STaR: Knowledge Graph Embedding by Scaling, Translation and
Rotation

Anonymous ACL submission

Abstract

The bilinear method is mainstream in Knowl-
edge Graph Embedding (KGE), aiming to
learn low-dimensional representations for en-
tities and relations in Knowledge Graph (KG)
and complete missing links. Most of the
existing works are to find patterns between
relationships and effectively model them to
accomplish this task. Previous works have
mainly discovered 6 important patterns like
non-commutativity. Although some bilinear
methods succeed in modeling these patterns,
they neglect to handle 1-to-N, N-to-1, and N-
to-N relations (or complex relations) concur-
rently, which hurts their expressiveness. To
this end, we integrate scaling, the combina-
tion of translation and rotation that can solve
complex relations and patterns, respectively,
where scaling is a simplification of projection.
Therefore, we propose a corresponding bilin-
ear model Scaling Translation and Rotation
(STaR) consisting of the above two parts. Be-
sides, since translation can not be incorpo-
rated into the bilinear model directly, we in-
troduce translation matrix as the equivalent.
Theoretical analysis proves that STaR is ca-
pable of modeling all patterns and handling
complex relations simultaneously, and exper-
iments demonstrate its effectiveness on com-
monly used benchmarks for link prediction.

1 Introduction

Knowledge Graph (KG), storing data as triples like
(head entity, relation, tail entity), is a growing way
to deal with relational data. It has attracted the at-
tention of researchers in recent years due to its ap-
plications in boosting other fields such as question
answering (Mohammed et al., 2018), recommender
systems (Zhang et al., 2016), and natural language
processing (Wang et al., 2017; Ji et al., 2021).
Since KG is usually incomplete, it needs to be
completed by predicting the missing edges. A pop-
ular and effective way to accomplish this task is
Knowledge Graph Embedding (KGE), which aims

to find appropriate low-dimensional representations
for entities and relations.
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Figure 1: Complex relations and non-commutativity
pattern

A mainstream of KGE is the bilinear method,
which uses the product of entities and relations as a
similarity. While two major problems in KGE are
how to model different relation patterns and how
to handle 1-to-N, N-to-1, and N-to-N relations (or
complex relations) (Sun et al., 2019; Wang et al.,
2014; Lin et al., 2015). For the first problem, previ-
ous studies have mainly discovered 6 patterns (Sun
et al., 2019; Xu and Li, 2019; Yang et al., 2020).
For example, as shown in Figure 1, HasChild and
HasWife form a non-commutativity pattern, since
the child of Tom’s wife is Bill while the wife of
Tom’s child is Mary. For the second problem, we
take an N-to-1 relation HasChild as an example
illustrated in the same figure, in which Bill is the
child of both Lily and Tom.

Although some recent works have successfully
modeled different relation patterns, they neglect to
handle complex relations concurrently. To be more
specific, they represent relations as rotations (or
reflections) to model different patterns like DihE-
dral (Xu and Li, 2019) and QuatE (Zhang et al.,
2019), yet ignore that naive rotation is just like
translation in TransE(Bordes et al., 2013), which is
difficult to handle complex relations.

To this end, we borrow the ideas from distance-



based methods to go beyond rotation and solve
these two problems simultaneously. Specifically,
we combine projection that handles complex rela-
tions (Wang et al., 2014; Lin et al., 2015) and the
combination of translation and rotation that models
relation patterns (Chami et al., 2020). Thus, we
propose a corresponding bilinear model Scaling
Translation and Rotation (STaR), where scaling
is a simplification of projection and translation is
introduced as matrix widely used in Robotics (Paul,
1981). STaR can model different patterns and han-
dle complex relations concurrently, and takes linear
rather than quadratic parameters to embed a rela-
tion efficiently. Comparing to previous bilinear
models, STaR is closest to ComplEx (Trouillon
et al., 2016), which is equivalent to the combina-
tion of rotation and scaling and will be compared
in Section 5 minutely.

Experiments on different settings demonstrate
the effectiveness of our model against previous
ones, while elaborated analysis against ComplEx
shows the changes brought about by translation and
verifies that our model improves from modeling the
non-commutativity pattern. The main contributions
of this paper are as follows:

1. We propose a bilinear model STaR that can
efficiently model relation patterns and handle
complex relations concurrently.

2. To the best of our knowledge, this is the first
work introducing translation to the bilinear
model, which brings new modules to it and
connect with distance-based methods.

