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ABSTRACT

The versatility of large Transformer-based models has led to many efforts focused
on adaptations to other modalities, including time-series data. For instance, one
could start from a pre-trained checkpoint of a large language model and attach
adapters to recast the new modality (e.g., time-series) as “language”. Alterna-
tively, one can use a suitably large Transformer-based model, and make some
modifications for time-series data. These ideas offer good performance across
available benchmarks. But temporal data are quite heterogeneous (e.g., wearable
sensors, physiological measurements in healthcare), and unlike text/image corpus,
much of it is not publicly available. So, these models need a fair bit of domain-
specific fine-tuning to achieve good performance – this is often expensive or dif-
ficult with limited resources. In this paper, we study and characterize the perfor-
mance profile of a non-generalist approach: our SimpleTM model is specialized
for multivariate time-series forecasting. By simple, we mean that the model is
lightweight. It is restricted to tokenization based on textbook signal processing
ideas (shown to be effective in vision) which are then allowed to attend/interact:
via self-attention but also via ways that are a bit more general than dot-product at-
tention, accomplished via basic geometric algebra operations. We show that even
a single- or two-layer model gives results that are competitive with much big-
ger models, including large transformer-based architectures, on most benchmarks
commonly reported in the literature.

1 INTRODUCTION

Multivariate time-series (MTS) data are ubiquitous in various disciplines such as finance and eco-
nomics Andersen et al. (2006), climate science Mudelsee (2019), healthcare Zeger et al. (2006),
geophysics Gubbins (2004), and industrial monitoring Truong et al. (2022). Consequently, MTS
data processing and analysis techniques have been extensively studied, going back to works in vec-
tor autoregressive models Lütkepohl (2013), dynamic factor models Molenaar et al. (1992), state-
space models Rangapuram et al. (2018) and others. The literature provides rich theory and various
solutions depending on the assumptions that make the most sense for the data at hand, e.g., ho-
moscedasticity versus heteroscedasticity Rodrı́guez & Ruiz (2005), degree of autocorrelation Bence
(1995), and stationarity versus non-stationarity Das & Nason (2016). Such models refined over
decades are well-studied in economics, computational finance and statistics. While progress in deep
learning architectures over the last 10+ years has led to the most significant gains in performance
capabilities for tasks involving image and natural language data, there is a growing body of literature
(discussed below) describing strategies for harnessing these models for multivariate time-series data
Liu et al. (2024a); Huang et al. (2023); Zhang & Yan (2023).

Deep Architectures for MTS data. Most types of widely used deep architectures – from con-
volutional neural networks LeCun et al. (1998); Simonyan & Zisserman (2015); He et al. (2016)
to graph neural networks (GNN) Kipf & Welling (2017); Hamilton et al. (2017) to transformers
Vaswani et al. (2017); Devlin et al. (2019); Dong et al. (2021) – have all been adapted and attempted
for various types of MTS data Bagnall et al. (2018). For instance, Zhang & Yan (2023); Zhou et al.

∗Code is available at GitHub: https://github.com/vsingh-group/SimpleTM.
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(2022b); Wu et al. (2021); Liu et al. (2024a) use an attention mechanism to model the long-term
interaction between different time points whereas approaches using GNNs Cheng et al. (2022); Li
et al. (2023); Jin et al. (2023) seek to extract interaction adaptively between different time-series.
However, as noted in Huang et al. (2023), all methods face challenges in handling temporal fluctua-
tions and heterogeneity between variables (i.e., different time-series in the same data). But perhaps
more importantly, there is an immense degree of variability between different MTS datasets. For
instance, MTS data from wearable sensors will bear little to no similarity to electroencephalogram
(EEG) recordings of brain activity. We know that internet-scale text and image data corpus have
been used, to train large language and vision models, where the sheer size of the dataset provides
the model some ability to handle heterogeneity. But while the raw sizes of MTS data produced or
acquired each day (e.g., in physiological recordings or wearable sensors) is enormous, only a minor
fraction of it is publicly available due to strict privacy regulations (HIPAA) or laws surrounding
sharing of consumer behavior data or entirely non-legal reasons (proprietary, competitiveness). To
summarize, such data remain scarce and thereby, deploying pre-trained models in a specific setting
involving our own MTS dataset requires care and often significant fine-tuning. In fact, Zeng et al.
(2023) found that for a number of publicly available datasets, a simple one-layer linear model can
frequently outperform generic approaches based on Transformers, suggesting that translating the
same backbone to complex and heterogeneous MTS data is challenging. Promisingly, in the last
year, a number of interesting approaches Liu et al. (2024a); Wang et al. (2024); Nie et al. (2023);
Chen et al. (2024), have been proposed which make specific adjustments/modifications to the ar-
chitecture to better handle the nuances and complexity of MTS data, and show robust/reproducible
performance. Several of these models will serve as our baselines later.

Repurposing LLMs for Time-series data. A related but distinct line of work seeks to re-interpret
time-series data as natural language, and allows operating on top of powerful large language models
Jin et al. (2024). Such an approach can benefit from the vast amount of text data the language model
has already been trained on, which is kept frozen, and one assumes that a mechanism to map chunks
of time-series to word embeddings can be estimated based on a sufficiently large MTS dataset. This
mapping is often accomplished by training specialized adapters placed before and after the LLM
in the pipeline. This direction is evolving rapidly and providing promising results, but as of now,
deploying the model on a domain specific dataset with its own specific characteristics of stationarity
and seasonality, while possible, remains quite compute intensive.

This work. Our paper aligns more closely with the aforementioned non-generalist approaches in
that the intended use of the model will only be for multi-variate time-series data. Instead of modify-
ing a large Transformer-based backbone, we will add in modules, one by one, quite conservatively.
Similar to LLMs, we also use tokenization but given the well-defined application scope (time-series
data), we will use ideas based directly on classical signal processing Haykin & Veen (1998). Then,
we borrow the self-attention module and make a small modification to it, so it can capture a richer
dependency structure between tokens, allowing it to capture dependencies across-time and across-
dimensions. The key contributions of our work are summarized as follows:

(i) We propose SimpleTM, a simple yet effective architecture that uniquely integrates classical signal
processing ideas with a slightly modified attention mechanism.

(ii) We show that even a single-layer configuration can effectively capture intricate dependencies in
multivariate time-series data, while maintaining minimal model complexity and parameter require-
ments. This streamlined construction achieves a performance profile surpassing (or on par with)
most existing baselines across nearly all publicly available benchmarks.

2 PRELIMINARIES: PROBLEM SETUP AND NOTATIONS

Univariate time-series. Let (x1, · · · , xL) be a single historical (or lookback) time-series of lengthL
where xt ∈ R denotes the measurement/value at the t-th timestep. Let (y1, · · · , yH) be a single time-
series of length H in the future. We call H the forecast/horizon window length and L the lookback
window length. Time-series forecasting asks if we can predict (y1, · · · , yH) from (x1, · · · , xL).
Multi-variate time-series. Let X ∈ RC×L and Y ∈ RC×H be two matrices, jointly drawn from
some distribution P . We also write xt and yt as the t-th column of X and Y respectively. That is,
we observe L measurements for each of C channels or variables from X. Our goal is to “forecast”
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the time-series of H timesteps, each timestep t in the forecast window is a vector of length C,
collectively called Y.

Multiple Multi-variate time-series. Denote by N the sample size: the number of multi-variate
time-series we observe. We can use i as a generic index for a specific sample for i ∈ [N ].

Remark. This multivariate setting captures scenarios where we are measuring time-series data for
C different channels or variables in a synchronized manner, which becomes particularly valuable
when there are correlations or dependencies among these variables.

Definition 1 (Forecasting error) Assume a multi-variate time-series (X,Y) ∼ P , where X ∈
RC×L and Y ∈ RC×H . For any mapping f : RC×L → RC×H , we call it a forecasting function.
We define the forecasting error with regards to f as

L(f) := E(X,Y)∼P ||Y − f(X)||F , (1)

where || · ||F denotes the Frobeneus norm of the matrix and E is the expectation over the joint
distribution P . We are given a set of i.i.d. samples {(Xi,Yi)}Ni=1. We define the empirical risk with
regard to forecasting function f as

L(f) :=
1

N

N∑
i=1

||Y (i) − f(X(i))||F . (2)

Our goal is to optimize over f to minimize the empirical forecasting error. We will now introduce
the specific modules in our overall model, after which we will describe the experimental evaluations.

3 MODULE 1: TOKENIZATION VIA STATIONARY WAVELET TRANSFORM

Motivation/Rationale. For this first module, we

Figure 1: For each channel, time-series mea-
surements are passed through a stationary wavelet
transform followed by a linear projection to obtain
L′ tokens.

seek a tokenization scheme for MTS data that re-
lieves the amount of work that the downstream mod-
ules need to do – discovering all local/global depen-
dencies – which raises both the compute footprint
and also the sample sizes needed. Ideally, if our
tokens could capture temporal information across
multiple scales (rapid, short-term variations to slow,
long-term trends), and capture both local/global pat-
terns within each of the C variables/sites, then the
task of exactly how to synthesize this information
for forecasting Y would be simplified. If we can
allow scale-specific processing, then arguably the
synthesis task can benefit from the specific modules
processing each scale, acting collaboratively.

One possible solution. The reader will immediately
see that the Wavelet transform is a first principles
based solution to the requirements outlined above, and this idea has recently found use in processing
image data in Transformer models Yao et al. (2022); Zhu & Soricut (2024). It offers a multi-scale
decomposition of each signal while maintaining temporal localization. We will treat each wavelet
scale separately which will allow learning scale-specific interactions within each variable. If our
forecast window is dominated by dependencies that are prominent at one scale but not the other,
such a construction provides the downstream modules relevant information to operate with.

Details of the construction. We now present our tokenization scheme. Let X = {x1, · · · ,xL} ∈
RC×L denote our multivariate time-series, where C is the number of channels as before.

A) Linear Projection. We first apply a linear projection g(·;θ) : RL → RL′
to embed each channel

into a hidden/latent space which gives X̃ = {x̃1, x̃2, · · · , x̃L′} = g(X).

