
Wasserstein Policy Optimization

David Pfau 1 Ian Davies 1 Diana Borsa 1 João G. M. Araújo 1 Brendan Tracey 1 Hado van Hasselt 1

Abstract
We introduce Wasserstein Policy Optimization
(WPO), an actor-critic algorithm for reinforce-
ment learning in continuous action spaces. WPO
can be derived as an approximation to Wasserstein
gradient flow over the space of all policies pro-
jected into a finite-dimensional parameter space
(e.g., the weights of a neural network), leading
to a simple and completely general closed-form
update. The resulting algorithm combines many
properties of deterministic and classic policy gra-
dient methods. Like deterministic policy gradi-
ents, it exploits knowledge of the gradient of the
action-value function with respect to the action.
Like classic policy gradients, it can be applied
to stochastic policies with arbitrary distributions
over actions – without using the reparameteriza-
tion trick. We show results on the DeepMind
Control Suite and a magnetic confinement fusion
task which compare favorably with state-of-the-
art continuous control methods.

1. Introduction
Reinforcement learning has made impressive progress in
controlling complex domains with continuous actions such
as robotics (Haarnoja et al., 2024), magnetic confinement
fusion (Degrave et al., 2022) and game playing (Farebrother
& Castro, 2024). A significant portion of this progress can
be attributed to policy optimization methods, which directly
optimize the parameters of a policy by stochastic gradient
ascent on the expected long term return (e.g., Schulman
et al., 2015a; 2017; Abdolmaleki et al., 2018). While un-
biased estimates of the policy gradient can be computed
directly from returns (Williams, 1992), many practical deep
reinforcement learning algorithms for continuous control
employ an actor-critic approach (Barto et al., 1983), which
also estimates a value function to diminish the variance of

1Google DeepMind, London, UK. Correspondence to: David
Pfau <pfau@google.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

the policy update. The majority of these methods use a pol-
icy update derived from the classic policy gradient theorem
for stochastic policies (Sutton et al., 1999), which applies to
both discrete and continuous action spaces.

One notable exception is the class of algorithms derived
from the deterministic policy gradient (DPG) theorem (Sil-
ver et al., 2014; Lillicrap, 2015). These use information
about the gradient of the value in action space to update the
policy, but are limited to deterministic policies, hindering
exploration. Adding in stochasticity can be difficult to tune,
and extensions that learn the variance (Heess et al., 2015;
Haarnoja et al., 2018) rely on the reparameterization trick,
which limits the class of policy distributions that can be
used.

Here we present a new policy gradient method that uses
gradients of the action value but can learn arbitrary stochas-
tic policies. The method can be derived from the theory
of Wasserstein gradient flows (Ambrosio et al., 2008), and
projecting the nonparametric flow onto the space of para-
metric functions (e.g. neural networks) leads to a simple
closed-form update that combines elements of stochastic
and deterministic policy gradients. We give a high-level
illustration of this in Fig. 1. The update is natural to imple-
ment as an actor-critic method. We call the resulting method
Wasserstein Policy Optimization (WPO).

The paper is organized as follows. First, we review policy
optimization for continuous control, and Wasserstein gra-
dient flows. We then show how the latter can be used to
derive WPO when applied to the former. We review prior
work in this area and analyze the dynamics of WPO and
how it relates to other policy gradients. We describe several
extensions needed to convert WPO into a practical and com-
petitive deep reinforcement learning algorithm. Finally, we
compare its performance against several baseline methods
on the DeepMind Control Suite (Tassa et al., 2018; Tun-
yasuvunakool et al., 2020) and a task controlling magnetic
coils in a simulated magnetic confinement fusion device
(Tracey et al., 2024). On a task where the task dimension
can be varied arbitrarily, we find that WPO learns faster than
baseline methods by an amount that increases as the task
dimension grows, suggesting it may work well in very high
dimensional action spaces. An open-source implementation

1

Wasserstein Policy Optimization

Policy Gradient
Q (s, a) log

Q (s, a)

DPG
aQ (s, a)

aQ (s, a)

WPO
aQ (s, a) a log

aQ (s, a)

Figure 1. Conceptual illustration of how WPO combines elements of stochastic and deterministic policy gradient methods. Left: “classic”
policy gradient. Samples are taken from a stochastic policy. Each sample contributes a scalar Qπ(s,a) factor to the gradient. Middle:
deterministic policy gradient (DPG). A deterministic action is chosen and the policy gradient depends on the gradient of Qπ(s,a). Right:
Wasserstein policy optimization (WPO). Samples are taken from a stochastic policy, as in classic policy gradient, but depend on the
gradient of Qπ with respect to the action, as in DPG.

of WPO is available in Acme (Hoffman et al., 2020)1.

2. Method
2.1. Policy Gradient and Iteration Methods

We aim to find a policy π(a|s) which is a distribution over a
continuous space of actions a ∈ Rn conditioned on a state
s ∈ Rm that maximizes the expected long-term discounted
return J [π] = Eat∼π,st∼P

[∑T
t=0 γ

trt

]
for a Markov de-

cision process with transition distribution P(s′|s,a) and
reward function r(s,a), where rt is shorthand for r(st,at).

While “classic” policy gradient methods come in
many forms (Schulman et al., 2015b), they are
mostly variants of the basic update ∇θJ [πθ] =

Eat∼π,st∼P

[∑T
t=0 Ψt∇θlogπθ(at|st)

]
and only differ in

the choice of scalar Ψt. If Ψt is entirely a function of the
returns like

∑T
t′=t γ

t′rt′ , then the policy can be optimized
directly, as in REINFORCE (Williams, 1992). If Ψt is the
action-value function Qπ(st,at) or some transformation of
the action-value function like the advantage function, or soft-
max of the action-value, then both a policy and value func-
tion must be estimated simultaneously, which is standard
in actor-critic methods (Barto et al., 1983). Additionally, it
is common to add some form of trust region or regulariza-
tion to prevent the policy update from changing too much
on any step (Schulman et al., 2015a; 2017; Abdolmaleki

1https://github.com/google-deepmind/acme.
Note that the implementation in Acme is not the version used
for the experiments in this paper. However we have run this
implementation on DeepMind Control Suite tasks and found
qualitatively similar performance to that reported here.

et al., 2018). This is especially critical for achieving good
performance with deep reinforcement learning.

One notable exception to this is deterministic policy gra-
dients (DPG) (Silver et al., 2014; Lillicrap, 2015; Barth-
Maron et al., 2018), which can be seen as the limit of
the policy gradient update as the policy becomes deter-
ministic. These algorithms were developed as early as
the 1970s (Werbos, 1974) and were known under names
such as ‘action-dependent heuristic dynamic programming’
(Prokhorov & Wunsch, 1997) or ‘gradient ascent on the
value’ (van Hasselt & Wiering, 2007). As the name sug-
gests, this only applies to deterministic policies π that map
state vectors to a single action vector, so at = π(st). Then
the deterministic policy gradient has the form ∇θJ [πθ] =
Est∼P [∇at

Q(st,at)∇θπ(st)], where ∇θπ(st) is the Ja-
cobian of the deterministic policy. The appearance of the
gradient of the value in action space in the policy gradi-
ent is potentially useful in high-dimensional action spaces.
However, the restriction to deterministic policies makes ex-
ploration difficult. While there are extensions to DPG for
learning a stochastic policy, such as SVG(0) (Heess et al.,
2015) and SAC (Haarnoja et al., 2018), they rely on the
reparameterization trick, which limits their generality.

Separately, policy iteration algorithms (Howard, 1960; Sut-
ton & Barto, 2018) estimate the value of the current policy
and then derive an improved policy based on these values.
Iterating this converges to the optimal values and policy.
These algorithms do not necessarily follow the gradient
of the value. A modern example is MPO (Abdolmaleki
et al., 2018), which updates its parametric policy (i.e., a
neural network) towards the exponentiation of the current
action values, using a target policy π(a|s) ∝ exp(Q(s,a)

τ)

2

https://github.com/google-deepmind/acme

Wasserstein Policy Optimization

and minimizing a KL divergence with respect to this target.

2.2. Wasserstein Gradient Flows

It is possible to derive a true policy gradient for stochastic
policies with a form similar to DPG, based on Wasserstein
gradient flows. The theory of gradient flows is discussed in
depth in (Ambrosio et al., 2008), and we review the relevant
results here. Although the discussion here is fully general,
we keep the notation as close to the RL notation as possible
to avoid confusion.