3. The proposed STaR achieves comparable re-
sults on three commonly used benchmarks for
link prediction.

2 Related Work

Generally speaking, previous works on KGE can
be divided into bilinear, distance-based, and other
methods.

Bilinear Methods

Bilinear Methods measure the similarity of head
and tail entities by their inner product under a rela-
tion specific transformation represented by a matrix
R. RESCAL (Nickel et al., 2011) is the ancestor
of all bilinear models, whose R is arbitrary and
has n? parameters. RESCAL is expressive yet pon-
derous and tends to overfit. To alleviate this issue,

DistMult (Yang et al., 2015) uses diagonal matrices
and reduces n? to n. ComplEx (Trouillon et al.,
2016) transforms DistMult into complex spaces
to model skew-symmetry pattern. Analogy (Liu
et al., 2017) considers analogical pattern, which is
equivalent to commutativity pattern, and general-
izes DistMult, ComplEx, and HolE (Nickel et al.,
2016). Although these descendants are powerful
in handling complex relations and some patterns,
they fail to model non-commutativity patterns.

The non-commutativity pattern was proposed by
DihEdral (Xu and Li, 2019) which uses a dihedral
group to model all patterns. Besides, this pattern
can also be modeled by hypercomplex values like
quaternion or octonion used in QuatE (Zhang et al.,
2019). Although they succeed in modeling non-
commutativity, they are poor at handling complex
relations. Thus, none of the previous bilinear meth-
ods has intended to handle relations and model
concurrently.

Distance-Based Methods

In contrast, Distance-Based Methods use distance
to measure the similarity. TransE (Bordes et al.,
2013) inspired by word2vec (Mikolov et al., 2013)
proposes the first distance-based model and model
relation as translation. TransH (Wang et al., 2014),
TransR (Lin et al., 2015) find that TransE is inca-
pable to model complex relations like part_of and
fix this problem by projecting entities into relation-
specific hyperspaces.

RotatE (Sun et al., 2019) utilizes rotation to
model inversion and other patterns. Due to its suc-
cess, subsequent models adopt the idea of rotation.
HAKE (Zhang et al., 2020b) argues that rotation is
incompetent to model hierarchical structures and
introduces a radial part. MuRE (Balazevic et al.,
2019a) incorporates rotation with scaling while
RotE (Chami et al., 2020) combines rotation and
translation. Besides, they also have hyperbolic
versions as MuRP and RotH. PairRE (Chao et al.,
2021) also tries to model both the problems of
patterns and complexity together, yet neglects the
non-commutativity pattern.

Other Methods

Apart from the above two, some studies also
employ black boxes or external information.
ConvE (Dettmers et al., 2018) and ConKB (Nguyen
et al., 2018) utilize convolution neural network
while R-GCN (Schlichtkrull et al., 2018) and
RGHAT (Zhang et al., 2020c) apply graph neural



Table 1: The score function and ability to model relation patterns of several models.

Relation Patterns Performance on

Model Score Function Composition Symmetry Skew-Symmetry Commutativity Non-Commutativity Inversion | Complex Relations
TransE —|lh+r—t| v X v v X v Low
TransR | —|M,h+r — M,t|| v v v v v v High
RotatE —||hor—t| v v v v X v Low
MuRE —lpoh+r—t| v 4 v v v v Low
RotE | —|[hRot(0,) +r — i v v v v v v Low
DistMult nT diag(r)t v v X v X v High
ComplEx RE(h” diag(r)t) v v v v X v High
QuatE QLW Q v v v v v v Low
STaR hTR.i v 4 v v v v High

networks. Besides, some other works use external
information like text (An et al., 2018; Yao et al.,
2019), while they are out of our consideration.

Besides specific models, other researchers be-
lieve that some previous models are limited by
overfitting. Thus, they propose better regular-
ization terms like N3 (Lacroix et al., 2018) and
DURA (Zhang et al., 2020a) to handle this prob-
lem.

3 Methodology

In this section, we will first introduce the back-
ground knowledge. Then, we will propose our
model STaR by combining the useful modules that
solve patterns and complex relations. Finally, we
will discuss the translation in the bilinear model.

3.1 Background Knowledge
3.1.1 Knowledge graph

Given an entity set £ and a relation set R, A knowl-
edge graph 7 = {(hs,rj,t5)} C EXRxEisaset
of triples, where h;, r;, ti, denotes the head entity,
relation and tail entity respectively. The number of
entities and relations are indicated by |€|and |R|.

