
BOLAA: Benchmarking and Orchestrating LLM Autonomous Agents

Anonymous ACL submission

Abstract
The massive successes of large language mod-001
els (LLMs) encourage the emerging explo-002
ration of LLM-augmented Autonomous Agents003
(LAAs). An LAA is able to generate actions004
with its core LLM and interact with environ-005
ments, which facilitates the ability to resolve006
complex tasks by conditioning on past interac-007
tions such as observations and actions. Since008
the investigation of LAA is still very recent,009
limited explorations are available. Therefore,010
we provide a comprehensive comparison of011
LAA in terms of both agent architectures and012
LLM backbones. Additionally, we propose a013
new strategy to orchestrate multiple LAAs such014
that each labor LAA focuses on one type of ac-015
tion, i.e. BOLAA, where a controller manages016
the communication among multiple agents. We017
conduct simulations on both decision-making018
and multi-step reasoning environments, which019
comprehensively justify the capacity of LAAs.020
Our performance results provide quantitative021
suggestions for designing LAA architectures022
and the optimal choice of LLMs, as well as the023
compatibility of both.024

1 Introduction025

Recent booming successes of large language mod-026

els (LLMs) (OpenAI, 2023; Touvron et al., 2023)027

motivate emerging exploration of employing LLM028

to tackle various complex tasks (Zhang et al., 2023),029

amongst which LLM-augmented Autonomous030

Agents (LAAs) (Shinn et al., 2023; Madaan et al.,031

2023b; Huang et al., 2022; Kim et al., 2023; Paul032

et al., 2023; Yao et al., 2023a) stand with most spot-033

lights. LAA extends the intelligence of LLM to se-034

quential action executions, exhibiting superiority in035

interacting with environments and resolving com-036

plex tasks via collecting observations. To name a037

few, BabyAGI1 proposes an AI-powered task man-038

agement system, which leverages OpenAI LLM2039

1https://github.com/yoheinakajima/babyagi
2https://platform.openai.com/docs/

api-reference

to create, prioritize, and execute tasks. AutoGPT3 040

is another popular open-source LAA framework 041

that enables the API calling capability of LLMs. 042

ReAct (Yao et al., 2023a) is a recently proposed 043

LAA method to interact with environments then 044

consecutively generate the next action. Langchain4 045

is a recently released open-source framework for 046

developing LAA. 047

Due to the initial investigation, LAA is rather 048

under-explored. Firstly, the optimal agent archi- 049

tecture is undetermined. ReAct (Yao et al., 2023a) 050

prompts the agents with pre-defined examples such 051

that the LLM learns to generate the next action 052

via in-context learning. Moreover, ReAct argues 053

that an agent should have intermediate reason- 054

ing steps before action executions. ReWOO (Xu 055

et al., 2023) introduces additional planning steps 056

for LAA. Langchain generalizes the ReAct agent 057

with zero-shot tool usage ability. Intrinsically, the 058

optimal architecture of agents should be aligned 059

with both tasks and the associated LLM backbone, 060

which is less explored in the existing works. 061

Secondly, understanding the efficacy of the ex- 062

isting LLMs in LAA is far from comprehensive. 063

The existing preliminary works only compare the 064

performances of a few LLM backbones. ReAct 065

adopts the PaLM (Chowdhery et al., 2022) as 066

the backbone LLM. ReWOO employs OpenAI 067

text-davinci-003 model for instruction-tuning Al- 068

paca model (Taori et al., 2023) for agent planning. 069

MIND2Web (Deng et al., 2023) compares Flan-T5 070

and OpenAI GPT3.5/4 for generalist web agent. 071

Nevertheless, few current works comprehensively 072

compare the performance of LAA with regard to 073

various pre-trained LLMs. A very recent work (Liu 074

et al., 2023) releases a benchmark for evaluating 075

LLMs as Agents. Nevertheless, they fail to jointly 076

consider the agent architectures along with their 077

3https://github.com/Significant-Gravitas/
Auto-GPT

4https://github.com/langchain-ai/langchain
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LLM backbones. Selecting the optimal LLMs from078

