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Abstract

The bilinear method is mainstream in Knowl-001
edge Graph Embedding (KGE), aiming to002
learn low-dimensional representations for en-003
tities and relations in Knowledge Graph (KG)004
and complete missing links. Most of the005
existing works are to find patterns between006
relationships and effectively model them to007
accomplish this task. Previous works have008
mainly discovered 6 important patterns like009
non-commutativity. Although some bilinear010
methods succeed in modeling these patterns,011
they neglect to handle 1-to-N, N-to-1, and N-012
to-N relations (or complex relations) concur-013
rently, which hurts their expressiveness. To014
this end, we integrate scaling, the combina-015
tion of translation and rotation that can solve016
complex relations and patterns, respectively,017
where scaling is a simplification of projection.018
Therefore, we propose a corresponding bilin-019
ear model Scaling Translation and Rotation020
(STaR) consisting of the above two parts. Be-021
sides, since translation can not be incorpo-022
rated into the bilinear model directly, we in-023
troduce translation matrix as the equivalent.024
Theoretical analysis proves that STaR is ca-025
pable of modeling all patterns and handling026
complex relations simultaneously, and exper-027
iments demonstrate its effectiveness on com-028
monly used benchmarks for link prediction.029

1 Introduction030

Knowledge Graph (KG), storing data as triples like031

(head entity, relation, tail entity), is a growing way032

to deal with relational data. It has attracted the at-033

tention of researchers in recent years due to its ap-034

plications in boosting other fields such as question035

answering (Mohammed et al., 2018), recommender036

systems (Zhang et al., 2016), and natural language037

processing (Wang et al., 2017; Ji et al., 2021).038

Since KG is usually incomplete, it needs to be039

completed by predicting the missing edges. A pop-040

ular and effective way to accomplish this task is041

Knowledge Graph Embedding (KGE), which aims042

to find appropriate low-dimensional representations 043

for entities and relations. 044

Figure 1: Complex relations and non-commutativity
pattern

A mainstream of KGE is the bilinear method, 045

which uses the product of entities and relations as a 046

similarity. While two major problems in KGE are 047

how to model different relation patterns and how 048

to handle 1-to-N, N-to-1, and N-to-N relations (or 049

complex relations) (Sun et al., 2019; Wang et al., 050

2014; Lin et al., 2015). For the first problem, previ- 051

ous studies have mainly discovered 6 patterns (Sun 052

et al., 2019; Xu and Li, 2019; Yang et al., 2020). 053

For example, as shown in Figure 1, HasChild and 054

HasWife form a non-commutativity pattern, since 055

the child of Tom’s wife is Bill while the wife of 056

Tom’s child is Mary. For the second problem, we 057

take an N-to-1 relation HasChild as an example 058

illustrated in the same figure, in which Bill is the 059

child of both Lily and Tom. 060

Although some recent works have successfully 061

modeled different relation patterns, they neglect to 062

handle complex relations concurrently. To be more 063

specific, they represent relations as rotations (or 064

reflections) to model different patterns like DihE- 065

dral (Xu and Li, 2019) and QuatE (Zhang et al., 066

2019), yet ignore that naive rotation is just like 067

translation in TransE(Bordes et al., 2013), which is 068

difficult to handle complex relations. 069

To this end, we borrow the ideas from distance- 070
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based methods to go beyond rotation and solve071