3.1.2 Problem definition

Knowledge graph embedding aims to learn a score
function s(h,r,t) and the embeddings of enti-
ties and relations, which uses the link prediction
task to evaluate the performance. Link prediction
first splits triples of the knowledge graph 7 into
train set Tirqin, test set Tioqr and valid set Tyqiid-
Then, for each specific triple in Ty, link predic-
tion aims to give the correct entity tail € £ a
lower rank than other candidates given the query
(head, relation, 7) or head entity head € £ given
the query (7, relation, tail) by utilizing the score
function.

3.1.3 Complex relations

The complex relations are defined by tails per
head and heads per tail of a relation r (tphr and
hptr) (Wang et al., 2014). If tphr > 1.5 and hptr <
1.5 then 7 is 1-to-N while tphr > 1.5 and hptr >
1.5 means r corresponds to N-to-N.

3.1.4 Relation patterns

Relation patterns are the inherent semantic charac-
teristics of relations, which are helpful to model
relations and inference.

Previous works have mainly proposed 6 pat-
terns (Xu and Li, 2019; Yang et al., 2020). They
are Composition (e.g., my father’s brother is
my uncle), Symmetry (e.g., IsSimilarTo), Skew-
Symmetry (e.g., IsFatherOf), Commutativity,
Non-Commutativity (e.g., my wife’s son is not my
son’s wife), Inversion. For the formal definition of
all patterns, please refer to Appendix A.

3.1.5 Other notations

We use h € R™! and t € R™*! to denote the em-
bedding of head entity and tail entity respectively,
where n is the embedding dimension. And we use
o to denote the relation composition. For example,
if we take 71,72, 73 € R, and r3 is the composition
of r1 and ro then r3 = r1 o ro.

3.2 The Proposed STaR Model

In this part, we will analyze modules in previous
works that model different patterns and handle com-
plex relations. Then we will propose a bilinear
model Scaling Translation and Rotation (STaR).
In Table 1, we list the score function s(h,r,t)
of different models and their ability to model pat-
terns, where we observe that the stickiest one is
non-commutativity. To model it, QuatE (Zhang
et al., 2019) utilizes quaternion to model the rota-
tion in 3D space. However, we think it is unneces-
sary to introduce hypercomplex values and redefine
the product operator. In contrast, we are inspired by
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Figure 2: How STaR consists of 3 basic operations and model and related to 3 previous models.

a distance-based model RotE (Chami et al., 2020)
that uses the combination of translation and rota-
tion and is capable of modeling non-commutativity
in 2D Euclidean spaces.

In the same table, we also list the performance
of different models on complex relations. From
this table, we notice that scaling, as a special case
of projection, is helpful for dealing with complex
relations (Yang et al., 2015; Trouillon et al., 2016).

Therefore, it seems like we can achieve our goal
of modeling patterns and handling complex rela-
tions concurrently by assembling the two parts.
However, we find that translation is unable to be
introduced to the bilinear model directly. To handle
this, we introduce a translation matrix widely used
in Robotics (Paul, 1981) as the equivalent. To show
this substitution, we choose a translation 7 € R1*"
to a point € R"in R” as an example, and we
have:

1 1 T1
T T .
+ = (D
R I
1 1

where the matrix is the translation matrix.

Finally, we achieve the proposed Scaling
Tanslation and Rotation (STaR) model by comb-
ing such three modules and stacking these elemen-
tary blocks as demonstrated in Figure 2, where
ComplEXx can be treated as the combination of ro-
tation and scaling in two dimensions manner.

The representation of a relation is thus achieved
by assembling a ComplEx matrix with a translation

offset:
R. = {Ra ] , @

T 1

where R. € R™ ™ and 7 € R™! denotes the
relation specific ComplEx matrix and translation
offset respectively. Besides R, is achieved by a
vector ¢ € R"*! as:
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Therefore, the score function of STaR is:
s(h,r,t) = hT R, “)

where h = [h7,1]T and ¢ = [t7,1]7.

From the score function, STaR is proved to
model all 6 patterns and handle complex relations
as detailed in Appendix B.

Proposition 1. STaR can model Symmetry, Skew-
Symmetry, Composition, Inversion, Commutativity,
and Non-Commutativity and handle complex rela-
tions concurrently.

