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Abstract

We propose a new general model called IPNN – Indeterminate Probability Neural1

Network, which combines neural network and probability theory together. In the2

classical probability theory, the calculation of probability is based on the occurrence3

of events, which is hardly used in current neural networks. In this paper, we propose4

a new general probability theory, which is an extension of classical probability5

theory, and makes classical probability theory a special case to our theory. With6

this new theory, some intractable probability problems have now become tractable7

(analytical solution). Besides, for our proposed neural network framework, the8

output of neural network is defined as probability events, and based on the statistical9

analysis of these events, the inference model for classification task is deduced.10

IPNN shows new property: It can perform unsupervised clustering while doing11

classification. Besides, IPNN is capable of making very large classification with12

very small neural network, e.g. model with 100 output nodes can classify 10 billion13

categories. Theoretical advantages are reflected in experimental results.14

1 Introduction15

Humans can distinguish at least 30,000 basic object categories [1], classification of all these would16

have two challenges: It requires huge well-labeled images; Model with softmax for large scaled17

datasets is computationally expensive. Zero-Shot Learning – ZSL [2, 3] method provides an idea18

for solving the first problem, which is an attribute-based classification method. ZSL performs object19

detection based on a human-specified high-level description of the target object instead of training20

images, like shape, color or even geographic information. But labelling of attributes still needs great21

efforts and expert experience. Hierarchical softmax can solve the computationally expensive problem,22

but the performance degrades as the number of classes increase [4].23

Probability theory has not only achieved great successes in the classical area, such as Naïve Bayesian24

method [5], but also in deep neural networks (VAE [6], ZSL, etc.) over the last years. However, both25

have their shortages: Classical probability can not extract features from samples; For neural networks,26

the extracted features are usually abstract and cannot be directly used for numerical probability27

calculation. What if we combine them?28

There are already some combinations of neural network and bayesian approach, such as probability29

distribution recognition [7, 8], Bayesian approach are used to improve the accuracy of neural30

modeling [9], etc. However, current combinations do not take advantages of ZSL method.31

We propose an approach to solve the mentioned problems, and our contributions are as follows:32

• We propose a new general probability theory – indeterminate probability theory, which is33

an extension of classical probability theory, and makes classical probability theory a special34

case to our theory. The proposed general tractable Equation (12) is analytical solutions even35

for some intractable probability calculation problems.36
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• With this new theory, CIPNN [10] has found the analytical solution for the posterior37

calculation of continuous latent variables, which was regarded as intractable [6, 11]. Besides,38

CIPNN applied our theory and proposed a general auto encoder (CIPAE), the decoder part39

is not a neural network and uses a fully probabilistic inference model for the first time.40

• We propose a novel unified combination of (indeterminate) probability theory and deep41

neural network. The neural network is used to extract attributes which are defined as discrete42

random variables, and the inference model for classification task is derived. Besides, these43

attributes do not need to be labeled in advance.44

The rest of this paper is organized as follows: In Section 2, related works are discussed. In Section 3,45

we first introduce a coin toss game as example of human cognition to explain the core idea of46

IPNN. In Section 4, the indeterminate probability theory and IPNN is proposed. In Section 5, the47

training strategy is discussed. In Section 6, we evaluate IPNN and make an impact analysis on its48

hyper-parameters. Finally, we conclude the paper in Section 7.49

2 Related Work50

Tractable Probabilistic Models. There are a large family of tractable models including probabilistic51

circuits [12, 13], arithmetic circuits [14, 15], sum-product networks [16], cutset networks [17], and-or52

search spaces [18], and probabilistic sentential decision diagrams [19]. The analytical solution of53

a probability calculation is defined as occurrence, P (A = a) = number of event (A=a) occurs
number of random experiments , which is54

however not focused in these models. Our proposed IPNN is fully based on event occurrence and is55

an analytical solution.56

Deep Latent Variable Models. DLVMs are probabilistic models and can refer to the use of neural57

networks to perform latent variable inference [20]. Currently, the posterior calculation of continuous58

latent variables is regarded as intractable [11], VAEs [6, 21–23] use variational inference method [24]59

as approximate solutions. Our proposed IPNN is one DLVM with discrete latent variables and the60

intractable posterior calculation is now analytically solved with our proposed theory.61

