaptive learning routine. The algorithm begins with a joint optimization of θH and w to
provide a warm start to the model parameters. Next, we fix θH while alternating between solving for
the coefficients w using the least squares method and truncating bases with coefficients below a predefined
threshold. Specifically, bases corresponding to |wj | ≤ 10−3 are removed along with wj . After completing
the alternating solve and truncate steps for a set number of iterations, the algorithm jointly optimizes all
remaining parameters and bases using the Adam optimization algorithm. We repeat this routine for a fixed
number of iterations, followed by L-BFGS optimization until the final convergence.

Algorithm 1: Adaptive Basis Selection Hybrid Least Squares/Gradient Descent
Input: θH0 (initialized hidden parameters)
Output: Optimized parameters θH and weights w
w ← LS(θH0 ) ; // Solve LS problem for w

θH ,w ← ADAM(θH0 ,w) ; // Initialize θH and w
for i = 1, ... do

for k = 1, ... do
w ← LS(θH) ; // Solve LS problem for w
if |wj | < δ for each wj then

Prune the corresponding basis;
Delete wj from w;

end
end
θH ,w ← ADAM(θH ,w) ; // Jointly optimize all parameters using ADAM

end
Run L-BFGS until convergence;

6 Experiments

In this section, we present a series of tests comparing our methods against a range of PDE problems. These
include the 1D and 2D Poisson equations, which are canonical linear elliptic PDE problems, and the 1D
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and 2D (steady-state) Allen-Cahn equations, which are non-linear elliptic PDEs demonstrating the effect of
adding a non-linear reaction term. Additionally, we analyze the 1D (one-way) Wave equation to observe the
impact of incorporating a first time derivative. We first describe the baseline methods we compare against
Fourier PINNs, then list our experimental details. Finally, we provide a detailed discussion after presenting
the results comparing each baseline on the example problems.

6.1 Baselines

We benchmarked against the following state-of-the-art PINN models for solving high-frequency and/or multi-
scale solutions:

(1) (PINN) standard PINNs as formulated in (Raissi et al., 2017);

(2) (RFF-PINN) Random Fourier Feature PINNs (Wang et al., 2021) with dynamically re-weighted loss
terms derived from the NTK eigenvalues as in Wang et al. (2022b),

(3) (W-PINN) Weighted PINNs that down-weight the residual loss term to reduce its dominance and
to better fit the boundary loss Wang et al. (2022b);

(4) (A-PINN) Adaptive PINNs with parameterized activation functions to increase the NN capacity and
to be less prone to gradient vanishing and exploding Jagtap et al. (2020); and

(5) (Spectral) standard Spectral Methods (Boyd, 2001), which approximate solutions using a linear
combination of Fourier bases, and estimates the basis coefficients via least mean squares2.

We do not test against the conceptually similar Fourier Neural Operators Li et al. (2020) as they are
designed to solve the inverse problem, thus requiring a data loss term. Our method is designed to solve
forward problems and requires no training data within the domain.

Table 1: This table lists the number and corresponding scales of Gaussian variances utilized in the RFF-
PINN. Scales were selected randomly from a set range of [1, 200]. Preference was given to the subset
[1, 20, 50, 100] to ensure a balanced distribution across the available range.

Number Scales
1 (20), (50), (84), (100)
2 (1, 50), (3, 20), (19, 71), (39, 69), (50, 100)
3 (44, 47, 165), (1, 20, 194), (20, 50, 100), (1, 50, 189), (38, 112, 119)
5 (1, 20, 49, 50, 100), (1, 20, 50, 85, 100)

(1, 20, 104, 197, 199), (6, 36, 67, 79, 136), (50, 65, 83, 104, 139)