3.3 Discussions

In this part, we will detail what does translation
brings to bilinear model and how it helps to model
the non-commutativity minutely.



3.3.1 What does translation bring to bilinear
model?

We unfold the score function in Equation (4):

s(h,r,t) = hTR.i

_ T T (5)
RTR.t + 77t +1.
ComplEx E

Except the constant 1 comes from the extra dimen-
sion, the above equation shows that it has two parts:
ComplEx and the model E proposed by (Toutanova
and Chen, 2015). The later part E is the dot prod-
uct of the relation-specific translation 7 and the
candidate tail entity ¢ regardless of the head entity.
Therefore, E works like determining whether the
tail entity suits the relation. For example, given a
relation IsLocatedlIn, it is impossible to be a correct
triple with a tail entity like Bill or Mary no matter
what the head entity is.

3.3.2 How does translation help model
non-commutativity?

We take two relations 71, 72 € R, whose compos-
ited relation r3 = 71 o 1y is represented as R} - R2.
Similarly, we unfold the score function of a triple
regarding r3 as:

s(h,rs,t)
=hT (R Rt + ((r)TRZ + (7%)7) t+1. (6)
ComplEx E

The E in Equation (5) reappears in Equ.(6). As
shown in the Table 1, it is E, per se, helps Com-
plEx to model the non-commutativity pattern since
(THTRZ + (3)T # (r)" Ry + (71T

To better understand the role of E, we take rq
as IsWifeOf and ro as IsFatherOf as an exam-
ple. Then the wife of someone’s father must be
a woman, while the father of someone’s wife must
be a man, where the order of relations affects which
tail entities are fitted.

4 Experiments

In this section, we will introduce the experiment
settings and three benchmark datasets and show the
comparable results of our model.

4.1 Experiments Settings
4.1.1 Datasets

We evaluate all models on the three most commonly
used datasets, which are WN18RR (Dettmers et al.,
2018), FB15K237 (Toutanova and Chen, 2015) and

YAGO3-10 (Mahdisoltani et al., 2015). WN18RR
and FB15K237 are the subsets of WordnNet and
Freebase, respectively. They are the more challeng-
ing version of the previous WN18 and FB15K that
suffer from data leakage (Dettmers et al., 2018;
Toutanova and Chen, 2015). We demonstrate the
statistics of these benchmarks in Tabel 3. In partic-
ular, we use ¥ to denote the imbalance ratio of the
train set, which will be introduced in Section 5.1

4.1.2 Baselines

We compare our method with previous mod-
els, which are DistMult (Yang et al., 2015),
ConvE (Dettmers et al., 2018), Tucker (Bal-
azevic et al., 2019b), QuatE (Zhang et al.,
2019), MurP (Balazevic et al., 2019a), RotE and
RotH (Chami et al., 2020) and some previous
bilinear models with N3 (Lacroix et al., 2018)
and DURA (Zhang et al., 2020a) regularization
terms. Besides, we also propose TaR consisting of
Translation and Rotation for comparison.

4.1.3 Evaluation metrics

We use the score functions to rank the correct tail
(head) among all possible candidate entities. Fol-
lowing previous works, we use mean reciprocal
rank (MRR) and Hits@ K as evaluation metrics.
MRR is the mean of the reciprocal rank of valid en-
tities, avoiding the problem of mean rank (MR) be-
ing sensitive to outliers. Hits@ K (K € {1,3,10}
measures the proportion of proper entities ranked
within the top K. Besides, we follow the filtered
setting (Bordes et al., 2013) which ignores those
also correct candidates in ranking.

4.1.4 Optimization

Following (Lacroix et al., 2018), we use the cross-
entropy loss and the reciprocal setting that adds a
reciprocal relation 7 for each relation » € R and
(t,7, h) for each triple (h,r,t) € T:

exp(s(h,r,t))
o (h’r’t)ze;tmm >vee exp(s(h,r, 1))
exp(s(t, 7, h))
> nee exp(s(t, 7, h'))
+AReg(h, 7, 1),

w(t)

w(h))

(N
where Reg(h, 7, t) denotes the regularization and
w(t)(w(h)) is the weight for the tail (head) entity:

#t

w(t) = wo +
( ) max{#ti 7S ﬁrain}

(1 - wo)a
3)




Table 2: Link prediction results on different benchmarks (best for n € {200, 400,500} . 1 means the results are
taken from (Chami et al., 2020). Since original paper of DURA (Zhang et al., 2020a) conduct on extremely high
dimension, here we reimplement ComlEx-DURA and RESCAL-DURA. Best results are in bold while the seconds
are underlined. STaR is our full model while TaR excludes scaling.