3 Background62

Let’s first introduce a small game – coin toss: a child and an adult are observing the outcomes of63

each coin toss and record the results independently (heads or tails), the child can’t always record the64

results correctly and the adult can record it correctly, in addition, the records of the child are also65

observed by the adult. After several coin tosses, the question now is, suppose the adult is not allowed66

to watch the next coin toss, what is the probability of his inference outcome of next coin toss via the67

child’s record?68

Heads Tails Heads Tails

X 

A Y

Figure 1: Example of coin toss game.

Table 1: Example of 10 times coin toss outcomes

Experiment Truth A Y
X = x1 hd A = hd Y = hd
X = x2 hd A = hd Y = hd
X = x3 hd A = hd Y = hd
X = x4 hd A = hd Y = hd
X = x5 hd A = tl Y = hd
X = x6 tl A = tl Y = tl
X = x7 tl A = tl Y = tl
X = x8 tl A = tl Y = tl
X = x9 tl A = tl Y = tl
X = x10 tl A = tl Y = tl
X = x11 hd A =? Y =?

As shown in Figure 1, random variables X is the random experiment itself, and X = xk represent the69

kth random experiment. Y and A are defined to represent the adult’s record and the child’s record,70
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respectively. And hd, tl is for heads and tails. For example, after 10 coin tosses, the records are71

shown in Table 1.72

We formulate X compactly with the ground truth, as shown in Table 2.73

Table 2: The adult’s and child’s records: P (Y |X) and P (A|X)

#(Y,X)
#(X)

Y = hd Y = tl #(A,X)
#(X)

A = hd A = tl

X = hd 5/5 0 X = hd 4/5 1/5
X = tl 0 5/5 X = tl 0 5/5

Through the adult’s record Y and the child’s records A, we can calculate P (Y |A), as shown in74

Table 3. We define this process as observation phase.75

For next coin toss (X = x11), the question of this game is formulated as calculation of the probability76

PA(Y |X), superscript A indicates that Y is inferred via record A, not directly observed by the adult.77

For example, given the next coin toss X = hd = x11, the child’s record has then two situations:78

P (A = hd|X = hd = x11) = 4/5 and P (A = tl|X = hd = x11) = 1/5. With the adult’s79

observation of the child’s records, we have P (Y = hd|A = hd) = 4/4 and P (Y = hd|A = tl) =80

1/6. Therefore, given next coin toss X = hd = x11, PA(Y = hd|X = hd = x11) is the summation81

of these two situations: 4
5 · 4

4 + 1
5 · 1

6 . Table 3 answers the above mentioned question.82

Table 3: Results of observation and inference phase: P (Y |A) and PA(Y |X)

#(Y,A)
#(A)

Y = hd Y = tl
∑

A

(
#(A,X)

#X
· #(Y,A)

#A

)
Y = hd Y = tl

A = hd 4/4 0 X = hd = x11
4
5
· 4
4
+ 1

5
· 1
6

4
5
· 0 + 1

5
· 5
6

A = tl 1/6 5/6 X = tl = x11 0 · 4
4
+ 5

5
· 1
6

0 · 0 + 5
5
· 5
6

Let’s go one step further, we can find that even the child’s record is written in unknown language83

(e.g. A ∈ {ZHENG,FAN}), Table 3 can still be calculated by the man. The same is true if the84

child’s record is written from the perspective of attributes, such as color, shape, etc.85