B) Stationary Wavelet Transform (SWT). To achieve a multi-scale representation, we use a learnable
stationary wavelet transformation (SWT). SWT Nason & Silverman (1995) is defined as

SWT(·;h0, g0) : RC×L′
→ RC×L′×(S+1),
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where h0, g0 ∈ RC×k are learnable filters with kernel size k, and S is the decomposition level.
This transformation produces a set of time-frequency tokens {u(s)

1 ,u
(s)
2 , . . . ,u

(s)
L′ }Ss=0, capturing

information at different temporal scales for each channel independently, see Figs. 1–2. SWT is
suitable since it provides a time-invariant decomposition while preserving the original temporal
structure. This is achieved by avoiding downsampling at each decomposition level, thus maintaining
the up-scaled length/size L′. SWT is also shift-invariant making it effective in capturing localized
events across multiple scales. At the core of the SWT are the mother wavelet ψ(t) and scaling
function ϕ(t). The family of discrete wavelets can be expressed as:

ψs,k(t) = 2−s/2ψ(2−st− k) and ϕs,k(t) = 2−s/2ϕ(2−st− k),

where s controls the scale (dilation) and k determines the

Figure 2: Tokenization via SWT: The
input series is padded and processed
through learnable filters. At each scale,
SWT inserts zeros between filter co-
efficients, producing a non-decimated
output. This approach, demonstrated
for a scale-2 approximation, allows
shift-invariant feature extraction while
preserving temporal resolution.

position (translation).

C) Obtaining Wavelet Coefficients. The embedded time
series {x̃t}L

′

t=1 undergoes decomposition via the station-
ary wavelet transform (SWT), yielding approximation co-
efficients a(s)t and detail coefficients u(s)t at each level s.
For clarity, we present the process for a univariate series.
SWT uses two main filters: a low-pass filter h and a high-
pass filter g, derived from the scaling function ϕ(t) and
the wavelet function ψ(t) respectively:

h(k) = ⟨ϕ(t), ϕ(2t− k)⟩ and g(k) = ⟨ψ(t), ϕ(2t− k)⟩.

Starting with a(0)t = x̃t, the decomposition at level s is
computed as:

a
(s+1)
t =

∑
k

h(s)(k)a
(s)
t+k and u

(s+1)
t =

∑
k

g(s)(k)a
(s)
t+k.

Here, h(s) and g(s) are upsampled versions of h and g,
obtained by inserting 2s − 1 zeros between each original
filter coefficient. This upsampling preserves the signal length, ensuring time invariance. Instead of
keeping filter coefficients fixed, we allow the coefficients h and g to adapt to the data, i.e., mak-
ing them learnable (Michau et al., 2022) allowing them to capture relevant patterns and features
at each variate level more effectively. Our experiments demonstrate that the learned filters exhibit
correlation patterns that resemble those in the respective variables/channels but switching this adap-
tivity/learning off does not adversely impact the results much.

Summary of tokenization scheme. The iterative decomposition yields a final approximation u(0)t =

a
(S)
t and a set of wavelet coefficients {u(s)t }

S

s=1 at each time point t across various scales. This
decomposition allows for a complete reconstruction of the up-projected time series if desired:

x̃t =
∑

ku
(0)
k ϕ

(t)
S,k +

S∑
s=1

∑
k

u
(s)
k ψs,k(t). (3)

In our tokenization scheme, each time-frequency point u(s)t serves as a token, encapsulating infor-
mation at a specific scale s and time t. This multi-resolution representation provides a rich, struc-
tured view of the data, where each token inherently retains both its temporal context and frequency
information. This approach is simple but aligns well with our initial objectives.

4 MODULE 2: A SMALL MODIFICATION OF SELF-ATTENTION

Motivation. Recall that each token represents multiple channels at a specific “pseudo” time point
(pseudo because the length is L′ and not L) for a specific wavelet scale. SWT already captures some
temporal/frequency information. But we also want to characterize the full range of inter-channel
dynamics, cheaply. In finance, some asset prices move together and others move inversely, and
this can change over time. Tokens from a fine resolution might show high linear independence for a
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rapidly changing variable, capturing short-term dynamics, while those from coarser scales can reveal
long-term correlations between different channel subsets, reflecting slower, persistent patterns. The
degree of inter-channel complementarity or linear independence is not fully encoded by a scalar. In
a five channel (or variable) system, tokens (1, 1, 0, 0, 0) and (0, 0, 1, 1, 0) give a zero dot product, but
span a 4D subspace, indicating high complementarity. This could reveal, for instance, that the first
two channels and the next two channels are behaving as coupled pairs. Leveraging such information
explicitly may be unnecessary in a large Transformer model with many layers – where we conjecture
that these complex dependencies may get picked up anyway. But in a smaller model, endowing the
model with such a capability explicitly appears like a good idea.

One possible solution. It turns out that geometric algebra product Artin (2011) offers these abilities.
It extends classical linear algebra to provide a unified setup for expressing geometric constructions.
Put simply, we obtain a small generalization of self-attention which preserves the capabilities of
standard dot-product attention. Note that Transformer models based on Clifford Algebra have been
proposed recently Brehmer et al. (2023); de Haan et al. (2024) – these are broadly applicable but
computationally heavy, see Chytas et al. (2024). This is because the size of the geometric product
scales exponentially with the number of dimensions involved in the product. Our design is quite
light, involves minimal changes to self-attention and well suited for our problem.

Details of the construction. We summarize a few concepts before describing the low-level details.

A) Brief Geometric Algebra Review. Geometric

(a) (b)

Figure 3: Geometric product objects. (a) shows the
oriented parallelogram of the wedge product α ∧ β
while (b) shows the progression from scalars to vectors,
bivectors, and trivectors.

Algebra (GA) provides a framework for rep-
resenting and manipulating geometric objects.
We focus on G2, the GA over a 2-dimensional
vector space because we consider pairs of to-
kens in our attention mechanism, regardless of
the tokens’ dimensionality. The fundamental
object in G2 is the multivector, expressed as
M = ⟨M⟩0 + ⟨M⟩1 + ⟨M⟩2, where ⟨M⟩k is
the k−vector part of M for k ∈ {0, 1, 2}. The
key operation in GA is the geometric product,
denoted by: αβ = α · β + α ∧ β, where ·
denotes the dot product and ∧ denotes the wedge (or outer) product. The wedge product ∧, also
known as the exterior product, represents the oriented area of the parallelogram spanned by two
vectors. For vectors α and β, the wedge product α ∧ β results in a bivector (a 2-dimensional ele-
ment in the algebra). As an example in G2, consider α = ae1 + be2 and β = ce1 + de2, where e1
and e2 are orthonormal basis vectors. Their wedge product is α ∧ β = (ad − bc)(e1 ∧ e2). Here
(ad− bc) represents the area magnitude, while e1 ∧ e2 indicates the orientation in the plane.

B) Instantiating Geometric Product in our case. We can

Figure 4: A simplified illustration of ge-
ometric product attention. The entries of
the attention matrix are multi-vectors.

reformulate the attention mechanism using the geometric
product. For tokens t and t′, instead of just computing their
dot product, we can use the geometric product which com-
bines the dot product (scalar part) with the wedge product
(bivector part), encoding both magnitude-based similarity
and geometric relationships between the tokens. So, we
capture not only the scalar similarity between tokens (via
dot product) but also their linear independence and the ori-
entation of the space they span (via wedge product). This
allows detecting complementary information across chan-
nels and changing inter-channel dynamics. For two tokens
α and β for different time points across C channels, the
α · β part is the scalar similarity, while α ∧ β tells us how
these tokens complement each other across the C channels.

C) Linear Projection. Given time-frequency tokens U (s) = {u(s)
1 ,u

(s)
2 , · · · ,u(s)

L′ } ∈ RC×L′
for

scale s and shared weights WQ, WK , WV ∈ RL′×L′
, the query, key, and value matrices are:

Q(s) = U (s)WQ, K
(s) = U (s)WK , V

(s) = U (s)WV , for scale s ∈ {0, 1, · · · , S}. (4)
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To keep the number of channels/variables unchanged, we apply the linear projection along L′.

D) Geometric attention calculation. Consider the expression α · β + α ∧ β and let us evaluate
how we can minimally modify the self-attention block to mimic this behavior. We can consider two
different V (s)’s: say V

(s)
1 and V

(s)
2 . The dot-product attention between the tokens can act upon

V
(s)
1 for the term Q(s)TK(s). Separately, the matrix of wedge-product objects acts upon V

(s)
2 for

the second term B = {Btt′} for t, t′ ∈ {1, · · · , L′} with Btt′ = q
(s)
t ∧ k

(s)
t′ .

The first part can be viewed simply as the vanilla attention mechanism, so no special treatment is
needed. The wedge product results in a matrix of bivector objects, where each element Btt′ is a
bivector for the pair-wise tokens; we indeed compute it element-wise for each pair t and t′. Viewing
V

(s)
2 column by column, the operation BV

(s)
2 is well defined and is closed within the algebra. For

example, B is an L′ × L′ matrix where each element Btt′ is a bivector resulting from the wedge
product of the t-th query vector and the t′-th key vector, while V

(s)
2 is an L′ × C matrix. The

operation can be written explicitly as the sum over the geometric product between a bivector Btt′

and entries from a column of V (s)
2 . The only remaining task is to combine this result with vanilla

self-attention, and to do so, we need to map these bivectors down. For this, we use a reduction
function ζ(·) to match dimensions. There is much flexibility in choosing ζ(·): it can be the bivector’s
magnitude or a trainable MLP that takes both magnitude and orientation as an input.

Summary of geometric product attention mechanism. The geometric attention mechanism is:

GeoProdAttn(Q,K,V ) = softmax
(

dot-prod(Q,K)√
C

)
V + ζ

((
wedge-prod(Q,K)√

C

)
V

)
(5)

where C is a scaling factor and we have used V instead of two separate variables. Also, the matrix
of bivectors acts upon V individually for each column in V .

5 MODULE 3: RECONSTRUCTION OF MULTIVARIATE TIME SERIES

Motivation/Rationale. After processing the time-frequency tokens through the geometric product
attention module described above, we need to reconstruct the signal in the time domain. This is
achieved using a learnable ISWT(·;h1, g1), where h1 and g1 are the learnable synthesis filters for
the low-pass and high-pass components, respectively. These filters are the direct counterparts to the
analysis filters h0 and g0 used in the forward SWT.

Details of the construction. The reconstruction is performed iteratively, starting from the coarsest
scale and progressing to the finest scale. Given the initial approximation coefficients â(S) = û(0)

and the processed tokens at each scale s, denoted as {û(s)
1 , û

(s)
2 , . . . , û

(s)
L′ }Ss=0, the reconstruction

can be written as:
â
(s−1)
t =

∑
k

h
(s)
1 (k)â

(s)
t+k +

∑
k

g
(s)
1 (k)û

(s)
t+k. (6)

where h
(s)
1 and g

(s)
1 are the upsampled versions of h1 and g1 at level s. The reconstruction process

iteratively computes â(s−1) using â(s) and û(s) until we reach â(0).