WNI1SRR FB15K237 YAGO3-10
Model MRR Hits@l Hits@3 Hits@l0 MRR Hits@l Hits@3 Hits@l0 MRR Hits@l Hits@3 Hits@10
DistMultf 043 039 044 049 0241 0155 0263 0419 034 024 038 0.54
ConvEf 043 040 044 052 0325 0237 035 0501 044 035 049 0.62
TuckER 0470 0443 0482 0526 0358 0266 039 0544 - - - -
QuatEt 0488 0438 0508 0582 0348 0248 0382 0550 - - - -
RotatEt 0476 0428 0492 0571 0338 0241 0375 0533 0495 0402 0550  0.670
MurP} 0481 0440 0495 0566 0335 0243 0367 0518 0354 0249 0400  0.567
RotEf 0494 0446 0512 0585 0346 0251 0381 0538 0574 0498 0621 0711
RotH? 0496 0449 0514 058 0344 0246 0380 0535 0570 0495 0612 0706
ComplEx-N3 0480 0435 0495 0572 0357 0264 0392 0547 0569 0498  0.609  0.701
ComplEx-Fro 0457 0427 0469 0515 0323 0235 0354 0497 0568 0493 0613  0.699
TaR-Fro (ours) 0470 0438 0481 0532 0325 0239 0356 0501 0567 0494 0610  0.699
STaR-Fro (ours) 0463 0431 0476 0526 0324 0236 0356 0501 0574 0502 0617 0701
RESCAL-DURA 0496 0452 0514 0575 0370 0278 0406 0553 0577 0501 0621 0711
ComplEx-DURA 0488 0446 0504 0571 0365 0270 0401 0552 0578 0507 0620  0.704
TaR-DURA (ours) 0488 0446 0503 0567 0351 0257 0387 0539 0578 0506 0.621  0.707
STaR-DURA (ours) 0.497 0452 0512 0583 0368 0273 0405 0557 0585 0513 0628 0713
WNISRR FBI5K237 YAGO3-10 4.2 Main Results
€| 40.943 14.541 123.182 As shown in Table 2, STaR achieves comparable
> ’ ’ . . ey .
IR 11 237 37 results against previous bilinear models. STaR im-
Train 86.835 272.115 1.079.040 proves more on WNI18RR and YAGO3-10 than
b b b b . . .
Valid 3.034 17.535 5.000 ComplEx under either Fro or DURA regularization.
b b b . . .
Test 3.134 20.466 5.000 Moreover, STaR achieves similar results compared
b b b
U 0.003 0.801 0.838 to RESCAL under DURA. Yet, STaR only needs

Table 3: Statistics of three benchmark datasets.

where wy is a constant for each dataset, #t repre-
sents the count of entity ¢ in the training set (Zhang
et al., 2020a).

Besides, we use both Frobenius (Fro) and
DURA (Zhang et al., 2020a) regularization for bet-
ter comparison. For the details of DURA for STaR
please refer to Appendix C.

4.1.5 Implementation details

We search the best results in n € {200, 400, 500}.
After searching for hyperparameters, we set the
dimension to 500, the learning rate to 0.1 for all
datasets, and the batch size to 100 for WN18RR
and FB15K237 while 1000 for YAGO3-10. Be-
sides, we choose wyg = 0.1 for WN18RR and
0 for the others. Moreover, for DURA we use
A =0.1,0.05,0.005 for WN18RR, FB15K237 and
YAGO3-10 respectively, while for Frobinues (Fro)
we use A = 0.001 for all cases. Each result is an
average of 5 runs.

2n parameters to model a relation while RESCAL
requires n?, which shows the efficiency of our
model. Besides, STaR still improves about 1%
on YAGO3-10 compared to RESCAL.

Comparing with the distance-based baselines
RotE and RotH (Chami et al., 2020), STaR outper-
forms them on FB15K237 and YAGO3-10 signifi-
cantly and gets similar results on WN18RR. There-
fore, STaR is more versatile than those distance-
based models, which owes scaling.

