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Abstract

Reinforcement learning has garnered significant attention across various fields,
including computer vision, natural language processing, and robotics. In this work,
we explore the potential of applying reinforcement learning to open-world agents
through an empirical study of three distinct offline meta-reinforcement learning
approaches for fan control, with a focus on thermal and energy management. Our
models enable adaptive fan speed control, which not only protects devices from
overheating but also effectively reduces power consumption. To better evaluate
the performance in open-world scenarios, we go beyond the industry-standard
steady-state test by conducting a CPU-stress test that simulates a more dynamic
and unpredictable deployment environment. Compared to commercially available
techniques, our solution achieves up to a 21% reduction in power consumption on
a real 2U-server under the worst thermal conditions. This approach demonstrates
the broader applicability of meta-reinforcement learning in the thermal and energy
management of server systems, particularly in open-world settings.

1 Introduction

AI and IoT advancements have led to server clusters in data centers, posing significant thermal
management challenges for performance and fault tolerance. Excessive heat from high power
consumption hardware threatens service reliability and shortens device lifespans, necessitating
increased cooling efforts which in turn require more energy. Amid global environmental concerns,
it’s vital to enhance server cooling efficiency to minimize energy use and prevent overheating.

Recent studies have applied ML to improve thermal management. For example, neural networks
combined with PID controllers[8] have optimized airflow in vacuum systems, while a thermal-aware
load-balancing algorithm [1] predicted CPU temperatures for better fan control. Notably, reinforce-
ment learning, particularly Q-Learning[13, 2], has been effective to minimize future temperatures
and reduce fan power consumption, showcasing significant energy savings compared to traditional
methods.

Research primarily uses online RL for server fan control, benefiting from simulated data for quick
policy training. Yet, these studies often ignore critical variables like airflow and hardware differences,
affecting fan control’s success and performance. In our experience, applying online RL on actual
servers can cause stability issues, including heat crashes, and adapting online RL to different hardware
setups is also challenging, as a single server may have over 10 distinct configurations, each needing a
week for engineers to adjust the fan curve appropriately.

Consequently, Offline meta-RL methods stand out by learning from existing data, allowing for quick
adaptation to new settings without needing large new datasets. These methods, enhanced by some
online fine-tuning [9], significantly improve performance by applying previously trained policies to
gather more data, optimizing the overall effectiveness of the implementation.
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This paper presents an empirical study involving three distinct offline meta-reinforcement learning
approaches for the task of fan control, focusing on thermal and energy management. The chosen
approaches include BCQ [6] in conjunction with MAML [4] (MAML-BCQ), MACAW [15], and
FOCAL [10]. In previous studies, [2] conducted comparisons with fixed fan policies. The data
collection methods in [7] and [28] involved a software-simulated environment and a server-like envi-
ronment, respectively. However, our methodology encompasses both offline learning and subsequent
online fine-tuning, all conducted on a real commercial server, thus expanding the scope beyond
previous works. Our server environment is equipped with 2 CPUs, 32 DIMMS, and 4 fan zones, In
our experiment, we consider 4 different CPU configurations and 2 testing scenarios. Moreover, our
investigation incorporates a broader set of server information than previous studies. The inclusion
of CPU power as an input enables our RL model to preemptively adjust fan speeds, averting CPU
temperature escalation. This proactive control mechanism facilitates swift self-adaptive temperature
management and enhances energy efficiency.

The experiments conducted in previous RL-based fan control literature are often limited and may
not reflect real-world scenarios properly, [2] examines the transition from IDLE to CPU stress, yet
it is compared to fixed fan policies, which is not a decent real-world benchmark. Additionally, [7]
explores the transition from IDLE to CPU stress and compares it with [21], which however does
not represent a fan control approach. Our experiments thus delve into more dynamic scenarios on a
commercial server, where our fan policies are compared with the commercially available fan policy
on the server.

Notably, this study represents a novel approach in the field by integrating both energy and thermal
considerations into server fan control via an offline RL-based algorithm, an area largely unexplored
in existing literature. To contribute to the field, we compare different offline meta-RL models with
commercially available techniques, emphasizing the applicability of our solution in open-world
scenarios. Our contributions are summarized as follows:

· This is the first work to experiment with different offline meta-RL frameworks that leverage
MAML-BCQ, MACAW, and FOCAL to address the fan control problem regarding power
consumption and thermal management on a real server environment.