these two problems simultaneously. Specifically,072

we combine projection that handles complex rela-073

tions (Wang et al., 2014; Lin et al., 2015) and the074

combination of translation and rotation that models075

relation patterns (Chami et al., 2020). Thus, we076

propose a corresponding bilinear model Scaling077

Translation and Rotation (STaR), where scaling078

is a simplification of projection and translation is079

introduced as matrix widely used in Robotics (Paul,080

1981). STaR can model different patterns and han-081

dle complex relations concurrently, and takes linear082

rather than quadratic parameters to embed a rela-083

tion efficiently. Comparing to previous bilinear084

models, STaR is closest to ComplEx (Trouillon085

et al., 2016), which is equivalent to the combina-086

tion of rotation and scaling and will be compared087

in Section 5 minutely.088

Experiments on different settings demonstrate089

the effectiveness of our model against previous090

ones, while elaborated analysis against ComplEx091

shows the changes brought about by translation and092

verifies that our model improves from modeling the093

non-commutativity pattern. The main contributions094

of this paper are as follows:095

1. We propose a bilinear model STaR that can096

efficiently model relation patterns and handle097

complex relations concurrently.098

2. To the best of our knowledge, this is the first099

work introducing translation to the bilinear100

model, which brings new modules to it and101

connect with distance-based methods.102

3. The proposed STaR achieves comparable re-103

sults on three commonly used benchmarks for104

link prediction.105

2 Related Work106

Generally speaking, previous works on KGE can107

be divided into bilinear, distance-based, and other108

methods.109

Bilinear Methods110

Bilinear Methods measure the similarity of head111

and tail entities by their inner product under a rela-112

tion specific transformation represented by a matrix113

R. RESCAL (Nickel et al., 2011) is the ancestor114

of all bilinear models, whose R is arbitrary and115

has n2 parameters. RESCAL is expressive yet pon-116

derous and tends to overfit. To alleviate this issue,117

DistMult (Yang et al., 2015) uses diagonal matrices 118

and reduces n2 to n. ComplEx (Trouillon et al., 119

2016) transforms DistMult into complex spaces 120

to model skew-symmetry pattern. Analogy (Liu 121

et al., 2017) considers analogical pattern, which is 122

equivalent to commutativity pattern, and general- 123

izes DistMult, ComplEx, and HolE (Nickel et al., 124

2016). Although these descendants are powerful 125

in handling complex relations and some patterns, 126

they fail to model non-commutativity patterns. 127

The non-commutativity pattern was proposed by 128

DihEdral (Xu and Li, 2019) which uses a dihedral 129

group to model all patterns. Besides, this pattern 130

can also be modeled by hypercomplex values like 131

quaternion or octonion used in QuatE (Zhang et al., 132

2019). Although they succeed in modeling non- 133

commutativity, they are poor at handling complex 134

relations. Thus, none of the previous bilinear meth- 135

ods has intended to handle relations and model 136

concurrently. 137

Distance-Based Methods 138

In contrast, Distance-Based Methods use distance 139

to measure the similarity. TransE (Bordes et al., 140

2013) inspired by word2vec (Mikolov et al., 2013) 141

proposes the first distance-based model and model 142

relation as translation. TransH (Wang et al., 2014), 143

TransR (Lin et al., 2015) find that TransE is inca- 144

pable to model complex relations like part_of and 145

fix this problem by projecting entities into relation- 146

specific hyperspaces. 147

RotatE (Sun et al., 2019) utilizes rotation to 148

model inversion and other patterns. Due to its suc- 149

cess, subsequent models adopt the idea of rotation. 150

HAKE (Zhang et al., 2020b) argues that rotation is 151

incompetent to model hierarchical structures and 152

introduces a radial part. MuRE (Balazevic et al., 153

2019a) incorporates rotation with scaling while 154

RotE (Chami et al., 2020) combines rotation and 155

translation. Besides, they also have hyperbolic 156

versions as MuRP and RotH. PairRE (Chao et al., 157

2021) also tries to model both the problems of 158

patterns and complexity together, yet neglects the 159

non-commutativity pattern. 160

Other Methods 161

Apart from the above two, some studies also 162

employ black boxes or external information. 163

ConvE (Dettmers et al., 2018) and ConKB (Nguyen 164

et al., 2018) utilize convolution neural network 165

while R-GCN (Schlichtkrull et al., 2018) and 166

RGHAT (Zhang et al., 2020c) apply graph neural 167
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Table 1: The score function and ability to model relation patterns of several models.

Relation Patterns Performance on
Model Score Function Composition Symmetry Skew-Symmetry Commutativity Non-Commutativity Inversion Complex Relations
TransE −‖h+ r − t‖ ! % ! ! % ! Low
TransR −‖Mrh+ r −Mrt‖ ! ! ! ! ! ! High
RotatE −‖h ◦ r − t‖ ! ! ! ! % ! Low
MuRE −‖ρ ◦ h+ r − t‖ ! ! ! ! ! ! Low
RotE −‖hRot(θr) + r − t‖ ! ! ! ! ! ! Low