Consider an arbitrary functional J [π] of a probability den-
sity π(a), and let δJ

δπ be the functional derivative ofJ . Then
the following PDE will converge to a minimum of J :

∂π

∂t
= −∇a ·

(
π

(
−∇a

δJ
δπ

))
(1)

If we think of −∇a
δJ
δπ as a velocity field, then this may

be recognizable as the continuity equation from fluid me-
chanics, the drift term in the Fokker-Planck equation, or
in a machine learning context as one way of writing the
expression for the likelihood of a neural ODE (Chen et al.,
2018). Problems in optimal transport can also be framed
in terms of the continuity equation (Benamou & Brenier,
2000). The 2-Wasserstein distance, conventionally defined
as

W 2
2 (π0, π1) = inf

ρ∈Γ(π0,π1)

∫
ρ(a,b)||a− b||2dadb (2)

where Γ(π0, π1) is the space of all joint distributions with
marginals π0 and π1, can also be expressed as:

W 2
2 (π0, π1) = inf

vt∈V (π0,π1)

∫ 1

0

Ea∼πt
[||vt(a)||2] dt (3)

where V (π0, π1) is the set of velocity fields vt such that, if
πt = π0 at t = 0 and ∂πt

∂t = −∇a · (πt (∇avt(a))), then
πt = π1 at t = 1. From this dynamic formulation, it can be
shown that the flow in Eq. 1 is the steepest descent on the
functional J in the space of probability densities under the
metric induced locally by the 2-Wasserstein distance.

In our case J [π] is the expected return in an MDP and we
want to maximize this quantity. The functional derivative
(wrt π) has the form:

δJ
δπ

(s,a) =
1

1− γ
Qπ(s,a)dπ(s) (4)

where dπ(s) = (1− γ)
∑

t γ
tPr(st = s) is the discounted

state occupancy function. A derivation is given in Sec. A.1
of the appendix. This is the functional generalization of
the policy gradient in the tabular setting (see Agarwal et al.
(2021), Eq. 7). The dπ(s) term typically emerges implicitly
in the update as the sampling frequency when interacting

with the environment, and (1− γ)−1 is just a constant. In
what follows, we focus on per-state updates where these
terms do not appear.

2.3. Wasserstein Policy Optimization

To convert the theoretical results in the previous section
into a practical algorithm, we need to approximate the PDE
in Eq. 1 with an update to a parametric function such as a
neural network. Starting at πθ from the parametric family
of functions, for a given infinitesimal dt and flow ∂πθ

∂t , we
solve for the choice of infinitesimal ∆θ which minimizes
the KL divergence between the original distribution and the
updated distribution. This gives the optimal direction to
cancel out the flow, hence the minus sign in the KL below.
It is well known that the KL divergence is approximated
locally by a quadratic form with the Fisher information
matrix (Pascanu & Bengio, 2013):

DKL

[
πθ

∣∣∣∣∣∣∣∣πθ +
∂πθ

∂t
dt−∇θπθ∆θ

]
≈

(
dt
−∆θ

)T (
Ftt FT

tθ

Ftθ Fθθ

)(
dt
−∆θ

)
Ftt = Eπ

[
∂logπθ(a|s)

∂t

2
]

Ftθ = Eπ

[
∂logπθ(a|s)

∂t
∇θlogπθ(a|s)

]
=

∫
∂πθ(a|s)

∂t
∇θlogπθ(a|s)da

Fθθ = Eπ

[
∇θlogπ(a|s)∇θlogπθ(a|s)T

]
which is minimized at ∆θ = F−1

θθ Ftθ.

Next, we derive a simple expression for Ftθ. We plug in
∂πθ

∂t = −∇a · (πθ(a|s)∇aQ
π(a, s)) for ascent on J [π]:

Ftθ =

∫
∇θlogπθ(a|s)

∂πθ(a|s)
∂t

da

=−
∫
∇θlogπθ(a|s)∇a · (πθ(a|s)∇aQ

π(s,a)) da

=Ea∼π [∇θ∇alogπθ(a|s)∇aQ
π(s,a)] (5)

This derivation is expanded in Sec. A.2 in the appendix, but
mainly follows from integration by parts. This leads to a
simple closed-form update for parametric policies which we
call the Wasserstein Policy Optimization update:

θt+1 = θt + F−1
θθ Eπ [∇θ∇alogπ(a|s)∇aQ

π(s,a)] (6)

A similar parametric approximation was derived for finding
the ground state energy of quantum systems (Neklyudov
et al., 2023). While this application is quite different, the
derivation follows from the same theory of gradient flows,
arriving at a very similar expression. To the best of our

3

Wasserstein Policy Optimization

3 2 1 0 1 2 3 4
a

4

3

2

1

0
Q(a)

3 2 1 0 1 2 3 4
a

4

3

2

1

0
Q(a)

3 2 1 0 1 2 3 4
a

0

1

2

3

4
Q(a)

0.0

0.2

0.4

0.6

0.8
π(a)

Sampled WPO updates

0.0

0.2

0.4

0.6

0.8
π(a)Q

π(a)

up
da

te
d
π
(a

)

Expected WPO update

0.0

0.2

0.4

0.6

0.8
π(a)

Expected WPO update

Q
π

Figure 2. Concrete WPO updates for a single-variate normal policy for two different action-value functions. In the left and middle plots
we consider Q(a) = −a2/2, with an obvious optimum at a = 0, and a policy with µ = σ = 1. The left plot shows the gradient on the
mean at several sampled actions. These are averaged to produce the update, moving the mean towards the optimal action. The expected
WPO update, as shown in the middle plot, is then ∆µ = −µ and ∆σ = −σ. Both the mean and variance will decrease (or, more
generally, move probability mass to the optimal action), as shown. Conversely, in the right plot we consider Q(a) = a2/2 then ∆µ = µ
and ∆σ = σ, and both the mean and variance will increase, as shown. In all cases, the expected value of the resultant policy is increased.

knowledge we are the first to use this update for policy
optimization in reinforcement learning. This somewhat ide-
alized update requires the full Fisher information matrix and
lacks some extensions needed to make policy optimization
methods work in practice. We describe how to extend this
update into a practical deep RL algorithm in Sec. 5.

3. Related Work
The general idea of using the Wasserstein metric in reinforce-
ment learning has appeared in many forms. In Abdullah
et al. (2019) the 2-Wasserstein distance is used to define
Wasserstein Robust Reinforcement Learning, an algorithm
that trains a policy which is robust to misspecification of the
environment for which it is being trained. The Wasserstein
distance appears here as a constraint on the transition dy-
namics of the environment, rather than as a way of defining
learning dynamics. In Moskovitz et al. (2020), the Wasser-
stein metric is used locally as an alternative preconditioner
in place of the Fisher information matrix in natural policy
gradient (Kakade, 2001), while the conventional form of the
policy gradient is still used. The Wasserstein distance has
also been explored as an alternative to the KL divergence
as a regularizer to prevent the policy from changing too
quickly (Pacchiano et al., 2020).

The Wasserstein metric has also been used to define dis-
tances between state distributions, for various ends (Ferns
et al., 2004; He et al., 2021; Castro et al., 2022), whereas
we are focused on gradient flows in the space of actions.

In a combination of the above aims, (Metelli et al., 2019)
and (Likmeta et al., 2023) use the Wasserstein distance to
define a method to propagate uncertainty across state-action
pairs in the Bellman Equation, with the aim of using that
quantified uncertainty to better deal with the exploration-
exploitation trade-off inherent to online reinforcement learn-
ing. In the context of actor-critic methods, this would

amount to a different way to update the critic, whereas
WPO is a novel way to update the actor.

The idea of policy optimization as a Wasserstein gradient
flow has appeared a few times in the literature. Richemond
& Maginnis (2018) show that policy optimization with an
entropy bonus can be written as a PDE similar to the expres-
sion in Sec. 2.2 with an additional diffusion term, but they
stop short of deriving an update for parametric policies. The
work of Zhang et al. (2018) also formulates policy optimiza-
tion as a regularized Wasserstein gradient flow, but arrives
at a more complicated DPG-like update that uses the repa-
rameterization trick, similarly to SVG(0) and SAC. There is
a close connection between Wasserstein gradient flows and
Stein variational gradient descent (Chewi et al., 2020), but
methods based on SVGD require expensive particle-based
approximations (Messaoud et al., 2024).

4. Analysis
4.1. Gaussian Case

To better understand the mechanics of the WPO update,
we analyze the simplified case where the policy is a single-
variate normal distribution and the policy and value are not
state-dependent. In this case we have:

∇µ log π(a) =
a− µ

σ2
= −∇a log π(a) ,

∇σ log π(a) =
(a− µ)2

σ3
− 1

σ
,

Fµµ =
1

σ2
,Fσσ =

2

σ2
,Fσµ = 0 .