Summary of reconstruction. The final reconstructed time series X̂ = {x̂1, x̂2, · · · , x̂L′} is given
by â(0). This reconstructed representation preserves the temporal structure of the original input
while incorporating the multi-scale information processed via geometric product attention. This
reconstructed time-domain representation X̂ is then passed through a feed-forward network and
layer normalization for final refinement, which produces the forecast output to calculate the loss.
We perform end-to-end training.

6 EXPERIMENT

In this section, we cover our experimental findings in detail. We divide our experimental protocol
into two phases: evaluating the quality of forecasting both for long-term and short-term and an
ablation study to evaluate the efficacy of our proposed model, SimpleTM.
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Figure 5: An overview of the proposed SimpleTM model framework.

6.1 SETUP AND BASELINES

Baselines. We compare our model with 15 well-known forecasting models for MTS data, including

(a) MLP-based methods: TimeMixer Wang et al. (2024), TiDE Das et al. (2023), RLinear Li et al.
(2024), DLinear Zeng et al. (2023);

(b) Transformer-based methods: iTransformer Liu et al. (2024a), PatchTST Nie et al. (2023),
Crossformer Zhang & Yan (2023), FEDformer Zhou et al. (2022b), Autoformer Wu et al. (2021),
FiLMZhou et al. (2022a), StationaryLiu et al. (2022b);

(c) CNN-based methods: TimesNet Wu et al. (2023), SCINet LIU et al. (2022), MICN Wang et al.
(2023);

(d) GNN-based method: CrossGNN Huang et al. (2023).

Datasets. The datasets that are covered in our experiments include:

(a) Long-term forecasting: We evaluate our model on 8 widely recognized benchmarks: the ETT
datasets (ETTh1, ETTh2, ETTm1, and ETTm2), which provides seven factors of electricity trans-
former data recorded at hourly and 15-minute intervals, as well as the Weather, Solar-Energy,
Electricity, and Traffic datasets, which include diverse meteorological, power production, con-
sumption, and road occupancy data Wu et al. (2021).

(b) Short-term forecasting: We adopt the PEMS dataset Chen et al. (2001) with four public traffic
subsets (PEMS03, PEMS04, PEMS07, and PEMS08) recorded every 5 minutes. We also evaluate
the forecastability of all datasets, following Wang et al. (2024), and observe that ETT and Solar-
Energy pose modeling challenges due to their low forecastability. Further details on the datasets can
be found in Appendix A.

6.2 EVALUATION RESULTS

Long-term forecasting results: Forecast results from our experiments are presented in Table 1, with
optimal performance denoted in red and second-best in blue. A lower MSE/MAE values indicates
superior prediction accuracy. SimpleTM demonstrates robust performance across diverse bench-
marks, achieving optimal MSE/MAE in 7 out of 8 datasets. Complete results are in Appendix B.
We briefly discuss comparisons with two of the closest methods in terms of performance.

(a) TimeMixer Wang et al. (2024): Our method exhibits MSE reductions of 8.1% for ETTh2 and
8.8% for ECL compared to TimeMixer. In the Solar-Energy dataset, acknowledged for its complex-
ity, our model attains the best MSE, surpassing TimeMixer by 14.8%. Although TimeMixer uses a
multi-scale approach, it underperforms in high-dimensional datasets because its mixing mechanism
is limited to linear or lower-order interactions. Its reliance on average pooling and ensemble pre-
dictions leads to information loss during scale transitions. SimpleTM overcomes these challenges
with a geometric attention mechanism in G2 space, combined with a classical tokenization method,
enabling it to capture complex, higher-order relationships by considering both the magnitude and
orientation of token pairs.
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Table 1: Long-term forecasting results for various prediction horizons H ∈ {96, 192, 336, 720} with a fixed
lookback window of L = 96. Reported values are averaged across prediction lengths.

Model SimpleTM
(Ours)

TimeMixer
(2024)

iTransformer
(2024a)

CrossGNN
(2023)

RLinear
(2024)

PatchTST
(2023)

Crossformer
(2023)

TiDE
(2023)

TimesNet
(2023)

DLinear
(2023)

SCINet
(2022)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ETTm1 0.381 0.396 0.385 0.399 0.407 0.410 0.393 0.404 0.414 0.407 0.387 0.400 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407 0.485 0.481
ETTm2 0.275 0.322 0.278 0.325 0.288 0.332 0.282 0.330 0.286 0.327 0.281 0.326 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401 0.571 0.537
ETTh1 0.422 0.428 0.458 0.445 0.454 0.447 0.437 0.434 0.446 0.434 0.469 0.454 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452 0.747 0.647
ETTh2 0.353 0.391 0.384 0.407 0.383 0.407 0.393 0.413 0.374 0.398 0.387 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515 0.954 0.723
ECL 0.166 0.260 0.182 0.272 0.178 0.270 0.201 0.300 0.219 0.298 0.205 0.290 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300 0.268 0.365

Traffic 0.444 0.289 0.484 0.297 0.428 0.282 0.583 0.323 0.626 0.378 0.481 0.304 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383 0.804 0.509
Weather 0.243 0.271 0.245 0.276 0.258 0.278 0.247 0.289 0.272 0.291 0.259 0.281 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317 0.292 0.363

Solar-Energy 0.184 0.247 0.216 0.280 0.233 0.262 0.249 0.313 0.369 0.356 0.270 0.307 0.641 0.639 0.347 0.417 0.301 0.319 0.330 0.401 0.282 0.375

Table 2: Short-term forecasting results on PEMS datasets. Results are shown for prediction horizon H = 12
with a fixed lookback window of L = 96. Lower metric values indicate more accurate predictions.

Model SimpleTM iTransformer TimeMixer Crossformer PatchTST TimesNet MICN DLinear FiLM FEDformer Stationary Autoformer
Metric (Ours) (2024a) (2024) (2023) (2023) (2023) (2023) (2023) (2022a) (2022b) (2022b) (2021)

PEMS03
MAE 14.86 18.13 14.80 15.64 18.95 16.41 15.71 19.70 21.36 19.00 17.64 18.08

MAPE 14.79 19.19 14.79 15.74 17.29 15.17 15.67 18.35 18.35 18.57 17.56 18.75
RMSE 23.58 28.86 23.58 25.56 30.15 26.72 24.55 32.35 35.07 30.05 28.37 27.82

PEMS04
MAE 18.74 23.42 18.97 20.38 24.86 21.63 21.62 24.62 26.74 26.51 22.34 25.00

MAPE 12.11 17.83 12.24 12.84 16.65 13.15 13.53 16.12 16.46 16.76 14.85 16.70
RMSE 30.46 35.75 30.70 32.41 40.46 34.90 34.39 39.51 42.86 41.81 35.47 38.02

PEMS07
MAE 20.25 22.54 20.76 22.54 27.87 25.12 22.28 28.65 28.76 27.92 26.02 26.92

MAPE 8.55 12.77 8.77 9.38 12.69 10.60 9.57 12.15 11.21 12.29 11.75 11.83
RMSE 33.06 33.92 33.71 35.49 42.56 40.71 35.40 45.02 45.85 42.29 42.34 40.60

PEMS08
MAE 14.92 18.79 15.26 17.56 20.35 19.01 17.76 20.26 22.11 20.56 19.29 20.47

MAPE 9.36 12.19 9.71 10.92 13.15 11.83 10.76 12.09 12.81 12.41 12.21 12.27
RMSE 23.80 28.86 24.35 27.21 31.04 30.65 27.26 32.38 35.13 32.97 38.62 31.52

(b) iTransformer Liu et al. (2024a): Against iTransformer, our method achieves MSE reductions
of 6.4%, 7.0%, and 4.7% for ETTm1, ETTh1, and ECL respectively. While iTransformer excels
on high-dimensional time-series datasets, such as Traffic (862 variables/channels), it struggles with
the rapidly fluctuating ETT datasets due to its variate-wise tokenization, which fails to capture fine-
grained local patterns and lacks sufficient inter-channel context in lower-dimensional scenarios. In
contrast, SimpleTM uses wavelet-based tokens that prioritize intra-variable local interactions and
effectively capture oscillatory patterns across multiple resolutions.

Short-term forecasting results: Table 2 presents the short-term forecasting results for the high
dimensional PEMS datasets. This is evaluated using three metrics: Mean Absolute Error (MAE),
Mean Absolute Percentage Error (MAPE), and Root Mean Square Error (RMSE), where lower
values indicate better predictions. Our SimpleTM demonstrates superior or comparable performance
across all four PEMS datasets (PEMS03, PEMS04, PEMS07, and PEMS08), consistently achieving
the best results. These results validate our model’s good performance for high-dimensional, short-
term forecasting tasks, complementing its strong performance in long-term forecasting scenarios.
Additional results for larger prediction horizons are provided in Table 10 in Appendix B.

6.3 MISCELLANEOUS ADDITIONAL ANALYSIS: ABLATIONS, WAVELETS

Ablation Study. We conducted an ablation study to evaluate two key architectural elements: geo-
metric attention mechanism and the stationary wavelet transform. Table 3 summarizes the results
across four datasets, with metric values averaged over four prediction horizons. The findings consis-
tently demonstrate that both geometric attention and SWT contribute to our model’s performance.
Detailed results can be found in Appendix C.

Table 3: Ablation study results comparing model
variations across datasets.

Model ETTh1 ETTm1 Solar Weather
MSE MAE MSE MAE MSE MAE MSE MAE

SimpleTM 0.422 0.428 0.381 0.396 0.184 0.247 0.243 0.271
w/o Attn 0.437 0.440 0.385 0.398 0.194 0.253 0.245 0.273
w/o SWT 0.432 0.435 0.386 0.398 0.246 0.289 0.247 0.274

Filters in the wavelet decomposition. We now
briefly check the properties of the learned fil-
ters. We randomly initialized the wavelet basis
with ℓ2 normalization and compared the result-
ing filters to the wavelet bank for the ETTh2
dataset, identifying the most similar ground
truth wavelet for each learned wavelet. As
shown in Fig 6a (left), the learned filters from
random initialization occasionally approximated wavelet-like structures, displaying higher ampli-
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(a) (b)

Figure 6: Analysis of learned filters and their correlations in wavelet-based time series forecasting. (a) Com-
parison of learned filters with theoretical wavelet bases (Bior3.3). Left: synthesis low-pass filter; Right: forward
high-pass filter. (b) Correlation heatmaps of learned filters (left) and original channels (right).

tude peaks and maintaining overall patterns, although with some amplitude variations. This suggests
that the model can inherently discover wavelet-like features without explicit wavelet priors. In con-
trast, filters initialized with standard wavelets (the right in Fig 6a) retained their core structure while
exhibiting subtle adaptations, indicating that a wavelet initialization provides a strong inductive bias
for refining theoretically grounded filters based on empirical data. A comparison of the correlation
heatmaps in Fig. 6b between the filters (all initialized with identical standard wavelets) and the orig-
inal channels reveals meaningful patterns. The filter correlation matrix shows a distinct block-like
structure with high correlations (0.7 − 0.9), primarily due to shared initialization. However, dark
horizontal and vertical lines suggest that some filters have developed lower correlations, indicating
a degree of specialization. In contrast, the original channel correlation matrix shows weaker overall
correlations (0.4− 0.6) with a less pronounced block structure. The persistence of some block-like
patterns in both matrices, albeit at different scales, implies that the model retains aspects of the
original data structure while enhancing certain relationships through learned filters.