DistMult hT diag(r)t ! ! % ! % ! High
ComplEx RE(hT diag(r)t̄) ! ! ! ! % ! High

QuatE Qh ⊗W /
r ·Qt ! ! ! ! ! ! Low

STaR ĥTR∗t̂ ! ! ! ! ! ! High

networks. Besides, some other works use external168

information like text (An et al., 2018; Yao et al.,169

2019), while they are out of our consideration.170

Besides specific models, other researchers be-171

lieve that some previous models are limited by172

overfitting. Thus, they propose better regular-173

ization terms like N3 (Lacroix et al., 2018) and174

DURA (Zhang et al., 2020a) to handle this prob-175

lem.176

3 Methodology177

In this section, we will first introduce the back-178

ground knowledge. Then, we will propose our179

model STaR by combining the useful modules that180

solve patterns and complex relations. Finally, we181

will discuss the translation in the bilinear model.182

3.1 Background Knowledge183

3.1.1 Knowledge graph184

Given an entity set E and a relation setR, A knowl-185

edge graph T = {(hi, rj , tk)} ⊂ E×R×E is a set186

of triples, where hi, rj , tk, denotes the head entity,187

relation and tail entity respectively. The number of188

entities and relations are indicated by |E|and |R|.189

3.1.2 Problem definition190

Knowledge graph embedding aims to learn a score191

function s(h, r, t) and the embeddings of enti-192

ties and relations, which uses the link prediction193

task to evaluate the performance. Link prediction194

first splits triples of the knowledge graph T into195

train set Ttrain, test set Ttest and valid set Tvalid.196

Then, for each specific triple in Ttest, link predic-197

tion aims to give the correct entity tail ∈ E a198

lower rank than other candidates given the query199

(head, relation, ?) or head entity head ∈ E given200

the query (?, relation, tail) by utilizing the score201

function.202

3.1.3 Complex relations 203

The complex relations are defined by tails per 204

head and heads per tail of a relation r (tphr and 205

hptr) (Wang et al., 2014). If tphr > 1.5 and hptr < 206

1.5 then r is 1-to-N while tphr > 1.5 and hptr > 207

1.5 means r corresponds to N-to-N. 208

3.1.4 Relation patterns 209

Relation patterns are the inherent semantic charac- 210

teristics of relations, which are helpful to model 211

relations and inference. 212

Previous works have mainly proposed 6 pat- 213

terns (Xu and Li, 2019; Yang et al., 2020). They 214

are Composition (e.g., my father’s brother is 215

my uncle), Symmetry (e.g., IsSimilarTo), Skew- 216

Symmetry (e.g., IsFatherOf ), Commutativity, 217

Non-Commutativity (e.g., my wife’s son is not my 218

son’s wife), Inversion. For the formal definition of 219

all patterns, please refer to Appendix A. 220

3.1.5 Other notations 221

We use h ∈ Rn×1 and t ∈ Rn×1 to denote the em- 222

bedding of head entity and tail entity respectively, 223

where n is the embedding dimension. And we use 224

◦ to denote the relation composition. For example, 225

if we take r1, r2, r3 ∈ R, and r3 is the composition 226

of r1 and r2 then r3 = r1 ◦ r2. 227

3.2 The Proposed STaR Model 228

In this part, we will analyze modules in previous 229

works that model different patterns and handle com- 230

plex relations. Then we will propose a bilinear 231

model Scaling Translation and Rotation (STaR). 232

In Table 1, we list the score function s(h, r, t) 233

of different models and their ability to model pat- 234

terns, where we observe that the stickiest one is 235

non-commutativity. To model it, QuatE (Zhang 236

et al., 2019) utilizes quaternion to model the rota- 237

tion in 3D space. However, we think it is unneces- 238

sary to introduce hypercomplex values and redefine 239

the product operator. In contrast, we are inspired by 240
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Figure 2: How STaR consists of 3 basic operations and model and related to 3 previous models.

a distance-based model RotE (Chami et al., 2020)241

that uses the combination of translation and rota-242

tion and is capable of modeling non-commutativity243

in 2D Euclidean spaces.244

In the same table, we also list the performance245

of different models on complex relations. From246

this table, we notice that scaling, as a special case247

of projection, is helpful for dealing with complex248

relations (Yang et al., 2015; Trouillon et al., 2016).249

Therefore, it seems like we can achieve our goal250

of modeling patterns and handling complex rela-251

tions concurrently by assembling the two parts.252

However, we find that translation is unable to be253

introduced to the bilinear model directly. To handle254

this, we introduce a translation matrix widely used255

in Robotics (Paul, 1981) as the equivalent. To show256

this substitution, we choose a translation τ ∈ R1×n257

to a point x ∈ R1×nin Rn as an example, and we258

have:259

[
x
1

]
+

[
τ
1

]
=


1 τ1

. . .
...

1 τn
1



x1
...
xn
1

 , (1)260

where the matrix is the translation matrix.261

Finally, we achieve the proposed Scaling262

Tanslation and Rotation (STaR) model by comb-263

ing such three modules and stacking these elemen-264

tary blocks as demonstrated in Figure 2, where265

ComplEx can be treated as the combination of ro-266

tation and scaling in two dimensions manner.267

The representation of a relation is thus achieved268

by assembling a ComplEx matrix with a translation269

offset: 270

R∗ =

[
Rc

τT 1

]
, (2) 271

where Rc ∈ Rn×n and τ ∈ Rn×1 denotes the 272

relation specific ComplEx matrix and translation 273

offset respectively. Besides Rc is achieved by a 274

vector rc ∈ Rn×1 as: 275

Rc =


rc1 −rc2
rc2 rc1

. . .
rcn−1 −rcn
rcn rcn−1

 . (3) 276

Therefore, the score function of STaR is: 277

s(h, r, t) = ĥTR∗t̂, (4) 278

where ĥ = [hT , 1]T and t̂ = [tT , 1]T . 279

From the score function, STaR is proved to 280

model all 6 patterns and handle complex relations 281

as detailed in Appendix B. 282

Proposition 1. STaR can model Symmetry, Skew- 283

Symmetry, Composition, Inversion, Commutativity, 284

and Non-Commutativity and handle complex rela- 285

tions concurrently. 286

3.3 Discussions 287

In this part, we will detail what does translation 288

brings to bilinear model and how it helps to model 289

the non-commutativity minutely. 290
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3.3.1 What does translation bring to bilinear291

model?292

We unfold the score function in Equation (4):293

s(h, r, t) = ĥTR∗t̂

= hTRct︸ ︷︷ ︸
ComplEx

+ τT t︸︷︷︸
E

+1. (5)294

Except the constant 1 comes from the extra dimen-295

sion, the above equation shows that it has two parts:296

ComplEx and the model E proposed by (Toutanova297

and Chen, 2015). The later part E is the dot prod-298

uct of the relation-specific translation τ and the299

candidate tail entity t regardless of the head entity.300

Therefore, E works like determining whether the301

tail entity suits the relation. For example, given a302

relation IsLocatedIn, it is impossible to be a correct303

triple with a tail entity like Bill or Mary no matter304

what the head entity is.305

3.3.2 How does translation help model306

non-commutativity?307

We take two relations r1, r2 ∈ R, whose compos-308

ited relation r3 = r1 ◦ r2 is represented as R1
∗ ·R2

∗.309

Similarly, we unfold the score function of a triple310

regarding r3 as:311

s(h, r3, t)