Let ∆µθ and ∆σθ be the contributions to the update due to
the gradients of the mean and variance, respectively, such

4

Wasserstein Policy Optimization

Figure 3. Concrete WPO learning for a one dimensional mixture of Gaussians policy for the non-concave action-value function Q(a) =
− 1

100
a4 + a2. The left plot shows the action-value function and mixture of Gaussians policy. In the middle plot we show the evolution

of the policy under a standard policy gradient update, both with samples from the policy and the change in the means of each mixture
component. On the left we show the same evolution for WPO. WPO converges faster, is more stable around the optimum, and converges
to both optima if the policy is initialized symmetrically.

that ∆θ = ∆µθ +∆σθ. For the mean, we then have

∆µθ = F−1
µµ Eπ [∇aQ(a)∇a∇µ log π(a)∇θµ]

= σ2Eπ

[
∇aQ(a)∇a

a− µ

σ2
∇θµ

]
= Eπ [∇aQ(a)∇θµ] .

This is very similar to the DPG update: ∇µQ(µ)∇θµ, ex-
cept that we take the gradient of the action value at a = µ,
rather than sampling a ∼ π. While this similarity holds for
the normal distribution, it is not necessarily true in general.

For the variance we have:

∆σθ = F−1
σσ Eπ [∇aQ(a)∇a∇σ log π(a)∇θσ]

=
σ2

2
Eπ [∇aQ(a)∇σ∇a log π(a)∇θσ]

= −σ2

2
Eπ

[
∇aQ(a)∇σ

a− µ

σ2
∇θσ

]
= Eπ

[
a− µ

σ
∇aQ(a)∇θσ

]
This update is a little more complicated, but on inspection it
also is quite intuitive. The variance increases when (a− µ)
and ∇aQ(a) have the same sign. So, when we sample an
action, then we increase the variance if the gradient of Q
with respect to that action points even further away from
the mean. If the gradient points back towards the mean, we
will instead decrease the variance. Some special cases are
illustrated in Figure 2.

Stochastic extensions of DPG such as SVG(0) (Heess
et al., 2015) and soft actor-critic (SAC) (Haarnoja et al.,
2018) use the reparameterization trick and define a gradient
Eη[∇aQ(s,a)∇θπ(s,η)], where π denotes the action as
deterministic function of the state, as well as a noise term
η. For instance, we can define π(s,η) = µ(s) + σ(s) ◦ η,
where η ∼ N (0, I) and ◦ denotes the elementwise prod-
uct. The mean and variance updates for the single-variate

normal distribution are then respectively E[∇aQ(a)∇θµ]
and E[η∇aQ(a)∇θσ]. For this choice of parameterization,
η = (a−µ)/σ, which exactly coincides with WPO. SAC is
similar to SVG(0), and extends this by including an entropy
bonus to encourage exploration, as well as a mechanism
based on double Q-learning (van Hasselt, 2010) to avoid
value overestimations. Such extensions could be combined
with WPO as well.

Note that the natural WPO update is independent of pa-
rameterization, while SVG(0) is not, so in general the two
updates may still differ. For instance, suppose we have a task
that requires non-negative actions, and we decide to use an
exponential policy with components ai ∼ exp(ai/βi)/βi,
where βi are learnable scale parameters for each action di-
mension. The Fisher for this distribution is diagonal with
components 1/β2

i on the diagonal. Then, the natural WPO
update with respect to β is

F−1Eπ [∇aQ(a)∇a∇β log π(a)]

= diag
(
β2

)
Eπ [∇aQ(a)∇a∇β(− log β − a/β)]

= diag
(
β2

)
Eπ

[
∇aQ(a)∇a(a/β

2 − 1/β)
]

= diag
(
β2

)
Eπ

[
∇aQ(a)diag

(
1/β2

)]
= Eπ [∇aQ(a)] .

We can reparameterize the policy for SVG(0) with a stan-
dard exponential η with density p(η = x) = exp(−x) and
then define a = β ◦ η. Then, the SVG(0) update is

Eη [∇aQ(a)∇βa] = Eη [∇aQ(a)diag (η)]

= Eπ [∇aQ(a)diag (a/β)] ,

where we used η = a/β, by definition. This is not generally
the same as the WPO update.

Not only does the natural WPO update coincide with DPG
augmented with the reparameterization trick in the Gaussian

5

Wasserstein Policy Optimization

Figure 4. Results from selected DeepMind Control Suite tasks. Full results are in Fig. 7 in the appendix.

case, it also equals the standard policy gradient. Specifically,

∆µθ = Eπ [∇aQ(a)∇θµ] = Eπ [∇aQ(a)]∇θµ

= −
[∫

a

Q(a)∇aπ(s, a)

]
∇θµ

(as ∇aEπ[Q(a)] = 0)

= − [Eπ[Q(a)∇a log π(a)]]∇θµ

= Eπ [Q(a)∇µ log π(a)∇θµ] ,
(as ∇a log π = −∇µ log π)

where the last line is just the expected policy gradient up-
date for the parameters of the mean. A similar deriva-
tion, with the same result, can be done for the variance;
this can be found in Appendix A.3. If we add those con-
tributions together, we get the standard policy gradient
Eπ [Q(s, a)(∇µ log π(s, a)∇θµ+∇σ log π(s, a)∇θσ)] =
Eπ [Q(s, a)∇θ log π(s, a)].

These equivalences can be extended to multivariate normal
distributions quite straightforwardly. This counterintuitive
result suggests that there is essentially only one correct way
to update a Gaussian policy, and that the major differences
between approaches will only become clear when going
beyond simple normal distributions over actions.

Importantly, even if the expected natural WPO update coin-
cides with the expected policy gradient update, the sampled
updates could still have dramatically different variance. For
instance, consider an action-value function that is (locally)
linear in the actions, such that Q(s,a) = w(s)Ta. Then

∇aQ(s,a) = w(s) does not depend on the action, and be-
cause the action-value gradient is then the same for each
sampled action the WPO update for the mean of the policy
will have zero variance. In contrast, in this case the standard
policy gradient update will have non-zero variance. This
observation is consistent with Fig. 1: the variance in the
WPO updates will be low when locally all the gradients
point roughly in the same direction.

4.2. Mixture of Gaussian Case

To understand the qualitative differences between different
updates, we will have to move beyond the case of Gaussian
policies. We consider the case of a one-dimensional mix-
ture of Gaussians policy π(a) =

∑
i ρiN (a|µi, σi) where∑

i ρi = 1 are the mixture weights. Because the assign-
ment of a sample to a mixture component is a discrete latent
variable, the reparameterization trick cannot be used exactly
(though it can be approximated through relaxations such as
the concrete/Gumbel-softmax distribution (Maddison et al.,
2017; Jang et al., 2017)) and so we exclusively consider
WPO and classic policy gradient and not DPG/SVG(0). In
this case, the dynamics of learning are too complex for
closed-form results as in the previous section, so we con-
sider an illustrative numerical example, with the action-
value function Q(a) = − 1

100a
4 + a2, which has maxima

at ±
√
50. We initialize the policy with two components

with ρi = 0.5, σi = 10 and µi = ±1. We used a batch
size of 1024 and learning rate of 0.003. For WPO, rather

6

Wasserstein Policy Optimization

than approximate the true Fisher information matrix, we
rescale the gradients for ρi, µi and σi by σ2

i , a choice which
is justified by the form of the FIM for a single Gaussian.
We show results in Fig. 3. Despite being the same in ex-
pectation for the Gaussian case, policy gradient and WPO
clearly have qualitatively different learning dynamics in the
mixture-of-Gaussians case. WPO converges faster, is more
stable around the minimum, and finds both local maxima
(so long as the mixture components are initialized sym-
metrically). Notably, early in optimization, the variance
of the policy actually increases for WPO, when the means
of the mixture components are in the region with positive
curvature, consistent with the intuition in Fig. 2.

5. Implementation
We make two modifications to the update in Eq. 6 to make
WPO into a practical method. First, the use of the full natu-
ral gradient update is not practical for deep neural networks.
It is tempting to simply drop it, but this could lead to serious
numerical stability issues, as the ∇alogπ(a|s) term in the
update blows up as the policy converges to a deterministic
result. Note that this is different from classic policy gra-
dient methods, where natural gradient descent accelerates
learning but is not strictly necessary (Kakade, 2001).

We could in theory use approximate second order methods
such as KFAC (Martens & Grosse, 2015), but we have found
that a much simpler approximation works well in practice.
First, while the WPO update can be applied to arbitrary
stochastic policies, we focus on normally-distributed poli-
cies πθ(a|s) = N (a|µθ(s),Σθ(s)) where the covariance is
constrained to be diagonal with elements σ2

i (s). The normal
distribution with diagonal covariance has a diagonal Fisher
information matrix with 1

σ2
i

for the mean element µi and 2
σ2
i

for the standard deviation σi.