· To better assess the fan control performance, besides the industry-standard steady-state test,
we also conduct CPU-stress test to simulate a more general deployment scenario for the
server where the workload is more random and dynamic.

· We introduce CPU power and fine-tuning into the field of fan control, exploring the efficacy
of capturing thermal control relevance using the reinforcement learning model, particularly
during the transient of hardware loading changes.

· The efficacy of our methodologies is established through comparison with fan policy actually
deployed in commercial servers under industry-standard test cases. Our fan control policy
achieves 21%/19% reduction in power consumption under the steady-state/CPU-stress tests,
respectively.

2 Related Work

2.1 Offline Reinforcement Learning

Offline RL methods resemble supervised learning, transforming data into models that generalize
well. They allow for effective training of RL agents using pre-existing data, eliminating the need for
real-time data acquisition, crucial in domains where live data gathering is difficult. Yet, offline RL
faces challenges, especially when models trained on specific data encounter new situations, leading
to significant extrapolation errors in predictions and value estimations. This discrepancy can cause
policies to perform poorly, diverging from their initial training. We refer the reader to prior work
[6] for a detailed discussion. Addressing these challenges often involves restricting certain learning
aspects to curb the impact of distributional shifts [18].

BCQ [6], a leading method in offline RL, constrains the action space to match the behavior policy,
avoiding queries on out-of-distribution actions. AWR [16] uses an implicit KL-divergence constraint
for offline RL through two steps: value function fitting and optimizing policy improvement with the
Lagrange multiplier method. BRAC [26] introduces an explicit KL-divergence penalty, ensuring
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policy alignment with behavior policy and minimizing future deviations. FOCAL [10] extends BRAC
for offline meta-RL, a technique we employ in our studies. ExORL [27] shows using varied unlabeled
datasets with reward relabeling can boost offline RL, highlighting the need for better real-world data
relabeling methods.

2.2 Offline Meta-Reinforcement Learning

Meta-reinforcement learning (meta-RL) helps agents learn quickly in new settings with few samples
by training on diverse environments, facilitating rapid adaptation. Offline meta-RL merges offline
learning’s efficiency with meta-learning’s adaptability. MACAW[15] utilizes MAML [4] and AWR’s
[16] principles, plus a weight transform [3] to improve MuJoCo [24] performance. FOCAL [10] , an
offline actor-critic method [19], uses an autoencoder for environmental context and regularization for
policy stability, achieving fast adaptation with limited data. SMAC [17], focusing on learning from
offline data for real-time task application, uses self-supervision to improve adaptability but requires
an online meta-training phase, leading to prolonged exploration time for practical use.

2.3 Reinforcement Learning on Thermal Management

[12] and [14] developed RL-based CPU task schedulers, with [14] employing PPO [20] for thermal
and energy-efficient scheduling. [7] applied Q-learning [25] in 3D-ICE [22] simulations to manage
processor temperature through DVFS, fan speed, and core activation adjustments, achieving a 19%
power saving compared to [21]’s method of increasing fan speed upon thermal threshold breaches.
Meanwhile, [28] used an actor-critic model with bimodal airflow-temperature sensing for temperature
management. Unfortunately, those previous works only experiment with server-like simulated
environments, which oversimplifies the thermal fan zones in the server and underestimates how
hardware configurations affect dissipating heat.