=hT (R1
cR

2
c)t︸ ︷︷ ︸

ComplEx

+
(
(τ1)TR2

c + (τ2)T
)
t︸ ︷︷ ︸

E

+1. (6)312

The E in Equation (5) reappears in Equ.(6). As313

shown in the Table 1, it is E, per se, helps Com-314

plEx to model the non-commutativity pattern since315

(τ1)TR2
c + (τ2)T 6= (τ2)TR1

c + (τ1)T .316

To better understand the role of E, we take r1317

as IsWifeOf and r2 as IsFatherOf as an exam-318

ple. Then the wife of someone’s father must be319

a woman, while the father of someone’s wife must320

be a man, where the order of relations affects which321

tail entities are fitted.322

4 Experiments323

In this section, we will introduce the experiment324

settings and three benchmark datasets and show the325

comparable results of our model.326

4.1 Experiments Settings327

4.1.1 Datasets328

We evaluate all models on the three most commonly329

used datasets, which are WN18RR (Dettmers et al.,330

2018), FB15K237 (Toutanova and Chen, 2015) and331

YAGO3-10 (Mahdisoltani et al., 2015). WN18RR 332

and FB15K237 are the subsets of WordnNet and 333

Freebase, respectively. They are the more challeng- 334

ing version of the previous WN18 and FB15K that 335

suffer from data leakage (Dettmers et al., 2018; 336

Toutanova and Chen, 2015). We demonstrate the 337

statistics of these benchmarks in Tabel 3. In partic- 338

ular, we use Ψ to denote the imbalance ratio of the 339

train set, which will be introduced in Section 5.1 340

4.1.2 Baselines 341

We compare our method with previous mod- 342

els, which are DistMult (Yang et al., 2015), 343

ConvE (Dettmers et al., 2018), Tucker (Bal- 344

azevic et al., 2019b), QuatE (Zhang et al., 345

2019), MurP (Balazevic et al., 2019a), RotE and 346

RotH (Chami et al., 2020) and some previous 347

bilinear models with N3 (Lacroix et al., 2018) 348

and DURA (Zhang et al., 2020a) regularization 349

terms. Besides, we also propose TaR consisting of 350

Translation and Rotation for comparison. 351

4.1.3 Evaluation metrics 352

We use the score functions to rank the correct tail 353

(head) among all possible candidate entities. Fol- 354

lowing previous works, we use mean reciprocal 355

rank (MRR) and Hits@K as evaluation metrics. 356

MRR is the mean of the reciprocal rank of valid en- 357

tities, avoiding the problem of mean rank (MR) be- 358

ing sensitive to outliers. Hits@K (K ∈ {1, 3, 10} 359

measures the proportion of proper entities ranked 360

within the top K. Besides, we follow the filtered 361

setting (Bordes et al., 2013) which ignores those 362

also correct candidates in ranking. 363

4.1.4 Optimization 364

Following (Lacroix et al., 2018), we use the cross- 365

entropy loss and the reciprocal setting that adds a 366

reciprocal relation r̃ for each relation r ∈ R and 367

(t, r̃, h) for each triple (h, r, t) ∈ T : 368

L = −
∑

(h,r,t)∈Ttrain

(
exp(s(h, r, t))∑

t′∈E exp(s(h, r, t′))
w(t)

+
exp(s(t, r̃, h))∑

h′∈E exp(s(t, r̃, h′))
w(h))

+λReg(h, r, t),
(7) 369

where Reg(h, r, t) denotes the regularization and 370

w(t)(w(h)) is the weight for the tail (head) entity: 371

w(t) = w0
#t

max{#ti : ti ∈ Ttrain}
+ (1− w0),

(8)

372
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Table 2: Link prediction results on different benchmarks (best for n ∈ {200, 400, 500} . † means the results are
taken from (Chami et al., 2020). Since original paper of DURA (Zhang et al., 2020a) conduct on extremely high
dimension, here we reimplement ComlEx-DURA and RESCAL-DURA. Best results are in bold while the seconds
are underlined. STaR is our full model while TaR excludes scaling.

WN18RR FB15K237 YAGO3-10
Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

DistMult† 0.43 0.39 0.44 0.49 0.241 0.155 0.263 0.419 0.34 0.24 0.38 0.54
ConvE† 0.43 0.40 0.44 0.52 0.325 0.237 0.356 0.501 0.44 0.35 0.49 0.62
TuckER† 0.470 0.443 0.482 0.526 0.358 0.266 0.394 0.544 - - - -
QuatE† 0.488 0.438 0.508 0.582 0.348 0.248 0.382 0.550 - - - -
RotatE† 0.476 0.428 0.492 0.571 0.338 0.241 0.375 0.533 0.495 0.402 0.550 0.670
MurP† 0.481 0.440 0.495 0.566 0.335 0.243 0.367 0.518 0.354 0.249 0.400 0.567
RotE† 0.494 0.446 0.512 0.585 0.346 0.251 0.381 0.538 0.574 0.498 0.621 0.711
RotH† 0.496 0.449 0.514 0.586 0.344 0.246 0.380 0.535 0.570 0.495 0.612 0.706

ComplEx-N3† 0.480 0.435 0.495 0.572 0.357 0.264 0.392 0.547 0.569 0.498 0.609 0.701
ComplEx-Fro 0.457 0.427 0.469 0.515 0.323 0.235 0.354 0.497 0.568 0.493 0.613 0.699
TaR-Fro (ours) 0.470 0.438 0.481 0.532 0.325 0.239 0.356 0.501 0.567 0.494 0.610 0.699
STaR-Fro (ours) 0.463 0.431 0.476 0.526 0.324 0.236 0.356 0.501 0.574 0.502 0.617 0.701
RESCAL-DURA 0.496 0.452 0.514 0.575 0.370 0.278 0.406 0.553 0.577 0.501 0.621 0.711
ComplEx-DURA 0.488 0.446 0.504 0.571 0.365 0.270 0.401 0.552 0.578 0.507 0.620 0.704
TaR-DURA (ours) 0.488 0.446 0.503 0.567 0.351 0.257 0.387 0.539 0.578 0.506 0.621 0.707
STaR-DURA (ours) 0.497 0.452 0.512 0.583 0.368 0.273 0.405 0.557 0.585 0.513 0.628 0.713