6.2 Hyperparameters and experimental details

All code is implemented in PyTorch3. For all the NN based methods, we used two hidden layers, with 100
neurons per layer and the Tanh activation function. We ran every method for five random trials, and report
the five number summaries for each test in boxplot form. For PINN, W-PINN, A-PINN and RFF-PINN,
we first ran 40K iterations of the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 10−3, and
then L-BFGS optimizer (Liu & Nocedal, 1989) until convergence (with the tolerance set to 10−9). In Fourier
PINNs, we specified the range of frequency candidates in the Fourier bases by setting a maximum frequency
K and including all equally spaced frequencies in the set {1, 2, ...,K}. In Algorithm 1, we set α = 0.1,
the number of iterations T to 1K, the inner iteration number A to 5, the truncation threshold δ to 10−4,
and the outer iteration number E to 40. RFF-PINNs require specifying both the number and scales of the

2Throughout the experiments, we used the same set of Fourier bases for the spectral method and our method.
3Code will be made available upon acceptance
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Gaussian variances used to construct the random features. To comprehensively evaluate the effect of both
hyperparameters, we tested RFF-PINNs with 20 different settings. We used one, two, three and five scales,
and set the variances to common values suggested in (Wang et al., 2021), combined with randomly sampled
ones. The exact sets of chosen scales are listed in Table 1. For W-PINN, we varied the weight of the residual
loss from {10−1, 10−3, 10−4}, and for A-PINN, we introduced a learned parameter for the activation function
in each layer and update these parameters jointly.
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Figure 4: 1D Poisson with u(x) = sin(100x)

6.3 1D Numerical Experiments

In this section, we demonstrate the performance of our methods compared to each baseline on 1D problems
including the 1D Poisson, 1D steady-state Allen-Cahn, and 1D One-Way Wave equation. We first tested a
set of 1D Poisson problems (see equation 12) with the following ground-truth solutions,

u(x) = sin(100x), (29)
u(x) = sin(x) + 0.1 sin(20x) + 0.05 cos(100x), (30)
u(x) = sin(6x) cos(100x). (31)

The boundary conditions are derived from the true solution. We visualize the relative L2 errors for each
baseline method on these problems in Figures 4, 5, and 6 respectively. For Fourier PINNs, we set K =
150, 200, 250 and 300 for problems equation 29 and equation 30, then simply set K = 200 for the remaining
tests. Then, we examined the 1D steady-state Allen-Cahn equation of the form 14 with the same true
manufactured solutions as for the 1D Poisson problem and report the results in Figures 7, 8, and 9. The
final 1D problem we tested is the 1D One-Way Wave equation of the form,

ut + 10ux = v(x, t), x ∈ [0, 1], t ∈ [0, 1] (32)
u(x = 0, t) = u(x = 1, t) = 0
u(x, t = 0) = sin(πx) + sin(2πx)
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Figure 5: 1D Poisson with u(x) = sin(x) + 0.1 sin(20x) + 0.05 cos(100x)
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Figure 6: 1D Poisson with u(x) = sin(6x) cos(100x)
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with a true solution of,

u(x, t) = sin(πx) cos(10πt) + sin(2πx) cos(20πt). (33)

The results are reported in Figure 10.
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Figure 7: 1D Allen-Cahn equation with true solution u(x) = sin(100x)

6.4 2D Numerical Experiments

In this section, we demonstrate the performance of our methods compared to each baseline on 2D problems,
including the 2D Poisson and 2D steady-state Allen-Cahn equations. We first tested on the 2D Poisson
problem given by,

∆u = f(x, y), x, y ∈ [0, 2π], (34)

with the following ground-truth manfactured solutions,

u(x, y) = sin(100x) sin(100y), (35)
u(x, y) = sin(6x) cos(20x) + sin(6y) cos(20y). (36)

(37)

We visualize the relative L2 errors for each baseline method on these examples in Figures 11 and 12 respec-
tively. We next tested on the 2D steady-state Allen-Cahn problem which is given by.