3 Thermal Fan Control Benchmark

As mentioned in Sec. 1, the fan control problem lacked open datasets and benchmarks. To address
this, we collected our data using the ASUS RS720-E10-RS12E. In Fig. 1, a 2U server is equipped
with 2 CPUs, 32 DIMMs, 12 HDDs, 2 PSUs, and 4 fans. We utilized the default fan policy provided
by ASUS BMC to establish our benchmark. BMC refers to Baseboard Management Controller, which
is the microcontroller system migrated into the server, with functions including remote monitoring
of server data, remote server control, and control of the server fan. The power consumption of two
scenario is shown in Table 1. Based on these two scenario, we compare our model with BMC policy,
as to be elaborated below:

Steady-state Test: The server consists of 4 test cases. Case 1 represents the IDLE mode, Case 2
represents the CPU stress mode, Case 3 represents the MEM stress mode, and Case 4 represents
the CPU+MEM stress mode. As depicted in Fig. 2, each test case runs for 15 minutes, with the
last 7.5 minutes representing the steady state (behind the black dotted line area). During the steady-
state test, the model will maintain the fan duty within a range of ±2%. To consider the worst-case
scenario for thermal management in the steady state test, we chose the configuration consisting of
2 205W CPUs and 32 8GB DIMMs, representing the highest power consumption for CPUs of the
RS720-E10-RS12E server hardware specification.

CPU-stress Test: To simulate the real-world scenarios where the server encounters unpredictable
workload request traffic, in CPU-stress test we deliberately introduce frequent changes to the CPU
power and stress modes in a total of 42 times within a 15-minute timeframe, as shown in Fig. 3.

Table 1: The Benchmark Power Consumption on Steady State Test and CPU Stress Test
Sum (Watt) Avg (Watt)

ASUS BMC on Steady-state Test 695887 644.33
ASUS BMC on CPU-stress Test 296373.5 658.6

3



(a) Internal structure (b) Fan Zone configuration

Figure 1: Diagrams of the RS720-E10-RS12E server. The hard drives (HDDs) are positioned in front
of the fans, followed by the CPUs and dual in-line memory modules (DIMMs), and at the end are the
power supply units (PSUs) and PCIs.

Figure 2: Benchmark Fan Policy on Steady State Test. To compare with ASUS RS720-E10-RS12E,
we considered the server’s internal airflow and hardware design for visualization of the benchmark.
The sequence of case switches is given by: case1 → case2 → case1 → case3 → case1 → case4,
where each switch between cases is indicated by a dark grey dashed line. The left and middle plots in
this figure represent the variations between the fan duty of fan zones and CPU temperatures under
different test cases. The right plot illustrates the changes in power supply output under various test
cases. Due to the highest power consumption reaching 820 watts in the worst case (CPU+DIMM),
only PSU1 is utilized as it can supply up to 1600 watts, while PSU2 was not activated.

4 Algorithmic Review

4.1 Reinforcement Learning

Reinforcement learning addresses the challenge of learning to control a dynamical system, typ-
ically represented by a Markov decision process (MDP), which can be defined by a tuple of
(S,A, T, d0, r, γ): An agent in a state st ∈ S interacts with the environment by taking an ac-
tion at ∈ A, and the environment responds with a new state st+1 ∈ S according to a transition
probability distribution T (st+1|st, at) that describes the dynamics of the system. d0 is the ini-
tial state distribution, r : S × A → R defines a reward function measuring how beneficial that
interaction was toward the goal of the agent, and γ ∈ [0, 1] is the scalar discount factor. The ob-

Figure 3: Benchmark Fan Policy on CPU Stress Test. The difference from Fig. 2 is the frequency of
case switching. We simulated the scenario faced by servers deployed in real-world environments by
frequently switching between different stress test cases.
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jective is to learn a policy π(at|st) which defines a distribution over actions conditioned on states.
A trajectory is a sequence of states and actions of length H , given by τ = (s0, a0, ..., sH , aH),
where H may be infinite. The probability density function for a given trajectory τ under policy
π is given by pπ(τ) = d0(s0)

∏H
t=0 π(at|st)T (st+1|st, at). The objective function J(π) is the ex-

pected (discounted) cumulative reward under policy π, namely: J(π) = Eτ∼pπ

[∑H
t=0 γ

tr(st, at)
]
.