Hence, if we substitute the child with a neural network and regard the adult’s record as the sample86

labels, although the representation of the model outputs is unknown, the labels of input samples can87

still be inferred from these outputs. This is the core idea of IPNN.88

4 Indeterminate Probability Theory89

In this section, we propose a new general probability theory, which is derived from IPNN – a neural90

network with discrete deep latent variables.91

4.1 IPNN Model Architecture92

Let X ∈ {x1, x2, . . . , xn} be training samples (X = xk is understood as kth random experiment93

– select one train sample.) and Y ∈ {y1, y2, . . . , ym} consists of m discrete labels (or classes),94

P (yl|xk) = yl(k) ∈ {0, 1} describes the label of sample xk. For prediction, we calculate the posterior95

of the label for a given new input sample xn+1, it is formulated as PA (yl | xn+1), superscript A96

stands for the medium – model outputs, via which we can infer label yl, l = 1, 2, . . . ,m. After97

PA (yl | xn+1) is calculated, the yl with maximum posterior is the predicted label.98

Figure 2a shows IPNN model architecture, the output neurons of a general neural network99

(FFN, CNN, Resnet [25], Transformer [26], Pretrained-Models [27], etc.) is split into N un-100

equal/equal parts, the split shape is marked as Equation (1), hence, the number of output neu-101

rons is the summation of the split shape
∑N

j=1 Mj . Next, each split part is passed to ‘softmax’,102

so the output neurons can be defined as discrete random variable Aj ∈
{
aj1, a

j
2, . . . , a

j
Mj

}
, j =103
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Figure 2: IPNN. (a) P
(
yl|a1i1 , a

2
i2
, . . . , aNiN

)
is statistically calculated, not model weights. (b, c)

Independence illustration with Bayesian network.

1, 2, . . . , N , and each neuron in Aj is regarded as an event. After that, all the random variables104

together form the N-dimensional joint sample space, marked as A = (A1, A2, . . . , AN ), and105

all the joint sample points are fully connected with all labels Y ∈ {y1, y2, . . . , ym} via condi-106

tional probability P
(
Y = yl|A1 = a1i1 , A

2 = a2i2 , . . . , A
N = aNiN

)
, or more compactly written as107

P
(
yl|a1i1 , a

2
i2
, . . . , aNiN

)
1.2108

Split shape := {M1,M2, . . . ,MN} (1)

4.2 Definition of Indeterminate Probability109

In classical probability theory, perform a random experiment (or given a sample xk), the event or110

joint event has only two states: happened or not happened. However, for IPNN, the model only111

outputs the probability of an event state and its state is indeterminate, that’s why this paper is called112

IPNN. This difference makes the calculation of probability (especially joint probability) also different.113

Equation (2) and Equation (3) will later formulate this difference.114

Given an input sample xk (perform the kth random experiment), with Assumption 1 the indeterminate115

probability (model outputs) is defined as:116

P
(
ajij | xk

)
= αj

ij
(k) (2)

Assumption 1. Given an input sample X = xk, IF
∑Mj

ij=1α
j
ij
(k) = 1 and αj

ij
(k) ∈ [0, 1], k =117

1, 2, . . . , n. THEN,
{
aj1, a

j
2, . . . , a

j
Mj

}
can be regarded as collectively exhaustive and exclusive118

events set, they are partitions of the sample space of random variable Aj , j = 1, 2, . . . , N .119

In classical probability, αj
ij
(k) ∈ {0, 1}, which indicates the state of event is 0 or 1.120

For joint event, given xk, using Assumption 2 and Equation (2), the joint indeterminate probability is121

formulated as:122

1All the probability is formulated compactly in this paper.
2Reading symbols see Appendix G.
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P
(
a1i1 , a

2
i2 , . . . , a

N
iN | xk

)
=

∏N
j=1α

j
ij
(k) (3)

Assumption 2. Given an input sample X = xk, A1, A2, . . . , AN is mutually independent.123

Where it can be easily proved,124 ∑
A

(∏N
j=1α

j
ij
(k)