both efficacy and efficiency perspectives advances079

the current exploration of LAA.080

Thirdly, the increasing complexity of tasks may081

require the orchestration of multiple agents. Re-082

WOO recently identifies that decoupling reasoning083

from observation improves the efficiency for LAA.084

In this paper, we argue that as the task complexity085

increases, especially in open-domain environments,086

it is better to coordinate multiple agents to com-087

plete one task. For example, regarding the web088

navigation task, we could employ one click agent089

to interact with clickable buttons and request an-090

other search agent to retrieve additional resources.091

Nonetheless, there are few works discussing how092

to orchestrate multiple agents and investigating the093

impacts of orchestration.094

To address these research gaps, this paper pro-095

poses to comprehensively compare the perfor-096

mances of LAAs. We dive deep into the agent archi-097

tecture of LAAs and the LLM backbones. Specif-098

ically, we construct agent benchmarks from the099

existing environments to evaluate the performances100

of various agent architectures built upon various101

LLM backbones. The tasks in our agent bench-102

marks are associated with different task complexity103

levels, which enables the agent performance anal-104

yses w.r.t. task complexity. Those agent architec-105

tures are designed to extensively verify the existing106

design choices. Regarding the orchestration of mul-107

tiple LAAs, we propose a novel LAA architecture108

BOLAA5, which has a controller module on top109

of multiple labor agents, for enabling the selection110

and communication between multiple labor LAAs.111

The contributions of this paper are as follows:112

• We develop 6 different LAA agent architecture.113

We combine them with various backbone LLMs114

to justify the designing intuition of LAA from115

prompting, self-thinking, and planning. We also116

develop BOLAA for orchestrating multi-agent117

strategy, which enhances the action interaction118

ability of solo agents.119

• We conduct extensive experiments on both120

decision-making web navigation environment121

and knowledge reasoning task environment. We122

report the performance in terms of final sparse123

rewards and intermediate recalls, which provides124

qualitative indications for the optimal choice of125

LAAs as well as their compatible LLMs.126

5For easy memorizing, we intentionally name it the same
as paper title.

• BOLAA on the WebShop environment consis- 127

tently yields the best performance compared with 128

other LAA architectures. Our results demon- 129

strate that the importance of designing specialist 130

agents to collaborate on resolving complex task, 131

which should be as equally important as training 132

a large LLM with high generalization ability. 133

2 Related Work 134

2.1 Augmented Language Agent Architecture 135

The completion of a complex task typically en- 136

tails multiple stages. An agent must possess 137

an understanding of these stages and plan ac- 138

cordingly. Chain-of-Thoughts (CoT) (Wei et al., 139

2022) is a groundbreaking work that prompts 140

the agent to deconstruct challenging reasoning 141

tasks into smaller, more manageable steps. On 142

the other hand, ReAct (Yao et al., 2023a) pro- 143

poses leveraging this aptitude for reasoning and 144

action. This agent architecture has given rise to var- 145

ious applications, including HuggingGPT (Shen 146

et al., 2023), Generative Agents (Park et al., 147

2023), WebGPT (Nakano et al., 2021), Auto- 148

GPT (Gravitas, 2023), BabyAGI (Nakajima, 2023), 149

and Langchain (Chase, 2023). However, these 150

approaches neglect to incorporate valuable feed- 151

back, such as environment rewards, to enhance 152

the agent’s behaviors. Self-refine (Madaan et al., 153

2023a; Murthy et al., 2023; Hao et al., 2023; Shinn 154

et al., 2023; Yao et al., 2023b) tackles this limi- 155

tation by employing a single LLM as a generator, 156

refiner, and provider of feedback, enabling iterative 157

refinement of outputs. 158

2.2 Web and Tool Agent 159

Web navigation is the foundation for humans to 160

collect information and communicate. Before the 161

boom of LLM, previous endeavours (Liu et al., 162

2018; Shi et al., 2017) already explored how to 163

train web agent in a web simulation environment. 164

Very recently, a series of works have been devoted 165

to developing LAA to tackle complex web naviga- 166

tion tasks. MIND2Web (Deng et al., 2023) collects 167

a web browser data to fine-tune LLM to generate 168

executable actions, which functions as a Web LAA. 169

WebAgent (Gur et al., 2023) is able to decompose 170

task instruction into sub-tasks, which directly gen- 171

erates executable python program for web navi- 172

gation. WebArena (Zhou et al., 2023) supports 173

realistic tasks simulation for designing Web LAA. 174

Langchain and ChatGPT redefines LLM to behave 175
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as Web LAA. We believe that the web navigation is176