Multi-scale visualization. Fig. 7 presents a representative example of our multiscale forecasting
results. The MTS forecasting panel illustrates the model’s effectiveness in accurately predicting
overall patterns, including significant peaks and troughs, while capturing the cyclical nature of the
data. Our model excels at decomposing and reconstructing the time series across multiple scales.
The Scale 1 and Scale 2 panels highlight the model’s ability to capture high-frequency fluctuations,
while the Scale 0 panel reveals the underlying low-frequency trend. This multi-resolution analy-
sis enables the model to extract relevant features from various timescales and integrate them into a
coherent forecast in the original domain. In summary, our multiscale forecasting technique demon-
strates robust performance in capturing both macro trends and micro fluctuations.

Figure 7: Multiscale forecasting visualization: MTS prediction shows global pattern and cyclical nature. Scale
decomposition demonstrates the ability to capture low-frequency trends (Scale 0) and progressively higher-
frequency fluctuations (Scales 1-2).

Compute and Memory Footprint. A key advantage of our single- or two-layer design is that
it often captures complex dependencies in MTS data without resorting to larger, more cumber-
some backbones. In our reported experiments, we prioritize memory and computation efficiency by
choosing the bivector’s magnitude for the reduction function ζ(·). This approach not only matches
or surpasses the accuracy of competitive baselines, but also reduces memory requirements and pa-
rameter counts. For instance, on the Weather dataset, our model uses only 0.3% of iTransformer’s
parameters and 13% of TimeMixer’s parameters, requires 38% and 66% less memory, and runs 1.7x
and 3.4× faster, respectively. Further details are provided in Appendix D.

9
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7 RELATED WORK

Time Series Forecasting. Time-series forecasting is a mature topic and has advanced from tradi-
tional statistical models like AIRMA (AutoRegressive Integrated Moving Average) Box & Jenkins
(1994) and ARMA (AutoRegressive Moving Average) Markidakis & Hibon (1997) models to so-
phisticated deep learning approaches that better handle the complexity of time-series data. These
approaches can be broadly categorized as follows.

1. CNN models effectively capture local temporal patterns in time series data. TCN Bai et al. (2018)
introduced causal and dilated convolutions, while SCINet LIU et al. (2022) employed sample con-
volutions. TimesNet Wu et al. (2023) used 2D variation modeling with inception blocks to capture
both inter-period and intra-period patterns. CNNs sometimes struggle with long-range forecasting
due to their limited receptive field.

2. Graph Neural Network (GNN) methods are capable of capturing inter-variable relationships in
MTS data. MTGNN Wu et al. (2020) used graph learning to infer variable interactions, and Cross-
GNN Huang et al. (2023) further refined this with cross-scale and cross-variable modeling to manage
noise in MTS data. However, GNNs can often be quite computationally intensive.

3. MLP models Zeng et al. (2023) offer a balance between simplicity and efficiency. TimeMixer
Wang et al. (2024) introduced multi-scale mixing however average pooling in this context leads to
some information loss when transferring between scales. RLinear Li et al. (2024) showed that linear
models, with a careful design, could effectively capture periodic features, achieving competitive
performance with more complex architectures.

4. Transformer models Wu et al. (2021); Zhou et al. (2021); Wu et al. (2022); Zhou et al. (2022b)
are prominent results that have demonstrated efficacy in capturing long-range dependencies. Cross-
former Zhang & Yan (2023) introduced cross-dimension self-attention, iTransformer Liu et al.
(2024a) applied attention to channel-tokens but lacked the resolution to capture fine-grained lo-
cal patterns and can struggle to gain sufficient inter-channel context, and PatchTST Nie et al. (2023)
used a patch-based representation with channel-independent processing and a fixed resolution.

Multi-scale Modeling. Capturing patterns at different resolutions is very common in vision Fan
et al. (2021); Lin et al. (2017); Tao et al. (2020) and has also been used to obtain efficient
self-attention modules Nguyen et al. (2023); Zeng et al. (2022). Inspired by these successes,
multi-scale modeling has been adapted to time-series forecasting as well. N-HiTS Challu et al.
(2023) constructed a hierarchical forecast with multi-rate sampling, while Scaleformer Shabani
et al. (2023) progressively refined forecasts through repeated upsampling and downsampling op-
erations. Pathformer Chen et al. (2024) applied dual attention over patches of varying temporal
size. Pyraformer Liu et al. (2022a) used a pyramidal attention structure to handle inter-scale depen-
dencies. TimeMixer Wang et al. (2024) used a decomposable mixing approach, combining seasonal
and trend components separately across scales for both past and future temporal variations. Different
subsets of these methods face different challenges. Manually designed scales can make the model
inflexible to adapt to dynamic time series, while average pooling often results in the loss of fine-
grained details. In some models, the aggregation and reconstruction mechanisms are fragmented,
requiring ensemble strategies or more complicated architectures.

8 CONCLUSIONS

Our work introduces a novel approach to multivariate time series (MTS) analysis that integrates
a simple wavelet-based tokenization and a generalized form self-attention that captures both multi-
scale temporal dynamics and complex inter-channel relationships. Our empirical results demonstrate
competitive performance against most existing baselines across various MTS tasks. Our experi-
ments suggest that exploiting inter-channel dependency does not always yield improvements, and
the performance varies from one dataset to other other. The construction is simple and can provide
a sensible lightweight baseline for more sophisticated methods although in its current form, cannot
easily be extended to token-by-token generation. We must acknowledge that as MTS datasets that
are publicly available grow in size, larger models may be better suited to maximize performance.
Nonetheless, we believe that the individual components utilized in our formulation can still mean-
ingfully inform the design of specialized adapters and/or embedding/tokenization schemes.
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Jianxin Li, Qingyun Sun, Hao Peng, Beining Yang, Jia Wu, and Philip S. Yu. Adaptive subgraph
neural network with reinforced critical structure mining. IEEE Trans. Pattern Anal. Mach. In-
tell., 45(7):8063–8080, July 2023. ISSN 0162-8828. doi: 10.1109/TPAMI.2023.3235931. URL
https://doi.org/10.1109/TPAMI.2023.3235931.

Zhe Li, Shiyi Qi, Yiduo Li, and Zenglin Xu. Revisiting long-term time series forecasting: An
investigation on affine mapping, 2024. URL https://openreview.net/forum?id=
T97kxctihq.

Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
Feature pyramid networks for object detection. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 936–944, 2017. doi: 10.1109/CVPR.2017.106.

Minhao LIU, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia LAI, Lingna Ma, and Qiang Xu.
SCINet: Time series modeling and forecasting with sample convolution and interaction. In Al-
ice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neu-
ral Information Processing Systems, 2022. URL https://openreview.net/forum?id=
AyajSjTAzmg.

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X. Liu, and Schahram Dust-
dar. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and
forecasting. In International Conference on Learning Representations, 2022a. URL https:
//openreview.net/forum?id=0EXmFzUn5I.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transform-
ers: Exploring the stationarity in time series forecasting. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems, volume 35, pp. 9881–9893. Curran Associates, Inc.,
2022b. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/4054556fcaa934b0bf76da52cf4f92cb-Paper-Conference.pdf.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. In The Twelfth In-
ternational Conference on Learning Representations, 2024a. URL https://openreview.
net/forum?id=JePfAI8fah.

Yong Liu, Haoran Zhang, Chenyu Li, Xiangdong Huang, Jianmin Wang, and Mingsheng Long.
Timer: Generative pre-trained transformers are large time series models. In Ruslan Salakhut-
dinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix
Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine Learning, vol-
ume 235 of Proceedings of Machine Learning Research, pp. 32369–32399. PMLR, 21–27 Jul
2024b. URL https://proceedings.mlr.press/v235/liu24cb.html.

13

https://openreview.net/forum?id=Unb5CVPtae
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1145/3209978.3210006
https://doi.org/10.1109/TPAMI.2023.3235931
https://openreview.net/forum?id=T97kxctihq
https://openreview.net/forum?id=T97kxctihq
https://openreview.net/forum?id=AyajSjTAzmg
https://openreview.net/forum?id=AyajSjTAzmg
https://openreview.net/forum?id=0EXmFzUn5I
https://openreview.net/forum?id=0EXmFzUn5I
https://proceedings.neurips.cc/paper_files/paper/2022/file/4054556fcaa934b0bf76da52cf4f92cb-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/4054556fcaa934b0bf76da52cf4f92cb-Paper-Conference.pdf
https://openreview.net/forum?id=JePfAI8fah
https://openreview.net/forum?id=JePfAI8fah
https://proceedings.mlr.press/v235/liu24cb.html


Published as a conference paper at ICLR 2025

Helmut Lütkepohl. Vector autoregressive models. In Handbook of research methods and applica-
tions in empirical macroeconomics, pp. 139–164. Edward Elgar Publishing, 2013.

Spyros Markidakis and Michele Hibon. Arma models and the box–jenkins methodology. Journal
of Forecasting, 16(3):147–163, 1997. doi: https://doi.org/10.1002/(SICI)1099-131X(199705)16:
3⟨147::AID-FOR652⟩3.0.CO;2-X. URL https://onlinelibrary.wiley.com/
doi/abs/10.1002/%28SICI%291099-131X%28199705%2916%3A3%3C147%3A%
3AAID-FOR652%3E3.0.CO%3B2-X.

Gabriel Michau, Gaetan Frusque, and Olga Fink. Fully learnable deep wavelet transform for un-
supervised monitoring of high-frequency time series. Proceedings of the National Academy of
Sciences, 119(8):e2106598119, 2022. doi: 10.1073/pnas.2106598119. URL https://www.
pnas.org/doi/abs/10.1073/pnas.2106598119.

Peter C. M. Molenaar, Jan G. De Gooijer, and Bernhard Schmitz. Dynamic factor analysis of
nonstationary multivariate time series. Psychometrika, 57(3):333–349, 1992. doi: 10.1007/
BF02295422. URL https://doi.org/10.1007/BF02295422.