uxx + uyy + u(u2 − 1) = f(x, y), x, y ∈ [0, 2π], (38)

with the ground-truth solution,

u(x, y) = (sin(x) + 0.1 sin(20x) + cos(100x))
· (sin(y) + 0.1 sin(20y) + cos(100y)) , (39)

and we report the results in Figure 13. Note that in these tests, the RFF-PINN method failed and resulted
in large relative errors for all the single-scale settings, therefore we did not report these results.
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Figure 8: 1D Allen-Cahn with true multi-scale solution u(x) = sin(x) + 0.1 sin(20x) + 0.05 cos(100x)
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Figure 9: 1D Allen-Cahn equation with true solution u(x) = sin(6x) cos(100x)
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Figure 10: 1D One-Way Wave equation with true solution u(x, t) = sin(πx) cos(10πt) + sin(2πx) cos(20πt)
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Figure 11: 2D Poisson with u(x, y) = sin(100x) sin(100y)
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Figure 12: 2D Poisson with u(x, y) = sin(6x) cos(20x) + sin(6y) cos(20y)
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Figure 13: 2D Allen-Cahn with u(x, y) = (sin(x) + 0.1 sin(20x) + cos(100x)) · (sin(y) + 0.1 sin(20y) + cos(100y))
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6.5 Discussion

We can see that in all examples for both the 1D and 2D problems, the standard PINN, W-PINN, and A-PINN
failed to obtain reasonable solutions, with large relative L2 errors for all cases (e.g.,∼ 1.0). This implies that
these methods are unable to capture high-frequency signals. Additionally, RFF-PINN can achieve small
relative errors with particular scale settings; however, for most settings (60-70% of the 20 total RFF-PINN
settings listed in Table 1), RFF-PINN failed with large solution errors. These results show that the success
of RFF-PINN is very sensitive to the choice of number and scales, and there is no apparent correspondence
between scale settings and problem solutions. For example, for the single-scale true solution (see Figure 4),
the successful cases of RFF-PINN include two, three or even five scale settings, e.g.,(1, 20, 194), yet it failed
with all the single-scale settings. The spectral method also failed to obtain good solutions, implying that
only estimating a linear combination of Fourier bases are not sufficient. As a comparison, Fourier PINNs
achieves reasonable solution accuracy in all the cases, with relative L2 errors between 10−3 and 10−4. Our
method is also robust to the choice of the frequency range K. As long as K is large enough, our method
nearly always selected the target frequency, and returned similar solution accuracy. Note that, to focus on
the evaluation of the key idea, Fourier PINNs did not employ any loss term re-weighting schemes to further
improve the accuracy, such as the NTK re-weighting used in RFF-PINN or mini-max updates. However, it
would be straightforward to integrate these methods into the proposed algorithmic framework.

x

y

Exact u(x, y)

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Figure 14: 2D Poisson equation with true solution u(x, y) = sin(6x) cos(20x) + sin(6y) cos(20y)

We finally visualize the solution of each method in solving a 2D Poisson equation (see Figure 12) to visualize
the point-wise errors for each method within the two dimensional domain. The ground-truth solution is given
in Figure 14 and the solution obtained by each method is shown in Figure 15. Note that for W-PINN and
RFF-PINN, we report the result with the smallest relative L2 error. While the spectral method also obtains
good results, the point wise error biases much on the regions that are close to the boundary and the relative
L2 error is two orders of magnitude larger than Fourier PINN’s. RFF-PINN (with the best number and scale
choice) can roughy capture the solution structure, but the accuracy is far worse than Fourier PINNs and the
spectral method. For example, in Figure 12, RFF-PINN nearly failed with every choice of the number and
scale set. We can see that overall, Fourier PINNs best recovers the original solution.

7 Conclusion

We have presented Fourier PINNs, a novel PINN extension to capture high-frequency and multi-scale so-
lution information. Our adaptive basis learning and selection algorithm can automatically identify target
frequencies and truncate useless ones, without the need for tuning the number and scales. Currently, we
assume the spacing (granularity) of the candidate frequencies is fine-grained enough, which can be overly
optimistic. In the future, we plan to develop adaptive spacing approaches to capture this granularity.
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Figure 15: Predicted solutions (left) and absolute errors (right) of each method on the 2D Poisson equation with
true solution u(x, y) = sin(6x) cos(20x) + sin(6y) cos(20y)
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