Besides, we observe that both translation and
scaling require appropriate regularization to show
their real effects. On the one hand, comparing with
STaR-Fro, TaR-Fro achieves similar or even better
results, which seems like scaling is useless. On
the other hand, comparing with QuatE, TaR-Fro
drops 2 point in WN18RR and FB15K237, which
seems like translation and rotation in 2Ds are less
powerful than rotation in 3Ds in QuatE. However,
that is not the whole story. When we turn to a
more powerful regularization term DURA, on the
one hand, TaR-DURA is outperformed by STaR-
DURA consistently since scaling helps to handle
complex relations as shown in Table 4. On the
other hand, TaR-DURA achieves similar results



compared to QuatE as they both model all patterns
yet are weak on complex relations. We think this
phenomenon is because both scaling and transla-
tion lack the inborn normalization like rotation and
thus require an appropriate regularization term to
prevent overfitting.

1-to-1 1-to-N  N-to-1 N-to-N
TaR-DURA 0.965 0248 0206 0.943
STaR-DURA 0.922  0.260 0.226 0.943

Table 4: The MRR of STaR-DURA and TaR-DURA
on complex relations in WN18RR. Better results are in
bold.

5 Analysis

In this section, we will further compare STaR with
ComplEx. Then we will analyze the benchmark
KGs in a new perspective to explain the unexpected
phenomenon in the comparison. Finally, we will
verify that the improvement comes from modeling
non-commutativity.
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Figure 3: Comparison of STaR and ComplEx

on WNI8SRR under different dimensions (n €
{10, 16, 20, 32, 50, 200, 500}) and regularization terms
(Fro and DURA). Averages and standard deviations are
computed over 5 runs for each case.

5.1 Further Comparison with ComplEx

To show STaR outperforms ComplEx consistently,
we conduct further experiments in different dimen-
sions and regularization terms. As shown in Figure
3, STaR exceeds ComplEx on WNI18RR persis-
tently. Besides, both STaR and ComplEx improve
by substituting DURA for Frobenius as the dimen-
sion increases. Additionally, STaR and ComplEx
seem to intersect in an extremely high dimension,

Table 5: Link prediction results between STaR and
ComplEx for extremely high-dimensional embedding
(best for n € {1000, 2000, 4000}). Better results are in
bold.

WN18RR FB15K237 YAGO3-10
Model MRR Hits@10 MRR Hits@10 MRR Hits@10

ComlEx-DURA 0490  0.573 0371  0.561  0.583  0.710
STaR-DURA 0499 0.585 0370 0558  0.584  0.713

which leads us to further experiment in the follow-
ing content.

As shown in the Tabel 5, STaR outperforms
ComplEx on WNI18RR prominently. However,
these two are tied on FB15K237 and YAGO3-10
unexpectedly. We think such a phenomenon is due
to the lack of non-commutativity patterns in them
substantially. To verify our hypothesis, we further
investigate those KGs from a new perspective.

5.2 Imbalance Ratio among KGs

In this part, we will verify the above hypothesis
by introducing two matrices ¢ and ¥ about the
imbalance ratio.

We find that modeling commutativity and non-
commutativity is useful only if both possible orders
of a pair of relations appear in a KG. For instance,
consider two relations r,ro € R, which have two
possible orders of composition: 7 o ro and 75 o 7.
Therefore, if only one of them, e.g., 71 o 73, exists
in the KG, it is unnecessary to distinguish whether
they are commutative or not, which we regard as
an imbalance.

To this end, we propose two matrices ) and ¥
to evaluate the imbalance ratio of pair and KG,
respectively. For the details of these two matrices,
please refer to Appendix D.

Based on VU of each benchmark as shown in Ta-
ble 3, we observe that the imbalance is remarkable
in FK15K237 and YAGO3-10. Moreover, we are
aware that although some pairs have both orders,
the counts between orders may have an enormous
discrepancy. To show this more specifically, we
visualize the pairs of three benchmark KGs. As
shown in Figure 4, on the one hand, the majority
of pairs are imbalanced in FB15K237 and YAGO3-
10. On the other hand, although many imbalanced
pairs exist in WN18RR, the balanced ones account
for the majority as denoted by W.

We believe the above analysis validates the hy-
pothesis and explains the phenomenon. Further-
more, we think the discrepancy between KGs is
rooted in the entities. Specifically, we notice that
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Figure 4: The count and imbalance ratio of all possible pairs. An arc represents a pair. On the one hand, pair
imbalance ratio v is denoted by color, as blue means balance while gray means imbalance in contrast. On the
other hand, the count is denoted by transparency and thickness, as thick and opaque means more while thin and
transparent means less. It should be noticed that the thickness of the arcs is relative, so the arcs with the same

thickness in different datasets may have different counts.

all entities are homogeneous in WordNet, which
consists of words, while heterogeneous in Freebase
and YAGO, built by various things.