The optimal policy π∗ = argmax
π

J(π) is the policy that maximizes the expected (discounted)

cumulative reward. Approaches like policy iteration and value iteration often utilize state-value
function V π and state-action-value function Qπ to find the optimal policy. The value func-
tions offer an estimate of the expected cumulative reward attainable by following a certain pol-
icy π when starting from a specific state s (for the state-value function) or state-action pair
(s, a) (for the state-action value function), namely: V π(s) = Eπ

[∑H
t=0 γ

tr(st, at)|s0 = s
]
, and

Qπ(s, a) = Eπ

[∑H
t=0 γ

tr(st, at)|s0 = s, a0 = a
]
. The value functions satisfy the well-known Bell-

man equations [23]: V π(s) = Ea∼π(·|s) [Q
π(s, a)], andQπ(s, a) = r(s, a)+γEs′∼T (·|s,a) [V

π(s′)].
The advantage function Aπ(s, a) = Qπ(s, a)− V π(s) indicates the advantage or benefit of choosing
a specific action a in comparison to the average expected performance from state s.

4.2 Offline Meta-Reinforcement Learning

Conventional offline RL algorithms require the collection of extensive new data from a new task
to train the policy, which is time-consuming in practice. We can opt-in meta-learning to offline
RL algorithms to enhance the agent’s ability to faster adapt the policy to new tasks in the open-
world scenario. Existing offline meta-reinforcement learning problems typically define a task Ti
to represent a tuple (Mi, µi), where Mi represents a fixed MDP and µi is an unknown behavior
policy. The behavior policy µi may vary, depending on the replay buffer of an RL agent, and it
could be either an expert policy or a sub-optimal policy. In the offline setting, an offline meta-
RL algorithm lacks direct interaction with the environment. Instead, it accesses static datasets of
transitions Di = {(si,t, ai,t, s′i,t, ri,t)}Nt=1 sampled from µi for each task, where s′i,t is the next state.

In this work, we implement three distinct offline meta-RL algorithms to deploy on the ASUS
RS720-E10-RS12E, which are Model-Agnostic Meta-Learning (MAML) [4] combining with Batch-
Constrained deep Q-Learning (BCQ) [6], called (MAML-BCQ), Meta Actor-Critic with Advantage
Weighting (MACAW) [15], and Fully-Offline Context-based Actor-critic meta-RL (FOCAL) [10], all
based on MAML framework to achieve meta-learning. In MAML, the adaptation learning process
known as the inner-loop, involves an inner learning algorithm solving tasks defined by the buffer Di.
Meanwhile, during meta-learning, an outer algorithm updates the inner learning algorithm to improve
an outer objective, referred to as the outer-loop. We will provide a concise overview of those three
algorithms in Appendix A.

5 Implementation Details and Reward Function

5.1 Implementation Details

In this project, we used PyTorch on a server with an NVIDIA GeForce RTX 3080Ti GPU to implement
three models for offline meta-learning, testing four CPU power settings (130W, 150W, 190W, 205W)
on an ASUS RS720-E10-RS12E server. Initially, we ran 500 online learning episodes for AWR [16]
warm-up, then stored data from the next 100 episodes, totaling 108,000 time steps of server data
including CPU temperatures, power inputs, thermal sensor readings, power usages, and fan duties.
Data was normalized to a [0, 1] range.

We tested our models to reduce server fan power usage, training them on 130W, 150W, and 190W
CPU configuration across 200,000 steps in offline mode. Each step involved selecting an episode
at random from these configurations and training on a 256-transition batch. We also fine-tuned the
models with a 205W CPU configuration over five rounds.

For our fine-tuning approach, we initially trained our models offline on 130W, 150W, and 190W
CPU data for 40,000 steps, then shifted to online fine-tune with 205W CPU configuration over 5
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episodes, and collected relevant data. Then, we used this new dataset for another 40,000-step training.
Repeating this fine-tuning four times greatly improved our models’ adaptability and power efficiency.

Furthermore, we simplified MACAW’s architecture by using fully connected layers instead of weight
transform layers to lower computational demands and applied gradient clipping to prevent exploding
gradients. In our FOCAL experiments, replacing LSTM encoders with fully connected layers
countered the rapid CPU temperature rise during stress tests, due to LSTM’s slow inference delaying
fan response.

We evaluated our models using steady-state and CPU-stress tests benchmarks (see Sec. 3) on a server
with 2 205W CPUs and 32 8GB DIMMs, mimicking RS720-E10-RS12E’s maximum power setup
for extreme thermal conditions.