Thus, rather than try to approximate the full Fisher infor-
mation matrix, we may redefine the gradient of the log like-
lihood such that ∂̄

∂µi
logN (a|µ,Σ) = σ2

i
∂

∂µi
logN (a|µ,Σ)

and ∂̄
∂σi

logN (a|µ,Σ) = 1
2σ

2
i

∂
∂σi

logN (a|µ,Σ). While this
ignores the contribution of the gradients of µ and Σ with
respect to θ in the Fisher information matrix, it provides a
qualitatively correct scaling that cancels out the tendency
of the likelihood gradient to blow up as Σ→ 0. A similar
heuristic was suggested in the original REINFORCE paper
(Williams, 1992).

Secondly, we regularize the policy with a penalty on the KL
divergence between the current and past policy. Regular-
ization to prevent the policy from taking excessively large
steps is standard practice in deep reinforcement learning
(e.g., Schulman et al., 2015a; 2017). We similarly found
that without regularization, WPO will prematurely collapse
onto a deterministic solution and fail to learn, especially on

the fusion task from Tracey et al. (2024). While a variety of
forms of KL regularization are used in continuous control,
we closely follow the form used in MPO (Abdolmaleki et al.,
2018). We can express this as a soft constraint, and modify
the loss so that at each step we take a step towards solving

max
π

Est∼P

[
T∑

t=1

γt(Eat∼π[rt]− αDKL[π̄(·|st)||π(·|st)])

]
(7)

or express it as a hard constraint

max
π

Eat∼π,st∼P

[
T∑

t=1

γtrt

]
s.t.Est∼P [DKL[π̄(·|st)||π(·|st)] < ϵ (8)

which can be implemented by treating the α in the soft
constraint as a Lagrange multiplier and performing a dual
optimization step. Here π̄ denotes a previous state of the
policy, e.g., a target network. In either case, the gradient
of the KL penalty is computed conventionally – only the
gradient of the reward uses the approximate Wasserstein
gradient flow and variance rescaling. While the KL diver-
gence could be replaced by the Wasserstein distance, which
would be more mathematically consistent and has been ex-
plored elsewhere as a regularizer (Richemond & Maginnis,
2018; Zhang et al., 2018; Pacchiano et al., 2020), we find the
KL divergence works well in practice and leave it to future
work to explore alternatives. We also note that while the KL
penalty slows the convergence of WPO to a deterministic
policy, it does not prevent it, as we show in Fig. 6.

6. Experiments
To evaluate the effectiveness of WPO, we evaluate it on
the DeepMind Control Suite (Tassa et al., 2018; Tunyasuvu-
nakool et al., 2020), a set of tasks in MuJoCo (Todorov et al.,
2012). These tasks vary from one-dimensional actions, like
swinging a pendulum, up to a 56-DoF humanoid. We addi-
tionally consider magnetic control of a tokamak plasma in
simulation, a problem originally tackled by MPO in Degrave
et al. (2022). On Control Suite, we compare WPO against
both conceptually related and state-of-the-art algorithms
which can be used in the same setting: Deep Deterministic
Policy Gradient (DDPG; Lillicrap, 2015), Soft-Actor Critic
(SAC; Haarnoja et al., 2018), and Maximum a Posteriori
Policy Optimization (MPO; Abdolmaleki et al., 2018).

Our training setup is similar to other distributed RL systems
(Hoffman et al., 2020): we run 4 actors in parallel to gener-
ate training data for the Control Suite tasks, and 1000 actors
for the tokamak task. For WPO, the policy update uses
sequences of states from the replay buffer, which may come
from an old policy, but the actions are resampled from the
current policy, making the algorithm effectively off-policy

7

Wasserstein Policy Optimization

0.0 0.2 0.4 0.6 0.8 1.0
Actor Steps 1e8

0

200

400

600

800

1000

Ep
iso

di
c

Re
tu

rn

Single Base Task

0.0 0.2 0.4 0.6 0.8 1.0
Actor Steps 1e8

0

100

200

300

Ep
iso

di
c

Re
tu

rn

3 Combined Environments

0.0 0.2 0.4 0.6 0.8 1.0
Actor Steps 1e8

0

50

100

150

Ep
iso

di
c

Re
tu

rn

5 Combined Environments

WPO MPO DDPG SAC

Figure 5. Plots of reward from various agents on combined Humanoid Stand environments. Left to right: 1, 3 and 5 replicated environments
(21, 65 and 105 action dimension). Solid line denotes the mean and the shaded region highlights the minimum and maximum over 5 seeds.
As the number of replicas grows, WPO is able to learn faster than other methods by a larger margin.

for states but on-policy for actions. MPO is implemented
similarly. We used the soft KL penalty in Eq. 7 for Control
Suite tasks, as we found the hard KL penalty did not no-
ticeably improve results, but used the hard KL penalty for
the fusion task for consistency with previously published
results. Separate KL penalties with different weights were
put on the mean and variance of the policy, as described in
Song et al. (2019). We found that the penalty on the mean
had little effect on stability and mainly slowed convergence,
while the penalty on the variance noticeably helped stability.
Training hyperparameters are listed in Sec. B and an outline
of the full training loop is given in Alg. 1 in the appendix.
For each RL algorithm, the same hyperparameters were
used for each control suite environment.

For the critic update we use a standard n-step TD update
with a target network:

δTD =

[
n∑

τ=0

rt+τ + γnV̄ (st+n)

]
−Qθ(st,at) (9)

where the target value V̄ (st+n) is approximated by sam-
pling multiple actions from π. This target value could be the
mean of the target action value network, the maximum, or
something in between. In MPO, the softmax over samples is
theoretically optimal, so we use that for Control Suite. We
use the maximum for WPO on all Control Suite tasks, as
that worked well on the hardest domains, but use the mean
for both MPO and WPO on fusion tasks, as the performance
is significantly better.

6.1. DeepMind Control Suite

Figure 4 shows results from a subset of the DeepMind Con-
trol Suite. We selected tasks which show the full range of
WPO’s performance from excelling to struggling. Learning
curves for all Control Suite tasks are in Fig. 7 in the ap-
pendix. While no single algorithm uniformly outperformed
all others on all tasks, it is notable that DDPG and SAC con-
verged to lower rewards and occasionally struggled to take

off on a number of tasks. This is even noticed for relatively
low dimensional tasks (particularly with sparse reward).
WPO robustly takes off and is in the same range as the best
performing method across nearly all tasks. Through hyper-
parameter tuning, we noticed that SAC is particularly sen-
sitive to the weighting of its entropy objective. This meant
that finding generally hyperparameters across all tasks led
to difficult trade-offs of stability and performance. We note
that WPO and MPO demonstrated greater out-of-the-box
generalisation across Control Suite. On the Humanoid CMU
domain, one of the highest dimensional tasks in the Control
Suite, neither SAC nor DDPG took off at all, while WPO
made progress on all tasks and, in the case of the Walk
task, initially learned faster than MPO. On Dog, another
high-dimensional domain, WPO converged to roughly the
same final reward, but often took longer. Dog is the only
domain where the state space is larger than the observation
space, suggesting that WPO may have difficulty in partially
observed settings. We experimented with several choices of
nonlinearity, squashing function (see Sec. C.3 and Fig. 12),
KL regularization weight, and critic bootstrapping update
for WPO. This is still less than the years of experimentation
which has gone into many other popular continuous control
algorithms (Huang et al., 2022). This shows that, while
DDPG or SAC may struggle to learn on certain tasks, WPO
almost always makes some learning progress, and is often
comparable to state-of-the-art methods for these tasks, even
without significant tuning.

6.2. Combined Tasks

Methods that use action-value gradients may perform well
in high-dimensional action spaces, but no Control Suite task
goes beyond a few dozen dimensions. To evaluate the effec-
tiveness of WPO in higher dimensional action spaces, we
construct tasks that consist of controlling many replicas of
a Control Suite environment simultaneously with a single
centralized agent. Specifically, the action and observation
vectors are concatenated, and rewards are combined with a

8

Wasserstein Policy Optimization

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Actor Steps 1e8

20

40

60

80
Re

tu
rn

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Actor Steps 1e8

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

 A
ve

ra
ge

WPO (Hard KL Constraint)
MPO (Hard KL Constraint)

Figure 6. Reward and policy average standard deviation evolution throughout training on the fusion task discussed in Section 6.2

SmoothMin operator (see Eq. 31 in the Appendix), biasing
the reward towards lower performing replicas to encourage
learning across all replicas. We use the same agent hyperpa-
rameters as we used in the standard control suite benchmark
no matter the number of replicas. We selected Humanoid -
Stand as the base task due to its relatively high dimensional
action space (21) and moderate difficultly.