one of the next fundamental task for LAA to shine177

its superiority.178

Besides web browsing, LLMs are also able to179

leverage external tools to enhance their capabili-180

ties and solve complex tasks, such as Gorilla (Patil181

et al., 2023), ToolLLM (Qin et al., 2023), tool doc-182

umentation (Hsieh et al., 2023) and etc. These183

works verify the superior ability of LLMs in har-184

nessing tools to solve more complex and open do-185

main tasks.186

3 Agent Architectures187

In this section, we compare various LAA archi-188

tectures. We first present how to design different189

solo LAA based on the intuition of existing work.190

We then present the our orchestration designing of191

multiple LAAs, i.e. BOLAA.192

3.1 Solo Agents193

Hereafter, we present 5 different LAAs. Each type194

of LAA is able to interact with the environment195

with its own interaction strategy.196

Zeroshot LAA (ZS-LAA) directly extends the197

LLM to be action executor. Specifically, the prompt198

for LLMs to function as the action executor con-199

sists of detailed descriptions for those actions. For200

example, if we prompt LAA to understand the click201

action with “click: using this action to click ob-202

served [button], the clickable buttons are in [].", it203

may behave as a web navigation agent. We present204

the architecture of ZS-LAA in Figure 1(a). The205

working flow is as follows:206

• Initial step: firstly, the ZS-LAA receives the task207

instruction and constructs the zeroshot prompt.208

Then, the LLM layer generates a possible re-209

sponse, which is parsed to output a feasible ac-210

tion. After that, the observation from environ-211

ment is appended into the agent memory.212

• Working teps: the agent checks whether the task213

is finished. If not, ZS-LAA retrieves the previ-214

ous actions and observations from memory, and215

constructs the prompts for LLM to generate the216

next executable actions. ZS-LAA continues the217

working stage until reaching the maximum steps218

or completing the task.219

ZS-LAA is a minimum LAA architecture. It en-220

ables the action generation ability of LLM via ze-221

roshot prompt layer, which is easy to generalize to222

new environments and requires no examples.223

ZeroshotThink LAA (ZST-LAA) is an ex- 224

tended version of ZS-LAA. Different from ZS- 225

LAA, ZST-LAA has an additional self-think flow. 226

The architecture of ZST-LAA is presented in Fig- 227

ure 1(b), where we denote the self-think flow as in 228

pink arrow lines. Self-think is running in intermedi- 229

ate steps of action generations flow, which enables 230

the Chain-of-Thought (CoT) reasoning ability. 231

• Self-think Step: before generating the next action, 232

ZST-LAA collect observations and previous ac- 233

tions to construct the think prompt. Then, the 234

thought is stored into memory. 235

Self-think step is generally useful when given rea- 236

soning tasks. Note that the think prompt is also in a 237

zero-shot format, such as “think: using this action 238

to plan your actions and reasoning". 239

ReAct LAA additionally advances ZST-LAA in 240

the prompt layer, where fewshot examples are pro- 241

vided. The architecture of ReAct LAA is illustrated 242

in Figure 1(c). ReAct LAA is able to leverage suc- 243

cessful running examples to improve the action 244

generation ability of LLM and enhance the environ- 245

ment interaction of LAA, because those fewshot 246

examples endows the in-context learning ability of 247

LLM. However, the drawback for ReAct LAA is 248

that, due to the limited context length, fewer token 249

spaces are available after the occupancy of fewshot 250

examples in the prompt. 251

PlanAct LAA is designed to facilitate the plan- 252

ning ability of LAA. PlanAct LAA differs from 253

ZS-LAA in two parts: 1) the planning flow and 2) 254

the fewshot prompt. The architecture is depicted 255

in Figure 2. The planning flow is executed before 256

the initial action generation step, which has addi- 257

tional plan prompt to construct the input for the 258

core LLM. 259

• Planning Step: PlanAct LAA generates a plan for 260

a given task before interacting with environments. 261

The plan is memorized and will be retrieved to 262

construct prompts. 263

It is worth noting that the plan prompt in this paper 264

is in fewshot way, which allows LAA to generate 265

plans based on previous successful plans. 266

PlanReAct LAA extends PlanAct LAA with ad- 267

ditional self-think flow, which also enables the CoT 268

ability. The architecture of PlanReAct LAA is pre- 269

sented in Figure 2. Intuitively, since the Planning 270

flow is executed before the LAA observes the envi- 271

ronment, self-think flow alleviates the hallucination 272

incurred from incorrect plans. 273
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Next, we introduce our multi-agent orchestrating274