WN18RR FB15K237 YAGO3-10

|E| 40,943 14,541 123,182
|R| 11 237 37

Train 86,835 272,115 1,079,040
Valid 3,034 17,535 5,000
Test 3,134 20,466 5,000
Ψ 0.003 0.801 0.838

Table 3: Statistics of three benchmark datasets.

where w0 is a constant for each dataset, #t repre-373

sents the count of entity t in the training set (Zhang374

et al., 2020a).375

Besides, we use both Frobenius (Fro) and376

DURA (Zhang et al., 2020a) regularization for bet-377

ter comparison. For the details of DURA for STaR378

please refer to Appendix C.379

4.1.5 Implementation details380

We search the best results in n ∈ {200, 400, 500}.381

After searching for hyperparameters, we set the382

dimension to 500, the learning rate to 0.1 for all383

datasets, and the batch size to 100 for WN18RR384

and FB15K237 while 1000 for YAGO3-10. Be-385

sides, we choose w0 = 0.1 for WN18RR and386

0 for the others. Moreover, for DURA we use387

λ = 0.1, 0.05, 0.005 for WN18RR, FB15K237 and388

YAGO3-10 respectively, while for Frobinues (Fro)389

we use λ = 0.001 for all cases. Each result is an390

average of 5 runs.391

4.2 Main Results 392

As shown in Table 2, STaR achieves comparable 393

results against previous bilinear models. STaR im- 394

proves more on WN18RR and YAGO3-10 than 395

ComplEx under either Fro or DURA regularization. 396

Moreover, STaR achieves similar results compared 397

to RESCAL under DURA. Yet, STaR only needs 398

2n parameters to model a relation while RESCAL 399

requires n2, which shows the efficiency of our 400

model. Besides, STaR still improves about 1% 401

on YAGO3-10 compared to RESCAL. 402

Comparing with the distance-based baselines 403

RotE and RotH (Chami et al., 2020), STaR outper- 404

forms them on FB15K237 and YAGO3-10 signifi- 405

cantly and gets similar results on WN18RR. There- 406

fore, STaR is more versatile than those distance- 407

based models, which owes scaling. 408

Besides, we observe that both translation and 409

scaling require appropriate regularization to show 410

their real effects. On the one hand, comparing with 411

STaR-Fro, TaR-Fro achieves similar or even better 412

results, which seems like scaling is useless. On 413

the other hand, comparing with QuatE, TaR-Fro 414

drops 2 point in WN18RR and FB15K237, which 415

seems like translation and rotation in 2Ds are less 416

powerful than rotation in 3Ds in QuatE. However, 417

that is not the whole story. When we turn to a 418

more powerful regularization term DURA, on the 419

one hand, TaR-DURA is outperformed by STaR- 420

DURA consistently since scaling helps to handle 421

complex relations as shown in Table 4. On the 422

other hand, TaR-DURA achieves similar results 423
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compared to QuatE as they both model all patterns424

yet are weak on complex relations. We think this425

phenomenon is because both scaling and transla-426

tion lack the inborn normalization like rotation and427

thus require an appropriate regularization term to428

prevent overfitting.429

1-to-1 1-to-N N-to-1 N-to-N

TaR-DURA 0.965 0.248 0.206 0.943
STaR-DURA 0.922 0.260 0.226 0.943

Table 4: The MRR of STaR-DURA and TaR-DURA
on complex relations in WN18RR. Better results are in
bold.

5 Analysis430

In this section, we will further compare STaR with431

ComplEx. Then we will analyze the benchmark432

KGs in a new perspective to explain the unexpected433

phenomenon in the comparison. Finally, we will434

verify that the improvement comes from modeling435

non-commutativity.

101 102

Embedding dimension

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
RR

STaR-DURA
ComplEx-DURA
STaR-Fro
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Figure 3: Comparison of STaR and ComplEx
on WN18RR under different dimensions (n ∈
{10, 16, 20, 32, 50, 200, 500}) and regularization terms
(Fro and DURA). Averages and standard deviations are
computed over 5 runs for each case.

436

5.1 Further Comparison with ComplEx437

To show STaR outperforms ComplEx consistently,438

we conduct further experiments in different dimen-439

sions and regularization terms. As shown in Figure440

3, STaR exceeds ComplEx on WN18RR persis-441

tently. Besides, both STaR and ComplEx improve442

by substituting DURA for Frobenius as the dimen-443

sion increases. Additionally, STaR and ComplEx444

seem to intersect in an extremely high dimension,445

Table 5: Link prediction results between STaR and
ComplEx for extremely high-dimensional embedding
(best for n ∈ {1000, 2000, 4000}). Better results are in
bold.