Manfred Mudelsee. Trend analysis of climate time series: A review of methods. Earth-
Science Reviews, 190:310–322, 2019. ISSN 0012-8252. doi: https://doi.org/10.1016/j.earscirev.
2018.12.005. URL https://www.sciencedirect.com/science/article/pii/
S0012825218303726.

G. P. Nason and B. W. Silverman. The Stationary Wavelet Transform and some Statisti-
cal Applications, pp. 281–299. Springer New York, New York, NY, 1995. ISBN 978-1-
4612-2544-7. doi: 10.1007/978-1-4612-2544-7 17. URL https://doi.org/10.1007/
978-1-4612-2544-7_17.

Tan Minh Nguyen, Tho Tran Huu, Tam Minh Nguyen, Minh Pham, Nhat Ho, and Stanley Osher.
Transformers with multiresolution attention heads, 2023. URL https://openreview.net/
forum?id=L8qKBr_bht.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
Jbdc0vTOcol.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
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A EXPERIMENT DETAILS

Datasets. We evaluate our model on several benchmark datasets covering both long-term and short-
term forecasting tasks. Among long-term forecasting tasks, we evaluate our method on 1) ETT Zhou
et al. (2021): a dataset of electricity transformer data, which includes four subsets (ETTh1, ETTh2,
ETTm1, ETTm2). ETTh1 and ETTh2 record data hourly, while ETTm1 and ETTm2 record data
every 15 minutes; 2) Weather Wu et al. (2021): a dataset comprising 21 meteorological parameters
and is collected at a 10-minute interval; 3) Solar-Energy Lai et al. (2018): a dataset recording power
generation data from multiple plants, with data collected every 10 minutes in 2006; 4) Electricity Wu
et al. (2021): a dataset of electricity consumption for 321 clients; 5) Traffic Wu et al. (2021): a
datasets monitoring hourly road occupancy rates through 862 sensors in San Francisco from 2015
to 2016. Additionally, we evaluate our method on PEMS dataset for short-term forecasting. The
PEMS dataset collects traffic network data from various locations and covers four subsets (PEMS03,
PEMS04, PEMS07, PEMS08), which has been widely adopted as benchmarks since LIU et al.
(2022).

We mainly follow the experimental configurations in Wu et al. (2023), including the same data
processing and splitting protocol. For both the long-term and short-term forecasting settings, we
fix the lookback window length to 96 for all datasets and baselines. The prediction lengths vary
according to the forecasting tasks: for ETT family, Weather, Solar-Energy, ECL, and Traffic datasets
in the long-term forecasting task, we use prediction lengths of {96, 192, 336, 720}, while for the
PEMS dataset in the short-term forecasting task, we employ prediction lengths of {12, 24, 48, 96}.
Details of the dataset are provided in Table 4.

Table 4: Dataset statistics. The dimension indicates the number of channels/variates, and the dataset
size is organized in (training, validation, testing).

Tasks Dataset Dim. Prediction Length Dataset Size Frequency Domain
ETTm1 7 {96, 192, 336, 720} (34465, 11521, 11521) 15 min Temperature

ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15 min Temperature

ETTh1 7 {96, 192, 336, 720} (8545, 2881, 2881) 1 hour Temperature

Long-term ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) 1 hour Temperature

Forecasting Electricity 321 {96, 192, 336, 720} (18317, 2633, 5261) Hourly Electricity

Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) Hourly Transportation

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10 min Weather

Solar-Energy 137 {96, 192, 336, 720} (36601, 5161, 10417) 10 min Electricity

PEMS03 358 {12, 24, 48, 96} (15617, 5135, 5135) 5 min Transportation

Shor-term PEMS04 307 {12, 24, 48, 96} (10172, 3375, 3375) 5 min Transportation

Forecasting PEMS07 883 {12, 24, 48, 96} (16911, 5622, 5622) 5 min Transportation

PEMS08 170 {12, 24, 48, 96} (10690, 3548, 265) 5 min Transportation

Hyperparameter search. Table 5 summarizes the hyperparameters and training settings used in
our experiments. Our hyperparameter selection followed a systematic approach, combining grid
search with domain-specific considerations. The number of layers was fixed at 1, and the input
length L was set to 96 to ensure fair comparisons across benchmark datasets. The pseudo length L′

was configured based on the input dimensionality of each dataset. Larger values (L′ = 256) were
assigned to datasets with more input channels, and smaller values (L′ = 32) were used for datasets
with fewer channels to balance computational efficiency with model capacity.

The selection of wavelet initialization types was guided by both systematic evaluation and signal
processing principles. We explored common wavelet families {db1, db4, db8, db12, bior3.1}, with
specific choices informed by the temporal characteristics (i.e., sampling frequency) of each dataset.
Specifically, the db1 (Haar) wavelet was primarily employed for datasets exhibiting high total varia-
tion (e.g., hourly-sampled datasets such as ETTh1, ECL, Traffic) due to its effectiveness in capturing
sharp transitions. Conversely, longer filters (bior3.1, db4, db8) were utilized for higher-frequency
data (e.g., minute-level datasets such as ETTm2, Weather, Solar-Energy, PEMS04) to better capture
their smoother temporal patterns. We acknowledge that any of them are suitable initializations. The
scale parameter S was fixed at 3.
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For training parameters, we performed a grid search over learning rates within a logarithmic scale
from 10−3 to 2 × 10−2. Batch sizes and training epochs were systematically evaluated within the
ranges {16, 24, 256} and {10, 20}, respectively. Larger batch sizes (256) and fewer training epochs
(10) were typically assigned to long-term forecasting tasks, while smaller batch sizes (16) and more
training epochs (20) were used for short-term forecasting scenarios. This approach to hyperparame-
ter optimization enabled us to achieve good performance while accounting for the distinct temporal
and structural characteristics of each dataset.

Fair comparison settings. To ensure a fair comparison, we maintained a consistent lookback win-
dow length of 96 across all experiments. Our baseline comparisons mimic the experimental pro-
tocols established in TimesNet Wu et al. (2023), including identical data processing and splitting
procedures. We applied early stopping to all baselines when the validation loss failed to decrease
for three consecutive epochs. Recent baselines, such as iTransformer Liu et al. (2024a), TimeMixer
Wang et al. (2024), and CrossGNN Huang et al. (2023), adopted the same fair comparison set-
tings. Therefore, their experimental configurations required no modifications, and we utilized their
official repositories directly for reproduction. For baselines published prior to 2024, we used the
long-term forecasting results provided in the TimesNet Wu et al. (2023) repository. These results
were built on the experimental configurations provided by each model’s original paper or official
code. We verified that all hyperparameters for these baselines were selected from their respective
official repositories while ensuring consistency with the fair comparison settings, where the only
change were the input and output sequence lengths of all baseline models. Additionally, we adopted
all baselines’ short-term forecasting results directly from TimeMixer Wang et al. (2024), consistent
with the fair comparison settings established by TimesNet.

Implementation Details. All experiments were conducted using PyTorch Paszke et al. (2019) on a
single NVIDIA A100 40GB GPU. The model was trained using the Adam optimizer Kingma & Ba
(2015) with Mean Absolute Error (MAE) as the loss function specifically for the PEMS datasets,
following TimeMixer Wang et al. (2024), and Mean Squared Error (MSE) as the loss function oth-
erwise.

Table 5: Summary of the experimental configurations for all datasets with a prediction length of 96.

Dataset / Configuration Model Hyperparameter Training Process

Layers Input Length L Pseudo Length L′ Wavelet Initialization Scale S Learning Rate Attention Batch Size Epochs

ETTh1 1 96 32 db1 3 2× 10−2 Geometric 256 10

ETTh2 1 96 32 bior3.1 3 6× 10−3 Geometric 256 10

ETTm1 1 96 32 db1 3 2× 10−2 Geometric 256 10

ETTm2 1 96 32 bior3.1 3 6× 10−3 Geometric 256 10

Weather 1 96 32 db4 3 10−2 Geometric 256 10

Solar-Energy 1 96 128 db8 3 10−2 Geometric 256 10

Electricity 1 96 256 db1 3 10−2 Geometric 256 10

Traffic 1 96 256 db1 3 6× 10−3 Geometric 24 10

PEMS03 1 96 256 bior3.1 3 2× 10−3 Geometric 16 20

PEMS04 1 96 256 bior3.1 3 2× 10−3 Geometric 16 20

PEMS07 1 96 256 db12 3 2× 10−3 Geometric 16 20

PEMS08 1 96 256 db1 3 10−3 Geometric 16 20

B COMPLETE RESULTS OF FORECASTING TASKS

B.1 FULL RESULTS

Long-term forecasting task. In the long-term forecasting results presented in Table 1 of the main
paper, we reported only the averaged performance across four prediction lengths due to space con-
straints. Table 6 provides a comprehensive breakdown of empirical results for each prediction length.
Within each row, the lowest MSE and MAE scores are highlighted in red, and the second-lowest
scores are underscored in blue. Our proposed method consistently achieves near top-2 performance
across all evaluations.

Additional baselines in long-term forecasting. We evaluated our approach against conventional
statistical time series forecasting methods, specifically ARIMA and ETS models, using the ETTh1
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Table 6: Complete results of the long-term forecasting task, with an input length of 96 for all tasks.
The reported metrics include the averaged Mean Squared Error (MSE) and Mean Absolute Error
(MAE) across four prediction horizons, where lower values indicate better model performance.