)
= 1, k = 1, 2, . . . , n. (4)

In classical probability,
∏N

j=1α
j
ij
(k) ∈ {0, 1}, which indicates the state of joint event is 0 or 1.125

Equation (2) and Equation (3) describes the uncertainty of the state of event
(
Aj = ajij

)
and joint126

event
(
A1 = a1i1 , A

2 = a2i2 , . . . , A
N = aNiN

)
.127

4.3 Observation Phase128

In observation phase, the relationship between all random variables A1, A2, . . . , AN and Y is129

established after the whole observations, it is formulated as:130

P
(
yl | a1i1 , a

2
i2 , . . . , a

N
iN

)
=

P
(
yl, a

1
i1
, a2i2 , . . . , a

N
iN

)
P
(
a1i1 , a

2
i2
, . . . , aNiN

) (5)

Because the state of joint event is not determinate in IPNN, we cannot count its occurrence like131

classical probability. Hence, the joint probability is calculated according to total probability theorem132

over all samples X = (x1, x2, . . . , xn), and with Equation (3) we have:133

P
(
a1i1 , a

2
i2 , . . . , a

N
iN

)
=

∑n
k=1

(
P
(
a1i1 , a

2
i2 , . . . , a

N
iN | xk

)
· P (xk)

)
=

∑n
k=1

(∏N
j=1P

(
ajij | xk

)
· P (xk)

)
=

∑n
k=1

(∏N
j=1α

j
ij
(k)

)
n

(6)

Because Y = yl is sample label and Aj = ajij comes from model, it means Aj and Y come from134

different observer, so we can have Assumption 3 (see Figure 2c).135

Assumption 3. Given an input sample X = xk, Aj and Y is mutually independent in observation136

phase, j = 1, 2, . . . , N .137

Therefore, according to total probability theorem, Equation (3) and the above assumption, we derive:138

P
(
yl, a

1
i1 , a

2
i2 , . . . , a

N
iN

)
=

∑n
k=1

(
P
(
yl, a

1
i1 , a

2
i2 , . . . , a

N
iN | xk

)
· P (xk)

)
=

∑n
k=1

(
P (yl | xk) ·

∏N
j=1P

(
ajij | xk

)
· P (xk)

)
=

∑n
k=1

(
yl(k) ·

∏N
j=1α

j
ij
(k)

)
n

(7)

Substitute Equation (6) and Equation (7) into Equation (5), we have:139

P
(
yl|a1i1 , a

2
i2 , . . . , a

N
iN

)
=

∑n
k=1

(
yl(k) ·

∏N
j=1α

j
ij
(k)

)
∑n

k=1

(∏N
j=1α

j
ij
(k)

) (8)

Where it can be proved,140

∑m
l=1P

(
yl | a1i1 , a

2
i2 , . . . , a

N
iN

)
= 1 (9)
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4.4 Inference Phase141

Given Aj , with Equation (8) (passed experience) label yl can be inferred, this inferred yl has no142

pointing to any specific sample xk, incl. also new input sample xn+1, see Figure 2b. So we can have143

following assumption:144

Assumption 4. Given Aj , X and Y is mutually independent in inference phase, j = 1, 2, . . . , N .145

Therefore, given a new input sample X = xn+1, according to total probability theorem over joint146

sample space
(
a1i1 , a

2
i2
, . . . , aNiN

)
∈ A, with Assumption 4, Equation (3) and Equation (8), we have:147

PA (yl | xn+1) =
∑
A

(
P
(
yl, a

1
i1 , a

2
i2 , . . . , a

N
iN | xn+1

))
=

∑
A

(
P
(
yl | a1i1 , a

2
i2 , . . . , a

N
iN

)
· P

(
a1i1 , a

2
i2 , . . . , a

N
iN | xn+1

))

=
∑
A

∑n
k=1

(
yl(k) ·

∏N
j=1α

j
ij
(k)