architecture, i.e. BOLAA.275

3.2 BOLAA: Orchestrating Multiple Agents.276

Though the success of the existing LLMs in277

completing various language understanding tasks,278

plenty of issues are still under-explored, such as279

the context length constraints, in-context learning280

and generalization ability, and etc. Hence, it is281

challenging to employ a solo LAA to complete all282

tasks, especially when tasks are of high complexity.283

Therefore, we propose a new agent architecture for284

orchestrating multiple LAAs, which is illustrated285

in Figure 3. BOLAA has two main modules, the286

labor agents pool and the controller. The labor287

agents pool manages multiple LAAs. Each LAA288

may only focus on generating one type of actions.289

For example, in the web navigation environment,290

we could establish click LAA and search LAA. In291

this way, the former only generates the next button292

to click, while the later only outputs search query,293

which divides a complex task into feasible tasks.294

The controller is devised to selectively call LAAs295

from agents pool. Controller has agents selection296

layer to choose the most relevant LAA(s) to call.297

Agent Selection in BOLAA is the core part for298

orchestration. In this paper, we investigates two 299

types of selection process, i.e. heuristic-based and 300

LLM-based method. The heuristic-based method 301

is to pre-define rules for selecting the labor LAA. 302

Rules could be defined based on observation, gen- 303

erated actions, etc. The LLM-based method is de- 304

signing the controller based an LLM, and enabling 305

the labor agent selection as an action generation 306

process of the LLM. As such, the controller is func- 307

tioning as the orchestrator agent, and its action is 308

to select the optimal labor agent. 309

After selecting the labor LAA, the controller 310

constructs the message for the selected LAA and 311

builds the communication. After obtaining the re- 312

sponse from the labor LAA, the controller parses it 313

to an executable action and then interacts with the 314

environment. Note that we can also design those 315

labor LAAs to be think/plan agent. In this way, the 316

self-think and plan work flows are also retained. 317

4 Experiment 318

4.1 Environment Benchmark 319

We construct the evaluation benchmarks from 320

two environments, i.e., the WebShop (Yao et al., 321

preprint) and HotPotQA (Yang et al., 2018) with 322

Wikipedia API usage (Yao et al., 2023a). In Web- 323

Shop enviroment, we sample 900 tasks ranging 324

from 6 different complexity levels for benchmark 325

evaluation. The BOLAA in WebShop is devised to 326

be the orchestration on one search LAA and one 327

click LAA to generate search query and click el- 328

ements, respectively. And the selection layer is 329

heuristic-based. Labor LAAs are selected based 330

on observations. In HotPotQA environment, we 331

sample 300 tasks from 3 complexity levels. The 332
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BOLAA in HotPotQA is a reasoning LAA and a333

search LAA, which tackling question reasoning334

and document retrieval tasks, respectively. The se-335

lection layer is LLM-based, where we designed336

prompts to ask LLM to select which LAA to call.337

More details about environments are in appendix.338

4.2 Evaluation Metrics339

We mainly use the reward score in each environ-340

ment to evaluate the performances of LAAs. In341

the WebShop environment, the reward is defined as342

the attribute overlapping ratio between the bought343

item and ground truth item. In HotPotQA environ-344

ment, the reward is defined as the F1 score grading345

between agent answer and ground-truth answer.346

Additionally, we develop the Recall performance347

for WebShop environment, which is defined as 1 if348

the ground truth item is retrieved and 0 if not dur-349

ing one task session. The Recall is reported as the350

average recall scores across all tasks in WebShop351

environment.352

4.3 LLM Utilization353

The core component of LAA is the LLM back-354

bone. We compare different LLMs with various355

choices of model size and context length. We re-356

ported the results w.r.t. open LLM models such as357

fastchat-3b, vicuna-1.3-7b/13b/33b (Zheng et al.,358

2023), Llama-2-7b/13b/70b6 (Touvron et al., 2023),359

MPT-7b/30b (Team, 2023), xgen-8k-7b, longchat-360

16k-7b/13b and OpenAI API LLMs, including text-361

davinci-003, gpt-3.5-turbo and gpt-3.5-turbo-16k.362

4.4 Decision-making Simulation363

In this section, we present and compare the364

decision-making performances of LAAs in the365

WebShop environment. The performance regard-366

ing the average reward is reported in Table 1. The367

6All Llama-2 models are -chat-hf version.