Model SimpleTM
(Ours)

TimeMixer
(2024)

iTransformer
(2024)

CrossGNN
(2024)

RLinear
(2023)

PatchTST
(2023)

Crossformer
(2023)

TiDE
(2023)

TimesNet
(2023)

DLinear
(2023)

SCINet
(2022)

FEDformer
(2022)

Stationary
(2022)

Autoformer
(2021)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.321 0.361 0.328 0.363 0.334 0.368 0.335 0.373 0.355 0.376 0.329 0.367 0.404 0.426 0.364 0.387 0.338 0.375 0.345 0.372 0.418 0.438 0.379 0.419 0.386 0.398 0.505 0.475
192 0.360 0.380 0.364 0.384 0.377 0.391 0.372 0.390 0.391 0.392 0.367 0.385 0.450 0.451 0.398 0.404 0.374 0.387 0.380 0.389 0.439 0.450 0.426 0.441 0.459 0.444 0.553 0.496
336 0.390 0.404 0.390 0.404 0.426 0.420 0.403 0.411 0.424 0.415 0.399 0.410 0.532 0.515 0.428 0.425 0.410 0.411 0.413 0.413 0.490 0.485 0.445 0.459 0.495 0.464 0.621 0.537
720 0.454 0.438 0.458 0.445 0.491 0.459 0.461 0.442 0.487 0.450 0.454 0.439 0.666 0.589 0.487 0.461 0.478 0.450 0.474 0.453 0.595 0.550 0.543 0.490 0.585 0.516 0.671 0.561
Avg 0.381 0.396 0.385 0.399 0.407 0.410 0.393 0.404 0.414 0.407 0.387 0.400 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407 0.485 0.481 0.448 0.452 0.481 0.456 0.588 0.517
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96 0.173 0.257 0.176 0.259 0.180 0.264 0.176 0.266 0.182 0.265 0.175 0.259 0.287 0.366 0.207 0.305 0.187 0.267 0.193 0.292 0.286 0.377 0.203 0.287 0.192 0.274 0.255 0.339
192 0.238 0.299 0.242 0.303 0.250 0.309 0.240 0.307 0.246 0.304 0.241 0.302 0.414 0.492 0.290 0.364 0.249 0.309 0.284 0.362 0.399 0.445 0.269 0.328 0.280 0.339 0.281 0.340
336 0.296 0.338 0.304 0.342 0.311 0.348 0.304 0.345 0.307 0.342 0.305 0.343 0.597 0.542 0.377 0.422 0.321 0.351 0.369 0.427 0.637 0.591 0.325 0.366 0.334 0.361 0.339 0.372
720 0.393 0.395 0.393 0.397 0.412 0.407 0.406 0.400 0.407 0.398 0.402 0.400 1.730 1.042 0.558 0.524 0.408 0.403 0.554 0.522 0.960 0.735 0.421 0.415 0.417 0.413 0.433 0.432
Avg 0.275 0.322 0.278 0.325 0.288 0.332 0.282 0.330 0.286 0.327 0.281 0.326 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401 0.571 0.537 0.305 0.349 0.306 0.347 0.327 0.371
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96 0.366 0.392 0.381 0.401 0.386 0.405 0.382 0.398 0.386 0.395 0.414 0.419 0.423 0.448 0.479 0.464 0.384 0.402 0.386 0.400 0.654 0.599 0.376 0.419 0.513 0.491 0.449 0.459
192 0.422 0.421 0.440 0.433 0.441 0.436 0.427 0.425 0.437 0.424 0.460 0.445 0.471 0.474 0.525 0.492 0.436 0.429 0.437 0.432 0.719 0.631 0.420 0.448 0.534 0.504 0.500 0.482
336 0.440 0.438 0.501 0.462 0.487 0.458 0.465 0.445 0.479 0.446 0.501 0.466 0.570 0.546 0.565 0.515 0.491 0.469 0.481 0.459 0.778 0.659 0.459 0.465 0.588 0.535 0.521 0.496
720 0.463 0.462 0.501 0.482 0.503 0.491 0.472 0.468 0.481 0.470 0.500 0.488 0.653 0.621 0.594 0.558 0.521 0.500 0.519 0.516 0.836 0.699 0.506 0.507 0.643 0.616 0.514 0.512
Avg 0.422 0.428 0.458 0.445 0.454 0.447 0.437 0.434 0.446 0.434 0.469 0.454 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452 0.747 0.647 0.440 0.460 0.570 0.537 0.496 0.487
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96 0.281 0.338 0.292 0.343 0.297 0.349 0.309 0.359 0.288 0.338 0.302 0.348 0.745 0.584 0.400 0.440 0.340 0.374 0.333 0.387 0.707 0.621 0.358 0.397 0.476 0.458 0.346 0.388
192 0.355 0.387 0.374 0.395 0.380 0.400 0.390 0.406 0.374 0.390 0.388 0.400 0.877 0.656 0.528 0.509 0.402 0.414 0.477 0.476 0.860 0.689 0.429 0.439 0.512 0.493 0.456 0.452
336 0.365 0.401 0.428 0.433 0.428 0.432 0.426 0.444 0.415 0.426 0.426 0.433 1.043 0.731 0.643 0.571 0.452 0.452 0.594 0.541 1.000 0.744 0.496 0.487 0.552 0.551 0.482 0.486
720 0.413 0.436 0.454 0.458 0.427 0.445 0.445 0.444 0.420 0.440 0.431 0.446 1.104 0.763 0.874 0.679 0.462 0.468 0.831 0.657 1.249 0.838 0.463 0.474 0.562 0.560 0.515 0.511
Avg 0.353 0.391 0.384 0.407 0.383 0.407 0.393 0.413 0.374 0.398 0.387 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515 0.954 0.723 0.437 0.449 0.526 0.516 0.450 0.459
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96 0.141 0.235 0.153 0.244 0.148 0.240 0.173 0.275 0.201 0.281 0.181 0.270 0.219 0.314 0.237 0.329 0.168 0.272 0.197 0.282 0.247 0.345 0.193 0.308 0.169 0.273 0.201 0.317
192 0.151 0.247 0.166 0.256 0.162 0.253 0.195 0.288 0.201 0.283 0.188 0.274 0.231 0.322 0.236 0.330 0.184 0.289 0.196 0.285 0.257 0.355 0.201 0.315 0.182 0.286 0.222 0.334
336 0.173 0.267 0.184 0.275 0.178 0.269 0.206 0.300 0.215 0.298 0.204 0.293 0.246 0.337 0.249 0.344 0.198 0.300 0.209 0.301 0.269 0.369 0.214 0.329 0.200 0.304 0.231 0.338
720 0.201 0.293 0.226 0.313 0.225 0.317 0.231 0.335 0.257 0.331 0.246 0.324 0.280 0.363 0.284 0.373 0.220 0.320 0.245 0.333 0.299 0.390 0.246 0.355 0.222 0.321 0.254 0.361
Avg 0.166 0.260 0.182 0.272 0.178 0.270 0.201 0.300 0.219 0.298 0.205 0.290 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300 0.268 0.365 0.214 0.327 0.193 0.296 0.227 0.338
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96 0.410 0.274 0.464 0.289 0.395 0.268 0.570 0.310 0.649 0.389 0.462 0.295 0.522 0.290 0.805 0.493 0.593 0.321 0.650 0.396 0.788 0.499 0.587 0.366 0.612 0.338 0.613 0.388
192 0.430 0.280 0.477 0.292 0.417 0.276 0.577 0.321 0.601 0.366 0.466 0.296 0.530 0.293 0.756 0.474 0.617 0.336 0.598 0.370 0.789 0.505 0.604 0.373 0.613 0.340 0.616 0.382
336 0.449 0.290 0.500 0.305 0.433 0.283 0.588 0.324 0.609 0.369 0.482 0.304 0.558 0.305 0.762 0.477 0.629 0.336 0.605 0.373 0.797 0.508 0.621 0.383 0.618 0.328 0.622 0.337
720 0.486 0.309 0.548 0.313 0.467 0.302 0.597 0.337 0.647 0.387 0.514 0.322 0.589 0.328 0.719 0.449 0.640 0.350 0.645 0.394 0.841 0.523 0.626 0.382 0.653 0.355 0.660 0.408
Avg 0.444 0.289 0.497 0.300 0.428 0.282 0.583 0.323 0.626 0.378 0.481 0.304 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383 0.804 0.509 0.610 0.376 0.624 0.340 0.628 0.379

W
ea

th
er

96 0.162 0.207 0.165 0.212 0.174 0.214 0.159 0.218 0.192 0.232 0.177 0.218 0.158 0.230 0.202 0.261 0.172 0.220 0.196 0.255 0.221 0.306 0.217 0.296 0.173 0.223 0.266 0.336
192 0.208 0.248 0.209 0.253 0.221 0.254 0.211 0.266 0.240 0.271 0.225 0.259 0.206 0.277 0.242 0.298 0.219 0.261 0.237 0.296 0.261 0.340 0.276 0.336 0.245 0.285 0.307 0.367
336 0.263 0.290 0.264 0.293 0.278 0.296 0.267 0.310 0.292 0.307 0.278 0.297 0.272 0.335 0.287 0.335 0.280 0.306 0.283 0.335 0.309 0.378 0.339 0.380 0.321 0.338 0.359 0.395
720 0.340 0.341 0.342 0.345 0.358 0.347 0.352 0.362 0.364 0.353 0.354 0.348 0.398 0.418 0.351 0.386 0.365 0.359 0.345 0.381 0.377 0.427 0.403 0.428 0.414 0.410 0.419 0.428
Avg 0.243 0.271 0.245 0.276 0.258 0.278 0.247 0.289 0.272 0.291 0.259 0.281 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317 0.292 0.363 0.309 0.360 0.288 0.314 0.338 0.382

So
la

rE
ne
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y 96 0.163 0.232 0.215 0.294 0.203 0.237 0.222 0.301 0.322 0.339 0.234 0.286 0.310 0.331 0.312 0.399 0.250 0.292 0.290 0.378 0.237 0.344 0.242 0.342 0.215 0.249 0.884 0.711

192 0.182 0.247 0.237 0.275 0.233 0.261 0.246 0.307 0.359 0.356 0.267 0.310 0.734 0.725 0.339 0.416 0.296 0.318 0.320 0.398 0.280 0.380 0.285 0.380 0.254 0.272 0.834 0.692
336 0.193 0.257 0.252 0.298 0.248 0.273 0.263 0.324 0.397 0.369 0.290 0.315 0.750 0.735 0.368 0.430 0.319 0.330 0.353 0.415 0.304 0.389 0.282 0.376 0.290 0.296 0.941 0.723
720 0.199 0.252 0.244 0.293 0.249 0.275 0.265 0.318 0.397 0.356 0.289 0.317 0.769 0.765 0.370 0.425 0.338 0.337 0.356 0.413 0.308 0.388 0.357 0.427 0.285 0.295 0.882 0.717
Avg 0.184 0.247 0.237 0.290 0.233 0.262 0.249 0.313 0.369 0.356 0.270 0.307 0.641 0.639 0.347 0.417 0.301 0.319 0.330 0.401 0.282 0.375 0.291 0.381 0.261 0.381 0.885 0.711

dataset. The evaluation covered four prediction horizons {96, 192, 336, 720}, with standardized
preprocessing procedures applied across all models to ensure a fair comparison. Our proposed
model consistently outperformed these methods across all prediction horizons, as shown in Table 7.
This performance gap widened with increasing prediction lengths, aligning with our observations
of these models. Statistical methods like ARIMA and ETS require a sufficient lookback period for
robust parameter estimation and struggle with longer forecasting lengths due to error accumulation.

Table 7: Performance comparison of additional statistical models on the ETTh1 dataset across vary-
ing prediction lengths.