)
∑n

k=1

(∏N
j=1α

j
ij
(k)

) ·
N∏
j=1

αj
ij
(n+ 1)


(10)

And the maximum posterior is the predicted label of an input sample:148

ŷ := argmax
l∈{1,2,...,m}

PA (yl | xn+1) (11)

4.5 Summary149

Our most important contribution is that we propose a new general tractable probability Equation (10),150

rewritten as:151

P A (Y = yl | X = xn+1) =

∑
A



n∑
k=1

(
P (Y = yl | X = xk) ·

N∏
j=1

P
(
Aj = aj

ij
| X = xk

))
n∑

k=1

(
N∏

j=1

P
(
Aj = aj

ij
| X = xk

))
︸ ︷︷ ︸

Observation phase

·
N∏

j=1

P
(
Aj = aj

ij
| X = xn+1

)


︸ ︷︷ ︸
Inference phase

(12)

Where X is random variable and X = xk denote the kth random experiment (or model input sample152

xk), Y and A1:N are different discrete or continuous [10] random variables. This equation can be153

applied to any random experiment, as long as the outcomes of random experiments are detected by154

some observers (neural networks, humans, or others).155

Our proposed theory is derived from three our proposed conditional mutual independency assumptions,156

see Assumption 2 Assumption 3 and Assumption 4. However, in our opinion, these assumptions can157

neither be proved nor falsified, and we do not find any exceptions until now. Since this theory can not158

be mathematically proved, we can only validate it through experiment.159

Finally, our proposed indeterminate probability theory is an extension of classical probability theory,160

and classical probability theory is one special case to our theory. More details to understand our161

theory intuitively, see Appendix B.162

5 Training163

5.1 Training Strategy164

Given an input sample xt from a mini batch, with a minor modification of Equation (10):165
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PA (yl | xt) ≈
∑
A

max(H + h(t̄), ϵ)

max(G+ g(t̄), ϵ)
·

N∏
j=1

αj
ij
(t)

 (13)

h(t̄) =
∑b·t̄

k=b·(t̄−1)+1

(
yl(k) ·

∏N
j=1α

j
ij
(k)

)
(14)

g(t̄) =
∑b·t̄

k=b·(t̄−1)+1

(∏N
j=1α

j
ij
(k)

)
(15)

H =
∑t̄−1

k=max(1,t̄−T )h(k), for t̄ = 2, 3, . . . (16)

G =
∑t̄−1

k=max(1,t̄−T )g(k), for t̄ = 2, 3, . . . (17)

Algorithm 1 IPNN training
Input: A sample xt from mini-batch
Parameter: Split shape, forget number T , ϵ, learning rate η.
Output: Posterior PA (yl | xt)

1: Declare default variables: H,G, hList, gList
2: for t̄ = 1, 2, . . . Until Convergence do
3: Compute h, g with Equation (14) and Equation (15)
4: Record: hList.append(h), gList.append(g)
5: if t̄ > T then
6: Forget: H = H − hList[0], G = G− gList[0]
7: Remove first element from hList, gList
8: end if
9: Compute posterior with Equation (13): PA (yl | xt)

10: Compute loss with Equation (18): L(θ)
11: Update model parameter: θ = θ − η∇L(θ)
12: Update for next loop: H = H + h,G = G+ g
13: end for
14: return model and the posterior

Where b is for batch size, t̄ =166 ⌈
t
b

⌉
, t = 1, 2, . . . , n. Hyper-167

parameter T is for forgetting use, i.e.,168

H and G are calculated from the re-169

cent T batches. Hyper-parameter T170

is introduced because at beginning of171

training phase the calculated result172

with Equation (8) is not good yet. And173

the ϵ on the denominator is to avoid di-174

viding zero, the ϵ on the numerator is175

to have an initial value of 1. Besides,176

H and G are not needed for gradi-177

ent updating during back-propagation.178

The detailed algorithm implementa-179

tion is shown in Algorithm 1.180

We use cross entropy as loss function:181

L = −
∑m

l=1

(
yl(k) · logPA (yl | xt)