WN18RR FB15K237 YAGO3-10
Model MRR Hits@10 MRR Hits@10 MRR Hits@10

ComlEx-DURA 0.490 0.573 0.371 0.561 0.583 0.710
STaR-DURA 0.499 0.585 0.370 0.558 0.584 0.713

which leads us to further experiment in the follow- 446

ing content. 447

As shown in the Tabel 5, STaR outperforms 448

ComplEx on WN18RR prominently. However, 449

these two are tied on FB15K237 and YAGO3-10 450

unexpectedly. We think such a phenomenon is due 451

to the lack of non-commutativity patterns in them 452

substantially. To verify our hypothesis, we further 453

investigate those KGs from a new perspective. 454

5.2 Imbalance Ratio among KGs 455

In this part, we will verify the above hypothesis 456

by introducing two matrices ψ and Ψ about the 457

imbalance ratio. 458

We find that modeling commutativity and non- 459

commutativity is useful only if both possible orders 460

of a pair of relations appear in a KG. For instance, 461

consider two relations r1, r2 ∈ R, which have two 462

possible orders of composition: r1 ◦ r2 and r2 ◦ r1. 463

Therefore, if only one of them, e.g., r1 ◦ r2, exists 464

in the KG, it is unnecessary to distinguish whether 465

they are commutative or not, which we regard as 466

an imbalance. 467

To this end, we propose two matrices ψ and Ψ 468

to evaluate the imbalance ratio of pair and KG, 469

respectively. For the details of these two matrices, 470

please refer to Appendix D. 471

Based on Ψ of each benchmark as shown in Ta- 472

ble 3, we observe that the imbalance is remarkable 473

in FK15K237 and YAGO3-10. Moreover, we are 474

aware that although some pairs have both orders, 475

the counts between orders may have an enormous 476

discrepancy. To show this more specifically, we 477

visualize the pairs of three benchmark KGs. As 478

shown in Figure 4, on the one hand, the majority 479

of pairs are imbalanced in FB15K237 and YAGO3- 480

10. On the other hand, although many imbalanced 481

pairs exist in WN18RR, the balanced ones account 482

for the majority as denoted by Ψ. 483

We believe the above analysis validates the hy- 484

pothesis and explains the phenomenon. Further- 485

more, we think the discrepancy between KGs is 486

rooted in the entities. Specifically, we notice that 487
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in Figure 4, on the one hand, the majority of pairs are im-
balanced in FB15K237 and YAGO3-10. On the other hand,
although many imbalanced pairs exist in WN18RR, the bal-
anced ones account for the majority as denoted by Ψ.

We believe the above analysis validates the hypothesis
and explains the phenomenon. Furthermore, we think the
discrepancy between KGs is rooted in the entities. Specif-
ically, we notice that all entities are homogeneous in Word-
Net, which consists of words, while heterogeneous in Free-
base and YAGO, built by various things like person, film,
etc. Therefore, in KGs like WordNet, all relations connect
things of the same kind. In contrast, in ones like Freebase
and YAGO, most relations connect things of different kinds.

Therefore, for the relations in the imbalance KGs like
FB15K237 and YAGO3-10, some pairs of them only have
one meaningful order in the sense of semantics substantially.
For instance, consider two relations: isDirectedBy and li-
keEating, whose combination makes sense in the order of

film
IsDirectedBy−→ human

likeEating−→ food. However, when ex-
changing the order, we find that the tail entity of likeEating
should be a kind of food, and the head entity of isDirectedBy
should be a movie, which shows the inherent incompatibility
in this order. More generally speaking, taking ∀r1, r2 ∈ R
that has the order of combination r1 ◦ r2. Its other order
r2 ◦ r1 is meaningless and nonexistent if the domain of head
entity of r1 and tail entity of r2 are not intersected. In con-
clusion, we think that such a semantic character of these
inter-kind relations explains the cause of the scarcity of non-
commutativity in FB15K237 and YAGO3-10.

5.3 Improvements on WN18RR Come from
Modeling Non-Commutativity Pattern

In FB15K237 and YAGO3-10, we have shown that imbal-
ances are prevalent and thus explain why STaR and Com-
plEx are tied. Here we further experiment to corroborate that
the improvement on WN18RR gains from modeling the non-
commutativity pattern.

As shown in Table 6, STaR surpasses ComplEx in most

Relation Name Propotion STaR ComplEx Improvement

hypernym 40.09% 0.193 0.175 10.29%4
derivationally related form 34.23% 0.956 0.959 −0.31%5
member meronym 8.52% 0.241 0.225 7.11%4
has part 5.55% 0.247 0.230 7.39%4
synset domain topic of 3.56% 0.409 0.387 5.68%4
instance hypernym 3.37% 0.420 0.409 2.69%4
also see 1.49% 0.634 0.631 0.47%4
verb group 1.30% 0.917 0.975 −5.95%5
member of domain region 1.06% 0.408 0.279 46.24%4
member of domain usage 0.73% 0.359 0.316 13.61%4
similar to 0.09% 1.000 1.000 0.00%

relations. Although STaR slightly decreases in derivation-
ally related form which is already high enough, it gains
about 10% in hypernym with the largest proportion. Cor-
respondingly, we notice that in Figure 4(a) the outstanding

thick blue arc denotes both e1
hyp.−→ e2

d.r.f.−→ e3 and e1
d.f.r.−→

e2
hyp.−→ e3 are abundant in WN18RR1. Besides, we find

that these two relations are non-commutative. Therefore, we
think such a correspondence validates that the improvement
on WN18RR comes from modeling non-commutativity.

6 Conclusion

In this paper, we notice that none of the previous bilinear
models can model all patterns and handle complex relations
simultaneously. To fill the gap, we propose a bilinear model
Scaling Translation and Rotation (STaR) consisting of these
three basic modules. STaR solves both problems concur-
rently and achieves comparable results compared to previous
baselines. Moreover, we also conduct a deep investigation to
verify that our model is improved by handling relations or
modeling patterns that previous bilinear models failed.

1hyp. and d.f.r stands for hypernym and derivationally related
form respectively.