5.2 Reward Function

In this work, the reward function is chosen as:

R(s, a) =


−540, if T ≥ Tc,
−5, if Tc > T ≥ Ta,
α(1−

√
P

Pmax
)2

+β tan−1(1− F
Fmax

), otherwise.

(1)

where T is the current CPU temperature, Tc is the CPU critical temperature, and Ta is the temperature
close to the CPU critical temperature (i.e., alert temperature). In this work, we set Ta = Tc − 5.
Notably, if T ≥ Ta, we set the fan duty to 100% to minimize the risk of overheating. P is the output
of power supply, F is the fans’ power consumption.

Taking into account both the long-term power consumption of the system and the short-term power
consumption of the fans, the reward function (1) is designed to achieve our goal of maximizing fan
control performance while minimizing power consumption and avoiding heat crash issues. More

elaborately, (1−
√

P
Pmax

)2 represents the total system power consumption, which helps our model

to identify the server workloads; tan−1(1− F
Fmax

) represents the fan control aspect, with an aim to
minimizing fan power within the thermal constraint, where Pmax refers to the maximum wattage that
the server’s Power Supply Unit (PSU) can provide, while Fmax denotes the highest rotation speed of
the fan. However, given the conflicting objectives of minimizing power consumption and maximizing
fan control performance, we introduced trade-off factors to navigate this challenge. The constants
α and β, determined by their respective significance, denote the priority assigned to each objective,
satisfying the constraint α + β = 1. In our experiments, we set α = 0.3 and β = 0.7 across all
settings.

6 Experimental Results

6.1 Compared with ASUS BMC Fan Policy

Table 2 shows our models excel in both test scenarios, efficiently managing server fans to avoid CPU
overheating and maintain stability. In the steady-state test, our top fan control policy cuts power
use by 21% against the ASUS BMC policy, and in the CPU-stress test, it saves 19% versus the
benchmark. The cumulative power consumption of the fan policies of the three models and BMC fan
policy during the steady-state test is illustrated in Fig. 4. Additionally, we compare the MACAW
fan policy and the BMC fan policy in case 1 switches to case 2, shown in Fig. 5. Besides, Fig. 4
illustrates how fine-tuning markedly enhances each model’s power efficiency.

6.2 Ablation Study

In this part, we ablate the 2 key features of our proposed model to better understand our method.

Fine-tuning: Our fine-tuning tests, detailed in Table 3, demonstrated that fine-tuned models
outperformed non-fine-tuned ones, achieving over 2% power savings in steady-state tests. This
success is due to the models’ enhanced use of online experience, proving the approach’s applicability
in real-world fan policy adjustments.
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Table 2: ASUS BMC Fan Policy v.s. Offline Meta-RL.

Model FT CPU
Power

Avg
(Watt) ± % FT CPU

Power
Avg

(Watt) ±%

Steady-state Test CPU Stress Test
ASUS BMC Policy - - 644.33 - - - 658.6 -

MAML-BCQ Yes Yes 533.87 -19%. Yes Yes 543.55 -17.4%
MACAW Yes Yes 510.34 -20.8%. Yes Yes 536.25 -18.5%
FOCAL Yes Yes 508.71 -21%. Yes Yes 533.8 -18.9%

(a) Cumulative Power Consumption on
Steady-state Test

(b) Fine-tuning Improvement on Steady-state
Test

Figure 4: In the left figure, our meta-RL models have significant improvements in power consumption
compared with the original server fan policy. In the right figure, after each round of fine-tuning
for each model, we observed a gradual improvement in the performance of power consumption
throughout the process.

CPU Power Information: Experiments comparing models with and without CPU power data, as
shown in Table 3, revealed that including CPU power led to up to 2.9% power savings on CPU-stress
tests. Incorporating CPU power as an input is key, helping models better understand server load and
improve efficiency.