The results in figure 5 demonstrate that as the number of
replicas grows, WPO continues to be able to learn across
the environments. In the singleton case, all methods are
qualitatively similar except SAC which converges to a lower
reward than other learning algorithms. As the number of
replicas grows, WPO takes off earlier in training than MPO,
which takes off earlier than DDPG, with SAC being the
slowest to take off even in the singleton case. This trend
becomes more pronounced for larger numbers of replicas,
even if the asymptotic performance is similar for all meth-
ods. This suggests that for tasks with hundreds of action
dimensions, WPO may be able to learn faster than other
methods.

6.3. Fusion

Degrave et al. (2022) used MPO to discover policies to con-
trol the magnetic coils of the TCV tokamak, a toroidal fusion
experiment (Duval et al., 2024). The resulting policies suc-
cessfully ran at 10kHz to hold the plasma stable. Follow-on
work (Tracey et al., 2024) explored methods to improve the
accuracy of RL-derived magnetic control policies. We run
WPO on a variant of the shape 70166 task considered
therein, modified to reward higher control accuracy (details
in Sec. B.3). This task has 93 continuous measurements,
a 19-dimensional continuous action space and lasts 10,000
environment steps, simulating a 1s experiment on TCV.

We compare the performance of WPO (with cube-root
squashing as described in Sec. C.3) alongside MPO in Fig. 6.
Both MPO and WPO used the default network and settings
as in Tracey et al. (2024), including the hard KL regulariza-
tion as in Eq. 8. WPO achieved a slightly higher reward than

MPO. Interestingly, we see a notable difference in the adap-
tation of the policy variance between the two algorithms.
WPO evolves in the direction of a deterministic policy as
training evolves, as one would expect for a fully observed
environment, while MPO maintains approximately constant
policy variance on average. We see similar results in B.3
on the original shape 70166 task, where MPO and WPO
achieve similar rewards with different policy adaptation be-
havior. These results show WPO as a viable alternative to
MPO in this complex real-world task.

7. Discussion
We derived a novel policy gradient method from the the-
ory of optimal transport: Wasserstein Policy Optimization.
The resulting gradient has an elegantly simple form, closely
resembling DPG, but can be applied to learn policies with
arbitrary distributions over actions. On the DeepMind Con-
trol Suite, WPO is quite robust, performing comparably to
state-of-the-art methods on most tasks, despite little tun-
ing. Results on magnetic confinement fusion domains show
that WPO can be applied to diverse tasks beyond simu-
lated robotics. Promising initial results suggest it can learn
quickly on tasks with over 100 action dimensions. We hope
these results can help unlock performant algorithms for very
larger control problems, and inspire researchers to develop
new, challenging high-dimensional benchmarks in continu-
ous control with hundreds of action dimensions or more.

While we chose a particular instantiation of WPO for the
experiments, the WPO update is general and can be the foun-
dation for many different implementations. We have only
begun to scratch the surface of how WPO can be applied,
and we are hopeful that extensions such as non-Gaussian
policies or more advanced critic updates (Bellemare et al.,
2017) could fully exploit the advantages of this new method.
This could greatly increase the performance and scope of
problems to which WPO can be applied.

9

Wasserstein Policy Optimization

Acknowledgements
We would like to thank Maria Bauza, Nimrod Gileadi, Ab-
bas Abdolmaleki for assistance running experiments, and
Tom Erez, Jonas Buchli, Alireza Makhzani, Guy Lever,
Leonard Hasenclever and Kirill Neklyudov for helpful dis-
cussions.

Impact Statement
The present work can be useful for any reinforcement learn-
ing domain with continuous actions, such as robotics or
industrial control. As this is a fundamental algorithmic ad-
vance, it does not favor any particular socially beneficial
or dangerous application, but instead could enable progress
across all applications. Other policy optimization methods
like PPO are widely used in alignment of generative AI
models, so WPO could conceivably have applications in
alignment in domains with continuous action spaces, which
could help to avert undesirable behavior.

References
Abdolmaleki, A., Springenberg, J. T., Tassa, Y., Munos,

R., Heess, N., and Riedmiller, M. Maximum a posteri-
ori policy optimisation. In International Conference on
Learning Representations, 2018.

Abdullah, M. A., Ren, H., Ammar, H. B., Milenkovic, V.,
Luo, R., Zhang, M., and Wang, J. Wasserstein robust
reinforcement learning, 2019. URL https://arxiv.
org/abs/1907.13196.

Agarwal, A., Kakade, S. M., Lee, J. D., and Mahajan, G.
On the theory of policy gradient methods: Optimality,
approximation, and distribution shift. Journal of Machine
Learning Research, 22(98):1–76, 2021.

Ambrosio, L., Gigli, N., and Savaré, G. Gradient flows: in
metric spaces and in the space of probability measures.
Springer Science & Business Media, 2008.

Barth-Maron, G., Hoffman, M. W., Budden, D., Dabney,
W., Horgan, D., Tb, D., Muldal, A., Heess, N., and Lil-
licrap, T. Distributed distributional deterministic policy
gradients. International Conference on Learning Repre-
sentations, 2018.

Barto, A. G., Sutton, R. S., and Anderson, C. W. Neuronlike
adaptive elements that can solve difficult learning con-
trol problems. IEEE transactions on systems, man, and
cybernetics, (5):834–846, 1983.

Bellemare, M. G., Dabney, W., and Munos, R. A distribu-
tional perspective on reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 449–458.
PMLR, 2017.

Benamou, J.-D. and Brenier, Y. A computational fluid me-
chanics solution to the monge-kantorovich mass transfer
problem. Numerische Mathematik, 84(3):375–393, 2000.

Carpanese, F. Development of free-boundary equilibrium
and transport solvers for simulation and real-time interpre-
tation of tokamak experiments. Technical report, EPFL,
2021.

Castro, P. S., Kastner, T., Panangaden, P., and Rowland, M.
Mico: Improved representations via sampling-based state
similarity for markov decision processes, 2022. URL
https://arxiv.org/abs/2106.08229.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. K. Neural ordinary differential equations. Advances
in neural information processing systems, 31, 2018.

Chewi, S., Le Gouic, T., Lu, C., Maunu, T., and Rigollet,
P. Svgd as a kernelized wasserstein gradient flow of the
chi-squared divergence. Advances in Neural Information
Processing Systems, 33:2098–2109, 2020.

Clevert, D.-A., Unterthiner, T., and Hochreiter, S. Fast
and accurate deep network learning by exponential linear
units (elus). arxiv 2015. International Conference on
Learning Representations, 2016.

Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B.,
Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A.,
de Las Casas, D., et al. Magnetic control of tokamak
plasmas through deep reinforcement learning. Nature,
602(7897):414–419, 2022.

Duval, B., Abdolmaleki, A., Agostini, M., Ajay, C., Alberti,
S., Alessi, E., Anastasiou, G., Andrèbe, Y., Apruzzese,
G., Auriemma, F., et al. Experimental research on the
TCV tokamak. Nuclear Fusion, 64(11):112023, oct 2024.
doi: 10.1088/1741-4326/ad8361. URL https://dx.
doi.org/10.1088/1741-4326/ad8361.

Elfwing, S., Uchibe, E., and Doya, K. Sigmoid-weighted
linear units for neural network function approximation
in reinforcement learning. Neural Networks, 107:3–11,
2018.

Farebrother, J. and Castro, P. S. Cale: Continuous arcade
learning environment. arXiv preprint arXiv:2410.23810,
2024.

Ferns, N., Panangaden, P., and Precup, D. Metrics for finite
markov decision processes. In Uncertainty in Artificial
Intelligence, 2004.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
conference on machine learning, pp. 1861–1870. PMLR,
2018.

10

https://arxiv.org/abs/1907.13196
https://arxiv.org/abs/1907.13196
https://arxiv.org/abs/2106.08229
https://dx.doi.org/10.1088/1741-4326/ad8361
https://dx.doi.org/10.1088/1741-4326/ad8361

Wasserstein Policy Optimization

Haarnoja, T., Moran, B., Lever, G., Huang, S. H., Tirumala,
D., Humplik, J., Wulfmeier, M., Tunyasuvunakool, S.,
Siegel, N. Y., Hafner, R., et al. Learning agile soccer
skills for a bipedal robot with deep reinforcement learn-
ing. Science Robotics, 9(89):eadi8022, 2024.

He, S., Jiang, Y., Zhang, H., Shao, J., and Ji, X. Wasser-
stein unsupervised reinforcement learning, 2021. URL
https://arxiv.org/abs/2110.07940.

Heess, N., Wayne, G., Silver, D., Lillicrap, T., Erez, T.,
and Tassa, Y. Learning continuous control policies by
stochastic value gradients. Advances in neural informa-
tion processing systems, 28, 2015.