Model ETTh1-96 ETTh1-192 ETTh1-336 ETTh1-720

MSE MAE MSE MAE MSE MAE MSE MAE
SimpleTM 0.366 0.392 0.422 0.421 0.440 0.438 0.463 0.462

ETS 1.145 0.658 1.185 0.855 1.234 0.963 2.298 1.818

ARIMA 1.010 0.719 1.033 0.635 1.204 0.700 2.269 1.072

We also compare our model’s performance with zero-shot LLM Results Liu et al. (2024b); Woo
et al. (2024); Goswami et al. (2024). We refer to the zero-shot performance reported by TIMER
Liu et al. (2024b). However, because LLM-based models often uses a substantially larger context
window (say 672 steps) than our 96-step lookback, direct comparison is inherently limited. To obtain
a more rigorous assessment, one would need to match context windows and also evaluate fine-tuned
versions of the LLM, an effort that would require significant computational resources. Consequently,
we focus on demonstrating that a specialized model trained for a fixed-horizon forecasting task can
still achieve strong performance, as shown in Table 8.

Short-term forecasting task. For short-term forecasting, we conducted additional comparisons
with TimeMixer Wang et al. (2024), the previous state-of-the-art model, using its official repository
and experimental configuration. The evaluation covered four prediction lengths {12, 24, 48, 96}. Ta-
ble 10 presents the averaged RMSE/MAE values, along with their pooled standard deviations. Our
model demonstrates consistent and statistically significant improvements across all PEMS datasets,

19



Published as a conference paper at ICLR 2025

Table 8: Performance comparison of additional LLM-based models with prediction horizon of 96.

Dataset SimpleTM TIMER-1B TIMER-16B TIMER-28B MOIRAI-S MOIRAI-M MOIRAI-L MOMENT

ETTh1 0.366 0.438 0.364 0.393 0.441 0.383 0.394 0.674

ETTh2 0.281 0.314 0.294 0.308 0.295 0.295 0.293 0.330

ETTm1 0.321 0.690 0.766 0.420 0.562 0.448 0.452 0.670

ETTm2 0.173 0.213 0.234 0.247 0.218 0.225 0.214 0.257

ECL 0.141 0.192 0.139 0.147 0.212 0.162 0.155 0.744

Traffic 0.428 0.458 0.399 0.414 0.616 0.425 0.399 1.293

Weather 0.162 0.181 0.203 0.243 0.195 0.197 0.221 0.255

with error reductions ranging from 5.4% to 17.4%. The most substantial improvements were ob-
served on PEMS08, where our model reduced RMSE by 15.8% and MAE by 17.4%. Notably,
our model also shows more stable performance, as evidenced by the considerably smaller pooled
standard deviations across all metrics and datasets.

B.2 STABILITY ANALYSIS

Pooled standard deviation. The pooled standard deviation is calculated as

s̄d =

√∑4
i=1

∑n
j=1(xij − x̄i)2

4× (n− 1)
,

where n is the repeat times, n− 1 is the degree of freedom within each prediction length, i indexes
the prediction lengths, j indexes the repeats, xij represents individual measurements, and x̄i is the
mean of repeats for each prediction length.

Significance test. To establish statistical significance, we used a Type II ANOVA analysis to assess
the model effects (our proposed model versus other baseline model) while accounting for predic-
tion length variations. The blocking design for prediction length effectively removed this source
of variation from our error term, and increased statistical power to detect genuine differences be-
tween model architectures. The p-values reported in Table 9 test the null hypothesis that there is no
difference in performance between the proposed model and the baseline model.

Results. We compare our proposed model with the second-best linear-based model, TimeMixer
Wang et al. (2024) and third-best transformer-based model, iTransformer Liu et al. (2024a) across
three repeats and four prediction lengths for both long-term and short-term forecasting tasks. As
shown in Table 10, the pooled standard deviations are consistently smaller across all datasets, in-
dicating the stability of our model’s performance regardless of initialization. The consistently low
p-values (p < 0.05) across all datasets confirm that the superior performance of our model is sta-
tistically significant and not attributable to random chance or prediction length variability. This is
further supported by our additional short-term forecasting results with extended prediction lengths
{12, 24, 48, 96}.

C ABLATION STUDY

C.1 ABLATIONS ON ARCHITECTURAL COMPONENTS

To rigorously validate our approach, we conducted additional experiments across four datasets
(ETTh1, ETTm1, Weather, Solar-Energy) with four prediction lengths, each repeated three times.
Through systematic component ablation, we evaluated two key architectural elements: geometric
attention mechanism and the stationary wavelet transform.

Geometric attention mechanism. For geometric attention, we performed a direct comparison with
vanilla attention. While not every dataset benefits equally–depending on the degree of cross-talk
between channels–our findings show consistent performance improvements. For example, we ob-
served a 3.55% MSE reduction on ETTh1 and a 5.43% reduction on Solar-Energy, all achieved
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Table 9: Performance comparison of models on long-term forecasting tasks. The table reports the av-
eraged Mean Squared Error (MSE) and Mean Absolute Error (MAE) across four prediction lengths,
along with their pooled standard deviations (SD). Lower values indicate better model performance.

Dataset Model MSE (Pooled SD) MAE (Pooled SD) MSE p-value MAE p-value

ECL
SimpleTM 0.166 (0.0008) 0.260 (0.0006) - -
TimeMixer 0.182 (0.0012) 0.272 (0.0006) 0.000 0.000
iTransformer 0.175 (0.0009) 0.267 (0.0008) 0.000 0.000

ETTh1
SimpleTM 0.422 (0.0015) 0.428 (0.0007) - -
TimeMixer 0.456 (0.0111) 0.444 (0.0071) 0.000 0.000
iTransformer 0.456 (0.0035) 0.448 (0.0024) 0.000 0.000

ETTh2
SimpleTM 0.353 (0.0021) 0.391 (0.0015) - -
TimeMixer 0.386 (0.0074) 0.407 (0.0043) 0.000 0.000
iTransformer 0.384 (0.0017) 0.407 (0.0010) 0.000 0.000

ETTm1
SimpleTM 0.381 (0.0009) 0.396 (0.0008) - -
TimeMixer 0.385 (0.0048) 0.399 (0.0032) 0.022 0.003
iTransformer 0.408 (0.0012) 0.412 (0.0010) 0.000 0.000

ETTm2
SimpleTM 0.275 (0.0012) 0.322 (0.0011) - -
TimeMixer 0.278 (0.0026) 0.325 (0.0018) 0.001 0.000
iTransformer 0.292 (0.0011) 0.335 (0.0010) 0.000 0.000

Solar
SimpleTM 0.184 (0.0016) 0.247 (0.0031) - -
TimeMixer 0.237 (0.0088) 0.290 (0.0242) 0.000 0.000
iTransformer 0.235 (0.0032) 0.262 (0.0010) 0.000 0.000

Traffic
SimpleTM 0.440 (0.0013) 0.292 (0.0003) - -
TimeMixer 0.497 (0.0087) 0.300 (0.0029) 0.000 0.000
iTransformer 0.422 (0.0008) 0.282 (0.0005) 0.000 0.000

Weather
SimpleTM 0.243 (0.0005) 0.271 (0.0007) - -
TimeMixer 0.245 (0.0012) 0.275 (0.0019) 0.000 0.000
iTransformer 0.261 (0.0023) 0.281 (0.0021) 0.000 0.000

Table 10: Performance comparison of models on short-term forecasting tasks. The table reports the
averaged Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) across four predic-
tion lengths H ∈ {12, 24, 48, 96}, along with their pooled standard deviations (SD). Lower values
indicate better model performance.

Dataset Model RMSE (Pooled SD) MAE (Pooled SD) RMSE p-value MAE p-value

PEMS03 SimpleTM 29.08 (0.154) 17.96 (0.065) - -
TimeMixer 31.73 (0.529) 19.22 (0.278) 0.000 0.000

PEMS04 SimpleTM 32.91 (0.121) 20.34 (0.077) - -
TimeMixer 34.78 (0.472) 21.99 (0.304) 0.000 0.000

PEMS07 SimpleTM 38.00 (0.139) 23.36 (0.085) - -
TimeMixer 40.65 (0.498) 25.44 (0.363) 0.000 0.000

PEMS08 SimpleTM 27.42 (0.114) 17.09 (0.069) - -
TimeMixer 32.58 (2.453) 20.68 (1.776) 0.000 0.000

without any increase in model parameters. The pooled standard deviations, as shown in Table 11,
are small across all datasets, indicating that the performance advantages are stable/reproducible. To
test statistical significance, we performed a Type II ANOVA analysis with the null hypothesis that
there is no difference in performance between baseline model with and without geometric attention.
The consistently low p-values (p < 0.05) across all datasets confirm that the observed improvements
are statistically significant and not attributable to random chance or prediction length variability.

Stationary wavelet transform. For the SWT, we conducted three types of ablation experi-
ments: (i) complete removal of the SWT decomposition and reconstruction; (ii) replacement
with the Fast Fourier Transform (FFT) as the tokenizer and inverse FFT as the de-tokenizer;
(iii) replacement with parameter-matched 1-D convolution layers to ensure fair comparison. The
Performance/Parameters ∆% column in Table 11 shows the percentage change in performance and
total trainable parameters relative to the baseline model.

The results in Table 11 suggest that removing SWT leads to substantial performance degradation,
particularly evident in the Solar dataset where we observed a 34.8% MSE increase despite only
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reducing parameters by 5.27%. Even parameter-matched alternatives underperformed compared to
our model: replacing SWT with equivalent convolutions increased MSE by 16.8% on Solar and
9.8% on Weather. Additionally, FFT-based variants showed performance drops, with 20.7% and
9.8% MSE increases on Solar and Weather, respectively. All of these differences are statistically
significant (p < 0.01), showing that both architectural components contribute to the performance of
our simple baseline presented here. Particularly interesting is the substantial performance gap be-
tween SWT and its convolution-based replacement, which suggests that SWT’s effectiveness stems
from its multi-resolution analysis capabilities rather than merely adding model capacity.

Table 11: Ablation study results for different models across various datasets. Metrics include Mean
Squared Error (MSE) and Mean Absolute Error (MAE) with their pooled standard deviations (SD),
along with percentage changes in performance and parameter counts relative to the baseline model.
Lower MSE/MAE values indicate better performance, while a negative performance delta signifies
performance degradation.