agent prompts are constructed based on the maxi- 368

mum context length of different LLM models. We 369

have the following observation: 370

• BOLAA performs the best compared with the 371

other LAA architectures, especially when built 372

on the high performing LLMs. BOLAA is able 373

to actively select the appropriate LAA and yield 374

qualitative communication, which stabilizes the 375

action generation. We observe that BOLAA, 376

when paired with a 3b fastchat-t5 LLM, per- 377

forms comparably to other LAA architectures 378

with more powerful LLMs. The superiority of 379

BOLAA indicates that orchestrating multiple 380

smaller-sized LAAs is a better choice if the com- 381

puting resources are limited. This further ex- 382

emplifies the potential for fine-tuning multiple 383

smaller-sized specialised LAAs rather than fine- 384

tuning one large generalized LAA. 385

• Pairing the LLM with the optimal LAA archi- 386

tecture is crucial. For example, Llama-2-13b 387

performs best under PlanAct LAA arch while 388

Llama-2-70b performs best under the BOLAA 389

arch. Also, Longchat-13b-16K performs best 390

when using PlanAct and PlanReAct, which may 391

indicate the extraordinary planning ability of 392

longchat-13b-16k models. 393

• Increasing the context length alone may not nec- 394

essarily improve the LAA performances. For ex- 395

ample, when comparing longchat-13b-16k with 396

llama-2-13b models, the latter yields better per- 397

formances though with less context length. By 398

checking the running log of those LAAs, we ob- 399

serve more occurrence of hallucinated generation 400

when the LAA runs for more steps, which in the 401

end degrades the benefits of longer context. 402

• A powerful LLM is able to generalize under the 403

zeroshot LAA arch. The best performance of 404
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Table 1: Average reward in the WebShop environment. Len denotes the maximum context length. Bold results
denote the best results in one row, i.e. best LAA architecture w.r.t. one LLM. Underline results denote the best
performance in one column, i.e. best LLM regarding one LAA architecture.

LLM Len.
LAA Architecture

ZS ZST ReAct PlanAct PlanReAct BOLAA
fastchat-t5-3b 2k 0.3971 0.2832 0.3098 0.3837 0.1507 0.5169
vicuna-7b 2k 0.0012 0.0002 0.1033 0.0555 0.0674 0.0604
vicuna-13b 2k 0.0340 0.0451 0.1509 0.3120 0.4127 0.5350
vicuna-33b 2k 0.1356 0.2049 0.1887 0.3692 0.3125 0.5612
llama-2-7b-chat 4k 0.0042 0.0068 0.1248 0.3156 0.2761 0.4648
llama-2-13b-chat 4k 0.0662 0.0420 0.2568 0.4892 0.4091 0.3716
llama-2-70b-chat 4k 0.0122 0.0080 0.4426 0.2979 0.3770 0.5040
mpt-7b-instruct 8k 0.0001 0.0001 0.0573 0.0656 0.1574 0.0632
mpt-30b-instruct 8k 0.1664 0.1255 0.3119 0.3060 0.3198 0.4381
xgen-8k-7b-instruct 8k 0.0001 0.0015 0.0685 0.1574 0.1004 0.3697
longchat-7b-16k 16k 0.0165 0.0171 0.069 0.0917 0.1322 0.1964
longchat-13b-16k 16k 0.0007 0.0007 0.2373 0.3978 0.4019 0.3205
text-davinci-003 4k 0.5292 0.5395 0.5474 0.4751 0.4912 0.6341
gpt-3.5-turbo 4k 0.5061 0.5057 0.5383 0.4667 0.5483 0.6567
gpt-3.5-turbo-16k 16k 0.5657 0.5642 0.4898 0.4565 0.5607 0.6541