Hoffman, M. W., Shahriari, B., Aslanides, J., Barth-Maron,
G., Momchev, N., Sinopalnikov, D., Stańczyk, P., Ramos,
S., Raichuk, A., Vincent, D., et al. Acme: A research
framework for distributed reinforcement learning. arXiv
preprint arXiv:2006.00979, 2020.

Howard, R. A. Dynamic Programming and Markov Pro-
cesses. 1960.

Huang, S., Dossa, R. F. J., Raffin, A., Kanervisto, A., and
Wang, W. The 37 implementation details of proximal
policy optimization. The ICLR Blog Track 2023, 2022.

Jang, E., Gu, S., and Poole, B. Categorical reparameteriza-
tion with Gumbel-softmax. International Conference on
Learning Representations, 2017.

Kakade, S. M. A natural policy gradient. Advances in neural
information processing systems, 14, 2001.

Likmeta, A., Sacco, M., Metelli, A. M., and Restelli,
M. Wasserstein actor-critic: Directed exploration via
optimism for continuous-actions control, 2023. URL
https://arxiv.org/abs/2303.02378.

Lillicrap, T. Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971, 2015.

Maddison, C. J., Mnih, A., and Teh, Y. W. The Concrete
Distribution: A Continuous Relaxation of Discrete Ran-
dom Variables. International Conference on Learning
Representations, 2017.

Martens, J. and Grosse, R. Optimizing neural networks with
Kronecker-factored approximate curvature. In Interna-
tional Conference on Machine Learning, pp. 2408–2417.
PMLR, 2015.

Messaoud, S., Mokeddem, B., Xue, Z., Pang, L., An, B.,
Chen, H., and Chawla, S. S2AC: Energy-Based Rein-
forcement Learning with Stein Soft Actor Critic. Interna-
tional Conference on Learning Representations, 2024.

Metelli, A. M., Likmeta, A., and Restelli, M. Propagat-
ing uncertainty in reinforcement learning via wasserstein
barycenters. In Advances in Neural Information Process-
ing Systems, volume 32. Curran Associates, Inc., 2019.

Moskovitz, T., Arbel, M., Huszar, F., and Gretton, A. Ef-
ficient Wasserstein natural gradients for reinforcement
learning. arXiv preprint arXiv:2010.05380, 2020.

Neklyudov, K., Nys, J., Thiede, L., Carrasquilla, J., Liu,
Q., Welling, M., and Makhzani, A. Wasserstein quantum
Monte Carlo: a novel approach for solving the quantum
many-body schrödinger equation. Advances in Neural
Information Processing Systems, 36, 2023.

Pacchiano, A., Parker-Holder, J., Tang, Y., Choromanski,
K., Choromanska, A., and Jordan, M. Learning to score
behaviors for guided policy optimization. In Interna-
tional Conference on Machine Learning, pp. 7445–7454.
PMLR, 2020.

Pascanu, R. and Bengio, Y. Revisiting natural gradient for
deep networks. arXiv preprint arXiv:1301.3584, 2013.

Prokhorov, D. V. and Wunsch, D. C. Adaptive critic designs.
IEEE transactions on Neural Networks, 8(5):997–1007,
1997.

Richemond, P. H. and Maginnis, B. Diffusing poli-
cies : Towards Wasserstein policy gradient flows,
2018. URL https://openreview.net/forum?
id=rk3mjYRp-.

Schulman, J., Levine, S., Moritz, P., Jordan, M., and Abbeel,
P. Trust region policy optimization. International Con-
ference on Machine Learning, 2015a.

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel,
P. High-dimensional continuous control using generalized
advantage estimation. arXiv preprint arXiv:1506.02438,
2015b.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and
Riedmiller, M. Deterministic policy gradient algorithms.
In International Conference on Machine Learning, pp.
387–395. PMLR, 2014.

Song, H. F., Abdolmaleki, A., Springenberg, J. T., Clark,
A., Soyer, H., Rae, J. W., Noury, S., Ahuja, A., Liu,
S., Tirumala, D., et al. V-MPO: On-policy maximum a
posteriori policy optimization for discrete and continuous
control. arXiv preprint arXiv:1909.12238, 2019.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

11

https://arxiv.org/abs/2110.07940
https://arxiv.org/abs/2303.02378
https://openreview.net/forum?id=rk3mjYRp-
https://openreview.net/forum?id=rk3mjYRp-

Wasserstein Policy Optimization

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y.
Policy gradient methods for reinforcement learning with
function approximation. Advances in Neural Information
Processing Systems, 12, 1999.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D.
d. L., Budden, D., Abdolmaleki, A., Merel, J., Lefrancq,
A., et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ inter-
national conference on intelligent robots and systems, pp.
5026–5033. IEEE, 2012.

Tracey, B. D., Michi, A., Chervonyi, Y., Davies, I., Padu-
raru, C., Lazic, N., Felici, F., Ewalds, T., Donner, C.,
Galperti, C., et al. Towards practical reinforcement learn-
ing for tokamak magnetic control. Fusion Engineering
and Design, 200:114161, 2024.

Tunyasuvunakool, S., Muldal, A., Doron, Y., Liu, S., Bohez,
S., Merel, J., Erez, T., Lillicrap, T., Heess, N., and Tassa,
Y. dm control: Software and tasks for continuous control.
Software Impacts, 6:100022, 2020.

van Hasselt, H. Double q-learning. In Lafferty, J., Williams,
C., Shawe-Taylor, J., Zemel, R., and Culotta, A. (eds.),
Advances in Neural Information Processing Systems, vol-
ume 23. Curran Associates, Inc., 2010.

van Hasselt, H. and Wiering, M. A. Reinforcement learning
in continuous action spaces. In 2007 IEEE International
Symposium on Approximate Dynamic Programming and
Reinforcement Learning, pp. 272–279. IEEE, 2007.

Werbos, P. Beyond regression: New tools for prediction and
analysis in the behavioral sciences. PhD thesis, Commit-
tee on Applied Mathematics, Harvard University, Cam-
bridge, MA, 1974.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
learning, 8:229–256, 1992.

Zhang, R., Chen, C., Li, C., and Carin, L. Policy optimiza-
tion as Wasserstein gradient flows. In International Con-
ference on Machine Learning, pp. 5737–5746. PMLR,
2018.

12

Wasserstein Policy Optimization

A. Extended Derivations
A.1. Functional Derivative of the Loss

To prove that WPO is a true policy gradient method, and not simply a policy improvement method, we need to prove that the
functional derivative of the policy return with respect to the policy has the form in Eq. 4. While this is a known result in the
tabular case (see Agarwal et al. (2021), Eq. 7), we give a derivation in the case of continuous action and state spaces for
completeness here. Suppose we perturb a policy π(a|s) by an amount δπ(a|s)dt, such that

∫
daδπ(a|s) = 0 ∀ s. Then in

the dt→ 0 limit the change to the expected long-term reward is

lim
dt→0

J [π + δπdt]

dt
− J [π] = δJ [π] =

∫
dads

δJ [π]
δπ

(s,a)δπ(s|a)

to solve for δJ [π]
δπ we plug in this perturbation into the definition of the objective function:

J [π] = Eτ

[
T∑

t=0

γtrt

]
(10)

=

T∑
t=0

γt

∫
dτ0:trtP(s0)

t∏
t′=0

π(at′ |st′)
t−1∏
t′=0

P(st′+1|at′ , st′) (11)

=

T∑
t=0

γt

∫
dτ0:trtp

π(τ0:t) (12)

where τ is shorthand for full-length trajectories s0,a0, . . . , sT ,aT , τ0:t is shorthand for truncated trajectories
s0,a0, . . . , st,at and pπ(τ0:t) denotes the probability of a trajectory, combining environment transitions and policy steps.
Plugging in π → π + δπdt into Eq 11 and expanding, the perturbed value is then:

δJ [π] = lim
dt→0

J [π + δπdt]

dt
− J [π] (13)

=

T∑
t=0

γt

∫
dτ0:trtP(s0)

t∏
t′=0

π(at′ |st′)
t−1∏
t′=0

P(st′+1|at′ , st′)
t∑

t′=0

δπ(at′ |st′)
π(at′ |st′)

(14)

=

T∑
t=0

γt

∫
dτ0:trtp

π(τ0:t)

t∑
t′=0

δπ(at′ |st′)
π(at′ |st′)

(15)

=

T∑
t=0

γt

∫
dτ0:trtp

π(τ0:t)

t∑
t′=0

δπ(at′ |st′)
π(at′ |st′)

∫
dτt+1:T p

π(τt+1:T |τ0:t) (16)

=

T∑
t=0

γt

∫
dτrtp

π(τ)

t∑
t′=0

δπ(at′ |st′)
π(at′ |st′)

(17)

=

T∑
t′=0

∫
dτpπ(τ)

δπ(at′ |st′)
π(at′ |st′)

T∑
t=t′

γtrt (18)

=

T∑
t′=0

∫
dτ0:t′P(s0)

t′−1∏
t′′=0

π(at′′ |st′′)P(st′′+1|at′′ , st′′)δπ(at′ |st′)γt′Qπ(st′ ,at′) (19)

=

∫
dsdaδπ(a|s)Qπ(s,a)

T∑
t′=0

γt′Prπ(st = s) (20)

δJ [π]
δπ

= Qπ(s,a)

T∑
t=0

γtPrπ(st = s) =
1

1− γ
Qπ(s,a)dπ(s) (21)

13

Wasserstein Policy Optimization

where Prπ(st = s) is the marginal probability of the state s at time t under the policy π and dπ = (1−γ)
∑

t γ
tPrπ(st = s)

is the discounted state occupancy function. Thus the action-value function Qπ is almost the functional derivative δJ [π]
δπ , but

with an additional discounted occupancy over the states.