Figure 4: The count and imbalance ratio of all possible pairs. An arc represents a pair. On the one hand, pair
imbalance ratio ψ is denoted by color, as blue means balance while gray means imbalance in contrast. On the
other hand, the count is denoted by transparency and thickness, as thick and opaque means more while thin and
transparent means less. It should be noticed that the thickness of the arcs is relative, so the arcs with the same
thickness in different datasets may have different counts.

all entities are homogeneous in WordNet, which488

consists of words, while heterogeneous in Freebase489

and YAGO, built by various things.490

Therefore, for the relations in the heterogeneous491

KGs like FB15K237 and YAGO3-10, some pairs492

of them only have one meaningful order in the493

sense of semantics substantially. For instance, con-494

sider two relations: isDirectedBy and likeEating,495

whose combination makes sense in the order of496

film
IsDirectedBy−→ human

likeEating−→ food. However,497

when exchanging the order, we find that the tail498

entity of likeEating should be a kind of food, and499

the head entity of isDirectedBy should be a movie,500

which shows the inherent incompatibility in this or-501

der. More generally speaking, taking ∀r1, r2 ∈ R502

that has the order of combination r1 ◦ r2. Its other503

order r2 ◦ r1 is meaningless and nonexistent if the504

domain of head entity of r1 and tail entity of r2505

are not intersected. In conclusion, we think that506

such a semantic character of these inter-kind re-507

lations explains the cause of the scarcity of non-508

commutativity in FB15K237 and YAGO3-10.509

5.3 Improvements on WN18RR Come from510

Modeling Non-Commutativity Pattern511

In FB15K237 and YAGO3-10, we have shown512

that imbalances are prevalent and thus explain513

why STaR and ComplEx are tied. Here we fur-514

ther experiment to corroborate that the improve-515

ment on WN18RR gains from modeling the non-516

commutativity pattern.517

As shown in Table 6, STaR surpasses Com-518

plEx in most relations. Although STaR slightly519

decreases in derivationally related form which is520

already high enough, it gains about 10% in hy-521

pernym with the largest proportion. Correspond-522

Table 6: Comparison of the MRR of STaR and Com-
plEx on WN18RR.4 denotes improvement and5 de-
creases on extremely high-dimensional settings.

Relation Name Propotion STaR ComplEx Improvement

hypernym 40.09% 0.193 0.175 10.29%4
derivationally related form 34.23% 0.956 0.959 −0.31%5
member meronym 8.52% 0.241 0.225 7.11%4
has part 5.55% 0.247 0.230 7.39%4
synset domain topic of 3.56% 0.409 0.387 5.68%4
instance hypernym 3.37% 0.420 0.409 2.69%4
also see 1.49% 0.634 0.631 0.47%4
verb group 1.30% 0.917 0.975 −5.95%5
member of domain region 1.06% 0.408 0.279 46.24%4
member of domain usage 0.73% 0.359 0.316 13.61%4
similar to 0.09% 1.000 1.000 0.00%

ingly, we notice that in Figure 4 the outstand- 523

ing thick blue arc for WN18RR denotes both 524

e1
hyp.−→ e2

d.r.f.−→ e3 and e1
d.f.r.−→ e2

hyp.−→ e3 are 525

abundant in WN18RR1. Besides, we find that these 526

two relations are non-commutative. Therefore, we 527

think such a correspondence validates that the im- 528

provement on WN18RR comes from modeling non- 529

commutativity. 530

6 Conclusion 531

In this paper, we notice that none of the previous 532

bilinear models can model all patterns and handle 533

complex relations simultaneously. To fill the gap, 534

we propose a bilinear model Scaling Translation 535

and Rotation (STaR) consisting of these three basic 536

modules. STaR solves both problems concurrently 537

and achieves comparable results compared to pre- 538

vious baselines. Moreover, we also conduct a deep 539

investigation to verify that our model is improved 540

by handling relations or modeling patterns that pre- 541

vious bilinear models failed. 542

1hyp. and d.f.r stands for hypernym and derivationally
related form respectively.
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Appendix667