OpenAI API-based models are actually under ZS405

and ZST arch. This indicates the great poten-406

tial of developing a generic LAA with power-407

ful LLM. Actually, this is currently what open-408

source projects are working towards, directly call-409

ing OpenAI API and tuning the zeroshot agent410

prompt instead. Our benchmark results quanti-411

tatively justify that using only a ZS LAA can412

already achieve comparable or even better perfor-413

mances than LAA arch with additional Plan or414

Self-think flow. However, for other less powerful415

LLMs, fewshot prompts are necessary for LAAs.416

• Plan flow generally improves the performances417

when the agent is built on open-source LLMs. By418

comparing the performances of ReAct, PlanAct419

and PlanReAct, we observe a performance gain420

on most LLM cases when using plan flow. How-421

ever, planning and thinking require the LLM to422

be able to reason in steps, which may be challeng-423

ing for small size LLMs. For example, fastchat-424

t5-3b performs above average on ZS LAA arch.425

But the performance degrades by a large margin426

under PlanReAct arch.427

We also report the intermediate Recall perfor-428

mances for all LAAs, which are illustrated in Ta-429

ble 2. High recall performances indicate that the430

LAA is capable of generating a precise search431

query. High recalls usually lead to better rewards.432

But they are not tightly related. For example, 433

Llama-2-70b has a recall performance of nearly 434

0.3344 on ZS LAA, which is comparable to the 435

best LAA. However, the reward performance in Ta- 436

ble 1 of ZS LAA Llama-2-70b is only 0.0122. The 437

reason is that generating the search query requires 438

a different LLM ability from generating the correct 439

click action, where the latter is more challenging. 440

Another observation is that our proposed BOLAA 441

generally performs the best on all LLMs, which 442

indicates that separating the search agent from the 443

click agent improves the accuracy of the search 444

action, leading to a higher recall value. 445

LAA performance w.r.t. Complexity. After 446

the overall performances of those LAAs and LLMs 447

are compared, we conduct more details investiga- 448

tion of the performance w.r.t. the task complexity. 449

Due to the space limitation, we only report the 450

performance of text-davinci-003 and llama-2-70b. 451

The reward performance is illustrated in Figure 4. 452

The BOLAA model consistently performs better 453

on all complexity levels. We also observe the de- 454

graded performances when the task complexity is 455

increased, which follows the intuition. Surprisingly, 456

we find out that further increasing the complexity 457

of tasks greater than 4 will not further degrade the 458

performances. The reason is that the recall perfor- 459

mance increases when the task is of higher com- 460

plexity. This is due to the fact that high-complexity 461
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Table 2: Average recall in the WebShop environment. Len denotes the maximum context length. Bold results denote
the best results in one row, i.e. best LAA architecture w.r.t. one LLM. Underline results denote the best performance
in one column, i.e. best LLM regarding one LAA architecture.

LLM Len.
LAA Architecture

ZS ZST ReAct PlanAct PlanReAct BOLAA
fastchat-t5-3b 2k 0.3533 0.3122 0.3800 0.3700 0.3722 0.3867
vicuna-7b 2k 0.0833 0.0500 0.3600 0.3233 0.3278 0.3522
vicuna-13b 2k 0.0867 0.0644 0.3622 0.3444 0.2367 0.3700
vicuna-33b 2k 0.3600 0.3411 0.3822 0.3733 0.3567 0.3956
llama-2-7b-chat 4k 0.0678 0.0311 0.3744 0.3400 0.3578 0.3856
llama-2-13b-chat 4k 0.2856 0.2211 0.3844 0.3278 0.3500 0.4078
llama-2-70b-chat 4k 0.3344 0.3244 0.3789 0.3400 0.3600 0.4011
mpt-7b-instruct 8k 0.0144 0.0322 0.3644 0.3200 0.3400 0.3600
mpt-30b-instruct 8k 0.2973 0.3372 0.3333 0.3575 0.3412 0.3900
xgen-8k-7b-instruct 8k 0.0667 0.1400 0.3711 0.3400 0.3278 0.3800
longchat-7b-16k 16k 0.1344 0.1856 0.3644 0.3622 0.3622 0.3811
longchat-13b-16k 16k 0.0756 0.0867 0.3678 0.3467 0.3471 0.3789
text-davinci-003 4k 0.3800 0.3856 0.3767 0.3711 0.3889 0.3956
gpt-3.5-turbo 4k 0.3889 0.3756 0.3933 0.3789 0.3867 0.3929
gpt-3.5-turbo-16k 16k 0.3856 0.3833 0.4011 0.3756 0.3811 0.3933
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Figure 4: The reward w.r.t. task complexity in WebShop.
Each bar represents one LAA.