Therefore, for the relations in the heterogeneous
KGs like FB15K237 and YAGO3-10, some pairs
of them only have one meaningful order in the
sense of semantics substantially. For instance, con-
sider two relations: isDirectedBy and likeEating,
whose combination makes sense in the order of
film IsDirectedBy b vman "FEA"E food. However,
when exchanging the order, we find that the tail
entity of likeEating should be a kind of food, and
the head entity of isDirectedBy should be a movie,
which shows the inherent incompatibility in this or-
der. More generally speaking, taking Vry,r2 € R
that has the order of combination 1 o ry. Its other
order ry o r; is meaningless and nonexistent if the
domain of head entity of r; and tail entity of ro
are not intersected. In conclusion, we think that
such a semantic character of these inter-kind re-
lations explains the cause of the scarcity of non-
commutativity in FB15K237 and YAGO3-10.

5.3 Improvements on WN1S8RR Come from
Modeling Non-Commutativity Pattern

In FB15K237 and YAGO3-10, we have shown
that imbalances are prevalent and thus explain
why STaR and ComplEx are tied. Here we fur-
ther experiment to corroborate that the improve-
ment on WN18RR gains from modeling the non-
commutativity pattern.

As shown in Table 6, STaR surpasses Com-
plEx in most relations. Although STaR slightly
decreases in derivationally related form which is
already high enough, it gains about 10% in hy-
pernym with the largest proportion. Correspond-

Table 6: Comparison of the MRR of STaR and Com-
plEx on WN18RR. A denotes improvement and </ de-
creases on extremely high-dimensional settings.

Relation Name Propotion STaR ComplEx Improvement

hypernym 40.09% 0.193 0.175 10.29% A
derivationally related form 34.23% 0.956 0.959 —0.31% v
member meronym 8.52% 0.241 0.225 711% A
has part 5.55% 0.247 0.230 7.39% A
synset domain topic of 3.56% 0.409 0.387 5.68% A
instance hypernym 3.37% 0.420 0.409 2.69% A
also see 1.49% 0.634 0.631 0.47% A
verb group 1.30% 0917 0.975 —5.95% v
member of domain region 1.06% 0.408 0.279 46.24% A
member of domain usage 0.73% 0.359 0.316 13.61% A
similar to 0.09% 1.000 1.000 0.00%

ingly, we notice that in Figure 4 the outstand-
ing thick blue arc for WN18RR denotes both

e1 % €9 ﬂ es and eq ﬂ €9 % eg are
abundant in WN18RR'. Besides, we find that these
two relations are non-commutative. Therefore, we
think such a correspondence validates that the im-
provement on WN18RR comes from modeling non-
commutativity.

6 Conclusion

In this paper, we notice that none of the previous
bilinear models can model all patterns and handle
complex relations simultaneously. To fill the gap,
we propose a bilinear model Scaling Translation
and Rotation (STaR) consisting of these three basic
modules. STaR solves both problems concurrently
and achieves comparable results compared to pre-
vious baselines. Moreover, we also conduct a deep
investigation to verify that our model is improved
by handling relations or modeling patterns that pre-
vious bilinear models failed.

"nyp. and d.fr stands for hypernym and derivationally
related form respectively.
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Appendix

A

Formal Definitions of 7 Relation
Patterns

Consider triples of a completed KG 7*, which
contains all true facts for entities £ and relations R.
Therefore, the former definition of those patterns
are as follows:

1.

B

Symmetry: For a relation » € R and
Ve, e € €&, if (e1,r,e2) € T* then
(eg,r,e1) € T".

. Skew-Symmetry: For a relation r € R

and Vej,eo € &, if (e1,r,e2) € T* then
(eq,7,e1) & T*.

. Composition: For relations r1,79,73 € R

and Vep,eg,e3 € &, if (e1,7r1,e2) € T* A
(62,7”2,63) € T* then (61,7‘2,63) §é T
Therefor, r3 is the composition of r; and 5.

. Commutativity: For relations r1,70 € R

and Vep,eg,e3 € &, if (e1,7r1,e2) € T* A
(62,7“2,63) € T* then (61,7“2,62) e TN
(eg,71,€3) € T*.