A.2. Projection Onto a Parametric Function Space

Here we give a more complete version of the derivation in Sec. 2.3

Ftθ =

∫
∇θlogπθ(a|s)

∂πθ(a|s)
∂t

da (22)

=−
∫
∇θlogπθ(a|s)∇a · (πθ(a|s)∇aQ

π(s,a)) da (23)

=−
∫
∇θlogπθ(a|s)

[
πθ(a|s)∇2

aQ
π(s,a) +∇aπθ(a|s)∇aQ

π(s,a)
]
da (24)

=−
∫
∇θπθ(a|s)∇2

aQ
π(s,a)da−

∫
∇θlogπθ(a|s)∇aπθ(a|s)∇aQ

π(s,a)da (25)

=

∫
∇θ∇aπθ(a|s)∇aQ

π(s,a)da−
������������:0

∇θπθ(a|s)∇2
aQ

π(s,a)|Rn −
∫
∇θlogπθ(a|s)∇aπθ(a|s)∇aQ

π(s,a)da (26)

=

∫
∇θ∇aπθ(a|s)∇aQ

π(s,a)da−
∫
∇θlogπθ(a|s)∇aπθ(a|s)∇aQ

π(s,a)da (27)

=

∫
∇θ∇aπθ(a|s)∇aQ

π(s,a)da−
∫

πθ(a|s)−1∇θπθ(a|s)∇aπθ(a|s)∇aQ
π(s,a)da (28)

=Ea∼π[(πθ(a|s)−1∇θ∇aπθ(a|s)− πθ(a|s)−2∇θπθ(a|s)∇aπθ(a|s))∇aQ
π(s,a)] (29)

=Ea∼π [∇θ∇alogπθ(a|s)∇aQ
π(s,a)] (30)

where the step in Eq. 26 comes from integration by parts, and we assume that∇θπθ(a|s) goes to 0 as a goes to infinity. The
last step can be derived in reverse by expanding∇alogπθ as π−1

θ ∇aπθ and applying the product rule.

A.3. Variance Update for SVG(0) vs. WPO

∆θ =
1

σ
E [(a− µ)∇aQ(a)∇θσ]

=
∇θσ

σ

∫
a

π(s, a) [(a− µ)∇aQ(a)]

= −∇θσ

σ

∫
a

∇a [π(s, a)(a− µ)]Q(s, a)

= −∇θσ

σ

∫
a

[∇aπ(s, a)(a− µ) + π(s, a)∇a(a− µ)]Q(s, a)

= −∇θσ

σ
Eπ[Q(s, a) [(a− µ)∇a log π(s, a) + 1]]

= −∇θσ

σ
Eπ

[
Q(s, a)

[
−(a− µ)(a− µ)σ−2 + 1)

]]
= −∇θσEπ

Q(s, a) (a− µ)2(−σ−3 + σ)︸ ︷︷ ︸
−∇σ log π


= Eπ[Q(s, a)∇σ log π(s, a)∇θσ] .

We note that the last equation is the standard expected policy gradient with respect to the gradients flowing through the
variance term. (If we are updating both mean and variance, as is typically, we just add the contributions with respect to the
mean to get the full policy gradient update.)

14

Wasserstein Policy Optimization

Algorithm 1 WPO with Replay and n-step TD critic learning for multi-dimensional Gaussian Policy
Require: Initialize actor πθ(a|s), critic Qw(s,a), target actor πθ̄(a|s), and target critic Qw̄(s,a) with parameters θ, w,

θ̄ ← θ, and w̄ ← w respectively. Initialize replay buffer D.
1: for each episode do
2: Initialize state s0
3: for t = 0 to T − 1 do
4: Select action at ∼ πθ(a|st) = N (µθ(st),Σ(st))
5: Execute action at and observe reward rt and next state st+1

6: Store transition (st,at, rt, st+1) in replay buffer D
7: if length(D) ≥ batch size then
8: Sample a mini-batch of transitions (sj ,aj , rj , sj+1) from D
9: Sample n-step transitions (sj+k,aj+k, rj+k) for k = 1, . . . , n or until the end of the episode is reached.

10: Calculate n-step TD target (using target critic):
11: Gj:j+n =

∑n−1
k=0 γ

krj+k + γn 1
N

∑
i Qw̄(sj+n,a

′
j+n,i) (or greedy)

where a′
j+n,i ∼ πθ̄(a|sj+n) = N (µθ̄(sj+n),Σθ̄(st))

12: Update critic:
13: w ← w − βQ∇w

1
2 (Qw(sj ,aj)−Gj:j+n)

2

14: Update actor (with action sampling):
15: for i = 1 to N (Number of action samples) do
16: Sample action a′

j ∼ πθ(a|sj) = N (µθ(sj),Σ(sj))
17: Calculate policy gradient for the sampled action:
18: gi = ∇̄θ∇a log πθ(a

′
j |sj)∇aQw(sj ,a

′
j) // WPO Update

where ∇̄µ = Σ∇µ and ∇̄Σ = 1
2Σ∇Σ

19: end for
20: Update actor using the average gradient:
21: θ ← θ + βπ

[
1
N

∑N
i=1 gi − α∇θDKL[πθ̄||πθ]

]
22: Update target networks:
23: if t mod TARGET PERIOD = 0 then
24: Update target networks (hard update):
25: θ̄ ← θ, w̄ ← w;
26: end if
27: end if
28: st ← st+1

29: end for
30: end for

15

Wasserstein Policy Optimization

B. Experiment Hyperparameters
All algorithms, WPO, MPO, DDPG and SAC are implemented in the same codebase.

B.1. DeepMind Control Suite

We use a single set of hyperparameters for each learning algorithm across all control suite environments.

We use a longstanding implementation of MPO which accordingly has well optimised hyperparameters. For WPO, DDPG
and SAC, we sought hyperparmeters which worked well across all control suite tasks. Drawing some values from the wider
literature on continuous control, we performed a hyperparemeter sweep. We arrived at parameters which performed well
across the suite of tasks.

Our focus is on the comparison of algorithms rather than the search for the best hyperparameters.

We note that improved performance can be attained though environment-specific hyperparameter tuning. We found this to
be particularly true for Soft-Actor Critic. Maintaining hyperparameter settings across environments helps us investigate
variation due to learning algorithm differences.

Table 1. Common Hyperparameters

Hyperparameter Value

Actor Network Hidden Layer Sizes (256, 256, 128)
Critic Network Hidden Layer Sizes (512, 512, 256)

Optimizer ADAM
Actor Learning Rate 3× 10−4

Critic Learning Rate 3× 10−4

Activation Function ELU (Clevert et al., 2016)
Discount Factor (γ) 0.99

Target Network Update Period Every 100 updates
Samples-per-insert (SPI) 32

Batch Size 256
n (for TD(n) loss calculation) 5 (Except SAC, which used n = 3)

Replay Buffer Size 2× 106

Trajectory Length for Network Update 10

Table 2. WPO Hyperparameters

Hyperparameter Value

αµ log(2)
αΣ 10000

Actions Sampled per Update 30

Table 3. DDPG Hyperparameters

Hyperparameter Value

(Fixed) Policy Variance (σ) 0.3

Table 4. MPO Hyperparameters

Hyperparameter Value

αµ (initial) 100
αΣ (initial) 1000

Initial Log Temperature (log η) 10
ϵ 0.1
ϵµ 5× 10−3

ϵΣ 10−6

Actions Sampled per Update 30

Table 5. SAC Hyperparameters

Hyperparameter Value

Initial α 0.0001
Minimum α 1× 10−8

Final Policy Network Activation Function tanh
Polyak Average Coefficient (τ) 0.005

Target Entropy −|A|
Maximum Policy Variance exp(4)
Minimum Policy Variance exp(−10)

16

Wasserstein Policy Optimization

Figure 7. Results on all DeepMind Control Suite tasks for WPO, MPO, DDPG and SAC. The bold lines denote average returns over 10
seeds on evaluation episodes. The shaded region spans minimum and maximum returns.