)
(18)

With Equation (13) we can get that PA (yl | x1) = 1 for the first input sample if yl is the ground truth182

and batch size is 1. Therefore, for IPNN the loss may increase at the beginning and fall back again183

while training.184

5.2 Multi-degree Classification (Optional)185

In IPNN, the model outputs N different random variables A1, A2, . . . , AN , if we use part of them to186

form sub-joint sample spaces, we are able of doing sub classification task, the sub-joint spaces are187

defined as Λ1 ⊂ A,Λ2 ⊂ A, . . . The number of sub-joint sample spaces is:188

N∑
j=1

(
N

j

)
=

N∑
j=1

(
N !

j!(N − j)!

)
(19)

If the input samples are additionally labeled for part of sub-joint sample spaces3, defined as Y τ ∈189

{yτ1 , yτ2 , . . . , yτmτ }. The sub classification task can be represented as
〈
X,Λ1, Y 1

〉
,
〈
X,Λ2, Y 2

〉
, . . .190

With Equation (18) we have,191

Lτ = −
∑mτ

l=1

(
yτl (k) · logPΛτ

(yτl | xt)
)
, τ = 1, 2, . . . (20)

Together with the main loss, the overall loss is L + L1 + L2 + . . . In this way, we can perform192

multi-degree classification task. The additional labels can guide the convergence of the joint sample193

spaces and speed up the training process, as discussed later in Appendix D.1.194

3It is labelling of input samples, not sub-joint sample points.
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5.3 Multi-degree Unsupervised Clustering195

If there are no additional labels for the sub-joint sample spaces, the model are actually doing196

unsupervised clustering while training. And every sub-joint sample space describes one kind of197

clustering result, we have Equation (19) number of clustering situations in total.198

5.4 Designation of Joint Sample Space199

As in Appendix C proved, we have following proposition:200

Proposition 1. For P (yl|xk) = yl(k) ∈ {0, 1} hard label case, IPNN converges to global minimum201

only when P
(
yl|a1i1 , a

2
i2
, . . . , aNiN

)
= 1, for

∏N
j=1 α

j
ij
(t) > 0, ij = 1, 2, . . . ,Mj . In other word,202

each joint sample point corresponds to an unique category. However, a category can correspond to203

one or more joint sample points.204

Corollary 1. The necessary condition of achieving the global minimum is when the split shape205

defined in Equation (1) satisfies:
∏N

j=1Mj ≥ m, where m is the number of classes. That is, for a206

classification task, the number of all joint sample points is greater than the classification classes.207

Theoretically, if model with 100 output nodes are split into 10 equal parts, it can classify 10 billion208

categories, validation result see Appendix D.1. Besides, the unsupervised clustering (Section 5.3)209

depends on the input sample distributions, the split shape shall not violate from multi-degree clustering.210

For example, if the main attributes of one dataset shows three different colors, and your split shape is211

{2, 2, . . . }, this will hinder the unsupervised clustering, in this case, the shape of one random variable212

is better set to 3. And as in Appendix D also analyzed, there are two local minimum situations,213

improper split shape will make IPNN go to local minimum.214

In addition, the latter part from Proposition 1 also implies that IPNN may be able of doing further215

unsupervised classification task, this is beyond the scope of this discussion.216

6 Experiments and Results217

6.1 Unsupervised Clustering218
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Figure 3: Unsupervised clustering results on MNIST: test accuracy 95.1 ± 0.4, ϵ = 2, batch size
b = 64, forget number T = 5, epoch is 5 per round. The test was repeated for 876 rounds with same
configuration (different random seeds) in order to check the stability of clustering performance, each
round clustering result is aligned using Jaccard similarity [28].