7 Conclusion

In this work, we experiment with 3 different offline meta-RL approaches, namely MAML-BCQ,
MACAW, and FOCAL, to the fan control problem regarding power consumption in a real server
environment. To better assess the fan control performance, besides the industry-standard steady-state
test, we also conduct CPU-stress test to simulate a more general deployment scenario for the server
where the workload is more random and dynamic. Compared to commercially available products, our
fan control policy achieves 21%/19% reduction in power consumption under the steady-state/CPU-

Figure 5: Fan duty companion of BMC and MACAW on Steady State Test. Compared to the BMC,
the fan duty output of MACAW for Fan Zone 3 is higher than Fan Zone 4 when the case switches
from IDLE Mode to CPU Stress Mode (the orange dote area), which is reasonable as Fan Zone 3
affects CPU2 more than Fan Zone 4 (cf. Fig. 1)

7



Table 3: Experiment results of ablation study.

Model FT CPU
Power

Avg
(Watt) ±% FT CPU

Power
Avg

(Watt) ±%

Steady-state Test CPU Stress Test
MAML-BCQ Yes Yes 533.87 - Yes Yes 543.55 -
MAML-BCQ No Yes 552 +3.3% Yes No 557.8 +2.5%

MACAW Yes Yes 510.34 - Yes Yes 536.25 -
MACAW No Yes 520.8 +2% Yes No 548.69 +2.2%
FOCAL Yes Yes 508.71 - Yes Yes 533.8 -
FOCAL No Yes 520.12 +2.2% Yes No 549.78 +2.9%

stress tests, respectively. Our models effectively manage the complexities of thermal environments
within the server, adeptly handling interactions among various heat sources, airflow, and transient
operations. Despite the success, the limited hardware configuration we made regarding task training
and inference can potentially limit offline meta-RL algorithms’ robustness to common challenges
such as more complex environments or stochastic environments, which opens up avenues for future
work of more advanced implementation of offline meta-RL algorithms.
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A Offline Meta-Reinforcement Learning Methods

MAML-BCQ: As mentioned in Sec. 2, existing off-policy reinforcement learning algorithms
often overlook extrapolation error by selecting actions based on a learned value estimate, without
assessing the accuracy of the estimate. BCQ [6] addresses the concept of batch constraint using a
conditional variational auto-encoder (VAE) Gη, which is parameterized by η. The VAE generates
a set of candidate actions that closely resemble the batch data, where the action with the highest
value as estimated by a learned Q-network Qθ (parameterized by θ) is selected. The policy is given
by: πθ(s) = an + δϕ(s, an,Φ), and δϕ(s, an,Φ) = argmax∆a∈[−Φ,Φ]:an+∆a∈AQθ(s, an + ∆a),
where an is an action generated from Gη. The δϕ(s, an,Φ) is a perturbation model parameterized
by ϕ that outputs an adjustment to an action a in the range [−Φ,Φ]. BCQ is able to learn favorably
without interacting with the environment by constraining the action selection, which ensures that the
Q-function is never queried on out-of-distribution actions.

We applied MAML [4] to extend BCQ on offline meta-RL setting. The critical insight lies in
considering the inner-loop as a differentiable function of the initial parameters. Consequently, the
initialization can be optimized using gradient descent to serve as a strong starting point for learning
tasks drawn from the task distribution. At each meta-training step, the inner loop adapts θ to a task Ti
by computing θ′i = θ − α∇θLTi

(θ), where LTi
is the loss function for task Ti and α is the step size.

The outer loop updates the parameters as θ ← θ−β∇θ

∑
Ti
L′
Ti
(θ′i), where L′

Ti
is a loss function for

task Ti, which may or may not be the same as the inner-loop loss function LTi
, and β is the outer loop

step size. The outer-loop optimizes the initial parameter θ by taking the gradient of a loss function
that depends on several gradient descent steps in the inner-loop. Therefore, the outer-loop requires
taking the gradient of a gradient, which involves second-order derivatives. In practice, people often
applied First-Order MAML (FOMAML) [4] which is MAML that ignores the second-order term.
However, while it can speed up model training, it may discard some information from the inner loops.