task instruction provides more additional context462

information for the LAA. As such, the search ac-463

tion can be more specific and accurate under high 464

complexity levels. 465

4.5 Knowledge Reasoning Simulation 466

We benchmark on the HotPotQA environment to 467

evaluate the multi-step reasoning ability of LAAs. 468

However, we observe the rather poor performance7 469

of BOLAA in this environment when orchestrat- 470

ing one reasoning agent and one search agent. We 471

hypothesize that the available search, lookup and 472

finish operations are all related to knowledge rea- 473

soning in this environment and hard to separate as 474

multiple agents. We therefore leave the BOLAA 475

arch for future work and only compare the perfor- 476

mance on other agent arches. The results are in 477

Table 3. In general, ReAct agent arch achieves 478

the best performances, which can be interpreted 479

in twofold. Firstly, fewshot prompt is necessary 480

to enable the action generation and reasoning abil- 481

ity for LAA, especially when experimenting with 482

those small-size language models. Secondly, com- 483

paring ReAct, PlanAct, and PlanReAct, we would 484

conclude that planning flow of LAA hinders per- 485

formance the in knowledge reasoning environment 486

and tasks. The reason is that knowledge reasoning 487

tasks require contextualized information to conduct 488

reasoning, whereas planning flow is executed ahead 489

7The average reward for gpt-3.5-turbo and text-davinci-
003 are respectively 0.15 and

7



Table 3: Average reward in the HotPotQA environment. Len denotes the maximum context length. Bold results
denote the best results in one row, i.e. best LAA architecture w.r.t. one LLM. Underline results denote the best
performance in one column, i.e. best LLM regarding one LAA architecture.

LLM Len.
LAA Architecture

ZS ZST ReAct PlanAct PlanReAct
fastchat-t5-3b 2k 0.0252 0.0067 0.0692 0.1155 0.0834
vicuna-7b 2k 0.1339 0.0797 0.0318 0.0868 0.0956
vicuna-13b 2k 0.1541 0.0910 0.2637 0.1754 0.2075
vicuna-33b 2k 0.2180 0.2223 0.2602 0.1333 0.2016
llama-2-7b-chat 4k 0.0395 0.0207 0.2624 0.1780 0.1417
llama-2-13b-chat 4k 0.1731 0.2313 0.2521 0.2192 0.2177
llama-2-70b-chat 4k 0.2809 0.3207 0.3558 0.1424 0.1797
mpt-7b-instruct 8k 0.0982 0.0483 0.1707 0.1147 0.1195
mpt-30b-instruct 8k 0.1562 0.2141 0.3261 0.2224 0.2315
xgen-8k-7b-instruct 8k 0.1502 0.1244 0.1937 0.1116 0.1096
vicuna-7b-16k 16k 0.0773 0.1053 0.2554 0.1759 0.1642
longchat-7b-16k 16k 0.0791 0.0672 0.2161 0.1296 0.0971
longchat-13b-16k 16k 0.1083 0.0562 0.2387 0.1623 0.1349
text-davinci-003 4k 0.3430 0.3304 0.4503 0.3577 0.4101
gpt-3.5-turbo 4k 0.3340 0.3254 0.3226 0.2762 0.3192
gpt-3.5-turbo-16k 16k 0.3027 0.2264 0.1859 0.2113 0.2251
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Figure 5: The reward w.r.t. complexity level in Hot-
PotQA, text-davinci-003.