As in Section 5.3 discussed, IPNN is able of performing unsupervised clustering, we evaluate it219

on MNIST. The split shape is set to {2, 10}, it means we have two random variables, and the first220

random variable is used to divide MNIST labels 0, 1, . . . 9 into two clusters. The cluster results is221

shown in Figure 3.222

We find only when ϵ in Equation (13) is set to a relative high value that IPNN prefers to put number223

1,4,7,9 into one cluster and the rest into another cluster, otherwise, the clustering results is always224

different for each round training. The reason is unknown, our intuition is that high ϵ makes that each225

category catch the free joint sample point more harder, categories have similar attributes together will226

be more possible to catch the free joint sample point.227
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6.2 Hyper-parameter Analysis228

IPNN has two import hyper-parameters: split shape and forget number T. In this section, we have229

analyzed it with test on MNIST, batch size is set to 64, ϵ = 10−6. As shown in Figure 4a, if the230

number of joint sample points is smaller than 10, IPNN is not able of making a full classification and231

its test accuracy is proportional to number of joint sample points, as number of joint sample points232

increases over 10, IPNN goes to global minimum for both 3 cases, this result is consistent with our233

analysis. However, we have exceptions, the accuracy of split shape with {2, 5} and {2, 6} is not high.234

From Figure 3 we know that for the first random variable, IPNN sometimes tends to put number235

1,4,7,9 into one cluster and the rest into another cluster, so this cluster result request that the split236

shape need to be set minimums to {2,≥ 6} in order to have enough free joint sample points. That’s237

why the accuracy of split shape with {2, 5} is not high. (For {2, 6} case, only three numbers are in238

one cluster.)239

Another test in Figure 4b shows that IPNN will go to local minimum as forget number T increases240

and cannot go to global minimum without further actions, hence, a relative small forget number T241

shall be found with try and error.242
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Figure 4: (a) Impact Analysis of split shape with MNIST: 1D split shape is for {τ}, τ = 2, 3, . . . , 24.
2D split shape is for {2, τ}, τ = 2, 3, . . . , 12. 3D split shape is for {2, 2, τ}, τ = 2, 3, . . . , 6. The
x-axis is the number of joint sample points calculated with

∏N
j=1Mj , see Equation (1).

(b) Impact Analysis of forget number T with MNIST: Split shape is {10}.

6.3 Evaluation on Datasets243

Table 4: Test accuracy: split shape for all these
datasets is set to {2, 2, 5}; backbone is FCN for
MNIST and Fashion-MNIST, Resnet50 [25] for
CIFAR10 and STL10.

Dataset IPNN Simple-Softmax

MNIST 95.8± 0.5 97.6± 0.2
Fashion-
MNIST 84.5± 1.0 87.8± 0.2

CIFAR10 83.6± 0.5 85.7± 0.9
STL10 91.6± 4.0 94.7± 0.7

Further results on MNIST [29], Fashion-244

MNIST [30], CIFAR10 [31] and STL10 [32]245

show that our proposed indeterminate probabil-246

ity theory is valid, the backbone between IPNN247

and ‘Simple-Softmax’ is the same, the last layer248

of the latter one is connected to softmax func-249

tion. Although IPNN does not reach any SOTA,250

the results are very important evidences to our251

proposed mutual independence assumptions, see252

Assumption 2 Assumption 3 and Assumption 4.253

7 Conclusion254

For a classification task, we proposed an approach to extract the attributes of input samples as random255

variables, and these variables are used to form a large joint sample space. After IPNN converges256

to global minimum, each joint sample point will correspond to an unique category, as discussed in257

Proposition 1. As the joint sample space increases exponentially, the classification capability of IPNN258

will increase accordingly.259

We can then use the advantages of classical probability theory, for example, for very large joint260

sample space, we can use the Bayesian network approach or mutual independence among variables261

(see Appendix E) to simplify the model and improve the inference efficiency, in this way, a more262

complex Bayesian network could be built for more complex reasoning task.263
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