MACAW: MACAW [15] draws inspiration from MAML [4] and AWR [16]. MACAW is an
offline meta-reinforcement learning algorithm. The model architecture has three outputs: πθ(·|s),
Aθ(s, a) and Vϕ, parameterized by θ and ϕ, where πθ(·|s) corresponds to the predicted action, while
Aθ(s, a) represents the predicted advantage output from the advantage regression block of the actor
model, given both state and action. Finally, Vϕ denotes the learned value function. Similar to
AWR[16], MACAW formulates a supervised regression problem which learns the value function
Vϕ with the guidance of the Monte Carlo returns. More elaborately, MACAW adapts the value
function Vϕ by taking a few gradient descent steps aiming to minimize the sum of squared error
loss: Lcritic = Es,a∼Di

[(Vϕ(s)− (RDi
(s, a)))2], where RDi

(s, a) is the Monte Carlo return from
the state s taking action a observed in Di.

MACAW updates its policy πθ through θ
′

i ← θ − ψ∇θLactor(θ, ϕ
′

i,Di), with Lactor = LAWR +
λLADV , ψ is the step size for the actor model, λ is the advantage regression coefficient. Here
LAWR(θ, ϕ

′

i,Di) = E(s,a)∼Di

[
− log πθ(a|s) exp

(
1
T

(
RDi

(s, a)− Vϕ′
i
(s)

))]
, where T > 0 is a

temperature parameter, that aligns with the previous work AWR [16] (cf. Sec. 2.1). However, directly
applying the same update rule of AWR [16] does not provide good universality [5], namely two
distinct output values might yield the same gradient under the MAML [4] framework. To address
this universal update problem, MACAW introduced LADV which is defined as: LADV (θ, ϕ

′

i,Di)

= E(s,a)∼Di

[(
Aθ(s, a)−

(
RDi

(s, a)− Vϕ′
i
(s)

))2
]

, where Aθ(s, a) is employed to estimate the

advantage, with the advantage defined as the return minus the state value: RDi(s, a)− Vϕ′
i
(s). The

combined gradient of LAWR and LADV ensures that distinct output values will result in different
gradients while updating the policy.

FOCAL: FOCAL [10] is an actor-critic model combined with an inference model, which draws inspi-
ration from PEARL [19] and BRAC [26]. While PEARL trains the inference network to reconstruct
the MDP by learning a predictive model of reward and transition, FOCAL disentangles the learning of
the context encoder from the learning of the control policy. The inference network qω (parameterized
by ω) of FOCAL aims to cluster similar data and push away dissimilar data in the embedding space Z
to obtain the embedding qω of the data buffer D. The inference network was updated by minimizing
the following loss function: Ldml(xi, xj , qω) = 1{yi = yj}∥qi − qj∥22 + 1{yi ̸= yj}η̂ · 1

∥qi−qj∥2
2+ϵ

,
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where xi is the input state of the task, yi is the input task, and qi = qω(xi) is the embedding vector of
xi. η̂ is the distant coefficient, and ϵ > 0 is a small hyperparameter added to avoid division by zero. On
the other hand, FOCAL introduces a value penalty mechanism from BRAC [26], aimed at ameliorating
overestimation problems in Q-values in the offline setting. Consequently, the actor and critic losses are
formulated as Lcritic = E(s,a,r,s′)∼Dia

′∼πθ(·|s′)

[(
r + γQ̄ϕ(s

′, a′, z̄)−Qϕ(s, a, z̄)
)2]

,Lactor =

−E(s,a,r,s′)∼Di

[
Ea′′∼πθ(·|s) [Qϕ(s, a

′′, z̄)]− δ̂DKL

(
πθ(·|s), πb(·|s)

)]
. FOCAL align with the pre-

vious work [26], the actor-critic model learns initialization weights ϕ and θ for Q-function Qϕ

and policy πθ, and Q̄ϕ denotes a soft-updated target Q-function [11] without gradients. The latent
context variable z̄ ∈ Z is computed by inference network qω, which indicates that gradients are not
being computed through it. In FOCAL, the complete information of z and s is combined as the
full state. The parameter δ̂ is the adaptive regularization coefficient, with the term DKL indicating
the Kullback-Leibler divergence between the current policy πθ and the behavior policy πb. The KL
divergence serves as a regularization term within the policy objective function, effectively mitigating
overestimation issues present in the Q-values.
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