. Non-Commutativity: For relations ry, 7y €

R and Veq,eg,e3 € &, if (e1,71,e2) € T* A
(62,7“2,63) € T* then (61,7“2,62) ¢ T*V
(e2,71,€e3) & T™.

. Inversion: For relations r1,70 € ‘R and

Ve, e € & if (er,r1,e2) € T* then

(62, 79, 61) e T

Proof of Proposition 1

Proof. Since each relationship is represented by
a matrix R, and the matrix multiplication stands
composition operator o, here we will show how to
model all 6 properties by taking some cases of R,
and how to handle complex relations by consider-
ing a fixed margin -y .

1.

Symmetry: Here we take r{ = 0, i =
1,3,---,n—1and 7 = 0. Then STaR de-
generates to DistMult. Thus iLTR*f =T RJL
and STaR models the symmetry pattern.

Skew-Symmetry: Here we take r¢ = 0
and 7 € R™! and STaR degenerates to
TransE(Bordes et al., 2013). Then it models
the skew-symmetry pattern, since if ||h + r —
t|| = Othen ||t + 7 — h| # O for h,r,t # 0.

11

3. Composition: It is equivalent that taking

R, R? then R! - R? is still in the form of
R.:

thus STaR can model the composition pattern.

. Commutativity: If we take 7 = 0, then STaR

degenerates to ComplEx matrix, which is a
block diagonal matrix and can be exchanged
R!-R?2 = R?. R!. Thus STaR can model the
commutativity pattern.

. Non-Commutativity: As the translation and

rotation are non-commutative, we take 71 = 0
andr? +72, =1, i=13,---,n—1to
degenerate R} into a pure rotation matrix, and
r2 = 0 to degenerate R? into a pure transla-
tion matrix. Then, R} - R? # R? - R}

. Inversion: Here we take 7 = 0, then for a

R}, there exists R? that has (R})T = R2.
Therefore, we have h” Rt = iT R2h.

. Complex relations Here we follow (Chao

et al., 2021) and treat the ability of model
handling complex relations is adaptive adjust-
ing the margin given a fixed one. Specifically,
we set this fixed margin as v, and a candidate
is true means the score of the corresponding
triple s(h, r, t) is greater than :

v < hTRt. 9)

If a constant « is multiplied on both side and
only changes R, then we say it adaptively
adjusts the margin. Therefore, for a (h,r, 1),
STaR has:

v < BTR*f
ay < aiLTR*f

> R, 1 .
a7<hTa[ 1] T 1]15

(|1

T OKRC -I
ay < h [ 1]

a(y—1)+1<h"Rt,



since R, and « are learnable, the margin can
be dynamic adjust without changing h and
t. Thus, we could say that STaR can handle
complex relations.

Based on the discussion above, we could conclude
that STaR is capable to model all 6 patterns and
handle complex relations. O

C Details of DURA

For a bilinear model A7 Rt in real value, the DURA
regularization is:

IB15 + 1RE]5 + (113 + 1" RII3. (11)
Then, for STaR, we have:

18113 + RIS + [It]3 + IP7 RI3
=[|hll5 + [|1RE]I3 + 12113 + |7 Ra |3

=||h|% + [|t3 + |IPT Re + 7|3 + || Ret]|2 + 77t + 4.

(12)
The emergence of constant 4, which can be ignored
in the optimization, is because we use h, t having
an extra dimension with constant 1.

D Details of 1) and ¥

n n

2 T2 2 2

n

n

(a) (b)

Figure 5: Toy examples demonstrate how to count
#triple, ;

For each possible relation pair (r;,7;) € (R, R),
we count its corresponding triple in the training set
Tirain S #tripleij and #tripleji. For Instance, in
the Figure 5, #triple;; = 1 and #triple,; = 0
in the left hand example while #triple;, = 1 and
#triple,; = 2 in the right one. Then, we define the
imbalance ratio of a relation pair 1);; as:

max {#triple;;, #triple; }

. . - 1.
#triple;; + #triple;;

Vi =

13)

Meanwhile, we treat a pair as both if #triple;; >
0 and #triple;; > 0, and single if only one of them
greater than 0. Based on that, we count the triples
of both and single as #triple;,,;, and #triple

single

12

respectively. Thus, we define a similar matrix W
for the imbalance ratio of train set:
N #triplesmgle
#tripleboth + #triplesingle

14)