A Formal Definitions of 7 Relation668

Patterns669

Consider triples of a completed KG T ∗, which670

contains all true facts for entities E and relationsR.671

Therefore, the former definition of those patterns672

are as follows:673

1. Symmetry: For a relation r ∈ R and674

∀e1, e2 ∈ E , if (e1, r, e2) ∈ T ∗ then675

(e2, r, e1) ∈ T ∗.676

2. Skew-Symmetry: For a relation r ∈ R677

and ∀e1, e2 ∈ E , if (e1, r, e2) ∈ T ∗ then678

(e2, r, e1) /∈ T ∗.679

3. Composition: For relations r1, r2, r3 ∈ R680

and ∀e1, e2, e3 ∈ E , if (e1, r1, e2) ∈ T ∗ ∧681

(e2, r2, e3) ∈ T ∗ then (e1, r2, e3) /∈ T ∗.682

Therefor, r3 is the composition of r1 and r2.683

4. Commutativity: For relations r1, r2 ∈ R684

and ∀e1, e2, e3 ∈ E , if (e1, r1, e2) ∈ T ∗ ∧685

(e2, r2, e3) ∈ T ∗ then (e1, r2, e2) ∈ T ∗ ∧686

(e2, r1, e3) ∈ T ∗.687

5. Non-Commutativity: For relations r1, r2 ∈688

R and ∀e1, e2, e3 ∈ E , if (e1, r1, e2) ∈ T ∗ ∧689

(e2, r2, e3) ∈ T ∗ then (e1, r2, e2) /∈ T ∗ ∨690

(e2, r1, e3) /∈ T ∗.691

6. Inversion: For relations r1, r2 ∈ R and692

∀e1, e2 ∈ E if (e1, r1, e2) ∈ T ∗ then693

(e2, r2, e1) ∈ T ∗.694

B Proof of Proposition 1695

Proof. Since each relationship is represented by696

a matrix R∗ and the matrix multiplication stands697

composition operator ◦, here we will show how to698

model all 6 properties by taking some cases of R∗699

and how to handle complex relations by consider-700

ing a fixed margin γ .701

1. Symmetry: Here we take rci = 0, i =702

1, 3, · · · , n − 1 and τ = 0. Then STaR de-703

generates to DistMult. Thus ĥTR∗t̂ = t̂TR∗ĥ704

and STaR models the symmetry pattern.705

2. Skew-Symmetry: Here we take rc = 0706

and τ ∈ Rn×1, and STaR degenerates to707

TransE(Bordes et al., 2013). Then it models708

the skew-symmetry pattern, since if ‖h+ r −709

t‖ = 0 then ‖t+ r − h‖ 6= 0 for h, r, t 6= 0.710

3. Composition: It is equivalent that taking 711

R1
∗, R

2
∗ then R1

∗ · R2
∗ is still in the form of 712

R∗: 713

R1
∗ ·R2

∗ =

[
R1

c

(τ1)T 1

]
·
[
R2

c

(τ2)T 1

]
=

[
R1

c ·R2
c

(τ1)TR2
c + (τ2)T 1

]
,

714

thus STaR can model the composition pattern. 715

4. Commutativity: If we take τ = 0, then STaR 716

degenerates to ComplEx matrix, which is a 717

block diagonal matrix and can be exchanged 718

R1
∗ ·R2

∗ = R2
∗ ·R1

∗. Thus STaR can model the 719

commutativity pattern. 720

5. Non-Commutativity: As the translation and 721

rotation are non-commutative, we take τ1 = 0 722

and r2i + r2i+1 = 1, i = 1, 3, · · · , n − 1 to 723

degenerate R1
∗ into a pure rotation matrix, and 724

r2c = 0 to degenerate R2
∗ into a pure transla- 725

tion matrix. Then, R1
∗ ·R2

∗ 6= R2
∗ ·R1

∗ 726

6. Inversion: Here we take τ = 0, then for a 727

R1
∗, there exists R2

∗ that has (R1
∗)

T = R2
∗. 728

Therefore, we have ĥTR1
∗t̂ = t̂TR2

∗ĥ. 729

7. Complex relations Here we follow (Chao 730

et al., 2021) and treat the ability of model 731

handling complex relations is adaptive adjust- 732

ing the margin given a fixed one. Specifically, 733

we set this fixed margin as γ, and a candidate 734

is true means the score of the corresponding 735

triple s(h, r, t) is greater than γ: 736

γ < hTRt. (9) 737

If a constant α is multiplied on both side and 738

only changes R, then we say it adaptively 739

adjusts the margin. Therefore, for a (h, r, t), 740

STaR has: 741

γ < ĥTR∗t̂

αγ < αĥTR∗t̂

αγ < ĥTα

[
Rc

1

] [
I
τT 1

]
t̂

αγ < ĥT
([
αRc

1

]
+

[
0

(α− 1)

])[
I
τT 1

]
t̂

αγ < ĥT
[
αRc

1

] [
I
τT 1

]
t̂+ (α− 1)

α(γ − 1) + 1 < ĥTR′∗t,
(10) 742
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since R∗ and α are learnable, the margin can743

be dynamic adjust without changing h and744

t. Thus, we could say that STaR can handle745

complex relations.746

Based on the discussion above, we could conclude747

that STaR is capable to model all 6 patterns and748

handle complex relations.749

C Details of DURA750

For a bilinear model hTRt in real value, the DURA751

regularization is:752

‖h‖22 + ‖Rt‖22 + ‖t‖22 + ‖hTR‖22. (11)753

Then, for STaR, we have:754

‖h‖22 + ‖Rt‖22 + ‖t‖22 + ‖hTR‖22
=‖ĥ‖22 + ‖R∗t̂‖22 + ‖t̂‖22 + ‖ĥTR∗‖22
=‖h‖22 + ‖t‖22 + ‖hTRc + τ‖22 + ‖Rct‖22 + τT t+ 4.

(12)755

The emergence of constant 4, which can be ignored756

in the optimization, is because we use ĥ, t̂ having757

an extra dimension with constant 1.758

D Details of ψ and Ψ759

Figure 5: Toy examples demonstrate how to count
#tripleij

For each possible relation pair (ri, rj) ∈ (R,R),760

we count its corresponding triple in the training set761

Ttrain as #tripleij and #tripleji. For Instance, in762

the Figure 5, #triple12 = 1 and #triple21 = 0763

in the left hand example while #triple12 = 1 and764

#triple21 = 2 in the right one. Then, we define the765

imbalance ratio of a relation pair ψij as:766

ψij = 2 ·
max {#tripleij ,#tripleji}

#tripleij + #tripleji
− 1. (13)767

Meanwhile, we treat a pair as both if #tripleij >768

0 and #tripleji > 0, and single if only one of them769

greater than 0. Based on that, we count the triples770

of both and single as #tripleboth and #triplesingle771

respectively. Thus, we define a similar matrix Ψ 772

for the imbalance ratio of train set: 773

Ψ =
#triplesingle

#tripleboth + #triplesingle
. (14) 774
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