of interactions. Thus, those generated plans tend490

to lead to more hallucination of LAA. Thirdly, re-491

garding this knowledge reasoning task, model size492

is much more important than the context length.493

Large-sized model has better abilities in reasoning,494

thus performing better. We also observe the best495

performance of Llama-2-70b on all open-source496

LLMs, which suggests that potential future fine-497

tuning can be applied.498

LAA performance w.r.t. Complexity. Since499

we have easy, medium, and high level tasks, we500

compare the performance of Llama-2-70b and re-501

garding different levels of complexity, as illustrated502

in Figure 5. We observe degrading performance if503

increasing the complexity of tasks. In HotPotQA 504

tasks, the hardness is defined as the question answer 505

hops. Therefore, hard question requires more con- 506

text understanding and reasoning ability of LAA. 507

Though OpenAI text-davinci-003 model consis- 508

tently outperforms Llama-2-70b on all levels of 509

complexity, their difference is of smaller margin 510

in hard questions. Since hard questions requires 511

more resoning efforts, we can conclude that Llama- 512

2-70b posses comparable reasoning ability with 513

text-davinci-003. 514

5 Conclusion and Future Work 515

In this paper, we systematically investigate the per- 516

formances of various LAA architecture paired with 517

different LLM backbones. We also provide one 518

novel orchestrating method for multiple agents, i.e. 519

BOLAA. The benchmarking results provide exper- 520

imental justification for the LAA investigation and 521

verify the potential benefits of BOLAA architec- 522

ture. During the investigation, we also identify the 523

challenge of designing BOLAA architecture for 524

environments with compounding actions. In the 525

future, we will keep exploring how to designing 526

the separation and orchestration of multiple agents. 527

We will continue developing more LAA architec- 528

tures and include more LLMs and environments 529

for evaluations. 530
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A Environment Setup714

WebShop is a recently proposed online shopping715

website environment with 1.18M real-world prod-716

ucts and human instructions. Each instruction is717

associated with one ground-truth product, and con-718

tains attribute requirements, e.g. I’m looking for a719

travel monopod camera tripod with quick release720

and easy to carry, and price lower than 130.00 dol-721

lars. This instruction includes 3 attribute require-722

ments i.e. “quick release", “camera tripod" and723

“easy carry" attributes. We define the complexity of724

an instruction using the number of attribute require-725

ments. Thus, this instruction example above is of726

complexity 3. We equally sample 150 instructions727

regarding each complexity level. Since we have728

fewer than 150 instructions for complexity larger729

than 6, we only include instructions from complex-730

ity in {1, 2, . . . , 6}, which sums up to 900 tasks731

for benchmark evaluation in the WebShop environ-732

ment. In the WebShop environment, an agent oper-733

ates either SEARCH[QUERY] or CLICK[ELEMENT]734

actions to interact the environment, for evaluat-735

ing the interactive decision making ability of LAA.736

The observation from WebShop is simplified web737

browser, which includes the clickable buttons and738

associated page content. LAA interacts with the739

WebShop environment as a web navigation agent.740

HotPotQA with Wikipedia API is another envi-741

ronment considered in this paper, which contains742

multi-hop questions answering tasks that requires743

reasoning over two or more Wikipedia passages.744

This simulation environment serves as a powerful745

tool for evaluating the multi-step planning and com-746

prehension capabilities and information retrieval747

skills of AI models, ensuring they are proficient748

in sourcing reliable information from vast online749

resources. With its unique blend of real-world in-750

ternet browsing scenarios and text analysis, Hot-751

potQA is an invaluable asset for the advancement752

of augmented large language agent systems. In Hot-753

PotQA environment, an agent has three types of754

actions, i.e., SEARCH[ENTITY], LOOKUP[STRING]755

and FINISH[ANSWER] to interact with HotPotQA756

environment. HotPotQA environment aims at eval-757

uate the knowledge reasoning ability of LAA. We758

randomly sample 100 questions from easy, medium759

and hard levels, which constitutes the final 300760

benchmark questions for evaluating LAAs.761

B Additional Performance Report 762

We include some additional performance reports in 763

appendix. The recall performance of text-davinci- 764

003 and Llama-2-70b-chat w.r.t. different complex- 765

ity levels in Webshop enviroment are illustrated in 766

Figure 6. We observe that text-davinci-003 has the 767

better performance compared with Llama-2. And 768

BOLAA generally outperforms other agent archi- 769

tectures on all different levels of complexity.
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Figure 6: The recall w.r.t. task complexity in WebShop.
Each bar represents one LAA.
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