17

Wasserstein Policy Optimization

Figure 8. Schematic of the TCV tokamak, including cutout showing 2-D profile of plasma contour

B.2. Combined Tasks

In order to combine the rewards across component environments in the combined tasks we apply a SmoothMin operation.
This is the application of a SmoothMax operation with a negative value of α.

SmoothMax(x1...n, α) =

∑n
i=1 xie

αxi∑n
i=1 e

αxi
. (31)

The SmoothMin operation is non-linear. To make the α hyperparameter easier to tune and maintain across differing choices
of component environment, we scale the rewards such that they are in the unit interval by dividing by the highest reward
observed from any agent in a singleton environment.

B.3. Fusion Task

Fig 8 depicts the TCV tokamak, including the control coils, vacuum-vessel cross section and a notional plasma inside the
domain. The TCV tokamak has 19 control coils, composed of 16 poloidal field coils, 2 ohmic coils, and 1 “fast” coil. The
measurements observed by the agent for these experiments consist of 38 magnetic field probes, 34 magnetic flux loops, and
19 coil current measurements, one for each loop. We simulate the evolution of the tokamak using the FGE Grad-Schafranov
simulator (Carpanese, 2021). For more details of the training setup, please see (Degrave et al., 2022) and (Tracey et al.,
2024).

The task shown in Section 6.2 is based on the shape 70166 task from (Tracey et al., 2024). The primary goal of the
task is for the plasma last closed flux surface to align with the control points, and also for the current in the plasma to be
maintained at a reference value (not depicted). There are some additional reward terms to regularize the policy and help
hardware transfer, specifically penalizing out-of-bounds voltage commands, keeping the ohmic coil currents close together,
and keeping the poloidal coil currents away from zero. The results shown in Fig. 9 use a version of the task with tighter
demands on the shape and plasma current accuracy. These changes are similar to those discussed by Tracey et al. (2024)
with regards to reward shaping. We also show in Fig. 10 results from the original task in (Tracey et al., 2024). The specifics
of the reward components and combiner is shown in Table 6, please see Sec. 3 of (Tracey et al., 2024) and in particular Eq.2
and Eq. 3 for how these terms combine into a scalar reward. In both figures, MPO and WPO are run with the same set of
hyperparameters, must notably with a hard constraint on the KL regularization with ϵµ = 5e− 5 and ϵσ = 1e− 7. Note that
the KL constraint on the variance, ϵσ , is set to the same value for WPO and MPO. So while the value is tighter than typically
seen, it is not responsible for the difference in policy convergence rates between the two algorithms.

18

Wasserstein Policy Optimization

References Flux

Figure 9. The reference control points and example flux field for the shape 70166 task. The last closed flux surface target points are
shown in blue on the left, with the limit point location in cyan. An example magnetic flux field matching these control points in shown on
the left, with the limit location in magenta and the LCFS in black

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Actor Steps 1e8

20

40

60

80

100

Re
tu

rn

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Actor Steps 1e8

0.14

0.15

0.16

0.17

0.18

0.19

0.20

 A
ve

ra
ge

WPO (Hard KL Constraint)
MPO (Hard KL Constraint)

Figure 10. Return and policy average standard-deviation evolution throughout training on the shape 70166 task from (Tracey et al.,
2024)

C. Additional Results and Ablations
C.1. Complete DeepMind Control Suite Results

In Fig. 7, we show results on all 49 Control Suite tasks (excluding the LQR domain, which suffered from numerical issues
in simulation) for WPO and baseline algorithms, providing a more complete picture of the results in Fig 4. It can be seen
that WPO is competitive with MPO on nearly all tasks, while there are numerous tasks for which DDPG and SAC struggle,
especially those on the Cartpole and Point mass domains for DDPG and Acrobot and Humanoid tasks for SAC. Notably,
even on those tasks where DDPG outperforms other methods, WPO still converges eventually, while many tasks for with
WPO performs well, DDPG does not reliably converge. We note that the performance of WPO on some domains is sensitive
to modeling choices. We explore these choices below.

C.2. MPO Hyperparameter Comparison

To ensure that we are making a fair comparison between WPO and the strongest possible baseline on DeepMind Control
Suite, we investigated several different hyperparameter settings for MPO, with results shown in Fig. C.2. In addition to the
hyperparameters in Table 4, we also ran MPO with the same hyperparameters as WPO – replacing the hard KL constraint
with a soft constraint and relaxing the KL regularization on the mean. We additionally tried adding the variance rescaling
trick described in Sec. 5. As can be seen in the figure, these modifications did not significantly affect the performance of

19

Wasserstein Policy Optimization

Figure 11. Results on all DeepMind Control Suite tasks for MPO with different hyperparameters: optimal settings tuned for Control Suite,
settings matching WPO, and settings matching WPO with variance rescaling. The performance of MPO is not significantly impacted by
these choices.

20

Wasserstein Policy Optimization

Component Precise Standard
Good Bad Good Bad

LCFS Distance (m) 0.001 0.01 0.005 0.05
Plasma Current (A) 100 2000 500 30000

Poloidal away from 0 (A) 100 50 100 50
Normalized Voltages in Bounds 0 1 0 1

Ohmic Coils Close (A) 50 1050 50 1050
Combiner -3 -0.5

Table 6. Fusion task reward components and scaling parameters

MPO. With the WPO hyperparameters, the Humanoid CMU and Hopper tasks were slightly slower to learn for some tasks,
but adding the variance rescaling largely restored the performance. This gives us high confidence that our baseline is as
strong as possible, and that any difference in performance cannot be attributed to arbitrary hyperparameter differences.

C.3. Squashing Functions and Network Activations for WPO

There are various possible sources of numerical instability unique to WPO which we investigate. One is that, for certain tasks
where the action-value function changes rapidly, the gradient∇aQ

π(s,a) might blow up, making the gradients unstable.
Fortunately, there is a fix for this which is still a principled approach to approximating Wasserstein gradient flows. In
Neklyudov et al. (2023), it was shown that much of the theory in Sec. 2.2 and 2.3 can be extended to the c-Wassserstein
distance:

W 2
c (π0, π1) = inf

ρ∈Γ(π0,π1)

∫
ρ(a,b)c(a− b)dadb (32)

where c is some convex function. In this case, the appropriate PDE for the c-Wasserstein gradient flow to minimize J
becomes

∂π

∂t
= −∇a ·

(
π∇c∗

(
−∇a

δJ
δπ

))
(33)

where c∗ is the convex conjugate of c. This means that applying a nonlinear squashing function to the velocity field can still
result in dynamics that minimize the functional of interest.

If we follow the same derivation of the parametric update in Sec. 2.3 and A.2 for the c-Wasserstein distance, the derivation is
largely unchanged, but the term∇aQ

π(s,a) is replaced with ∇c∗(∇aQ
π(s,a)). This means applying a nonlinear function

to the gradient of the action-value function still results in a principled update, which may be useful for numerical stability in
cases where the action-value function changes rapidly. To investigate the impact that this has on the performance of WPO
on the DeepMind Control Suite, we choose ∇c∗(a) = a1/3, where the cube root is applied elementwise. This is a natural
choice of squashing function as it is smooth, odd, and doesn’t saturate.

Another possible source of numerical instability comes from the choice of neural network activation. The exponential linear
unit (ELU) (Clevert et al., 2016) has a discontinuity in the second derivative, which may cause issues with WPO as the
second derivative appears in the update. We try changing both the actor and critic networks to use sigmoid linear units
(SiLU) (Elfwing et al., 2018). We present the results of both changing the network nonlinearity and adding a cube root
squashing function to the action value gradient in Fig. 12

On most tasks, the choice of nonlinearity and squashing function does not make a significant difference. On a number
of tasks such as Cartpole - Swingup sparse and tasks on the Dog domain, both changing the nonlinearity and adding a
squashing function seem to improve performance, but on the Humanoid CMU domain they potentially harm performance.
Therefore, it’s difficult to conclude that any of these choices decisively improve performance, but it is important to be aware
that some of the results presented in the main paper can be sensitive to these choices.

21

Wasserstein Policy Optimization

Figure 12. Results on all DeepMind Control Suite tasks for WPO with different activation functions (ELU vs. SiLU) and with and without
applying a cube root elementwise to the action-value gradients. The bold lines denote average returns over 3 seeds on evaluation episodes.
The shaded region spans minimum and maximum returns.

22