Dataset Model Number of parameters changes? MSE (Pooled SD) Performance worse? MAE (Pooled SD) Performance worse? MSE p-value MAE p-value

ETTh1

SimpleTM - 0.422 (0.0015) - 0.428 (0.0007) - - -
w/o GeomAttn None 0.437 (0.0010) Yes, by -3.55% 0.440 (0.0009) Yes, by -2.80% 0.000 0.000
w/o SWT Yes, by -0.436% 0.432 (0.0050) Yes, by -2.37% 0.435 (0.0043) Yes, by -1.60% 0.000 0.000
Conv-SWT None 0.433 (0.0063) Yes, by -2.60% 0.435 (0.0035) Yes, by -1.60% 0.000 0.000
FFT-SWT Yes, by -0.436% 0.433 (0.0063) Yes, by -2.60% 0.435 (0.0040) Yes, by -1.60% 0.000 0.000

ETTm1

SimpleTM - 0.381 (0.0009) - 0.396 (0.0008) - - -
w/o GeomAttn None 0.385 (0.0011) Yes, by -1.05% 0.398 (0.0009) Yes, by -0.51% 0.000 0.000
w/o SWT Yes, by -0.436% 0.386 (0.0031) Yes, by -1.31% 0.398 (0.0021) Yes, by -0.51% 0.000 0.002
Conv-SWT None 0.389 (0.0025) Yes, by -2.10% 0.399 (0.0020) Yes, by -0.76% 0.000 0.000
FFT-SWT Yes, by -0.436% 0.390 (0.0017) Yes, by -2.36% 0.399 (0.0009) Yes, by -0.76% 0.000 0.000

Solar

SimpleTM - 0.184 (0.0016) - 0.247 (0.0031) - - -
w/o GeomAttn None 0.194 (0.0123) Yes, by -5.43% 0.253 (0.0127) Yes, by -2.40% 0.018 0.120
w/o SWT Yes, by -5.27% 0.246 (0.0010) Yes, by -34.8% 0.289 (0.0008) Yes, by -17.0% 0.000 0.000
Conv-SWT None 0.215 (0.0125) Yes, by -16.8% 0.273 (0.0158) Yes, by -10.5% 0.000 0.000
FFT-SWT Yes, by -5.27% 0.222 (0.0187) Yes, by -20.7% 0.284 (0.0198) Yes, by -15.0% 0.000 0.000

Weather

SimpleTM - 0.243 (0.0005) - 0.271 (0.0007) - - -
w/o GeomAttn None 0.245 (0.0021) Yes, by -0.82% 0.273 (0.0018) Yes, by -0.74% 0.007 0.032
w/o SWT Yes, by -0.426% 0.247 (0.0014) Yes, by -1.65% 0.274 (0.0006) Yes, by -1.11% 0.000 0.000
Conv-SWT None 0.267 (0.0006) Yes, by -9.88% 0.285 (0.0005) Yes, by -5.17% 0.000 0.000
FFT-SWT Yes, by -0.426% 0.267 (0.0008) Yes, by -9.88% 0.286 (0.0005) Yes, by -5.54% 0.000 0.000

C.2 ADDITIONAL ABLATIONS

Inter-channel dependencies. In our tested datasets, recent results (e.g., PatchTST Nie et al. (2023))
have shown that individual channels were often sufficient for making reasonable forecasts, indicating
limited direct correlations between channels. However, our experiments show that incorporating all
channels in the token embedding improves forecasting performance compared to single-channel
embeddings (where the bivector reduces to a scalar), as shown in Table 12.

This improvement likely comes from how our attention mechanism uses the channel information.
While not explicitly mixing channels through projection layers, it computes attention weights using
all channels simultaneously as well as using cross-channel relationship through the wedge product.
This allows features across all channels to collectively determine how much each token’s full channel
vector contributes to the final representation, creating an implicit form of channel interaction. We
hypothesize that the model adaptively captures useful channel relationships when they exist, while
avoiding imposing artificial correlations when they do not.

Table 12: Performance comparison of SimpleTM with and without the Independence feature across
three datasets. Metrics include Mean Squared Error (MSE) and Mean Absolute Error (MAE) with
pooled standard deviations (SD), along with p-values for statistical significance.

Dataset Model MSE (Pooled SD) MAE (Pooled SD) MSE p-value MAE p-value

ETTh1 SimpleTM 0.422 (0.0015) 0.428 (0.0007) - -
+ Independence 0.451 (0.0073) 0.444 (0.0035) 0.000 0.000

ETTm1 SimpleTM 0.381 (0.0009) 0.396 (0.0008) - -
+ Independence 0.394 (0.0079) 0.400 (0.0055) 0.000 0.007

Weather SimpleTM 0.243 (0.0005) 0.271 (0.0007) - -
+ Independence 0.268 (0.0024) 0.286 (0.0019) 0.000 0.000
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D EFFICIENCY ANALYSIS

To provide a thorough efficiency comparison, we evaluated our model against two of the most
competitive baselines: the transformer-based iTransformer Liu et al. (2024a) and linear-based
TimeMixer Wang et al. (2024). Our experimental setup used a consistent batch size of 256 across
all models and measured four key metrics: total trainable parameters, inference time, GPU memory
footprint, and peak memory usage during the backward pass. Results for all baseline models were
compiled using PyTorch.

Our findings demonstrate remarkable efficiency improvements: On the Weather dataset, our model
achieves better accuracy while using only 0.3% of iTransformer’s parameters (13K vs 4.8M) and
13% of TimeMixer’s parameters (13K vs 104K). Our memory footprint is 38% smaller than iTrans-
former’s and 66% smaller than TimeMixer’s. In terms of speed, our model is 1.7x faster than
iTransformer and 3.4x faster than TimeMixer. These efficiency gains are even more pronounced
on the larger Solar-Energy dataset, where our model uses just 1.3% of TimeMixer’s parameters
(166K vs 13M) while achieving 24% better accuracy. Our memory consumption is 73% lower than
TimeMixer’s, and inference speed is 5.8x faster. Notably, these improvements come without com-
promising performance, as our model maintains superior or comparable MSE scores across both
datasets.

In the reported experiments, we prioritize memory and computation efficiency by choosing the
bivector’s magnitude for the reduction function ζ(·). However, we have a fair bit of flexibility to
upgrade the reduction function later for additional performance gains.

Table 13: Comparison of model performance and resource utilization across different datasets. Met-
rics include Mean Squared Error (MSE), total parameter count, inference time (seconds), GPU mem-
ory footprint (MB), and peak memory usage (MB).

Dataset Model MSE Total Params Inference Time (s) GPU Mem Footprint (MB) Peak Mem (MB)

Weather

SimpleTM 0.162 13,472 0.0132 994 181.75
TimeMixer 0.164 104,433 0.0453 2,954 2,281.38
iTransformer 0.176 4,833,888 0.0222 1,596 847.62

Solar

SimpleTM 0.163 166,304 0.0455 2,048 1,181.56
TimeMixer 0.215 13,009,079 0.2644 7,576 6,632.40
iTransformer 0.203 3,255,904 0.0663 4,022 2,776.50

Potential benefits from Parallelization. While our current implementation follows a standard SWT
approach, additional opportunities for further optimization are possible. In the standard SWT, each
level’s approximation is convolved with an upsampled wavelet filter to yield the next level’s ap-
proximation and detail coefficients. Because no downsampling occurs, there is no inherent data
dependency between levels, yet an iterative formulation does not exploit this property. By rec-
ognizing that each scale can be expressed directly as a convolution of the original signal with an
appropriately composite filter, one can bypass the step-by-step procedure and compute all levels in
parallel. This approach leverages convolution’s associativity to collapse the iterative chain into a
set of direct convolutions, each mapping from the original input to a given scale’s approximation or
detail.

Let h↑2s−1 and g↑2s−1 denote the upsampled low-pass and high-pass filters at level s by inserting
2s−1 zeros between each tap. We can define composite filters Hs and Gs via the recurrences

Hs = Hs−1 ∗ h↑2s−1 and Gs = Hs−1 ∗ g↑2s−1 , for s > 1,

starting from H1 = h and G1 = g. This recurrence builds up the composite filter by succes-
sively convolving the upsampled filters from previous levels, capturing the cumulative filtering. By
associativity, the outputs at level s become

a(s) = u ∗Hs and d(s) = u ∗Gs,

thus eliminating the need to explicitly compute a(s−1) first. This parallelized approach would allow
all convolutions to be applied directly to the original signal u and launched simultaneously on mod-
ern hardware accelerators, potentially reducing computational overhead in real-time or large-scale
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wavelet-based applications. The direct implementation of these convolutions using the composite
filters would involve operations with dense matrices, giving up at least some of the parallelization
gains. To address this, further optimization can be achieved by approximating these convolutions
using structured matrices, such as circulant matrices. This circulant approximation replaces the
upsampled filters with wrapped versions, allowing the use of FFT. Here, we are leveraging the shift-
invariance of circulant matrices, with the understanding that trade-offs exist between speed and
accuracy. We leave the implementation and evaluation of these modifications for future work, but
note that it is a promising direction for improvements.

E SHOWCASING AND CHECKING FORECASTING CAPABILITIES

Our forecasting model demonstrates its ability to predict trends across various time series datasets,
including ECL, Traffic, Solar Energy, and Weather. Each example uses a 96-step input to generate
96-step predictions. In the visualizations, the blue lines represent the lookback window, the orange
lines indicate the ground truth forecasting window, and the red lines show the model’s predictions.
The model’s strengths lie in pattern recognition and trend prediction. It is good at identifying and
extrapolating recurring patterns, particularly evident in the Traffic dataset (Fig 8), where it accurately
captures cyclical nature and oscillations. In the Solar-Energy dataset (Fig 10), the model successfully
predicts overall directional trends.

However, there are areas for improvement. The model sometimes struggles with precise amplitude
prediction, as seen in the ECL dataset, where predicted peaks and troughs do not always align
perfectly with the ground truth. Phase shifts between predicted and actual values are also observed in
some Traffic dataset forecasts (Fig 9), suggesting a need for improved timing mechanisms. Handling
anomalies shows another challenge. The model occasionally struggles with sudden spikes or dips,
particularly evident in the Solar Energy dataset. Additionally, in longer predictions, the model shows
signs of instability or drift, as observed in certain forecasts for the ECL and Weather dataset.

In summary, while the model demonstrates adaptability to different scales and patterns, there’s room
for improvement in amplitude accuracy, phase alignment, anomaly handling, and long-term stability.
Future work should focus on addressing these limitations to enhance the model’s robustness and
accuracy across diverse time series forecasting tasks.
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Figure 8: Forecasting examples from the ECL dataset with a 96-step input and 96-step predictions.

Figure 9: Forecasting examples from the Traffic dataset with a 96-step input and 96-step predictions.
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Figure 10: Forecasting examples from the Solar dataset with a 96-step input and 96-step predictions.

Figure 11: Forecasting examples from Weather dataset with a 96-step input and 96-step predictions.
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